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Abstract MTL was introduced almost two decades ago by Koy-

mans [13], and has since been extensively studied. Unfor-

In an influential paper titled “The Benefits of Relaxing tunately, the model-checking and satisfiability problems for
Punctuality” [2], Alur, Feder, and Henzinger introduced MTL over dense time are undecidable [3, 19], an extreme
Metric Interval Temporal LogicNITL) as a fragment of  case of infeasibility. Researchers were therefore led to seek
the real-time logic Metric Temporal LogidTL) in which relaxations of the framework in a search for tractability.
exact or punctual timing constraints are banned. Their Alur and Henzinger, for example, proved that model check-
main result showed that model checking and satisfiability ing MTL over discrete time waSXPSPACE-Complete [4].
for MITL are bothEXPSPACE-Complete. Since untimed.TL model checking is alreadi SPACE-

Until recently, it was widely believed that admitting even Complete, their result clearly sat towards the agreeable end
the simplest punctual specifications in any linear-time tem- Of the feasibility spectrum. The price they paid, however,
poral logic would automatically lead to undecidability. Al- Was to renounce the density of time.
though this was recently disproved, until now no punctual ~ Accommodating time density, unfortunately, appeared to
fragment ofMTL was known to have even primitive recur- be problematic: it was widely held at the time that any
sive complexity (with certain decidable fragments having formalism in which exact or punctual timing constraints
provably non-primitive recursive complexity). could be expressed would automatically be undecidable.

In this paper we identify a ‘co-flat’ subset MTL that Such constraints correspond to allowing singleton intervals
is capable of expressing a large class of punctual specifica-in MTL temporal operators, and enable one to specify, for
tions and for which model checking (although not satisfia- example, that a particular event is to be followed exactly
bility) has no complexity cost ov&tITL. Our logic is more- one time unit later by another one. In their seminal pa-
over qualitatively different fronMITL in that it can express  per titled “The Benefits of Relaxing Punctuality” [2], Alur,
properties that are not timed-regular. Correspondingly, our Feder, and Henzinger therefore considered a fragment of
decision procedures do not involve translating formulas MTL, called Metric Interval Temporal Logi¢/ITL), which
into finite-state automata, but rather into certain kinds of syntactically bans punctual timing constraints. Their main
reversal-bounded Turing machines. Using this translation achievement was to show that the model-checking and sat-
we show that the model checking problem for our logic is isfiability problems forMITL are EXPSPACE-Complete.
EXPSPACE-Complete, and is evelRSPACE-Complete if The proof they gave, in whicklI TL formulas are first trans-
timing constraints are encoded in unary. formed into timed automata, was quite complicated. Nev-

ertheless, this work was quite influential as it firmly es-
tablishedMITL as the most important fragment of Metric

) Temporal Logic over dense-time having a feasible model-

1 Introduction checking problem. In recent years, new or simplified proofs
of the EXPSPACE-Completeness dfIITL have appeared

In the formal study of real-time systems, it has long been In the literature (e.g., [22, 12, 15]).

accepted that there is an unavoidable and substantial trade- Recently, it was discovered that punctuality and dense
off between theexpressivenessf a specification formal-  time do not after all necessarily lead to undecidability,
ism and thefeasabilityof the associated verification task. although the complexity of the various decidable frag-
This tension figures most prominently in the case of Metric ments studied was either non-primitive recursive or non-
Temporal Logic MTL), a timed extension of Linear Tem- elementary [18, 20, 21]. From a feasibility point of view,
poral Logic (TL), in which the temporal operators are con- such improvements, while significant, remained unsatisfac-
strained by time intervals. tory.



The aim of the present paper was therefore to investigate2 Channel Automata
more thoroughly the intrinsic cost of allowing punctuality
in a dense-time setting. Our main reasults concern two new  Before introducing our real-time modelling framework,
‘punctual’ fragments of Metric Temporal LogiBounded-  we introduce a class of discrete machines that ultimately
MTL andcoFlat-MTL. underly our model-checking algorithm fooFlat-MTL.

A channel automatonis a finite-state automaton
equipped with a single unbounded fifo channel (or queue).
The transitions of the automaton either write messages to
the tail of the channel or read messages from the head

. of the channel. This model is easily seen to be Turing-
word whose duration depends solely on the formula. We . .
. ._ powerful [7]. In this paper we consider a class of channel
are then able to show that the model-checking and Satls'automata with two extra orimitivesalobal renamincand
fiability problems forBounded-MTL over dense time are P < g

: . rren ingThe former allow ransition imul-
EXPSPACE-Complete, andPSPACE-Complete if the in- occurrence testingrhe former allows a transition to s u
: taneously rename all the letters on the channel according to
terval constants are encoded in unary.

some renaming relation, including the possibility of delet-

Bounded-MTL is therefore a punctual fragment of Met- ing letters. The latter allows a transition to be guarded by
ric Temporal Logic having precisely the same complexity as the predicate that some letter not appear on the channel.
MITL. The two fragments, however, differ in important re- ~ Given an alphabek, let X. denoteX U {e}, wheree
spects. A first observation is that, at a syntactic leV8T L represents the empty word.
restrictsMTL in banning constraining intervals that are ‘too
small’, whereaBBounded-MTL prohibits intervals that are
‘too large’. SemanticallyBounded-MTL thus cannot ex-
press invariant properties, required to hold forever, contrary
to MITL. In that respect, the expressivenesBofinded-
MTL is quite restricted.

Bounded-MTL is derived fromMTL by requiring all
time-constraining intervals to have finite length. As a re-
sult, the truth or falsity of @8ounded-MTL formula on a
given timed word is determined by an initial segment of the

Definition 1. A Channel Automaton with Renaming
and Occurrence TestindCAROT) is a tupleC =
(S, s0,2,A, F), whereS is a finite set of control states,
o € S is the initial control state,F" C S is a set of fi-
nal control statesy: is a finite channel alphabet and C
Sx Op xS is the set of transition rules, withp = {c!, 07 |

Thankiully, it is possible to incorporate invariance intoa @ € 2}U{zero(0) | o € S}U{R | R C ¥ x %} the set of
substantially larger fragment 4 TL. The principal contri-  Operations. Given arule € A, we denote the correspond-
bution of this paper concerns the logioFlat-MTL, which ~ iNg operationop(r). Intuitively, zero(o) € Op guards
subsumes&TL, Bounded-MTL, and is closed under invari- 2gainst the occurrence ef in the channel, and? € Op
ance. Our main result is that model checking this highly 1S interpreted as a global renaming (where renaming:to
expressive punctual fragment ®fTL is EXPSPACE- corresponds to deletion).

Complete_', an(PSPACE-CompIete if interyal const_ants are A global stateof C is a pairy — (s, z), wheres € S is
encoded in unary. In view of the complexity of untlm_e'EL the control state and € ¥* is the channel contents. The
model checking, such a result can arguably be viewed as

timal. Perh isingl tisfiabilitv@iFlat-MTL rules in A induce a transition relation on the set of global
optimal. merhaps surprisingly, satistiabiiity at ' states according to the following table, where, giver=
on the other hand, turns out to be undecidable.

x1...2, € X*andR C ¥ x X, R(x) def {y1-+yn €
Our proof of EXPSPACE membership proceeds by X*:xz; Ry;}.
translatingFlat-MTL formulas into alternating timed au-

tomata, and in turn simulating runs of these using special Rule Transition
kinds of reversal-bounded Turing machines, for which ter- (s,0,t) (s,2) = (t,z-0)
mination can be shown to be EBXPSPACE. By contrast, (s,07,1) (s,0-2) — (t,z)

MITL formulas are analysed by translation into timed au- (s, zero(0),t) | (s,2) = (t,z),ifo & 2
tomata, and, unlik®ounded-MTL andcoFlat-MTL, can (s,R,t) (s,2) = (t,y), ify € R(x)
therefore only give rise to timed-regular languages.

Assume that: always contains a special symbol,

MITL and coFlat-MTL have incomparable expressive- called theend-of-channel markerA computation ofC is

ness. However, it can be argued tbaFlat-MTL comprises  a (finite or infinite) sequence of transitiong — v —

virtually all the specifications that one could reasonably be v2 — - - - with ¢y = (so,>). A finite computation isac-
interested to model check in practice. One might therefore ceptingif it ends in an accepting statg, .

view the dense-time logicoFlat-MTL as the first signifi- To aid our analysis of computations, we make the follow-
cant fragment oMTL to combine high expressiveness and ing (harmless) assumption abdut We suppose that given
punctuality together with model-checking feasibility. consecutiveules (s, opy,t) and (¢, opy, u), op; = >7 iff



op, = >!: roughly speaking, there is always a unique copy SS 5 Rt >?u >!'v

of > on the channel. This restriction allows us to use the [b7|v|c? 88 S R t|>? UU

notion of the end-of-channel marker to measure the number a?|v|c? |s 8 R t|>? uv

of cyclesof the channel during a computation. Intuitively a c?ls R u >?u >lv
segment of the computation during whishmoves from the ) )

tail of the channel to the head of the channel involves a com- Fig. 1. Computation table

plete cycle of the channel. Formally we defingles(o) to

o L . s bl s|bl s Rt >? >lovv vv voe w
be the number of transitions in with operand>!. This
o . . v b7 v|c? s al s bl >?Tul vy vv w
measure is similar to the notion of head reversals for Turing
. vo vy valovc? R tp>p?uplvoe v
machines.
VU VUV VU VU R uu up?uplo

Definition 2. Thecycle-bounded reachability problefor . . . - .
CAROTSs is as follows: Fig. 2. Computation table with sliding window
Instance A CAROTC and a cycle bounav.

Question DoesC have an accepting computatignwith

cycles(p) < N? ) ) o ) )
memory at any one time. Imagine a sliding window of di-

In the channel automatahbelow, letR be the relation mension3 x h, whereh is the table height. The window
that nondeterministically renaméso eitherd or c. represents the part of the table in view at any time; it starts
at the left end and is moved one place to the right with each
phase of the procedure. Given a particular view, a phase of
the procedure checks that the transitions therein are consis-
tent with the control structure af. For instance, in Fig-
ure 2, while viewing the leftmost window it is checked that
e (s,0!)s), (v,b7,v) € A. Somewhat more subtly the corre-
Figure 1 represents a computation(in tabular form. sponding read and write events in the current view must be
Each row of the table represents a cycle of the channel, andconsistent with the zero testing and renaming in the rest of
reading left-to-right, it records the sequence of transitions the table. For instance, in Figure 2, again in the left-most
during that cycle. The most important property of the table window, the justification of the vertically aligned andb?
is that the spacing is arranged so that an operation that readsactions is that between the occurrence of these two adiions
a message is placed directly below the operation that origi-was neither renamed nor zero-tested.
nally wrote the message, necessarily in the previous cycle of  In general, what is required is to store in memory the
the channet. In Figure 1 matching pairs of reads and writes cumulative effect of the zero tests and renaming in the part
are indicated by rectangular boxes. Because of global re-of the table not currently in view. To this end we associate
naming the corresponding read and write events may notwith each ruler € A a relationR, on X, according to
refer to the same element &f For instance, in Figure 1, a  the value ofop(7). The table below shows this association,

write-eventh! is sometimes aligned with a read-eveht whereld is the identity relation or..
The length of the computation table is at least the maxi-
mum length of the channel during the corresponding com- op(t) || ol,0? zero(o) R
putation. It is easy to see that this can be exponential in R, 1d 1d—{(o,0)} | RU{e e}
the value of the cycle bound. (Consider a machine that re- : -
peatedly reads one copy efand writes two copies of.) Now suppose that on rowof the computation table the
However we describe a procedure to guess the existence of 8equence of transition rulesis, 7», . .., 7, and thatr; is

computation table using only polynomial space in the value the transition currently in view. Then the sliding-window

of the cycle bound. The first step is to fill in the blank spaces procedure stores in memory a pair of relatiohrgt; and

in the table by repeating the immediately preceding control Right, on ¥, where Left, = R, ;...; R., and Right; =

state; for example, starting from Figure 1 we obtain the ta- R:..;...; Rr,. Note thatRight, must be guessed since

ble in Figure 2. it refers to the part of the table to the right of the current
A nondeterministic procedure for guessing and verify- view, which has not been seen yet. The correctness cri-

ing such a table involves storing only part of the table in terion on the current view is that if,¢’ € X are verti-

cally aligned, witho! on row! ando’? on row! + 1, then
1Formally, it can be shown that a¥-cycle-bounded CAROT can sim-

y . / 1 T H _
ulate anN-reversal-bounded single-tape Turing machine,\doé-versa o (Right;; Leﬁ?“‘l) g Fm?"y’ observe that it is straight
2To accommodate global deletion in such a table (i.e., renamiag to ~ forward to verify the consistency of the guessed value of

we postulate a self-loofs, 7, s) for each control state of C. Right, from one view to the next.




Theorem 3. The cycle-bounded reachability problem for

CARQOTs is solvable in polynomial space in the size of the
channel automaton and polynomial space in the value of the

cycle bound.

3 Metric Temporal Logic

In this section we formally define the syntax and seman-
tics of Metric Temporal Logic. Following [9, 10, 11, 24, 4,
5], among others, we interpret the logic over timed words:
w-sequences of events with associated timestamps.

Definition 4. The syntax of Metric Temporal Logic
(MTL) [13] is defined by the following grammar:

MTLS ¢ o= 0 | =0 | oVe | pAp | pUre | ¢Urp

whereo ranges over a finite set of everlfsand 7 is an
interval of R™ with bounds inN U {oo}.

MTL formulas are interpreted over timed words: a timed
word w is an infinite sequencés;, t;);cny Whereo; € X
andt; € R* for eachi, and such that the sequen@ge);cy
is strictly increasing and diverges to infinity.

Definition 5. Letw = (o3, t;)ien be an infinite timed word,
andk € N. The (pointwise) semantics BfTL is defined
recursively as follows (we omit Boolean operations):
wklEo & op=0
wkEeUrYp & Fi>0 wk+iEY, tpe —tp €1
and V0 < j<i, wk+jEe

w, k= eUrg & wk = ﬁ(("‘P) Us (_'1/)))-
If w,0 = ¢, we writew = ¢.

Additional operators, such as(true), f (false),=, <,
F, G andX, are defined in the usual wa¥; ¢ = t Uy ¢,
Gro =fUrp, andX; ¢ = fU; . We also use pseudo-

e The satisfiability problem asking whether a given
MTL formulay is satisfiablej.e., whetherw |= ¢ for
some infinite timed wordv over;;

e Themodel-checking problenmasking whether a given
timed automator satisfies a giveMTL formula ¢,
i.e, whether all timed words accepted blysatisfy o
(see [1] for details). We writel = ¢ when the answer
is positive.

Among others, we identify the following syntactic frag-
ments ofMTL. Linear Temporal LogiqLTL) can be con-
sidered as the fragment BfTL in which modalities are not
constrainedi(e., whereR™ is the only constraining inter-
val). Metric Interval Temporal LogidMITL) is the frag-
ment of MTL where punctuality is not allowed.€., where
interval constraints are not singletongounded-MTL is
the fragment oMTL in which all interval constraints have
finite length.

MITL was introduced in [2], motivated by the role played
by punctuality in the undecidability proof faviTL. The
main result of [2] was that model checking and satisfiability
for MITL areEXPSPACE-Complete. As we will see, these
problems are als&€XPSPACE-Complete forBounded-
MTL. This is somewhat surprising in view of the following
example.

Example 6. Let thevariability of a timed word be the max-
imum number of events that occur in any one time unit.
We exhibit a family oBounded-MTL formulas{¢y, }nen
such that the size af,, is linear in n, but the variability

of any timed word satisfying,, is at least2?”, i.e.,doubly
exponentialin n. We definep,, = a A ¢p A Gg 2n] ¥,
wherepp = (a — F—o1 (a AXD)) A (b — F=1 (a A XD)).

If o = ¢n, then the variability ofp must (at least) double
every time unit over the fir&"* time units.

Observe that whil8ounded-MTL permits punctual for-
mulas, it disallows unconstrained modalities. In particular,
Bounded-MTL is not suitable to express invariance—the

arithmetic expressions to denote intervals. For example,most basic type of temporal specification—and it does not

‘= 1" denotes the singletofil }.
Let us point out that the main results of this paper also

subsumeLTL (either syntactically or semantically). Intu-
itively, Bounded-MTL is only suitable for expressing time-

hold under a weakly monotonic semantics for time (in pounded specifications. To remedy this deficiency we in-

which the timestamps are merely nondecreasing), as WelkyoqyceFlat-MTL as the fragment d¥ITL generated by the
as under a non-strict semantics for temporal operators (iNgrammar:

which the present time point is included).

3.1 Satisfiability and model checking

We consider the following two fundamental questions
for MTL and various fragments thereof:

3This is the so-callegointwisesemantics. Another semantics, interval-

based, is interpreted over continuous signals. See e.g. [10, 22] for details.

As noted in [10], the known complexity results feHTL hold both in the
interval-based and in the pointwise semantics.

FlatMTLs o =0 | 7o | Ve | o Ap |
Uy |vUrp|eUse|pUry

where J ranges over the set of bounded intervdlsyver
the set of all intervals, and the underlined formulaanges
overLTL. n

Notice immediately thaFlat-MTL subsumes bothTL
and Bounded-MTL, however it is not closed under nega-
tion. In fact, the most natural way to state our main results



is in terms of the dual logic, which we catbFlat-MTL. Model Checking | Satisfiability
This consists of the dualé €., the negations) oflat-MTL LTL |
formulas. Correspondingly, the syntactic restriction deter- MITL |
mining coFlat-MTL as a subset dfITL is dual to that deter- Bounded-MTL
mining Flat-MTL: we require that, iff is unbounded, then Safety-MTL \
formulas appearing on the right &f; and on the left ofU; coFlat-MTL |
beLTL formulas. MTL |
Like Flat-MTL, coFlat-MTL includes bothLTL and -

Bounded-MTL. However, crucially, it is also closed un- Table 1. Complexity of fragments of MTL (in-
derG; for unbounded,, sinceG; ¢ = 1L U;¢. Thus we terpreted over infinite timed words)

have the slogan:

Bounded-MTL + Invariance C coFlat-MTL .
This means that one can express a much more useful clasg"2 Main results
of specifications ircoFlat-MTL than inBounded-MTL. . _
The main result of this paper is that the model-checking ~_ Table 1 summarizes the complexity of the fragments
problem forcoFlat-MTL is EXPSPACE-Complete. This ~ Of MTL defined above. Dark gray boxes correspond to re-

last problem can be understood as a slight generalisation ofUlts stated and proved elsewhere, whereas light gray boxes
the satisfiability problem for the dual logiat-MTL. correspond to results that can be deduced straightforwardly

from other papers. The undecidability BfTL is proved
Example 7. The formulaG (req = Fo,1; (acqn F=; rel)) in [19], while MITL andSafety-MTL have been defined and
says that every time the lock is requested, it is acquired studied respectively in [2] and in [18, 20].
within one time unit, and released after exactly one fur-
ther time unit. This formula is ilcoFlat-MTL, but is not
in Bounded-MTL (due to the unconstraine@) and is not
in MITL (due to the punctudf_, ).

Given a timed automatom, to find a violation of the
above formula one must search for a rund$uch that after
some request-event, every acquire-event in the subsequent
time unit fails to be followed after exactly one time unit by Bounded-MTL are EXPSPACE-Hard, which imme-

{ar]_re[[eaie-event.t IntU|t|\_/eI¥, over z d_ensye-hmte ste_nlwlantws, diately implies thatcoFlat-MTL model checking is
is task seems to require ‘remembering’ a potentially un- AlSOEXPSPACE-Hard.

bounded amount of information. Thus dBKPSPACE-
Completeness result for model checkoaflat-MTL may
appear surprising.

In this paper, we state the following results:

e The model-checking problem faroFlat-MTL is in
EXPSPACE (see sections 4, 5), which immediately
implies the same result f@ounded-MTL.

e The model-checking and satisfiability problems for

e Finally, all EXPSPACE complexities reduce to
PSPACE if constants are encoded in unary.

For comparison with previous work we describe one
more fragment oMTL, calledSafety-MTL [18, 20]. This
is determined by the restriction that the Until modality ~ In addition, it is worth noticing that the undecidabil-
only be constrained by bounded intervals. LikeFlat- ity proof of [19] for the satisfiability ofMTL over infinite
MTL, Safety-MTL includesBounded-MTL and is closed ~ words can also be used to prove that the satisfiability prob-

underG, but, unlikecoFlat-MTL, satisfiability is decid-  lem forcoFlat-MTL (and thus the model-checking problem
able for Safety-MTL whereas model checking is non- for Flat-MTL) is undecidable. The result that the satisfia-

For lack of space, we refer to [6] for full details.

elementary. bility problem for Safety-MTL is non-elementary is a con-
We summarise the relationships between the various log-seduence of [18]. _ o

ics introduced above in the following diagram (where The proof that the model-checking cbFlat-MTL is in

indicates a syntactic inclusion): EXPSPACE can be sketched as followsi) if ¢ is the

formula that we want to verify, we first construct an alter-
nating timed automaton (ATA) which recognizes all mod-
els of -y (Section 4.1);(ii) we then prove properties of
that ATA (Section 4.2)(iii) we construct a CAROT which
will simulate joint executions of the automaton we want to
model-check and the above-mentioned ATA (Section 5).



4 Alternating Timed Automata

In this section, we recall the definition of one-clock al-
ternating timed automata (ATA): a natural timed analog
of alternating automata [18, 14]. ATA generalise classical
(Alur-Dill) timed automata [1], and, unlike the latter, are

Definition 9. An executionof an ATA over a timed word
w = (04, t;)ien IS aforest{r, ..., 7, } over the sef. x Val,
such that(i) any root (4, v) is such that = 0, and the set
of roots satisfies the initial conditios, under valuatiorp;
(i) for each noder of the forest of depth and label(¢, v),
letting v’ = v + t, — t,—1 (Wheret_; = 0), we have that

closed under complement. However language-emptiness issucc(v) is a minimal mode# (¢, o,) with respect ta".

in general, undecidable for ATA [14].

For a givenMTL formula ¢, we construct an ATA3,,
that accepts all words satisfying We show that ifp is in
Flat-MTL then B, possesses certain structural properties,
corresponding to the flatness @f Using these properties,
we analyse the structure of the executionggf

Let L be a finite set of locations anda clock variable.
We define®(L, z) as the set of formulas defined by the
grammard ==t | f | JAS | VI | L |x ~c|zd
wherel € L andc € N.

Definition 8. A (one-clock) alternating timed automatgn
isatuple(L, X, dy, d, F') whereL is a finite set of locations,
Y is a finite set of actions), € ®(L,z) is an initial con-
dition, 0: L x X — ®(L, z) is the transition relation, and
F C Lis a set of accepting locations.

Given a timed alternating automatof, let M be the
maximum constant mentioned in the clock contraintglin
Define the set of clock value¥al to be [0, M] U {L}.
Here L represents any clock value strictly greater tidrf
The set ofstatesof A is L x Val. A set of state€” and a
clock valuev € Val defines a Boolean valuation on the set
of formulas®(L, ) as follows (we omit obvious cases):
CE,l & (Lv)el

CeEyz~e & vrve

Chrvep & Ckop

We say thatC' is a minimal modelof ¢ € ®(L,z) with
respect to the clock value if C =, ¢ and if there is no
proper subsef’ C C such thatC’ =, ¢.

Let S be a set of letters, and* be the set of fi-
nite words overS. A tree 7 over S is a subset ofS*
such that(i) for every wordsgs; --- s, € 7, we also
havesg sy -+ 5,1 € 75 (i4) if 59, - -+ 5, @nds, - - - s, are
two words ofr, thensy = sj,. The words, is theroot of 7.
An element of a tree is calledreode Lety = s - - - s, be
anode. The depth ofis p, its label iss,,, and its successors
have set of labelsucc(v) = {s' € & | sg --- s, 8’ € 7}.
A branchof a tree is a maximal (finite or infinite) sequence
of nodes(v;); such thaty; is a prefix ofv;; for eachi.

A forestis a finite set of trees.

4Such clock values are indistinguishable by clock constraint4,iso
this identification is harmless. In fact, it is slightly more difficult to show
that ATA are closed under complement in this semantics, but this is irrel-
evant for our purposes. We requite to satisfy the obvious arithmetic
properties, e.g.. +t = L forallt € RT.

We use a Bchi acceptance condition: an execution for-
est isacceptingf every infinite branch in the forest contains
infinitely many nodes whose labels arefin< Val.

Observe that any execution forest is finitely branching,
due to the minimality assumption anicc(v).

We say that an execution imemorylessf for any two
identically labelled nodes; andv, of same depth, the re-
spective subtrees rooted =t andwv, are identical. There
is no loss of generality in restricting to memoryless execu-
tions. If A has an execution on a timed woudthen, by
a result of Emerson and Jutla [8] on the memoryless deter-
minacy of parity games, it can also be shown tHalas a
memoryless execution an. Details can be found in [6].

4.1 From MTL to ATAs

Following the construction given in [18], for aryTL
formulay, we can construct an ATS, = (L, %, §, d, F)
that recognizes exactly the set of infinite timed words sat-
isfying ¢. The set of locations aB,, is the set Subfp) of
modal subformulas op. Moreover,B,, has the following
structural properties:

(1) linearity: there is a linear ordeg on L such that for
all £ € L ando € X, each locatior?’ occurring ind (¢, o)
satisfies’ < /.

(2) locality: ¢ is the only location that can occur &4, o)
not under the scope of a reset” Also, ¢ never occurs in
5(¢, o) under the scope of a reset.

If ¢ € Flat-MTL, thenB, also satisfies the following
flatnessproperty (in which the untimed locations are the
LTL formulas in SubFy)):

(3) flatness:there is a subset of (untimed) locatiabs C L
such that € L, implies thatj(¢, o) contains no clock con-
straints. Furthermore, for afl € L, 6(¢, ) has the form
((x <) A1) Vo Vs, andps € O({£} U Ly, x) only
mentions locations i, U {¢} whereasp; does not men-
tion ¢. This condition can be read as follows: after a cer-
tain amount of time, locatiofcannot make a simultaneous
transition to itself and another location In\ L,,.

We refer the reader to [6] for the detailed construction
of B,.

4.2 Ranking Flat-MTL

In this section, we analyse the structure of the execu-
tion forests of those ATA arising frorRlat-MTL formulas.



Roughly speaking, the main result of this section, Theo-

andj + 1in p, hence the extra terd/ in the expression for

rem 12, says that the segments of such an execution forestluration(g[i, j]).)

in which the automaton clocks aaetivehave a short total
duration. Here we say that a clock (value) is active if it is
no greater than the maximum clock constantof the au-
tomaton, otherwise we say that it is inactive. By extension,
we also say that a stafé, v) is active or inactive according
to whether is active or inactive.

In the rest of this section lé§, denote an ATA arising
from a Flat-MTL formula ¢, and letM be the maximum
clock constant o3,. Recall that the set of locations 5,
is the set Subfp) of modal subformulas opf.

Given an execution forest &, its i-th configuration is
the set of states labelling the nodes at dép#in execution

forest of an ATA thus generates a sequence of configura-

tionsp: Cy — Cy — ... — Cr — ... Next we define
a rank function on configurations based on the distinction
between active and inactive clocks.

Let < be a linear order on Sulff) such thatp; < o
whenevery; is a subformula ofp, (one such can always
be chosen). Furthermore, [Etdenote the set Sulpl) x
{L, T} ordered lexicographically, where < T. We think
of T as representing an active clock, whereas (following
the notation introduced in Section 4)denotes an inactive
clock.

Definition 10. Given a configuratior”’ of B, let the non-
LTL formulas occurring inC' be written {¢;}*_,, where
Yr > Yp—1 > ... > 1. If none of they; is paired
with an active clock inC', then we defineank(C) to be
the word (¢, L) ... (w2, L)(¢1,L). Otherwise, letp; be
the maximum among all formulas appearing(nthat are
paired with an active clock, and defimank(C) to be the
word (¢x, L) ... (¢j+1,L)(p;, T). We order the ranks of
configurations according to the lexicographic order Bh,
denoted<.

Example 11. Let the maximum clock constant in be

M = 3and letC = {(@17 24)7 (@17 J~)7 (902a 08)7 (902a L)a
(¢3,1), (¢4, L)} be a configuration of3,, wherep, >

®3 > @2 > 1. Thenrank(C) = (w4, L)(ps, L) (02, T),
that is, we record the maximum active state and all inactive
states above it.

Letpo: Cy — C; — ... —» C, — ... be a sequence of
configurations in a run a,, on the timed wordo;, ¢;)ien.
Write o[¢, j]: C; — Ciy1 — ... — C; for the segment of
between positions and j for ¢ < j. Furthermore, define
the active durationof g[i, j], denotedduration(gl[s, j]), to
be 0 if none of C;, ..., C; contains an active clock, and
t; —t; + M otherwise. Intuitivelyduration(g[i, j]) gives

an upper bound for the amount of time that an active clock

is present in the segment ofbetween positions and j.
(This segment includes the time delay between positjons

Theorem 12. Letp: Cy — C1 — ... — C,, — ... be
the sequence of configurations of a memoryless ruf,of
Then there is a partitiof of N into at mosty| - 2/¢ inter-
vals, where for each intervdl = {i,...,j} InZ, o[i, j] has
active duration at mostM + 1, and || is the number of
modal subformulas ap.

Proof. Define an equivalences on N by n = m iff
rank(C,,) = rank(C,,). Now Lemma 13 (below) says that
rank is non-increasing along; it follows that the equiva-
lence classes Gf are intervals. Furthermore, the index of
the equivalence relation is bounded by the number of ranks,
which is easily seen to be no more tham- 2/¢!. Finally, it
follows from Lemma 14 (below) that the active duration of
any equivalence class is at m@st/ + 1. O

It remains to prove the two technical lemmas quoted in
the proof of Theorem 12.

Lemma 13. If p: Cy — C; — ... —» Cy — ...Iisthe
sequence of configurations in a memoryless ru afthen
rank(C;+1) =< rank(C;) for eachi € N.

Proof. We split the transition fronC; to C;4; into two
steps: a time-elapse step, where each cloak;imcreases

by some fixed amount, and a discrete step, where state
changes are performed according to the transition func-
tion of B,. We show that neither of these steps is rank-
increasing.

For the time-elapse step, observe that for any configura-
tion C' and time delay € R, rank(C + t) =< rank(C),
whereC +t = {(¢y,v +t) : (,v) € C}. This is because
the only possible difference betweéhandC + t is that
active clocks inC' may become inactive i’ + ¢; but this
cannot increase the rank (reflecting the fact that T).

Write ¢ for the transition function o8, and leto € .

For the discrete step, suppose that= {(v;, v;) }ier is a
configuration and tha€”’ U; Di, whereD; is a mini-
mal model ofé(¢);, o) with respect tov; for eachi € I.°
Furthermore, for a contradiction, suppose ttatk(C) <
rank(C"), withy € I" the letter inrank(C") occurring in the
first position in whichrank(C) andrank(C") differ. Since
the letters imank(C') appear in descending order we can as-
sume thaty does not appear irank(C') at all. We consider
two cases according to whetheis inactive or active.

The first case is that = (v, L) for somey € SubKy)\

LTL. Then there exists € I such thaiy, L) € D;. By lo-
cality of B, (cf. Section 4.1), we must hauwg; =+ and

5Sincegp is memoryless, the set of states at each configuratigrcan
always be calculated from the set of states of the previous configuration in
this manner.



v; = L. Thusy = (¥, L) appears imank(C'), contradict-
ing the assumption of.

The second case is that = (¢, T) for somey €
SubKy) \ LTL. Then there exists € I and a clock value
v < M such that(yy,v) € D;,. By linearity of 3, we have
¥ < 4y if alsow; < M then some active state at least
as high agy, T) appears imank(C'), contradicting the as-
sumption ony. Thus we may assume that= 1|

But then, sincey; # v, by locality of B,, it must hold
thaty < 1;, and by flatness oB,, we have thai); does
not appear inD;. (Flatness dictates that and; cannot
both appear inD;.) In fact, we can conclude thét);, L
does not appear i@ (by locality of B, it cannot appear in
D; for j # i). Butthen(y;, L) does not appear irank(C")
and(vy;, L) > ~, contradicting the assumption en

O

Lemma 14. Suppose: Cy — C; — ... = Cp, — ... IS
the sequence of configurations in a memoryless rui of
on a timed word(o;,;);en. If C; is active,j > ¢ and
t; —t; > M, thenrank(C;) < rank(C;).

Proof. Write rank(C;) = (¢k,L)...(v2,L)(¢1,T)
and suppose, for a contradiction, theank(C;) =
rank(C;+1) = ... = rank(Cj). In particular, for2 <

p < k, the node(yp,, L) is present in each of the config-
urationsC;, Ci11, . .., C;. This means that in the execution
tree underlying, between depthsand;, any node labelled
(pp, L), for 2 < p < k, also has a child labelledp,, L)
(by locality of B, no state can make a (discrete) transi-
tion to (¢,, L) apart from(y,, L) itself). By flatness o3,
we conclude that the only possible degtescendents of a
depth< node labelledy,, L), 2 < p < k, are also labelled
by (¢p, L), or by LTL formulas.

Now, sincerank(C;) rank(C;), (¢1, T) occurs in
rank(C;). Thus there is a statgp;,v) € C; such that
v < M. From the above argument, the deptancestor
of this state can only be labellée;, «) for someu. Since
t; —t; > M, the clockz is reset somewhere on the path
from (1, u) to (¢1,v). But this contradicts linearity and
locality of B, since these conditions imply that any clock

reseton a path must be accompanied by a strict reduction Heg( 1)

the rank of the locations along the path. O
5 From ATAs to CAROTs

In this section, we define a simulation of ATAs by

CAROTSs. This roughly corresponds to the powerset con-
struction used for transforming an (untimed) alternating au-

levels in a run tree of the ATA being simulated. In this sim-
ulation, the cycling of the channel corresponds to the evo-
lution of time, and global renaming and occurrence testing
are used to simulate discrete transitions of the ATA.

Using Theorem 12, we show that an ATA, corre-
sponding to &lat-MTL formula ¢ can be simulated by a
cycle-bounded CAROT. Then we use Theorem 3, concern-
ing the cycle-bounded reachability problem for CAROTS,
to prove arEXPSPACE upper bound for model checking.

We first fix some notation: letd = (L, X4,
LY%,3.4) be the timed automaton under study, aid=
(L, %, 0%, 05, F) be the ATA corresponding tey (pre-
viously called-,,) constructed in the previous section. We
call xz its single clock.

We noteREG = {0, 1,..., M, L} wherelM is the max-
imal constant appearing igl or in B. If v € R* and
v < M, we writereg(y) for the largest integer iREG
which is smaller than or equal to We writereg(L) = L.

We also define the following two sets:

S:
R:

(L x {xp} x Val) U (L4 x X4 x Val)
(LB X {.”L’B} X REG) @] (LA X X 4 X REG)

and their sets of subsels = p(.S) andA = p(R).

A joint .A/B-configuration is composed of a st v)
of Awith ¢/ € Ly, v: X4 — Val and a finite set of
states(¢;,v;) of B, with ¢; € Lg andv; € Val fori € I.
Such a configuratiorC' can be written as the element
{li,zg,vi) |[i € I} U{({,z,v(x)) | x € X4} Of V.

Now given a configuratiod’, partitionC into a sequence
of subset&’y, C4,...,C,,C 1, suchthat’, = {(¢,z,v) €
CltelTLorv= 1}, ,C; =C\Cy, andifi,j #
1, forall (¢,z,v) € C;and(¢,2',v") € Cj, frac(v) <
frac(v') iff i < j (so that(¢, z,v) and (¢, 2’,v’) are in the
same blockC; iff v andv’ have the same fractional part).
We assume in addition that the fractional part of elements
in Cy is 0 (even if it means thafy, = &). Note thatC |
contains all inactive antdTL formulas of the configuration
(following the vocabulary of the previous section).

We then defind: V' — A* with H(C) = reg(Cy) -
reg(Cs) --- reg(C,) - reg(C,), wherereg(C)
Is obtained by replacing each valwethat appears irC
with reg(v). In the following, we remove the superfluous
xp's and_L’'s in the letters, in order to ease readability.

The joint.A/B-behaviour is then composed of transitions
C % C'foro € YandC & ' fort € RY in the usual
way. Using the abstraction function, it is possible to define a
discrete transition system which abstracts away precise tim-
ing information, but which simulates joint/ B-behaviours,

tomaton into a non-deterministic automaton [16], except see [17, 18].

that we cannot bound the size of a configuration in the timed

case due to the presence of clock variables. Instead we us&xample 15. Consider for instance a configuratiati en-
the channel to store encodings of configurations, which arecoded by the word (C) = {(4o,2), (¢, 2,3)} - {(¢,y, 1)} -



{(£1,3), (b2, 1)} - {(¢,2),43}. We assume that the maxi-
mal constant ist. The encoding of the successor ©f

e There are three kinds of transitions. First, from a
state (¢ 4,74, 24, A5, k) Where z4 and/or Az are non-

is obtained by cycling around the letters (except the last empty, applying an (abstract) delay transition corresponds

one) of the word (and increasing the values of the re-

gions accordingly). Thus the first delay successalH¢f)

is o - {(éOa 2)7 (E,x, 3)} : {([, Y, 1)} : {(617 3)7 (€2> 1)} !
{(£,2),¢5} (all states with integral values are now just
above the integer), the next successof (&, 4), (¢2,2)} -
{(607 2)v (Zv Z, 3)}{(67 Y, 1)} : {(Eh 3)’ (427 1)} ’ {(€7 Z)a £3}
(the states with maximal fractional part reach the next in-
teger), the next one i® - {(¢2,2)} - {(4o,2), (¢, 2,3)} -
{6y, 1)} - {(£1,3), (b2,1)} - {(¢, 2), ¢3, ¢, } as the staté;

is now over the maximal constast Simulating discrete

to entering a state where both and\z are empty, and to
pushingz 4 U A on the channel.

Symmetrically, from a state where both, and )\ are
empty, an abstract delay transition reads the leftmost item
of the channel (corresponding to the set of states having the
highest fractional parts) and stores them in the discrete state
of the CAROT, updating the integral values of the corre-
sponding clocks.

Finally, action transitions consist in simultaneously ap-
plying a discrete step ofl and a discrete step &. Occur-

transitions is easy as it only consists in applying the transi- rence testing is used to determine (an overapproximation) of

tion rules of. A and 55 to all states of the word (see above-
mentioned references for more details).

We will take advantage of this discrete abstraction to de-

fine a CAROTC which will ‘recognize’ the discrete joint

the set of locations oF that lie on the channel, and global
deletion is used to remove a lettgh, ) from the channel
when the clock corresponding fas reset ta.

It is not difficult to prove that the constructed CAROT

A/B-behaviours. The channel will be used to store the ‘un- Simulates the joint4/B-behaviours, but also that any run
bounded’ part of the information, namely the successive Of the CAROT can be simulated by a joidf/ B-behaviour.

configurations of3. Since A must synchronize with3,
its timing information will also be stored on the channel.

The above construction thus encodes the synchronized
behaviour ofA and B, but it remains to encode the accep-

The discrete states of the CAROT will store only a bounded tance condition o8. This is achieved through the Miyano-

amount of information, namely the location.df the region
it lies in, the set of clocks ofd having integer values, and
the B-part of the setseg(Cy) andreg(C ). For instance,
a configuratiorC' such that

H(C) = {(Eh’ro)v (62’714)’ (gvx’TQ)}'
{(f,y,’lﬁ), (£1’r5)’ (62,7“3)} : {(€’27T7)} : {63}

is encoded by the discrete information

(& Axh A1, m0), (o, m)} {0}

whereo(x) = r9, 0o(y) = r1 andp(z) = r7, and by the
channel content (where we read from the left):

Wmﬂ"s)

We construct the CAROT = (Q,qo, T, A) (without
accepting conditions for the moment) as follows:
e The channel alphabétis the union ofL s x REG\{_L},
the set of clocksX 4, and the two bracketsand).
e The setQ of states is the product séty x REG*4 x
p(X4) X p(Lp x (REG \ {L})) x p(Lp). It stores the
current location of4, the integral part of the clocks o4,
the set of clocks of4 having integer value, the set of
states(¢s, x) of the current configuration o in which
the clockzg is an integer, and the set of inactive (4rL)
formulas in the current configuration 5t
e The initial states of’ are the states that correspond to
an initial state of4 with all clocks being equal to zero, and
to sets of states df satisfying the initial condition of.

Hayashi construction [16, 23]. This requires us to add some
extra structure t@ in order to keep track of branches in
the execution forest df that are still ‘waiting’ to enter an
accepting state.

The most important aspect of the above simulation con-
cerns its relationship to Theorem 12. In particular, it holds
that in any segment of an execution®in which all clock
values in the states &f are inactive, the simulating CAROT
C has at mostX 4| items on the channel, corresponding to
the clocks ofA4 (recall thatX 4 is the set of clocks afl). In
such a segment, the current configuratiorBof encoded
entirely in the control state of the CAROT. Otherwise, if
some of the clocks oB are active, the simulating CAROT
requires one cycle of its channel to simulate one time unit
of B’s execution (since the active clocks Bfare stored on
the channel in order of their fractional parts). Theorem 12
then yields an upper bound on the number of cycleS'sf
channel, as made precise below.

Proposition 16. Let A be a timed automaton with set of
clocks X, and ¢ € coFlat-MTL. LetC4 -, denote the
CAROT that simulates joint executions4find 3., as de-
scribed above. Thed |= ¢ iff there is an infinite compu-
tation o of C 4 -, such that we can write as ¢’ - ¢” where:
(1) the number of cycles of the channel durisigs bounded
by an exponential in the sizesgfand A,

(2) alonge”, the size of the channel is bounded| &y,

(3) the Bichi condition ofC 4 -, is satisfied along”.

Note that the number of control states of the CAROT
Ca -, is doubly exponential in the sizes of andy. In-



deed, the states are made of subseRBG, which is ex-
ponential in the size of the encoding of the maximal con-
stant. However, we can apply the algorithm of Theorem 3
on-the-fly, without explicitely building the CAROT 4 .
This algorithm will be applied on the first pait of o. Since
the channel is bounded alop{, the CAROT can be trans-
formed into a Bichi automaton (still doubly exponential)
for verifying the second part, which can also be achieved
on-the-fly using exponential space.

Finally, we state our main result:

Theorem 17. The model-checking problem faoFlat-
MTL is EXPSPACE-Complete. It is in facPSPACE-
Complete if all constants are encoded in unary.

We refer the reader to [6] for the proofsBKPSPACE-
Hardness anBSPACE-Completeness.

6 Conclusion

In this paper, we have proposed the logaFlat-MTL

as a counterpart tMITL, until now considered to be the
only linear-time timed temporal logic having reasonable
complexity. Although both logics are incomparably expres-
sive, coFlat-MTL allows most specifications that are inter-
esting in practice, whilst retaining punctuality. Moreover,
its model-checking problem exhibits no cost over that of
MITL, or indeed over that dfTL if constants are encoded
in unary. As specifications tend to be relatively small, we
feel justified in considering the complexity of model check-
ing coFlat-MTL to be feasible, at least in theory. The real
test will consist in applying our results in practice.
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