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Abstract

A standard construction of the final coalgebra of an endofunctor involves defining a
chain of iterates, starting at the final object of the underlying category and succes-
sively applying the functor. In this paper we show that, for a finitary set functor,
this construction always yields a final coalgebra in w2 = w + w steps.

1 Introduction

The theorems of Aczel and Mendler [1], and Barr [9], guarantee the existence
of final coalgebras for a wide class of endofunctors on Set. In each case one
can, in theory, derive a general recipe for constructing final coalgebras from the
proof. However, in practice it is difficult to learn much about the structure
of the final coalgebra of a specific endofunctor. Aczel and Mendler obtain
a final coalgebra as a quotient (by bisimilarity) of a coproduct of a set of
coalgebras. Barr shows that if a set functor T is accessible (cf. Section 2)
then the category of T-coalgebras has a set of generators. He then uses the
Special Adjoint Functor Theorem, whose proof also involves a quotient-of-a-
sum construction, to derive the existence of a final coalgebra. Work on the
problem of providing more concrete constructions of final coalgebras includes
the set-theoretic representations of Aczel [2] and Paulson [15], the coalgebraic
logic of Moss [14], and a domain representation of non-well-founded sets in
Mislove et al. [13].

In this paper we adopt the approach of Addmek and Koubek [4] (and of Barr
in another paper [10]). We consider an endofunctor 7" on a category C with
limits of ordinal-indexed diagrams, and define the final sequence of T: an
ordinal-indexed sequence (A,) of objects of C, with arrows f§ : A, — Ag
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for § < «. Briefly, this is defined by A,.1 = TA,, and Ay, = Limg)A,
for A\ a limit ordinal. Fuller details are given in the next section. It is shown
in [4] that if this sequence stabilizes at some «, in the sense that fo*! is an
isomorphism, then (A,, (f2™)™!) is a final T-coalgebra. This generalizes the
iterative construction of the greatest fixed point of a monotone function f on a
complete lattice as the stabilizing value of the ordinal-indexed sequence (a,),
where a, = Mg<af(ag). On the other hand, the theorems in [1,9] generalize the
construction of the greatest fixed point of f as the join of all post-fixed points.
Aczel’s Special Final Coalgebra Theorem [2] and Paulson’s final coalgebra
theorem [15] can also be seen in this way.

For set functors, accessibility seems to be a common denominator amongst
some of the hypotheses involved in the various final coalgebra theorems in the
literature, e.g., being bounded in [12] and set based in [1]. Addmek and Porst [6]
have shown that the assumption of boundedness of a set functor is equivalent
to accessibility. Aczel and Mendler actually consider set based endofunctors on
the category of classes and class functions, but, as Barr shows, this basically
amounts to assuming an inaccessible cardinal? x and considering s-accessible
set functors preserving the subcategory of sets of size less than or equal to .
Thus we are led to study the final sequences of accessible set functors.

Adédmek and Koubek [4] show that for set functors the mere existence of a
final coalgebra is sufficient to ensure stabilization of the final sequence. They
do not, in general, give bounds for stabilization, although in the case of the
finite powerset functor P they show stabilization at w; — the first uncountable
ordinal. The main point we wish to make in this paper is that for finitary (w-
accessible) endofunctors on Set the construction of the final coalgebra via the
final sequence is a two-stage process, each of which is finitary. More precisely,
the final sequence stabilizes in w2 = w+ w steps. A corresponding result holds
if we replace w with any regular cardinal k.

The first stage of the final coalgebra construction can be seen as taking a
Cauchy completion of the initial algebra, while the next stage can be seen as
pruning this to obtain the final coalgebra. We show that, in general, the w-th
iterate in the final sequence of a finitary set functor is always a final coalgebra
— not necessarily of 7', but certainly of the lifting of 7" to an endofunctor on
the category of complete ultrametric spaces and nonexpansive maps. We give
two examples to support these intuitions. In particular, for the finite powerset
functor P, the first w steps in the final sequence construct the set of compactly
branching, strongly extensional trees. In the next w steps of the final sequence,
these trees are pruned, one level at a time, until we reach the set of finitely

2 A cardinal & is inaccessible if A < k implies that 2* < k. The fact that we talk
about accessibility for cardinals on the one hand, and for functors on the other, is
purely coincidental!



branching, strongly extensional trees.

We assume that the reader is acquainted with the notions of category, functor,
limits and colimits. Otherwise the paper is self-contained. This work is based
on the conference paper [21].

2 Coalgebras and Final Sequences

In this section we recall the notions of a coalgebra of an endofunctor and
the final sequence of an endofunctor. The latter is defined in [10,4], while
Rutten [16] is a good introduction to the theory and applications of coalgebras.
We also recall the notion of an accessible functor [7].

2.1 Coalgebras

A coalgebra of an endofunctor 7: C — C is a pair (A, f: A — TA), where A,
the carrier of the coalgebra, is an object of C, and f, the structure map, is an
arrow of C. A homomorphism of T-coalgebras (A, f) and (B, g) is an arrow
h: A — B such that the diagram below commutes in C.

A—LsTA (1)

fo |

B—TB

This definition gives a category of T-coalgebras and T-coalgebra homomor-
phisms. A final object of this category, if it exists, is called a final T-coalgebra.
In this paper we only consider the case where T is an endofunctor on Set.

Next we introduce a condition on a set functor 7' to ensure the existence of
a final T-coalgebra. A cardinal k is regular if it is not the sum of fewer than
Kk strictly smaller cardinals. For example, w and w; are regular. For a regular
cardinal k we say that a partially ordered set I is k-directed if each subset of I
with size strictly less than x has an upper bound in 7. A functor 7': Set — Set
is k-accessible if it preserves colimits of those diagrams indexed over x-directed
posets 2. An w-accessible functor is sometimes called finitary.

Example 1 Our leading example of a finitary set functor is the finite powerset

3 Note that the preservation of k-directed colimits is equivalent to the preservation
of all k-filtered colimits, since for any k-filtered category A there is a k-directed
poset I and a cofinal functor F: I — A, cf. [7].



functor P: Set — Set. For a set X, PX is the collection of finite subsets of X.
For a function f: X =Y, Pf: PX — PY is defined by (Pf)(S) = f(95).

Another finitary set functor that we will consider is the finite subprobabil-
ity distributions functor D: Set — Set. For a set X, DX is the set of func-
tions p: X — [0,1] such that p(x) > 0 for at most finitely many v € X and
Yeex () < 1. For p € DX and E C X define pu[F] = Y ,cpp(z). We
can extend D to an endofunctor on Set by defining, for a function f: X — Y,
(Df) () (y) = u[f~ (y)]- The functor D was studied by De Vink and Rutten
[20] in connection with the notion of probabilistic bisimulation

2.2  Final Sequences

Let C be a category with limits of all ordinal-indexed cochains, and T an
endofunctor on C. The final sequence of T is an ordinal-indexed sequence of
objects (Aq), with maps (f£ : Ag — A,),<, uniquely defined by the following
conditions (where 6 < v < f):

FS-1 Aﬂ-f—l == T(A/g),

FS-2 ff =T(f2);

FS-3 f5 =id;

FS4 f) =[] f};

e FS-5 if § is a limit ordinal, the cone (f$ t Ag = A,),<p is a limit.

We define the sequence by ordinal induction, checking at each stage that
conditions [F'S-1] to [FS-5] hold for the portion of the sequence already defined.

(1) Case: « is a limit ordinal. We define (f§ : Ay — Ag)g<a to be the limit
of the cochain (Ag)s<q, and we set f& = id. Conditions [FS-1] to [FS-5] are
easily verified.

(2) Case: @ = o + 1. We define A, = T(Ay) and f¢ = id. Next we define
the projections fg by induction on § < a. If § < « is a successor ordinal, say
B = B +1, then we define f§ = T(fﬁa,') If 5 is a limit ordinal, and if the maps
/5 have already been defined for all v < §, then by the universal property of
Ap there is a unique map f§ making [FS-4] true.

Theorem 2 [4,10] Suppose the final sequence of T stabilizes at k, in the sense
that fE+1 is an isomorphism, then (A, (f51)71) is a final T-coalgebra. O



3 Final Sequences of Set Functors

This section contains our main result, Theorem 11, stating that for a regular
cardinal k the final sequence of a k-accessible set functor stabilizes in k2 steps.

Example 3 To motivate the general development we consider the final se-
quence { Ao, f§} of the finite powerset functor P: Set — Set. Both [{] and [19]
show that, even though this functor is finitary, the final coalgebra cannot be
constructed by the usual w°P-limit, i.e. the final sequence doesn’t stop in w
steps. In fact, the projection fu"j“ is not surjective since any sequence (B;) in
the tmage of f“*! is uniformly bounded in the sense that there exists N such
that |B;| < N for all i. To see this, suppose that (B;) = f@T(Y) for some
Y € A,y1; then

Busi = i ((B)) = (frr - F)(E) = (BF)(Y).

Setting B; 11 = A; € A1 defines a sequence (B;) in A,, which is not uniformly
bounded.

However f¥*1 is easily seen to be injective. Let S = {dy,...,d;} C A,, T =
{e1,-sem} C A, and suppose f¥H(S) = foTY(T). Then

PL(S) = f () = fLn (f7(9) = fLn (f57H (D) = fI5(T) = (PLI)(T)

for alln < w. Now pick d; € S. Since T is finite there exists e; € T such that
fo(d;) = f@(ej) for infinitely many n; thus d; = e;. This proves that S C T
and the the converse follows by symmetry. O

We will revisit this example in Section 5. Next we generalize the observation
in the last part of the example with the following lemma.

Lemma 4 LetT: Set — Set be k-accessible for some regqular cardinal k. Given
a Kk°P-cochain
Al Ay Ay -+,

with non-empty limit, then the natural connecting map Limy< T A, <— T (Limy<cAq)
1S injective.

PROOF. Suppose (L ®3 Ay)oc, and (I' ¥ TA,)a<, are limiting cones,
with f: TL — L' the connecting map. L is non-empty by assumption; thus L
is the k-directed colimit of all its non-empty subsets of size less than x. Write
(S; 5 L)ier for the colimiting cocone.

For each ¢ € I, since the image of ¢; has cardinality less than &, and since « is
regular, there exists o < k such that p, - ¢; is injective. Since the domain of



¢; is non-empty, p, - ¢; is a split mono. It follows that T'(p, - ¢;) is an injective
map. But

T(pa-ci)=Tps-Tc
=qo- - Tc.

So f - Tg; is injective for each i € I.

Since (T'S; s TL)cr is a directed colimit, any two elements of T'L are in the
image of T'c; for some 7 € I. It follows that f is injective. O

From now on we consider the final sequence {A,, f§'} of a s-accessible endo-
functor 7" on Set.

Proposition 5 Let (E,e) be a T-coalgebra. We can extend (E,e) to a cone
(eq : E — Ay)a over the final T-sequence such that eqy1 = Tey - €.

PROOF. We define the maps e, by transfinite induction, verifying at each

stage that we have (V3 < «) f§-ea = eg. The successor clause is 41 def Te, €.
Then

1
Fertean =5 5 Tea e

=fT(f8 ea) e

=fz ‘Teg-e
+1

:f,g “€p+1

—Eﬂ.

For a limit ordinal A, we define ey by f3-ex =egforall <. O

Lemma 6 T is either the constant (), or every set A, in the final sequence is
nonempty.

PROOQOF. Suppose T # (). Then there exists E # () with TE # (). Thus there
exists a T-coalgebra (E, e), and this may be extended to a cone over the final
T-sequence as in Proposition 5. It follows that A, # @) for all «. O

Without loss of generality we assume that T is not the constant () functor.
Then combining Lemma 4 and Lemma 6 we conclude that f5*! must be a
split mono. Moreover, since 1" preserves split monos, and the projections from



the limit of a cochain of injections are themselves injective, a simple induction
establishes that fg‘ is injective for all « > 8 > k.

Many set functors preserve arbitrary intersections, that is, they preserve wide
pullbacks of monos. For such functors (an example is P), once we know that
[t is injective it follows that the final sequence stabilizes in k + w steps —
since A, is just the intersection of the ‘decreasing’ cochain (A )n<w- It is
known that all set functors preserve finite non-empty intersections, cf. Trnkova
[18], however there are set functors which do not preserve infinite non-empty
intersections, cf. Gumm [11]. Nevertheless, we are able to prove that the final
sequence of any w-accessible set functor stabilizes in w2 steps. The proof uses
the fact that f@*! is split mono, and thus yields a coalgebra structure on A,,.
This coalgebra turns out to be weakly final, and we obtain a final coalgebra
as a retract. More generally, the final sequence of any k-accessible set functor
stabilizes in k2 steps.

Since f£*1 is an injection with nonempty domain we may choose I: A, — A, 11
such that [ - f5+! = id.

Proposition 7 The T-coalgebra (A, 1) is weakly final.

PROOF. Let (E,e) be a T-coalgebra. (E,e) extends to a cone (e, : E —
Ay)a over the final sequence of T such that e, = f5™-e.,; = ff-Te,-e. It
follows that [ - e, = Te, - €, that is, e, is a T-coalgebra morphism from (E, e)
to (Ag,l). O

Proposition 8 Ezxtend the coalgebra (Ag,l) to a cone (lo: Ax — Ay)a over

the final sequence of T. Then l,; is an idempotent map of coalgebras (A, 1) —
(Ag, 1).

PROOF. That I, is a coalgebra homomorphism follows from the proof of
Proposition 7. Next we prove by induction on a < « that [, - I, = l,. The
successor case is:

loy1 - Le=Tly 11,
=Tly-Tl.-1 (I, a coalgebra map)
=T (lo- 1) 1
=Tl, -1

=lo1-

Case: « a limit ordinal. For all § < a we have that fg -lo -l =1lg-ls =15 =
f§ o thus lg - 1y = lo. O



All idempotents in Set split, so we can write [, =% - g, where ¢ : A, — G and
i: G — A, satisfy ¢ -4 = id. Notice that the pair Tq -1 and f#*'. T4 is also
a splitting of [, thus, by the uniqueness of splittings of idempotents, we have
an isomorphism g making the diagram below commute.

—>AK,—|—1 (2)

i
b

An—}-l

A,
ql
G —>
An

r;+1

Proposition 9 The T-coalgebra (G, g) is final.

PROOF. Clearly (G, g) is weakly final since (A, 1) is weakly final. Suppose
h and k are two coalgebra maps (E,e) — (G, g). (F,e) extends to a cone (e, :
E — A,)q over the final T-sequence; we show by induction that ff-i-h = e,
for all a < k. The case for a a limit ordinal is trivial. The successor case is:

ap1"i-h= fa+1 -i-g7'-Th-e  (h a coalgebra map)
atl f"“’Ll Ti-Th-e  (cf. diagram (2))

f'“rl -Th-e
=T(fq i h) e
=Te,-e
=€a+1-

Similarly one proves that ff-i-k = e, for all & < &. It follows that i-h =&,
and hence that h =k. O

Proposition 10 Let [, =i - q be as in Diagram (2). Then
(i) be- [ = [
(i) q- fF? is injective.
PROOF. We show by induction on o < & that
(Va < k) Iy - frte = frte,

Case: a a limit ordinal. For all § < « it holds that



f§ da 3T =l S
frc—}—ﬂ . fEta
K Kk+0

_ pktB +
=f5 " fis

=g -

_ rkta

—JpB
= fg - frte
nta

Thus 1, - ffte = frte

Case: « a successor ordinal.

Lo - fEFOT =Tl - - frrott
=Tl 1+ f - fii

_ k+a+1
=Tl feis

=T(la- f™)
=T frte

_ prta+l
—Ja+l .

This completes the proof of (i).

For (ii) observe that [, - f%* = i-q- f#? is injective by part (i). A fortiori g- f2
is injective. 0O

Theorem 11 If T is a k-accessible endofunctor on Set with final sequence
{Aa, f§}, then 2+l is an isomorphism.

PROOF. The final T-coalgebra (G, g), as constructed in Proposition 9, ex-
tends to a cone (g, : G — A,)q over the final T-sequence. By definition of
this cone, the top square in diagram (3) commutes. The bottom square of
this diagram is just the top square of (2), thus it also commutes. The mid-
dle square commutes by definition of the final T-sequence. Thus the whole
diagram commutes.

The map ¢ - f** is injective by Proposition 10. By the finality of (G, g) we
have that g - f5? - g9 is the identity, so ¢ - f7* is also surjective, and hence
an isomorphism of sets. It follows that three sides of the lower rectangle are

isomorphisms, thus the top side f% ! is also an isomorphism. 0O



Theorem 11 is restricted to set functors is because we use the fact that in Set
injectives with non-empty domain are split mono. In fact, once one has that
f@*+1is a split mono, to conclude that ;' is an isomorphism one only needs
to know that idempotents split in the underlying category.

Without too much effort we can extend Theorem 11 to functors which may be
neither k-accessible, nor k°P-continuous. An example, in the case that k = w,
is the functor P(—)# where A is infinite. The coalgebras of this functor are
the so-called image-finite transition systems (those transition systems such
that for each state s, and label a € A, the set of states reachable from s by
a one-step a-labelled transition is finite). First we recall the following simple
proposition which says that coproducts commute with k°P-limits in Set.

Proposition 12 Suppose we have a family of k°P-limit cochains in Set
Xio < Xit ... & Xig < Xjaqr) < oo X
indexed over i € I; then
I Xio < [[ X1 < - [] Xia < [ Xitar1y < - < ][ Xix
15 also a limit cochain for each i. O

Theorem 13 The class of endofunctors on Set such that the arrow fft' in
their final sequence is injective is closed under:

1 k-accessible functors;

2 Kk°P-continuous functors;

3 composition of functors;

4 arbitrary coproducts of functors;

b T-indexed-limits of functors, for any small category I.

PROOF. Consider the following property of an endofunctor 7': for all x°P-
limits
By+ B+ ..+ B, + ...+ B,,

10



with B, non-empty, the connecting map Lim,..T B, < T B, is injective. We
prove that this property is closed under [1-5] above.

Closure under 1 was shown in Lemma 4, while closure under 2 is trivial.
Closure under 4 holds by Proposition 12, and the fact that in Set coproducts
preserve monos. For 3 suppose S, T : Set — Set, and assume the property in
question holds of S and T. Either T is the constant () functor, in which case
S - T is constant, or TX # () for X # (), in which case the composition

Limga<ST B, + S(Lima<xTBa) + ST B,

is injective since S preserves injections with non-empty domain. Finally, for
closure under 5, suppose T' = Lim;c77;. By assumption, for each I € Z, the
connecting map Lim,,77B, < 17 B, is injective. Recall that limits commute
with each other in a complete category and that the functor Limpez(—) :
[Z, Set] — Set, being a right adjoint, preserves injections. Thus the connecting
map Lim,.,T B, < T'B,, which is the composite

Lim,T B, = Lim,Lim;T;B, = Lim;Lim,T;B, +— Lim;T;B, = T By,
is injective.
The theorem now holds since an endofunctor on Set is either the constant (),

or each set in its final sequence is non-empty (cf. the remark following Lemma
4). O

Corollary 14 The class of endofunctors on Set whose final sequences stabilize
in at most k2 steps is closed under [1-5] in Theorem 13.

PROOF. This follows from the proof of Theorem 11. O

Example 15 We consider a slight variant of the functor I introduced in Fz-
ample 1. That is, we let D. X be the set of countably supported subprobability
distributions on the set X. D, is not finitary, and doesn’t immediately appear
to be covered by Corollary 14 above. However it is still the case that the final
sequence {Ag, fg} of D, stabilizes in w2 steps. For suppose i, p € D A, and
et (p) = f*(p). Then for each (x,) € A, since u[—] (being a measure)
preserves decreasing countable intersections,

) = L () U5) 7 @] = Jim {07 )] = Jim (0 S5) ) )

Similarly we get p((x,)) = nh_)ngo(Dcfjf)(p) (). But

(De f) () = fify () = fld (£ () = Fra (F57H () = £ (p) = (D) (p)

foralln <w. Thus p=p. O

11



4 Set-theoretic Versus Metric Final Semantics

The idea of using final coalgebras of set functors to model infinite data types
is due to Aczel and Mendler [1]. An alternative approach [8,20] is to consider
final coalgebras of endofunctors on the category CUMet of complete ultramet-
ric spaces and nonexpansive maps. In fact, there is no loss of generality in
restricting attention to the full subcategory CUMet* of spaces where each pair
of distinct points has distance 27" for some n € N. A comparison of the set-
based and metric approaches turns out to be instructive in studying the final
sequence of a set functor.

In this section we define a lifting of a set functor 7" to a locally contractive
endofunctor 7* on CUMet*. For example, the finite powerset functor P gives
rise to the compact powerdomain functor Py (modulo a contraction factor).
Furthermore, the w-th iterate in the final sequence of T is, in a natural ultra-
metric, a final coalgebra of T*. Thus, the final T-coalgebra can be seen as a
subspace (indeed, a sub-T-algebra) of the final T*-coalgebra. For instance, in
the next section the final coalgebra of Py((—)1/2) is described as the coalgebra
of strongly extensional, compactly branching trees, and the final coalgebra of P
is described as the coalgebra of strongly extensional, finitely branching trees.

Example 16 We start by recalling some relevant functors on CUMet*.

(i) The compact powerdomain functor Py : CUMet* — CUMet* maps a space
(X, d) to the space P (X, d) of all compact subsets of X equipped with the
Hausdorff metric dg, where

dy(V, W) = max{sup inf dx(v,w), sup inf dx(v,w)},

vey WEW weWw vEV
with all sups and infs taken over the interval [0, 1].
(i) The scaling functor (—)% maps a space (X,d) to the space (X, 3d) with the
same set of points, but with all distances halved.
(11i) We say that a Borel measure p on an ultrametric space (X, d) has compact
support if there exists a compact set K C X such that for all Borel sets U,

UNK =0 implies u(U) = 0. Let My(X,d) denote the ultrametric space of
Borel probability measures on (X, d) with compact support, where

dax (1, p) = inf{e > 0 | (V2 € X)u(B:(z)) = p(B:(z))}-

If (X,d) is a complete ultrametric space then so is My (X, d). My is turned
into an endofunctor on CUMet* by defining (Myf)(1)(O) = u(f~(0)) for
a nonezpansive map f : X — Y. See [20] for further details about this
functor.

Given a set functor 7', the definition of 7™ is based on the well-known char-

12



acterization of complete ultrametric spaces as pro-discrete objects in the cat-
egory of topological spaces [17, Theorem 6.4.7]. Given an ultrametric space
(X,d), for each n € N, the open balls By-»(z) form a partition of X. We de-
note this partition P,. If (X, d) is complete, then the set X may be recovered
as the limit of the w°P-chain

P& pfip o 4
o M — [ (4)

where ¢7": P, — P, is defined by g¢/"(By-m(x)) = Ba-n(x) for m > n. The
limit projection g¥: X — P, is defined by ¢¥(z) = By ().

Definition 17 The endofunctor T* on CUMet* is defined on objects by T*(X,d) =
(X*,d*), where the set X* is the limit of the w°P-chain

1 2 3
1¢— TP &2 7p &% 7p, &% ... (5)

and
d*((zn), (Yn)) = Inf{27" | 2 = yn}.
The functorial extension of T* is straightforward once it is recalled that a

nonezpansive map f:{X,d) — (X', d') yields a natural transformation from
the decomposition (4) of X to the corresponding decomposition of X'.

Notice that in going from (4) to (5) the sequence of terms is shifted one place
to the right. This has the effect of making T™ locally contractive, that is, its
action on homsets defines a contractive function.

Let T have final sequence {A,, fg} As observed by Barr [9], A, has a natural
ultrametric given by

oy ((@n), (yn)) = nf{27" [ 2 = yn}. (6)

From the definition of 7* it immediately follows that T*(A,, d,) ~ (A, d,).
But America and Rutten [8] show that any fixed point of a locally contractive
endofunctor of CUMet* is a final coalgebra. Thus we have:

Theorem 18 (A,,d,) can be given the structure of a final T*-coalgebra.

We devote the rest of this section to describing 7™ in a couple of instances.
For this it is worthwhile introducing a new characterization of 7*(X, d) as the
Cauchy completion of TX in a suitable metric.

Observe that there is a connecting map ¢: TX — X* defined by 7,41 - ¢t =
T(g¥), where (m,41: X* — TP, )n<, is the limiting cone in Definition 17. If T

is finitary, then ¢ is monic by Proposition 4. Furthermore, we have:

Proposition 19 The image of ¢ is dense in T*(X, d).

13



PROOF. Since each map ¢ in (4) is surjective, we can find maps h}},: P, — P,
for n < m and AJ,: P, — X satistying

Gl grtt-hr,, =1p,
G3 hy,=hp -hyforn<p<m
G4 g2 -hl =h) forn<m.

(The maps A, are uniquely determined by G2-G4 once each A%, is chosen
to satisfy G1.)

Now, given a typical element (z,) of X*, we have

(Tt 1= T @ns1) = (T(G7) - T @is1) = T

It immediately follows that the image of ¢ is dense in X™* as claimed. O

Regarding TX as a (dense) subset of X*, the restriction of d* to TX is char-
acterized by

d*(z,y) = inf{27" | T(gp)(z) = T(g3) ()} (7)

Recalling that ¢¥(z) = ¢¥(y) iff d(z,y) < 27", it is straightforward that,
in case T =P, (7) yields the Hausdorff metric on PX (modulo a contraction
factor of £). Similarly, if T = D, then (7) defines the metric of Example 16 (iii)
on probability distributionsqy. Combining these observations with Proposition
20 below, we conclude that P* = Py ((—)1) and D* = My ((—)1).

3 3
Proposition 20 Let (X,d) be a complete ultrametric space. Then PX is a
dense subset of Pu(X,d), and DX is a dense subset of My(X,d).

PROOF. Let K C X be compact and let € > 0. There is a finite set K' =
{z1,..;xzm} C K such that {B.(z) | z € K'} covers K. It is clear that the
distance between K’ and K in the Hausdorff metric is less than e, proving the
first assertion above. For the second, let i be a Borel measure with compact
support K above. Observe that without loss of generality we may assume
that the B.(z;) are pairwise disjoint, since in an ultrametric space two open
e-balls are either disjoint or equal. Define the distribution p by support(p) =
{z1, ..., xn} and p(z;) = p(B:(z;)) for 1 < j < m. Then the distance between
p and p in My X is less than ¢ since if O € O, then each B.(z;) is either a
subset of O or doesn’t meet O, so

pO) = 3 wB:(x;) = 3 plBe(zj)] = p(O).

;€0 ;€0
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5 The Final Sequence of P

In this section we sketch an application of the final coalgebra construction
from the proof of Theorem 11 to the case of the finite powerset functor P.
This example illustrates well why, in general, one needs w2 steps to ensure the
stabilization of the final sequence of a finitary set functor.

For our purposes, a tree ¢ is a directed graph with a distinguished node, the
root, such that every node is reachable from the root by a unique finite path.
We consider trees which are isomorphic as directed graphs with distinguished
nodes to be identical. Given a node z of ¢, the mazimal subtree rooted at x is
the greatest subgraph of ¢ which is a tree with root .

A relation R on the set of nodes of a tree is a tree bisimulation if xRy implies
the respective parents of x and y are related, each child of = is R-related to
a child of y, and each child of y is R~!-related to a child of z. We call a tree
strongly extensional if no two distinct nodes are related by a bisimulation.
(This notion basically goes back to the work of Aczel [2] on non-well-founded
sets.) For any tree ¢ the union of all tree bisimulations is an equivalence, and
the quotient of ¢ by this equivalence is strongly extensional. We write t =2, ¢/
if the restrictions of ¢ and ' to depth n have the same strongly extensional
quotient, and define a pseudo-metric d7 on the class of strongly extensional
trees by
dr(t,t") =inf{27" | t =, t'}.

Write {} for the final object in Set, and {A,, f§} for the final sequence of
P. For each n < w there is an isomorphism between A, and the set of finitely
branching, strongly extensional trees, of depth not greater than n, and whose
depth-n nodes are labelled *. This is defined by induction: if z4,..., 2, € A,
correspond to trees t1, ..., ty, then {z1, -+, 2, } corresponds to

o e

Labelling the leaf nodes of depth n in a tree in A,, by * suggests that this tree
is to be thought of as partial. We can think of the projection map f*! as
taking a tree in A, 1, cutting off the depth-(n + 1) nodes, taking the strongly
extensional quotient, and finally relabelling the depth-n nodes by *. Below,
we draw a row of trees taken respectively from Ay, Ay, A and As, with each

(8)
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tree projecting down to the tree to the left.

* °

*

N N
:

Extending the given sequence in the obvious way, we can imagine the trees as
projections of the following countably-branching infinite-depth tree in A,,.

s
S

The above picture is due to Turi and Rutten [19], from their explanation of
why the final coalgebra of P is not given by the wP-limit 1 < P1 « ... «
P“1. Notice that since the trees in A, are potentially infinitely branching, the
obvious candidate for a coalgebra structure on A,, i.e. the map sending a tree
t to the set of its maximal proper subtrees, does not work. However, in the
last section we showed that A, can be given a coalgebra structure, indeed
the structure of a final coalgebra, but of the compact powerdomain functor,
not IP. In fact, the limit A, can be depicted as the set of strongly extensional
trees that are compactly branching in the sense that, for each node, the set of
maximal subtrees rooted at its children is compact with respect to the metric
dr. The projection f2 is given by: cut a tree to depth n, take the strongly
extensional quotient, and relabel the depth-n nodes by *. The injection f@*!
can be thought of as the inclusion of the subset of those trees which are finitely
branching at the root. More generally, the injection f“*" can be thought of
as the inclusion of the subset of those trees which are finitely branching up-to
depth n < w. Finally, the carrier of the final coalgebra, A.,s, is the set of
finitely branching, strongly extensional trees. The coalgebra structure on this
set sends each tree ¢ to the set of its maximal proper subtrees.
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6 Future Work

The example in Section 5 shows that the w2 bound on the stabilization of
the final sequence of a finitary set functor is tight. However, we do not have
an example of an w;-accessible set functor whose final sequence takes fully
wy + wy steps to stabilize. As we mentioned earlier, if the functor preserves
wide pullbacks of monos then one has stabilization in w; 4+ w steps. This case
seems to cover all of the ‘reasonable’ w;-accessible set functors one comes
across, e.g., the countable powerset functor.

Recently, Addmek [3] has posed the question of whether the behaviour one
observes of the final sequence of a finitary set functor extends to finitary end-
ofunctors on other locally finitely presentable categories. He obtains a partial
answer to this question, showing that on certain locally finitely presentable
categories, finitary endofunctors preserving strong monos and bimorphisms
also have final sequences which stabilize in w2 steps. The proof of this result
uses Theorem 11. In the absence of any counter-examples, the question of
whether one can drop any of the side conditions on the functor remains open.
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Adamek. I would also like to thank the anonymous referees for their careful
reading of this paper and many useful comments. Finally, thanks to Fer-Jan
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