
On Expressiveness and Complexity
in Real-time Model Checking

Patricia Bouyer1,2, Nicolas Markey2, Joël Ouaknine1, and James Worrell1

1 Oxford University Computing Laboratory
〈First.Last@comlab.ox.ac.uk〉

2 Laboratoire Spécification & Vérification
〈First.Last@lsv.ens-cachan.fr〉

Abstract. Metric Interval Temporal Logic (MITL) is a popular formalism for
expressing real-time specifications. This logic achieves decidability by restricting
the precision of timing constraints, in particular, by banning so-called punctual
specifications. In this paper we introduce a significantly more expressive logic that
can express a wide variety of punctual specifications, but whose model-checking
problem has the same complexity as that of MITL. We conclude that for model
checking the most commonly occurring specifications, such as invariance and
bounded response, punctuality can be accommodated at no cost.

1 Introduction

One of the most successful approaches to verification is model checking: given a repre-
sentation S of a system together with a specification ϕ, determine whether S satisfies ϕ.
In the world of real time, a prominent modelling framework is to use timed automata to
represent systems and Metric Temporal Logic (MTL) as the specification formalism.

MTL was proposed nearly twenty years ago by Koymans [12] and has since been
extensively studied. MTL is an extension of Linear Temporal Logic (LTL) which allows
one to specify a wide range of timed behaviours. The formula �(p → 3{1}q), for
example, asserts that whenever the system finds itself in a p-state, then it will be in a
q-state precisely one time unit later.

Unfortunately, the model-checking and satisfiability problems for MTL over dense
time are undecidable [3, 16]. In fact, it was widely held until quite recently that any
formalism in which ‘punctual’ (exact) timing constraints could be expressed would
automatically be undecidable—see [3, 4, 9], among others. The formula given in the
previous paragraph is a typical example of a punctual specification.

Many researchers were thus led to consider relaxations and variations of the original
MTL formalism in search of decidability and tractability. The identification of Metric
Interval Temporal Logic (MITL) as a decidable fragment of MTL is a classic result in real-
time verification. MITL consists of those formulas in which every constraining interval is
non-singular. This syntactic restriction directly removes the problem of punctuality, but
correspondingly loses considerable expressiveness. Satisfiability and model checking for
MITL were shown to be EXPSPACE-complete in [2] via a translation of formulas into
equivalent timed automata; see also [11, 15].

The starting point of this paper is to identify a new decidable fragment of MTL,
which we call Bounded-MTL. This is the subset of MTL in which the constraining
intervals appearing in any formula have finite length. For instance �[0,25)(p→ 3{1}q)
is a Bounded-MTL formula. Note that, unlike in MITL, punctual formulas are permitted.
We show that Bounded-MTL is decidable in EXPSPACE if the time constraints in
formulas are encoded in binary, and in PSPACE if time constraints are encoded in unary.
Notwithstanding these bounds, we provide examples of Bounded-MTL formulas that
can only be satisfied by signals whose variability is doubly exponential in the size of the
formula. Moreover we observe that there exist Bounded-MTL formulas for which there
is no equivalent timed automata, unlike the situation for MITL formulas.

Bounded-MTL shows that, at least in the time-bounded setting, punctuality need not
be fatal for the complexity of model checking. However the restriction to time-bounded
modalities in Bounded-MTL is severe, for example prohibiting the expression of basic
safety properties such as invariance. This leads us to isolate the notion of flatness, which
generalises boundedness. We introduce coFlat-MTL, a natural extension of both MITL
and Bounded-MTL, which is closed under the always operator � and the bounded
until operator UI . In particular, if ϕ is a Bounded-MTL formula, expressing some
time-bounded property, then the invariance specification �ϕ is in coFlat-MTL.

Our main result is that the model checking problem for coFlat-MTL on timed
automata is EXPSPACE-complete, that is, in the same complexity class as MITL model
checking. This substantiates the main thesis of this paper—that in model checking the
most common specifications, including invariance and bounded response, punctuality
can be accommodated for free. However we note that coFlat-MTL is not closed under
negation, and its satisfiability problem is undecidable. In this respect coFlat-MTL
is similar to the branching-time logic TCTL for which model checking is PSPACE-
complete but satisfiability is undecidable (again due to the problem of punctuality).

This paper adopts the standard semantics for MTL in which a model of a formula is
a signal: a function from the positive reals into a finite set, indicating which propositions
hold at every instant in time. An alternative approach, used in our earlier work [6], is
the so-called point-based semantics, which represents models as countable sequences of
timestamped snapshots. The signal semantics can be shown to generalise the pointwise
semantics. To accommodate this extra generality we had to move from the automata-
based proof techniques used in [6] to model-theoretic ones. As a side benefit, this shift
has allowed us to lift our previous restriction to finitely-variable models. Finally, the
logic which we term coFlat-MTL in the present paper strictly generalises the logic by
the same name in [6]; in particular, MITL is now a fragment of coFlat-MTL, so that our
results also extend the original EXPSPACE model checking of MITL [2].

2 Metric Temporal Logic

Given a set P of atomic propositions, the formulas of MTL are built from P using
Boolean connectives, and time-constrained versions of the until operator U as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ ,

where I ⊆ (0,∞) is an interval of reals with endpoints in N ∪ {∞}. We sometimes
abbreviate U(0,∞) to U , calling this the unconstrained until operator. We assume a dag

representation of formulas, and define the size of a formula ϕ, denoted |ϕ|, to be the
number of distinct subformulas of ϕ. We also write Mϕ for the maximum finite integer
occurring as an endpoint of a constraining interval in ϕ.

We denote by R+ the set of nonnegative real numbers. Given a set X , a signal is a
function f : R+ → X . We say that f has finite variability if its set of discontinuities has
no limit points. We say that f has variability n ∈ N if it has at most n discontinuities
in any open unit-length subinterval (k, k + 1) of its domain, where k ∈ N. Given an
MTL formula ϕ over the set of propositional variables P , and a signal f : R+ → 2P ,
the satisfaction relation f |= ϕ is defined inductively, with the classical rules for atomic
propositions and Boolean operators, and with the following rule for the “until” modality,
where f t denotes the signal f t(s) = f(t+ s):

f |= ϕ1 UI ϕ2 iff for some t ∈ I , f t |= ϕ2 and fu |= ϕ1 for all u ∈ (0, t).

Note that we adopt a strict semantics for UI , in which the judgement f |= ϕ1 UI ϕ2

is independent of f(0) (recall that 0 6∈ I by assumption). In the following we write
ϕ1 U ϕ2 for ϕ1 U(0,∞) ϕ2.

In general we do not assume that signals are finitely variable. Indeed there are formu-
las that are satisfiable only by infinitely variable signals: e.g. ¬(p U p) ∧ ¬(¬p U ¬p).

Further connectives can be defined following the usual conventions. In addition
to propositions > (true) and ⊥ (false), and to disjunction ∨, we have the constrained
eventually operator 3Iϕ ≡ > UI ϕ, the constrained always operator �Iϕ ≡ ¬3I¬ϕ,
and the constrained dual until operator ϕ1 ŨI ϕ2 ≡ ¬((¬ϕ1) UI (¬ϕ2)).

Admitting only ŨI as an extra connective one can transform any MTL formula into
an equivalent negation normal form, in which negation is only applied to propositional
variables.

3 Decidable Sublogics

It is well known that both model checking and satisfiability for MTL are highly undecid-
able (Σ1

1 -complete) [2]. Here we consider syntactic restrictions yielding sublogics with
decidable model checking problem.

One approach, due to Alur, Feder and Henzinger [2], involves placing restrictions on
punctuality. We say that a formula ϕ is punctual if its outermost connective is a temporal
modality with a singular constraining interval, e.g., 3{1}p. Intuitively, a punctual formula
specifies an exact timing constraint. Metric Interval Temporal Logic (MITL) is the subset
of MTL in which all constraining intervals are non-singular, that is, in which punctual
formulas are banned. The satisfiability and model checking problems for MITL are
EXPSPACE-complete.

In this paper our starting point is, in some sense, dual to that of [2]. Rather than ban
constraining intervals that are too small, we ban constraining intervals that are too big.
We define Bounded-MTL to be the subset of MTL in which all constraining intervals
have finite length, and we show that the satisfiability and model checking problems for
Bounded-MTL are EXPSPACE-complete (or PSPACE-complete if timing constraints
are encoded in unary), matching the complexity of MITL. However the following example
illustrates the fundamentally different character of MITL and Bounded-MTL.

Example 1. Consider the Bounded-MTL formula ϕ ≡ �(0,1)(p↔ 3{1}p). A variation
on a well-known result tells us that the set of signals satisfying ϕ is not realisable as
the language of a timed automaton [1, 5]. Therefore ϕ defines a property that is not
expressible in MITL since MITL formulas can be transformed into equivalent timed
automata [2].

MITL and Bounded-MTL represent two different approaches to defining decidable
metric temporal logics, and they have incomparable expressive power. In particular,
Bounded-MTL is not capable of expressing invariance—one of the most basic safety
specifications. To repair this deficiency we introduce flatness as a generalisation of
boundedness. Our use of this term is motivated by similarities with logics introduced
in [7, 8].

We say that an MTL formula in negation normal form is flat if (i) in any subformula
of the form ϕ1 UI ϕ2, either I is bounded or ϕ1 is in MITL, and (ii) in any subformula of
the form ϕ1 ŨI ϕ2, either I is bounded or ϕ2 is in MITL. For example �ϕ ≡ ⊥ Ũ ϕ is
flat if ϕ is in MITL. The intuition behind flatness is that potentially persistent subformulas
must be in MITL. We write Flat-MTL for the fragment of MTL composed of all flat
formulas.

Flatness is a key technical notion in this paper, however our main results are most
naturally understood in terms of the dual notion, coflatness. A formula is coflat if it is
the negation of a flat formula. More explicitly we say that a formula is coflat if (i) in
any subformula of the form ϕ1 UI ϕ2, either I is bounded or ϕ2 is in MITL, and (ii) in
any subformula of the form ϕ1 ŨI ϕ2, either I is bounded or ϕ1 is in MITL. If we
write coFlat-MTL for the sublogic of coflat formulas then coFlat-MTL includes both
Bounded-MTL and MITL, is closed under �I for arbitrary I (invariance), and is closed
under UI for bounded I (bounded liveness). Thus, for specifications, coflatness is a
much less restrictive property than flatness. While this generality renders the satisfiability
problem for coFlat-MTL undecidable (the undecidability proof of [2] for the satisfiability
of MTL makes use only of formulas in coFlat-MTL), we show that the model checking
problem is no harder than for MITL.

Example 2. The formula (�3(0,1)

∨
m∈M inm) ∧ (�

∧
m∈M (inm → 3{1}outm))

specifies the behaviour of a perfect buffer which processes each message in one time unit,
operating in an environment where at least one message arrives every time unit. This for-
mula is in coFlat-MTL, but is not in Bounded-MTL (due to the unconstrained �) and
is not in MITL (due to the punctual 3{1}).

Model Checking. The model checking problem for coFlat-MTL asks, given a timed
automaton A and a coFlat-MTL formula ϕ, whether all (finitely variable) signals ac-
cepted by A also satisfy ϕ. Rather than formally introducing timed automata we rely on
a result of [10, 17] that for each timed automatonA there is an MITL formula ϕA, of size
polynomial in A, such that the language of A is a projection of the language of ϕA.
Since Flat-MTL subsumes MITL, using this result we can reduce the model checking
problem for coFlat-MTL to the satisfiability problem for the dual logic Flat-MTL. The
main result of this paper is that the latter problem is EXPSPACE-complete, as is the
same problem for MITL [2].

Theorem 1. The model-checking problem for coFlat-MTL is EXPSPACE-complete.

The proof of Theorem 1 occupies Sections 5 and 6. The decision procedure involves
a satisfiability-respecting translation of Flat-MTL into Linear Temporal Logic over the
reals. In this translation the non-punctual connectives in Flat-MTL are handled using
similar techniques to [11]. Dealing with the punctual connectives, however, requires
completely new ideas.

4 Hardness

Proposition 1. The satisfiability problem for Bounded-MTL is EXPSPACE-hard.

Proof. Given a 2n-space-bounded Turing machineM with input X , we construct in
logarithmic space a Bounded-MTL formula ϕM,X that is satisfiable if and only ifM
accepts X . This reduction bears some similarities with the undecidability proof for
MTL [2], but it also differs in important respects. Indeed, directly applying the latter
proof to Bounded-MTL would only yield EXPTIME-hardness.

We now sketch the main ideas behind the definition of ϕM,X . Suppose that M
has set of control states S and tape alphabet Σ. The set of atomic propositions used
by ϕM,X is P ∪ Ṗ , where P = {pσ, pσ,s : σ ∈ Σ, s ∈ S} and Ṗ = {ṗ : p ∈ P}.
Intuitively, proposition pσ represents a tape cell that currently contains σ, whereas pσ,s
represents a tape cell that currently contains σ and is pointed to by the head ofM, while
M is in control state s. The dot is used as a pointer to aid in simulatingM: an entire
computation ofM is encoded in each time unit, and each step of the computation is
checked using the distinguished dotted propositions in two consecutive unit intervals.

ϕM,X is written as the conjunction of three components

ϕM,X ≡ ϕUNIQUE ∧ ϕCOPY ∧ ϕCHECK .

The formula ϕUNIQUE , which is straightforward to formalise, ensures that any signal
satisfying ϕM,X defines a left-continuous function f : [0, 2n] → P ∪ Ṗ , that is, only
one proposition holds at each moment, and propositions do not hold instantaneously.

The purpose of ϕCOPY and ϕCHECK is to ensure that in any signal satisfying ϕM,X

the sequence of propositions holding in the time interval [0, 1) encodes the computation
history ofM onX . Within this, the job ofϕCOPY is to copy the sequence of propositions
holding in each unit-duration time interval into the subsequent time interval, at the same
time moving the dot superscript ‘one place to the right’. Formally we have

ϕCOPY =
∧
p∈P

�[0,2n](p→ 3{1}(p ∨ ṗ))

∧
∧

p,q∈P
�[0,2n]((ṗ U(0,1) q)↔ 3{1}(p U(0,1) q̇)) ,

where �[0,2n]ψ is a shorthand for ψ ∧�(0,2n]ψ.
Thus the sequence of propositions holding in each subsequent time interval [k, k + 1),

k = 1, . . . , n− 1, should also represent the computation history ofM on X . The only

difference is that in the interval [k, k + 1) the dot should decorate exactly those proposi-
tions encoding the contents of the k-th tape cell in each configuration in the computation
history.

The role of ϕCHECK is to verify that the sequence of propositions holding in each
subsequent unit-length interval does indeed encode the computation history ofM on X .
As it ‘reads’ the segment of the input signal defined over the time interval [k, k + 1),
ϕCHECK uses the dots as pointers to check the correctness of the k-th tape cell in
each configuration. Thus, in 2n time units the whole computation is checked. We omit
the details of ϕCHECK , but point out that it is equivalent to an LTL formula. (In fact
each modality is decorated with the constraining interval (0, 2n) merely to ensure that
ϕCHECK is in Bounded-MTL). ut

The proof of Proposition 1 assumes that constants are encoded in binary (in order
to concisely write �[0,2n]). It can be proved that model checking Bounded-MTL drops
to PSPACE when constants are encoded in unary. However, for the more expressive
logic Flat-MTL we can adapt the above encoding to show EXPSPACE-hardness assum-
ing only unary encoding of constants. Thus Theorem 1 holds irrespective of whether
constants are encoded in unary or binary.

5 Closure Labellings

It is well-known that the constrained until and dual-until operators UI and ŨI can be
expressed in terms of the unconstrained operators U and Ũ and the unary operators
�I and 3I [11, 15]. Unfortunately, adopting this simplification makes it impossible to
express flatness as a syntactic property, hence we prefer to retain a bit more flexibility in
our basic syntax. To this end we say that an MTL formula is in constraint normal form if
it is generated by the grammar

ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 ŨI ϕ2 | 3Jϕ | �Jϕ ,

where I is a left-open, initial (i.e., with left end-point 0) interval, while J is arbitrary.
Any MTL formula can be transformed into an equivalent constraint normal form

using equivalences such as

ϕ1 U(`,r] ϕ2 ↔ �(0,`](ϕ1 U(0,r] ϕ2) ∧ 3(`,r]ϕ2 .

This transformation is linear with respect to the DAG-size of formulas and it preserves
both MITL and Flat-MTL. Henceforth, without loss of generality, we assume that all
formulas are in constraint normal form.

Given I ⊆ R+ and n ∈ N, write I − n = {x ∈ (0,∞) : x + n ∈ I}. Define the
closure cl(ϕ) of a formula ϕ to be the smallest set such that the following hold (where
we adopt the identifications �∅ϕ ≡ > and 3∅ϕ ≡ ⊥).

C1 cl(ϕ) contains all subformulas of ϕ
C2 ϕ1 UI ϕ2 ∈ cl(ϕ) implies ϕ1 U ϕ2,3Iϕ2 ∈ cl(ϕ)
C3 ϕ1 ŨI ϕ2 ∈ cl(ϕ) implies ϕ1 Ũ ϕ2,�Iϕ2 ∈ cl(ϕ)

C4 �Jϕ1 ∈ cl(ϕ) implies �J−1ϕ1 ∈ cl(ϕ)
C5 3Jϕ1 ∈ cl(ϕ) implies 3J−1ϕ1 ∈ cl(ϕ).

For example, cl(�(1,∞)p∧3{1}q) = {⊥, p, q, 3{1}q, �(1,∞)p, �(0,∞)p, �(1,∞)p∧
3{1}q}.

It is straightforward to verify that cl(ϕ) has cardinality O(|ϕ| ·Mϕ). We note also
that if ϕ ∈ MITL, then cl(ϕ) ⊆ MITL; in particular, the interval I − 1 is a singleton only
if I is a singleton.

Given an MTL formula ϕ in constraint normal form, we define a closure labelling
to be a signal f : R+ → 2cl(ϕ) such that Rules CL1–CL10 below are satisfied for all
s ∈ R+. Closure labellings are continuous-time counterparts of Hintikka sequences [19].
Here we denote by P the set of propositions mentioned in ϕ. We also assume that
Rules CL5 and CL6 apply to 3ϕ1 and �ϕ1, respectively, under the identifications
3ϕ1 ≡ > U ϕ1 and �ϕ1 ≡ ⊥ Ũ ϕ1.

CL1 ⊥ 6∈ f(s);
CL2 exactly one of p and ¬p lies in f(s) for any p ∈ P ;
CL3 ϕ1 ∧ ϕ2 ∈ f(s) implies ϕ1 ∈ f(s) and ϕ2 ∈ f(s);
CL4 ϕ1 ∨ ϕ2 ∈ f(s) implies ϕ1 ∈ f(s) or ϕ2 ∈ f(s);
CL5 ϕ1 U ϕ2 ∈ f(s) implies there exists t>s such that ϕ2 ∈ f(t) and ϕ1 U ϕ2, ϕ1 ∈

f(u) for all u ∈ (s, t);
CL6 ϕ1 Ũ ϕ2 ∈ f(s) implies for all t > s, if ϕ2 6∈ f(t) then there exists u ∈ (s, t)

with ϕ1 ∈ f(u), and if ϕ1 Ũ ϕ2 6∈ f(t) then there exists u ∈ (s, t] with ϕ1 ∈ f(u);
CL7 ϕ1 UI ϕ2 ∈ f(s) implies ϕ1 U ϕ2 ∈ f(s) and 3Iϕ2 ∈ f(s);
CL8 ϕ1 ŨI ϕ2 ∈ f(s) implies ϕ1 Ũ ϕ2 ∈ f(s) or �Iϕ2 ∈ f(s);
CL9 �Jϕ1 ∈ f(s) implies �J−1ϕ1 ∈ f(s+1) and ϕ1 ∈ f(s+δ) for all δ ∈ (0, 1]∩J ;
CL10 3Jϕ1 ∈ f(s) implies 3J−1ϕ1 ∈ f(s + 1) unless ϕ1 ∈ f(s + δ) for some

δ ∈ (0, 1] ∩ J .

Rules CL1–CL10 encode the semantics of MTL in a natural way. However it is worth
noting though that constrained until UI and dual until ŨI are handled indirectly, via
Rules CL7 and CL8. Note also that the correctness of CL7 and CL8 depends on the
assumption that the interval I appearing in these rules is initial, which holds because ϕ
is in constraint normal form.

The following straightforward proposition expresses the expected property of closure
labellings.

Proposition 2. A Flat-MTL formula ϕ is satisfiable iff there is a closure labelling
g : R+ → 2cl(ϕ) with ϕ ∈ g(0).

5.1 The Partition Lemma.

Next we identify some structure on the closure labellings of Flat-MTL formulas. To this
end, say that E ⊆ R+ is a basic set if it can be written as a finite union of compact
intervals with integer end-points: E = E1 ∪ E2 ∪ · · · ∪ En. We define length(E) in the
obvious manner as the sum of the lengths of the Ei. Given a basic set E ⊆ R+, we say

that a closure labelling g is E-rigid if g(t) contains punctual formulas3 only when t ∈ E.
The term rigid anticipates the development in Section 6.2.

The following result crucially relies on the flatness of ϕ:

Lemma 1 (Partition Lemma). Let ϕ be a Flat-MTL formula and g : R+ → 2cl(ϕ) a
closure labelling with ϕ ∈ g(0). Then there is a basic set E with length(E) 6 Mϕ · 2|ϕ|
and an E-rigid closure labelling h with ϕ ∈ h(0).

Remark 1. In case ϕ ∈ Bounded-MTL, the Partition Lemma can be strengthened by
requiring that length(E) 6 Mϕ · |ϕ|. This makes our algorithm be in PSPACE for
Bounded-MTL with unary-encoded integers.

Given a closure labelling f : R+ → 2cl(ϕ), the non-punctual part of f is the function
fnp ⊆ f , where fnp(t) consists of the set of formulas in f(t) of the form �Iϕ1 or 3Iϕ1

with I non-singular.
Consider a signal f : R+ → 2P , and assume that t1 < t2 < t3 < t1 + 1, and that

f t1 and f t3 both satisfy �Iψ with I non-singular; then it is easily shown that f t2 also
satisfies �Iψ. Thus �Iψ changes its truth value at most 3 times in any unit interval. By
duality, it also holds that 3Iψ also changes its truth value at most 3 times in any unit
interval. Following this line of reasoning we can assume in Proposition 2 that gnp has
variability at most 3 ·Mϕ · |ϕ|. Moreover the construction underlying the proof of the
Partition Lemma is such that the only discontinuities in h, other than those in g, are
integer-valued. In summary we have:

Proposition 3. A Flat-MTL formula ϕ is satisfiable if, and only if, there is a basic set
E with length(E) ≤Mϕ · 2|ϕ| and an E-rigid closure labelling h : R+ → 2cl(ϕ) such
that ϕ ∈ h(0) and hnp has variability at most 3 ·Mϕ · |ϕ|.

6 The Decision Procedure

In this section we describe an EXPSPACE decision procedure for the Flat-MTL satisfi-
ability problem. As explained in Section 3, this implies that the model checking problem
for coFlat-MTL is also in EXPSPACE. To achieve this we utilise a technique, inspired
by [11], to give a translation of Flat-MTL into LTL+Past4 that respects the satisfiability
of formulas.

6.1 Tableaux.

The rules CL9 and CL10 in Section 5 treat punctual and non-punctual connectives
alike. We now introduce a modified notion of closure labelling, called a tableau, in
which punctual and non-punctual connectives are handled differently. To motivate the
definition of a tableau, consider the following ‘stacking’ construction on a closure
labelling g : R+ → 2cl(ϕ). Given an integer k ≥ 1, define T : R+ →

(
2cl(ϕ)

)k
by

3 We recall (see Section 3) that a formula is punctual if its outermost connective is a temporal
modality with a singular constraining interval.

4 LTL+Past is the classical extension of LTL with past-time modalities [13].

T (t) = 〈g(t), g(t+1), . . . , g(t+k)〉. We can think of T as a multi-track closure labelling
in which the i-th track is the function Ti : R+ → 2cl(ϕ) defined by Ti(t) = T (t)i.
Notice that the (i+ 1)-th track is one time unit ahead of the i-th track. Motivated by this
construction, we axiomatise the notion of a tableau below.

Given an integer k ≥ 1, we say that a signal T : R+ →
(
2cl(ϕ)

)k
is a tableau if the

following rules are satisfied for each 0 ≤ i ≤ k − 1 and s ∈ R+:

TH1 Ti satisfies the closure labelling axioms CL1–CL8;
TH2 Ti satisfies the versions of CL9 and CL10 in which the constraining interval J is

non-singular;
TV1 If 0 ≤ i < k − 1 then �Jψ ∈ T (s)i implies �J−1ψ ∈ T (s)i+1, ψ ∈ Ti(s + δ)

for all δ ∈ (0, 1] ∩ J such that s + δ ≤ dse, and ψ ∈ Ti+1(s + δ − 1) for all
δ ∈ (0, 1] ∩ J such that bsc ≤ s+ δ − 1;

TV2 If 0 ≤ i < k − 1 then 3Jψ ∈ T (s)i implies that either 3J−1ψ ∈ T (s)i+1, or
there exists δ ∈ (0, 1] ∩ J such that either s + δ ≤ dse and ψ ∈ T (s + δ)i, or
s+ δ − 1 ≥ bsc and ψ ∈ T (s+ δ − 1)i+1;

TV3 if 0 ≤ i<k−1 then for each n ∈ N such that n>0 we have T (n)i = T (n−1)i+1.

We think of TH1 and TH2 as horizontal rules, since they concern individual tracks
of T . They say that each track Ti would be a closure labelling but for the fact that rules
CL9 and CL10 need only hold for non-punctual connectives.

Next come the vertical rules TV1–TV3, which relate points on different tracks of T .
TV1 and TV2 are vertical counterparts of CL9 and CL10 for punctual and non-punctual
formulas. Note how TV3 reflects the intuition that Ti+1(s) = Ti(s+ 1).

Since TH2 does not apply to punctual connectives, the tableau axioms do not accu-
rately capture the semantics of arbitrary MTL formulas. However, for Flat-MTL formulas
the notion of rigidity, defined in Section 5, comes to the rescue. Intuitively in a tableau
of an Flat-MTL formula we rely on the vertical rules to handle punctual subformulas
and we rely on the horizontal rules otherwise. Since the number of tracks of a tableau
is finite, the correctness of this idea depends on the existence of bounds on the parts of
the tableau containing punctual subformulas. To this end we first extend the notion of
rigidity to tableaux by saying that a tableau T is E-rigid iff each track Ti is Ei-rigid,
where Ei = {t : t+ i ∈ E}. Then we have the following result:

Proposition 4. Given a basic set E and k ≥ length(E), there is an E-rigid closure
labelling g : R+ → 2cl(ϕ) with ϕ ∈ g(0) if, and only if, there is an E-rigid tableau
T : R+ →

(
2cl(ϕ)

)k
with ϕ ∈ T0(0).

Proof (sketch). If g : R+ → 2cl(ϕ) is an E-rigid closure labelling with ϕ ∈ g(0), then
T : R+ →

(
2cl(ϕ)

)k
defined by T (t) = 〈g(t), g(t + 1), . . . , g(t + k)〉 is an E-rigid

tableau with ϕ ∈ T0(0). Indeed, only rules TV1–TV3 need to be checked, and TV1
(resp. TV2) is simply a consequence of CL9 (resp. CL10). The rule TV3 is satisfied by
construction.

Conversely, given an E-rigid tableau T we construct a closure labelling g by splicing
together unit-length segments from different tracks of T . The idea is that if a given seg-
ment contains a punctual formula then it is concatenated with the segment immediately

below on the next track; otherwise it is concatenated with its right neighbour on the same
track. More precisely, define σ : N→ {0, . . . , k − 1} by σ(0) = 0 and

σ(n+ 1) =
{
σ(n) + 1 if [n, n+ 1] ⊆ E
σ(n) otherwise.

Then g(t) = T (t− σ(btc))σ(btc) is an E-rigid closure labelling (k ≥ length(E)). ut

Combining Lemma 1 and Proposition 4, we obtain the following result.

Corollary 1. A Flat-MTL formula ϕ is satisfiable if, and only if, there is a basic set E
with length(E) ≤Mϕ ·2|ϕ| and anE-rigid tableau T : R+ →

(
2cl(ϕ)

)k
with ϕ ∈ T0(0)

and k = length(E). Moreover we can assume that Tnp has variability 3 ·M2
ϕ · |ϕ| · 2|ϕ|.

6.2 The Stretching Lemma.

Say that two signals f, g : R+ → X are stretching equivalent, denoted f ∼ g, if there
is a monotone bijection h : R+ → R+ such that g = f ◦ h. In this case it is easy to see
that f and g satisfy the same LTL+Past properties. Our translation from Flat-MTL to
LTL+Past relies on an observation of [11] that simple metric properties can be specified
in LTL+Past up to stretching equivalence.

Given an integer N , and set of atomic propositions ∆N = {dj , d′j : 1 ≤ j ≤ N} ∪
{pX}, let θN be an LTL formula enforcing the following properties: (i) the propositions
dj , d′j and pX all hold punctually; (ii) the propositions dj are mutually exclusive and
the d′j are also mutually exclusive; (iii) pX holds at time 0 and thereafter holds infinitely
often; (iv) in between each occurrence of pX each dj holds exactly once, and the dj
hold in the order d1, d2, . . . , dN (and similarly for the d′j). We omit the formal definition
of θN , which is straightforward. Lemma 2, below, states that a signal f that satisfies
(i)–(iv) can be stretched into one in which pX holds precisely at integer time-points and
every time dj holds then d′j holds one time unit later. The proof uses a construction
from [11, Lemma 10].

Lemma 2 (Stretching Lemma). If f |= θN then there exists a signal g ∼ f such that
gt |= pX iff t ∈ N, and gt+1 |= d′j whenever gt |= dj .

f

g

pX pX pXd1 d2 d′1 d′2 d1 d2d′1 d′2

=1

=1

Fig. 1. The stretching lemma

6.3 Translation to LTL+Past.

Given a Flat-MTL formula ϕwe define an LTL+Past formula ϕ◦ such that ϕ is satisfiable
iff ϕ◦ is satisfiable. The idea is that ϕ◦ encodes the tableau rules for ϕ and the E-rigidity
condition. To this end, ϕ◦ uses the set of propositions Q = {pψ,i : ψ ∈ cl(ϕ), 0 ≤
i ≤ k − 1}, where k, which represents the height of the tableau, will be chosen later.
Then given a signal f : R+ → 2Q, the stretching equivalent signal g given by Lemma 2
naturally encodes a function T : R+ → 2(cl(ϕ))k

by Ti(t) = {ψ : pψ,i ∈ g(t)}. The
definition of ϕ◦ is such that f |= ϕ◦ iff g |= ϕ◦ iff T is a tableau for ϕ.

Most of the tableau rules can be straightforwardly encoded in ϕ◦. For example, TH1
is captured by formulas such as �(pϕ1∧ϕ2,i → (pϕ1,i ∧ pϕ2,i)) and �(pϕ1Uϕ2,i →
pϕ1,i U pϕ2,i); corresponding to Rule TV1 we have formulas such as �(p�Iψ,i →
p�I−1ψ,i+1).

The most interesting part of the translation concerns the rule TH2: the horizontal rule
dealing with the constrained and non-punctual connectives �J and 3J . To help encode
this, we choose a suitable constant N (more on this later) and include formula θN , from
Section 6.2, as a conjunct of ϕ◦. We furthermore specify in ϕ◦ that propositions of the
form p3Iψ,i and p�Iψ,i with I non-singular only change truth value when one of the dj
holds (think of the dj as marking discontinuities in Tnp). Now consider some signal that
satisfies ϕ◦; let snj denote the time-point of the n-th occurrence of dj and let tnj denote
the time-point of the n-th occurrence of d′j . By Lemma 2 we can assume without loss of
generality that tnj = snj + 1. But now it is easy to encode TH2. For instance, by referring
to the propositions dj and d′j we can specify in ϕ◦ that if p�Iψ,i holds in an interval
(snj , s

n
j+1) then p�I−1ψ,i holds in the interval (tn+1

j , tn+1
j+1).

It only remains to choose the constants k and N . The choice should be such that
if ϕ is satisfiable then there should exist a tableau T with k tracks such that Tnp has
variability at most N . But then Corollary 1 shows that we can take k = Mϕ · 2|ϕ| and
N = 3 ·M2

ϕ · |ϕ| · 2|ϕ|. Note that since k and N are both exponential in the size of the
description of ϕ, formula ϕ◦ may be exponentially bigger than ϕ. The correctness of the
construction is stated below.

Theorem 2. Let ϕ be a Flat-MTL formula, and ϕ◦ be the LTL+Past formula defined
above. Then, ϕ is satisfiable iff ϕ◦ is satisfiable.

In summary, we have a satisfiability-respecting exponential translation from Flat-
MTL to LTL+Past. Now it is known that the satisfiability problem for LTL+Past over R+

is PSPACE-complete [18, 14] and we conclude that the satisfiability problem for Flat-
MTL and the model checking problem for coFlat-MTL are both in EXPSPACE. As
a final remark we observe that, due to the factor 2|ϕ| in the expressions for N and k,
the exponential blow-up in the translation from Flat-MTL to LTL+Past arises even if
the timing constraints in formulas are encoded in unary (as mentioned at the end of
Section 4, this exponential blow-up is unavoidable).

Remark 2. In Remark 1 we noticed that the length of the basic set for Bounded-MTL
formulas can be bounded by Mϕ · |ϕ| when constants are encoded in unary. In that case,
we can take k = Mϕ · |ϕ| and N = 3 ·M2

ϕ · |ϕ|2, and the size of the LTL+Past formula
is now polynomial. Hence, under the hypothesis that constants are encoded in unary, the
satisfiability and model checking problems for Bounded-MTL are in PSPACE.

References

1. R. Alur and D. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
2. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J. of the ACM,

43(1):116–146, 1996.
3. R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In Real-Time: Theory

in Practice, Proc. REX Workshop 1991, LNCS 600, p. 74–106. Springer, 1992.
4. R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness. Inf. & Comp.,

104(1):35–77, 1993.
5. R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In Proc.

Formal Methods for the Design of Real-Time Systems (SFM-RT’04), LNCS 3185, p. 1–24.
Springer, 2004.

6. P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The cost of punctuality. In Proc. 22nd
Ann. IEEE Symp. Logic in Computer Science (LICS’07), p. 109–118. IEEE, 2007.

7. H. Comon and V. Cortier. Flatness is not a weakness. In Proc. 14th Intl Workshop Computer
Science Logic (CSL’00), LNCS 1862, p. 262–276. Springer, 2000.

8. S. Demri, R. Lazić, and D. Nowak. On the freeze quantifier in constraint LTL: Decidability
and complexity. Inf. & Comp., 205(1):2–24, 2007.

9. T. A. Henzinger. It’s about time: Real-time logics reviewed. In Proc. 9th Intl Conf. Concur-
rency Theory (CONCUR’98), LNCS 1466, p. 439–454. Springer, 1998.

10. T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages. In Proc.
25th Intl Coll. Automata, Languages and Programming (ICALP’98), LNCS 1443, p. 580–591.
Springer, 1998.

11. Y. Hirshfeld and A. Rabinovich. Timer formulas and decidable metric temporal logic. Inf. &
Comp., 198(2):148–178, 2005.

12. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

13. O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In Proc. Conference on
Logics of Programs, LNCS 193, p. 413–424. Springer, 1985.

14. C. Lutz, D. Walther, and F. Wolter. Quantitative temporal logics over the reals: PSPACE and
below. Inf. & Comp., 205(1):99–123, 2007.

15. O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In Proc. 4th Intl Conf.
Formal Modelling and Analysis of Timed Systems (FORMATS’06), LNCS 4202, p. 274–289.
Springer, 2006.

16. J. Ouaknine and J. Worrell. On metric temporal logic and faulty Turing machines. In
Proc. 9th Intl Conf. Foundations Software Science and Computation Structure (FoSSaCS’06),
LNCS 3921, p. 217–230. Springer, 2006.

17. J.-F. Raskin. Logics, Automata and Classical Theories for Deciding Real-Time. PhD thesis,
Université de Namur, Belgium, 1999.

18. M. Reynolds. The complexity of the temporal logic over the reals. submitted, 2004.
19. P. Wolper. Constructing automata from temporal logic formulas: A tutorial. In European

Educational Forum: School on Formal Methods and Performance Analysis, LNCS 2090, p.
261–277. Springer-Verlag, 2000.

