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Abstract
Metric Temporal Logic (MTL) is a prominent specification formal-

ism for real-time systems. In this paper, we show that the satisfiabil-
ity problem for MTL over finite timed words is decidable, with non-
primitive recursive complexity. We also consider the model-checking
problem for MTL: whether all words accepted by a given Alur-Dill
timed automaton satisfy a given MTL formula. We show that this prob-
lem is decidable over finite words. Over infinite words, we show that
model checking the safety fragment of MTL—which includes invari-
ance and time-bounded response properties—is also decidable. These
results are quite surprising in that they contradict various claims to
the contrary that have appeared in the literature. The question of the
decidability of MTL over infinite words remains open.

1. Introduction

In the linear-temporal-logic approach to verification, an ex-
ecution of a system is modelled by a sequence of states or
events. This representation abstracts away from the precise
times of the observations, retaining only their relative order.
Such an approach is inadequate to express specifications for
systems whose correct behaviour depends on quantitative tim-
ing requirements. To address this deficiency, much work has
gone into adapting linear temporal logic to the real-time set-
ting; see, e.g., [5], [7], [8], [20], [23], [25], [28].

Real-time logics feature explicit time references, usually by
recording timestamps throughout computations. In this paper,
we concentrate exclusively on the dense-time, or real-time, se-
mantics, in which the timestamps are drawn from the set of real
numbers.1

An important distinction among real-time models is whether
one assumes that the system of interest is observed at every
instant in time, leading to an interval-based semantics [5], [17],
[25], or whether one only sees a (possibly countably infinite)
sequence of snapshots of the system, leading to a point-based
semantics [13], [7], [8], [15], [16], [28]. In this paper, we take
the latter view: we model the executions of a system as a set of
timed state sequences.

One of the earliest and most popular suggestions for extend-
ing temporal logic to the real-time setting is to replace the
temporal operators by time-constrained versions; see [6] and
references therein. Metric Temporal Logic (MTL), introduced

1By contrast, in discrete-time settings timestamps are usually integers, which
yields more tractable theories that however correspond less closely to physical
reality [16], [4].

15 years ago by Koymans [20], is a prominent and success-
ful instance of this approach.2 MTL extends Linear Temporal
Logic by constraining the temporal operators by (bounded or
unbounded) intervals of the real numbers. For example, the
formula ♦[3,4]ϕ means that ϕ will become true within 3 to 4
time units from now.

Unfortunately, over the interval-based semantics, the satis-
fiability and model checking problems for MTL are undecid-
able [13]. This has led some researchers to consider various re-
strictions on MTL to recover decidability; see, e.g., [16], [28],
[5]. Undecidability arises from the fact that MTL formulas can
capture the computations of a Turing machine: configurations
of the machine can be encoded within a single unit-duration
time interval, since the density of time can accommodate ar-
bitrarily large amounts of information. An MTL formula can
then specify that the configurations be accurately propagated
from one time interval to the next, in such a way that the timed
words satisfying the formula correspond precisely to the halting
computations of the Turing machine.

It turns out that the key ingredient required for this proce-
dure to go through is punctuality: the ability to specify that a
particular event is always followed exactly one time unit later
by another one: �(p → ♦=1q). It has in fact been claimed
that, in the interval-based and the point-based semantics alike,
any logic strong enough to express the above requirement will
automatically be undecidable—see [6], [7], [15], among others.

While the claim is correct over the interval-based semantics,
we show in this paper that it is erroneous in the point-based
semantics. Indeed, we show that both satisfiability and model
checking for MTL over finite timed words are decidable, albeit
with non-primitive recursive complexity. Over infinite words,
we show that model checking the safety fragment of MTL—
which includes invariance and punctual time-bounded response
properties—is also decidable.

Upon careful analysis, one sees that the undecidability argu-
ment breaks down because, over a point-based semantics, MTL
is only able to encode faulty Turing machines, namely Turing
machines suffering from insertion errors. Indeed, while the for-
mula �(p → ♦=1q) ensures that every p is followed exactly
one time unit later by a q, there might be some q’s that were not
preceded one time unit earlier by a p. Intuitively, this problem
does not occur over the interval-based semantics because the
system there is assumed to be under observation at all instants

2http://scholar.google.com lists over two hundred papers on the
subject!



in time, and therefore any insertion error will automatically be
detected thanks to the above formula.

MTL is also genuinely undecidable over a point-based se-
mantics if in addition past temporal operators are allowed [7],
[13]. Indeed, in this setting insertion errors can be detected
by going backwards in time, and MTL formulas are therefore
able to precisely capture the computations of perfect Turing ma-
chines.3

Existing decidability results for MTL involve restrictions ei-
ther on the semantics or the syntax of the logic to circumvent
the problem of punctuality. Alur and Henzinger [7] showed that
the satisfiability and model checking problems for MTL relative
to a discrete-time semantics are EXPSPACE-complete. Alur,
Feder, and Henzinger [5] introduced Metric Interval Temporal
Logic (MITL) as a fragment of MTL in which the temporal op-
erators may only be constrained by nonsingular intervals. They
showed that the satisfiability and model checking problems for
MITL relative to a dense-time semantics are also EXPSPACE-
complete.

The decidability results that we present in this paper are ob-
tained by translating MTL formulas into timed alternating au-
tomata. These generalize Alur-Dill timed automata, and in par-
ticular are closed under complementation. Building on some of
our previous work [24], we show that the finite-word language
emptiness problem for one-clock timed alternating automata is
decidable, which then entails the decidability of MTL satisfi-
ability over finite timed words. We furthermore show how to
extend these results to the model checking problems discussed
earlier. In addition, we show that MTL formulas can capture
the computations of insertion channel machines; using a result
of Schnoebelen about the complexity of reachability for lossy
channel machines [26], we are then able to give a non-recursive
primitive lower bound for the complexity of MTL satisfiability.

We note that a very similar notion of timed alternating au-
tomaton has recently and independently been introduced by La-
sota and Walukiewicz [21]. They also prove that the finite-word
language emptiness problem is decidable for one-clock timed
alternating automata, and likewise establish a non-primitive re-
cursive complexity bound for this procedure. They do not, how-
ever, consider any questions related to MTL.

In our view, the most interesting unresolved question is
whether our decidability results extend to MTL interpreted over
infinite timed words. We shall briefly return to this in Section 7.

2. Preliminaries
A time sequence τ = τ0τ1 . . . is a finite or infinite sequence

of time values τi ∈ R≥0 satisfying the following constraints
(where |τ | denotes the length of τ ):

1) Initialization: τ0 = 0.
2) Monotonicity: τi ≤ τi+1 for all i < |τ | − 1.
3) Progress: If τ is infinite, then {τi : i ∈ N} is unbounded.

3The original undecidability proof in [7] was carried out in a monadic second-
order theory of timed state sequences, which subsumes both forward and past
temporal operators.

A timed word over finite alphabet Σ is a pair ρ = (σ, τ),
where σ = σ0σ1 . . . is a word over Σ and τ is a time sequence
of the same length. We also represent such a timed word as
a sequence of timed events by writing ρ = (σ0, τ0)(σ1, τ1) . . ..
Given a timed word ρ = (σ, τ), let ρ[0 . . . i] denote the subword
(σ0, τ0) . . . (σi, τi). Finally, we write TΣ∗ for the set of finite
timed words over alphabet Σ, and TΣω for the set of infinite
timed words over Σ. The requirement that the first event of a
timed word occur at time 0 is quite natural in the present context
since MTL formulas are insensitive to this time value.

A timed language is a set of timed words. A standard way of
defining timed languages is via Alur-Dill timed automata [4].
A given Alur-Dill automaton A accepts a finite timed word iff
it has a run over the word that ends in an accepting state. We
write Lf (A) for the language of finite timed words accepted by
A. We also define the language Lω(A) of infinite timed words
accepted by A. In this case we assume a Büchi acceptance
condition: the automaton accepts a word iff it has an infinite
run over the word that visits an accepting state infinitely often.

3. Timed Alternating Automata
In this section we define timed alternating automata. These

arise by extending alternating automata [9], [11], [27] with
clock variables, in much the same way that Alur-Dill timed
automata extend nondeterministic finite automata. A simi-
lar notion has independently been investigated by Lasota and
Walukiewicz in a recent paper [21].

Timed alternating automata can in general be defined to have
any number of clocks. Our goal, however, is to use them
to represent metric temporal logic formulas, for which one
clock suffices. Accordingly, we shall exclusively focus on one-
clock timed alternating automata in this paper.4 Note also that
we only consider timed alternating automata over finite timed
words.

Let S a finite set of (control) locations. The set of formulas
Φ(S) is generated by the grammar:

ϕ ::= > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | s | x ./ k | x.ϕ,

where k ∈ N, ./ ∈ {<,≤,≥, >}, and s ∈ S. A term of
the form x ./ k is called a clock constraint; here x represents
the single clock of the automaton, and the expression x.s is a
binding construct corresponding to the operation of resetting
the clock to 0.

In the definition of a timed alternating automaton, below, the
transition function maps each location s ∈ S and event a ∈ Σ
to an expression in Φ(S). Thus alternating automata allow two
modes of branching: existential branching, represented by dis-
junction, and universal branching, represented by conjunction.

Definition 1: A timed alternating automaton is a tuple A =
(Σ, S, s0, F, δ), where

4We note in passing that virtually all decision problems, and in particular
language emptiness, are in general undecidable for timed alternating automata
that have more than one clock.



• Σ is a finite alphabet
• S is a finite set of locations
• s0 ∈ S is the initial location
• F ⊆ S is a set of accepting locations
• δ : S × Σ → Φ(S) is the transition function.
Remark 2: It will later become apparent that these automata

strictly generalize the one-clock Alur-Dill automata considered
in [24]. (More generally, timed alternating automata equipped
with several clocks are strictly more powerful than Alur-Dill
automata with the same number of clocks.)

The notion of a run of a timed alternating automaton, defined
below, is somewhat involved, so we first give an example.

Example 3: We define an automaton A over the singleton
alphabet Σ = {a} that accepts all those timed words in which
no two events are separated by exactly one time unit. This lan-
guage is known not to be expressible as the language of an Alur-
Dill timed automaton [18]. The required automaton has set of
locations {s0, s1}, with s0 initial, and both s0 and s1 accepting.
The transition function is defined by:

δ(s0, a) = s0 ∧ x.s1

δ(s1, a) = s1 ∧ x 6= 1.

A run of A starts in location s0. Every time an a-event oc-
curs, the automaton makes a simultaneous transition to both s0
and s1, thus opening up a new thread of computation. The au-
tomaton resets a fresh copy of clock x whenever it transitions
from location s0 to s1, and ensures that no event can happen
when this clock equals 1. Every run of this automaton is ac-
cepting, since every location is accepting, but there is no run
over any word in which two events are separated by exactly one
time unit.

We now proceed to the formal definitions. A state of A is a
pair (s, v), where s ∈ S is a location and v ∈ R≥0 is a clock
valuation. Write Q = S×R≥0 for the set of all possible states.

A set of statesM ⊆ Q and a clock valuation v ∈ R≥0 defines
a Boolean valuation on Φ(S) as follows:

• M |=v s iff (s, v) ∈M

• M |=v x ./ k iff v ./ k
• M |=v x.ϕ iff M |=0 ϕ.

(The Boolean connectives are handled in the expected way.) We
say that M is a minimal model of ϕ ∈ Φ(S) with respect to v if
M |=v ϕ and there is no proper subset N ⊂ M with N |=v ϕ.
Also, if ϕ ∈ Φ(S) is a closed formula, i.e., every occurrence
of x lies within the scope of a binding operator x.−, then the
relation M |=v ϕ is independent of the value of v, and we feel
free to omit it.

A configuration of A is a finite set of states; the set of config-
urations is denoted ℘(Q). The initial configuration is {(s0, 0)}
and a configuration is accepting if every location that it contains
is accepting. Note in particular that the empty configuration is
always accepting. The language accepted by a timed alternat-
ing automaton over finite words can be described in terms of a
transition system of configurations, defined below.

Definition 4: Given a timed alternating automaton A, we de-
fine the labelled transition system TA = (℘(Q), ,→) over the
set of configurations as follows. The (R≥0)-labelled transition
relation ⊆ ℘(Q)×R≥0 ×℘(Q) captures time evolutions, or
flow steps, and is defined by

C
t
 C ′ if C ′ = {(s, v + t) : (s, v) ∈ C}.

The Σ-labelled transition relation → ⊆ ℘(Q)×Σ×℘(Q) cap-
tures instantaneous changes in the locations, or edge steps. Let
C = {(si, vi)}i∈I . Then C a→ C ′ if

C ′ =
⋃

i∈I

{Mi : Mi is some minimal model

of δ(si, a) with respect to vi}.

Let ρ = (σ, τ) be a finite timed word with |ρ| = n. Write
di = τi+1 − τi for the time delay between the (i + 1)-st and
i-th events. Define a run of A on ρ to be a finite alternating
sequence of edge steps and flow steps in TA:

C0
σ0→ C1

d0

 C2
σ1→ C3

d1

 · · ·
dn−1

 C2n
σn→ C2n+1,

where C0 is the initial configuration. The run is accepting if
the last configuration C2n+1 is accepting, and the timed word
ρ is accepted by A if there is some accepting run of A on ρ.
We write Lf (A) ⊆ TΣ∗ for the language of finite timed words
accepted by A.5

Example 5: A time-bounded response property such as ‘for
every a-event there is a b-event exactly one time unit later’ can
be expressed by the following automaton. Let A have two lo-
cations {s0, s1} with s0 the initial and only accepting location,
and transition function δ given by the following table:

a b

s0 s0 ∧ x.s1 s0
s1 s1 (x = 1) ∨ s1

3.1. Duality and Complementation
The following derivation shows that the class of languages

definable by timed alternating automata is closed under comple-
ment. Since it is straightforward to show that this class is also
closed under union, timed alternating automata are closed un-
der all Boolean operations. Note that the arguments presented
here are similar to the untimed case [9], [11], and therefore we
only sketch the proofs.

Givenϕ ∈ Φ(S) we define its dualϕ ∈ Φ(S) as follows. The
dual of a clock constraint is its negation (e.g., x < k = x ≥ k),
x.ϕ = x.ϕ and s = s. For the propositional connectives we
have the usual de Morgan dualities: ϕ1 ∨ ϕ2 = ϕ1 ∧ ϕ2 and
ϕ1 ∧ ϕ2 = ϕ1 ∨ ϕ2.

Let A = (Σ, S, s0, F, δ) be an alternating timed automa-
ton. The complement automaton Ac is defined by Ac =

5It is usual to define a run of an alternating automaton as a tree of states.
However, over finite words one can equivalently define a run as a sequence of
configurations, where each configuration represents a given level of the run tree.



(Σ, S, s0, S \ F, δ), where δ(s, a) = δ(s, a) for each s ∈ S

and a ∈ Σ.
Proposition 6: Let ϕ ∈ Φ(S), v ∈ R≥0, and let R ⊆ Q be a

set of states; then R |=v ϕ iff Q \R 6|=v ϕ.
Proof: Straightforward structural induction on ϕ.

Proposition 7: L(A) ∩ L(Ac) = ∅.
Proof: Suppose there is a timed word ρ such that A and

Ac both have runs on ρ. Using Proposition 6 one easily shows
by induction on |ρ| that the last configurations in each run have
a state in common. It follows that the runs cannot both be ac-
cepting.

Proposition 8: L(A) ∪ L(Ac) = TΣ∗.
Proof: We claim that, given a finite timed word ρ = (σ, τ)

and a set of states R ⊆ Q, either A has a run on ρ whose last
configuration is a subset of R or Ac has a run on ρ whose last
configuration is a subset of Q \ R. We prove this claim by
induction on |ρ| as follows.

Let ρ = (σ, τ) and R ⊆ Q be given as in the claim, with
|ρ| = n+ 1. Also, let dn = τn+1 − τn and write

R′ = {(s, v) : R |=v+dn
δ(s, σn+1)}.

By induction, either A has a run on ρ[0 . . . n − 1] whose last
configuration is a subset of R′, or Ac has a run on ρ[0 . . . n−1]
whose last configuration is a subset ofQ\R′. In the former case
it is immediate that A has a run on ρ whose last configuration
is a subset of R. In the latter case it follows from Proposition
6 that Ac has a run on ρ whose last configuration is a subset of
Q \R.

The proposition now follows from the claim by taking R to
be the set of states whose underlying location is accepting.

Summarizing:
Corollary 9: The class of languages definable by timed al-

ternating automata is effectively closed under all Boolean oper-
ations.

3.2. Decidability of Language Emptiness
It is well known that the universality problem for Alur-Dill

timed automata is undecidable [4]. Since the class of multi-
clock timed alternating automata is closed under complement
and includes the class of Alur-Dill automata, the language-
emptiness problem for multi-clock timed alternating automata
cannot be decidable. However, in [24] we showed that the uni-
versality problem for Alur-Dill automata that have at most one
clock is decidable. Using similar techniques we now show that
the language-emptiness problem for one-clock alternating au-
tomata is decidable.

The language-emptiness problem for a one-clock alternating
automaton A = (Σ, S, s0, F, δ) is equivalent to the following
reachability question on the derived transition system TA: ‘Is
there a path from the initial configuration to an accepting con-
figuration?’. Since TA has uncountably many states, and indeed
each state has uncountably many successors under the flow-step
relation, some abstraction is needed to explore the state space.

The following definitions establish the groundwork for this ab-
straction.

Let k be a positive integer. Define an equivalence relation ∼k

on R≥0 by u ∼k v if either u, v > k, or due = dve and buc =
bvc. The corresponding set of equivalence classes, or regions,
is REGk = {r0, r1, . . . , r2k+1}, where r2i = {i} for i ≤ k,
r2i+1 = (i, i + 1) for i < k, and r2k+1 = (k,∞). Let regk(u)
denote the equivalence class of u ≥ 0. In practice we prefer to
omit explicit reference to the threshold k in our notation, and
infer it from the context. Thus we adopt the convention that
whenever u, v are clock values of a timed automaton A, then
u ∼ v means u ∼k v, where k is the largest constant appearing
in A.

The fractional part of a nonnegative real x ∈ R≥0 is
frac(x) = x − bxc. Using this notion we define the relation
≈ on (R≥0)

n—an n-dimensional analog of ∼, also depending
on an invisible threshold k—by u ≈ v iff ui ∼ vi for each i ∈
{1, . . . , n} and frac(ui) ≤ frac(uj) iff frac(vi) ≤ frac(vj) for
all i, j ∈ {1, . . . , n}.

The following is a standard result; see, e.g., [4].
Proposition 10: Let u,v ∈ (R≥0)

n with u ≈ v. Then for
all t ≥ 0 there exists t′ ≥ 0 such that (u + t) ≈ (v + t′).

Definition 11: An equivalence relationR ⊆ ℘(Q)×℘(Q) is
a time-abstract bisimulation on TA if p R q implies

• (∀a ∈ Σ)(p a→ p′ implies ∃q′(q a→ q′ and p′ R q′))

• (∀t ∈ R≥0)(p
t
 p′ implies ∃t′∃q′(q t′

 q′ and p′ R q′)).
To better understand the notion of bisimulation in this par-

ticular setting, we take another look at the notion of minimal
model underlying the edge-transition relation.

Any formula ϕ ∈ Φ(S) can be written in disjunctive normal
form ϕ ≡

∨
i∈I

∧
Ai, where each Ai is a set of terms of the

form s, x.s, and x ./ k (which we call atoms). The minimal
models of ϕ can be read off from the disjunctive normal form
as follows. For a set of atomsA and a clock valuation v ∈ R≥0,
let A[v] ⊆ Q be the set of states given by A[v] = {(s, v) : s ∈
A} ∪ {(s, 0) : x.s ∈ A}. Then each minimal model M of ϕ
with respect to v has the formM = Ai[v] for some i ∈ I where
v satisfies all the clock constraints in Ai.

Lemma 12—Bisimulation Lemma: Define the relation R ⊆
℘(Q) × ℘(Q) by C R D iff there is a bijection f : C → D

such that: (i) f(s, u) = (t, v) implies s = t and u ∼ v;
(ii) If f(s, u) = (t, v) and f(s′, u′) = (t′, v′), then frac(u) ≤
frac(u′) iff frac(v) ≤ frac(v′). Then R is a time-abstract
bisimulation on TA.

Proof: Suppose that C = {(si, ui)}i∈I and D =
{(ti, vi)}i∈I are configurations of A, and that f : C → D,
where f(si, ui) = (ti, vi), is a bijection witnessing C R D.

Matching edge transitions: Suppose C makes an edge tran-
sition C a→ C ′ for some a ∈ Σ. By the above considerations
on minimal models we know that C ′ =

⋃
i∈I Ai[ui], where, for

each i ∈ I , the set of atomsAi is a clause in the disjunctive nor-
mal form expression for δ(si, a). Setting D′ =

⋃
i∈I Ai[vi] we

have D a→ D′ and C ′ R D′. (We leave it to the reader to con-
struct a suitable bijection f ′ : C ′ → D′ witnessing C ′ R D′.)



Matching flow transitions: Suppose C makes a flow transi-
tion C t

 C ′ for some t ∈ R≥0. Writing u = (ui)i∈I and
v = (vi)i∈I , notice that C R D implies that u ≈ v in the
sense of Proposition 10. By that proposition there exists t′ with

(u+t) ≈ (v+t′). Thus, writingD′ = D+t′, we haveD t′
 D′

and C ′ R D′.
Motivated by the Bisimulation Lemma, we define an ab-

stract configuration to be a finite word over the alphabet Λ =
℘(S × REG). We also define an abstraction function H

mapping each A-configuration C to an abstract configuration
H(C) ∈ Λ∗. The definition ofH involves an auxiliary function
Abs : ℘(Q) → Λ, where Abs(C) = {(s, reg(u)) : (s, u) ∈ C}.
Now given an A-configuration C, to define H(C), we parti-
tion C into a sequence of subsets C1, . . . , Cn, such that for all
(s, u) ∈ Ci and (t, v) ∈ Cj , frac(u) ≤ frac(v) iff i ≤ j; then
H(C) = Abs(C1) . . .Abs(Cn) ∈ Λ∗.

Proposition 13: If C and C ′ are A-configurations with
H(C) = H(C ′), then C and C ′ are bisimilar in TA.

Proof: The relation {(C,C ′) : H(C) = H(C ′)} on con-
figurations satisfies the hypotheses of the Bisimulation Lemma.

Example 14: Suppose the largest constant appear-
ing in A is 2, so that the corresponding set of
clock regions is REG2 = {r0, r1, . . . , r5}. If C =
{(s0, 0.8), (s1, 1), (s1, 0.3), (s1, 1.8), (s2, 2.1)} is an A-
configuration, then the corresponding abstract configuration is
H(C) = {(s1, r2)}{(s2, r5)}{(s1, r1)}{(s0, r1), (s1, r3)}.

Definition 15: The time-abstract transition system WA =
(Λ∗, ,→) is defined as a quotient of TA under H as fol-
lows. The state space is the set Λ∗ of finite words over al-
phabet Λ. The unlabelled flow-step transition relation  ⊆
Λ∗ × Λ∗ is defined implicitly by H(C)  H(C ′) iff there
exists t ≥ 0 with C

t
 C ′ in TA. This is well-defined by

Proposition 13. Similarly, we define the edge-step transition
relation → ⊆ Λ∗ × Σ × Λ∗ implicitly by H(C) a→ H(C ′)
iff C a→ C ′ in TA—again well-defined by Proposition 13. A
state of WA = (Λ∗, ,→) is said to be initial (respectively,
accepting) iff it is the image under H of an initial (respectively,
accepting) state of TA.

Although the above definition of the transition structure of
WA is implicit, it is routine to show that each statew ∈ WA has
only finitely many successors under edge steps and flow steps,
and moreover these successors may be effectively calculated
from w itself and the description of A.

We have now reduced the language-emptiness problem for A
to the following reachability question for WA: ‘Is there a path
from the initial configuration to an accepting configuration?’.
Given that WA has infinitely many states, it is not obvious that
this problem is decidable. However, as we outline below, there
is a fairly standard theory of well-structured transition systems
[12] that can be applied to establish decidability.

An infinite sequence w1, w2, w3, . . . in a partially ordered set
(W,4) is said to be saturating if there exist indices i < j such
that wi 4 wj . The partial order 4 is a well-partial-order (wpo

for short) if every infinite sequence is saturating.
Let6 be a partial order on an alphabet Λ. Define the induced

monotone domination order 4 on Λ∗, the set of finite words
over Λ, by a1 . . . am 4 b1 . . . bn if there exists a strictly increas-
ing function f : {1 . . .m} → {1, . . . , n} such that ai 6 bf(i)

for all i ∈ {1, . . . ,m}.
Lemma 16—Higman’s Lemma [19]: If 6 is a wpo on Λ,

then the induced monotone domination order 4 is a wpo on
Λ∗.

Definition 17: A well-structured transition system is a triple
W = (W,4,→), where (W,→) is a finitely-branching transi-
tion system equipped with a wpo 4 such that:

• 4 is a decidable relation
• Succ(w) := {w′ : ∃l(w l→ w′)} is effectively calculable

for each w ∈W

• 4 is downward compatible: if w, v ∈ W with w 4 v then
for any transition v l→ v′ there exists a matching transition
w

l→ w′ with w′ 4 v′.
Proposition 18: [12, Theorem 5.5] Let W = (W,4,→) be

a WSTS. Given a state u ∈ W and a subset V ⊆ W that
is downward-closed with respect to 4, it is decidable whether
there is a sequence of transitions starting at u and ending in V .

Proposition 19: The transition system WA as defined above
is a WSTS.

Proof: Recall that the state space is Λ∗, where Λ =
℘(S × REG) with S the set of locations of A. By Lemma 16,
the induced monotone domination order 4 on Λ∗ with respect
to the set-inclusion order on Λ is a wpo. It remains to show
that the edge-step and flow-step transition relations on WA are
downward compatible. We consider the edge-step relation; the
case for the flow-step relation is almost identical.

Suppose that u, v, v′ ∈ Λ∗ are such that u 4 v and v a→ v′

for some a ∈ Σ. Then, by definition of WA, there exist
configurations C,D,D′ of A such that H(C) = u,H(D) =
v,H(D′) = v′, C ⊆ D and D a→ D′. Since edge-steps be-
tween configurations are computed pointwise, the set-inclusion
relation ⊆ is clearly downward compatible with the transition
structure on TA: in other words, there exists a configuration C ′

with C a→ C ′ and C ′ ⊆ D′. Thus, writing u′ = H(C ′), we
have u′ 4 v′ and u a→ u′, as required.

Since a state of WA is accepting if it only mentions ac-
cepting locations of A, the set of accepting states of WA is
downward-closed with respect to the monotone domination or-
der on Λ∗. By Proposition 18, it follows that the language-
emptiness problem is decidable for one-clock alternating au-
tomata. This proves the first assertion of Theorem 20 below.
The second assertion can be proved in a similar way by making
use of the abstractions introduced in [24] to prove the decid-
ability of language inclusion for one-clock Alur-Dill automata;
we omit the details. As noted earlier, these results have been
independently obtained by Lasota and Walukiewicz [21].

Theorem 20: Let A range over the class of one-clock timed
alternating automata and B over the class of Alur-Dill timed
automata. The language-emptiness problem ‘Lf (A) = ∅?’ and



the language-inclusion problem ‘Lf (B) ⊆ Lf (A)?’ are both
decidable.

4. Metric Temporal Logic
In this section we define the syntax and semantics of Met-

ric Temporal Logic (MTL). As discussed in the Introduction,
there are two different dense-time semantics for MTL: point-
based and interval-based, and for our concerns the difference
is crucial. Following [13], [7], [8], [15], [16], [28], among oth-
ers, we adopt a point-based semantics over timed words. A
key observation about this semantics is that the temporal con-
nectives quantify over a countable set of positions in a timed
word. In contrast, the interval-based semantics, adopted in, e.g.,
[5], [17], [25], associates a state to each point in real time, and
the temporal connectives quantify over the whole time domain.
In the interval-based semantics one can use a formula of the
type �(p→ ♦=1q) to specify a perfect channel, whereas in the
point-based semantics the same formula only specifies a chan-
nel with insertion errors (see Section 5.2). This observation
helps understand why MTL is undecidable under the interval-
based semantics, whereas, at least over finite words, it is decid-
able in the point-based semantics (Theorem 24).

Given our use of the point-based semantics, it is quite natural
to present MTL as a formalism for reasoning about sequences
of events rather than sequences of states, although it should be
noted that all our results readily carry over to the state-based
setting.6

Definition 21: Given an alphabet Σ of atomic events, the for-
mulas of MTL are built up from Σ by Boolean connectives and
time-constrained versions of the until operator U as follows:

ϕ ::= > | ϕ1 ∧ ϕ2 | ¬ϕ | a | ϕ1 UI ϕ2

where a ∈ Σ, and I ⊆ R≥0 is an open, closed, or half-open
interval with endpoints in N ∪ {∞}. If I = [0,∞), then we
omit the annotation I in UI . We also use pseudo-arithmetic
expressions to denote intervals. For example, the expression
‘≥ 1’ denotes [1,∞) and ‘= 1’ denotes the singleton {1}.

Following [15], we give a strict-future interpretation to the
temporal connectives. This choice doesn’t affect the results of
this paper since, as with Linear Temporal Logic, any property
that can be expressed by an MTL formula under the non-strict
semantics can also be expressed by an MTL formula under the
strict semantics.7 However the strict semantics allows a more
uniform presentation of the tableau construction for formulas.

Definition 22: Given a (finite or infinite) timed word ρ =
(σ, τ) and an MTL formula ϕ, the satisfaction relation (ρ, i) |=

6In very rough terms, one can translate problems in a state-based setting over
a set of atomic state propositions P into an equivalent problem in an event-
based setting over the set of events 2P .

7This statement is easily proved by induction on MTL formulas. Intuitively,
the two semantics only differ in their interpretation of the until operator, for
which the strict-future semantics does not place any obligations on the current
state, only on subsequent ones. For example, the formula a U[0,3) b, inter-
preted under the non-strict semantics, is equivalent to ((a U[0,3) b) ∧ a) ∨ b.

ϕ (read ρ satisfies ϕ at position i) is defined inductively as fol-
lows:

• (ρ, i) |= >
• (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

• (ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ

• (ρ, i) |= a iff i < |ρ| and σi = a

• (ρ, i) |= ϕ1 UI ϕ2 iff there exists j such that i < j < |ρ|,
(ρ, j) |= ϕ2, τj − τi ∈ I , and (ρ, k) |= ϕ1 for all k with
i < k < j.

We say that ρ satisfies ϕ, denoted ρ |= ϕ, if (ρ, 0) |= ϕ. The
set of finite models of an MTL formula ϕ is given by Lf (ϕ) =
{ρ ∈ TΣ∗ : ρ |= ϕ}. The set of infinite models of ϕ is given
by Lω(ϕ) = {ρ ∈ TΣω : ρ |= ϕ}.

Additional temporal operators can be defined using the usual
conventions. In particular, since we adopt a strict-future se-
mantics for UI , we recover the constrained next time opera-
tor ©Iϕ ≡ ⊥ UI ϕ. We have the constrained eventually
operator ♦Iϕ ≡ > UI ϕ, and the constrained always op-
erator �Iϕ ≡ ¬♦I¬ϕ. The dual-until operator is given by
ϕ1 ŨI ϕ2 ≡ ¬((¬ϕ1) UI (¬ϕ2)). Using the dual-until opera-
tor and the additional propositional connectives ∨ and ⊥ we can
rewrite every MTL formula into an equivalent formula in posi-
tive normal form, i.e., where negation is only applied to actions
a ∈ Σ.

5. MTL over Finite Words
In this section we consider the satisfiability problem for

MTL over finite words: ‘Given an MTL formula ϕ, is Lf (ϕ)
nonempty?’. We also consider the following model-checking
problem: ‘Given an MTL formula ϕ and an Alur-Dill timed
automaton B, is it the case that Lf (B) ⊆ Lf (ϕ)?’. In both
cases we show decidability by translating the MTL formulas
into equivalent one-clock timed alternating automata and in-
voking Theorem 20. We also show that both problems have
non-primitive recursive complexity.

5.1. Decidability
Given an MTL formula ϕ in positive normal form, we de-

fine a one-clock alternating automaton Aϕ such that Lf (Aϕ) =
Lf (ϕ). Since timed alternating automata are closed under
union and intersection, and since it is clear how to define Aϕ

in case ϕ is an atomic formula or the negation of an atomic for-
mula, without loss of generality we assume that the outermost
connective in ϕ is UI or ŨI .

Define the closure of ϕ, denoted cl(ϕ), to consist of all sub-
formulas of ϕ whose outermost connective is UI or ŨI . We
define Aϕ = (Σ, S, s0, F, δ) as follows. The set of locations
is S = cl(ϕ) ∪ {ϕi}. We call ϕi the initial copy of ϕ: it is
the initial location of Aϕ. A location ψ ∈ S is accepting iff its
outermost connective is ŨI .

We define the transition function δ so that the presence of a
fresh copy of ψ in a configuration during a run of Aϕ ensures
that the input word satisfies ψ at the current position. To en-
force this requirement, when ψ is encountered the automaton



starts a fresh clock and thereafter propagates ψ from configu-
ration to configuration in the run until all the obligations that it
stipulates are discharged. We first define an auxiliary function
init(ψ, a) ∈ Φ(S) for each subformula ψ of ϕ and a ∈ Σ as
follows:

init(ψ, a) = x.ψ, if ψ ∈ cl(ϕ)

init(ψ1 ∧ ψ2, a) = init(ψ1, a) ∧ init(ψ2, a)

init(ψ1 ∨ ψ2, a) = init(ψ1, a) ∨ init(ψ2, a)

init(b, a) =

{
> if a = b

⊥ if a 6= b
for b ∈ Σ

init(¬b, a) = ¬init(b, a).

Now δ is defined by:

δ(ϕi, a) = ϕ

δ(ψ1 UI ψ2, a) = (init(ψ2, a) ∧ x ∈ I) ∨

(init(ψ1, a) ∧ (ψ1 UI ψ2))

δ(ψ1 ŨI ψ2, a) = (init(ψ2, a) ∨ x 6∈ I) ∧

(init(ψ1, a) ∨ (ψ1 ŨI ψ2)).

Proposition 23: Lf (Aϕ) = Lf (ϕ).
Proof: We first show that Lf (Aϕ) ⊆ Lf (ϕ). To this end,

let ρ = (σ, τ) be a timed word in Lf (Aϕ). As usual, write
di = τi+1 − τi. Suppose that Aϕ has an accepting run on ρ:

C0
σ0→ C1

d0

 C2
σ1→ C3

d1

 · · ·
σn→ C2n+1.

We claim that for each subformula ψ of ϕ and each i < |ρ|,
if C2i+1 |= init(ψ, σi) then (ρ, i) |= ψ. We prove this claim
by structural induction on ψ. The only non-trivial cases are
when the outermost connective of ψ is a temporal modality. We
consider the case ψ ≡ ψ1 UI ψ2 by way of example.

Suppose that ψ ≡ ψ1 UI ψ2 and C2i+1 |= init(ψ, σi). Then
init(ψ, σi) = x.ψ and (ψ, 0) ∈ C2i+1. Analyzing the defini-
tion of the transition function δ we can show that for each suc-
cessive value of j ≥ i we have that C2j+1 |= init(ψ1, σj) and
(ψ, τj − τi) ∈ C2j+1 until at some point C2j+1 |= init(ψ2, σj)
and τj−τi ∈ I . (Note that the latter must eventually occur since
ψ is not an accepting location.) From the induction hypothesis
it is clear that this implies that (ρ, i) |= ψ.

Having proved the claim we observe that (ϕ, 0) ∈ C1, and
so C1 |= init(ϕ, σ0). Thus, applying the claim in the case
i = 0 and ψ ≡ ϕ, we immediately get that ρ |= ϕ whenever
Aϕ has an accepting run on ρ. This completes the proof that
Lf (Aϕ) ⊆ Lf (ϕ).

It remains to show the converse inclusion: Lf (ϕ) ⊆
Lf (Aϕ). But this follows from Lf (Aϕ) ⊆ Lf (ϕ) and the ob-
servation that A¬ϕ = (Aϕ)c.

In conjunction with Theorem 20, Proposition 23 immediately
yields:

Theorem 24: The satisfiability and the model-checking
problems for MTL over finite words are both decidable.

5.2. Complexity
Using a result of Schnoebelen [26] about channel systems,

we prove that the satisfiability problem for MTL has non-
primitive recursive complexity.

A channel machine consists of a finite-state automaton acting
on an unbounded fifo channel. More precisely, a channel ma-
chine is a tuple C = (S,M,∆), where S is a finite set of control
states, M is a finite set of messages, and ∆ ⊆ S ×Σ×S is the
transition relation over label set Σ = {m!,m? : m ∈ M}. A
transition labelled m! writes message m to the channel, and a
transition labelled m? reads message m from the channel.

We define an operational semantics for channel machines as
follows. A global state of C is a pair γ = (s, x), where s ∈ S

is the control state and x ∈ M∗ represents the contents of the
channel. The rules in ∆ induce a Σ-labelled transition relation
on the set of global states as follows: (s,m!, t) ∈ ∆ yields a

transition (s, x) m!−→ (t, x·m) that writes m ∈ M to the tail of

the channel, and (s,m?, t) ∈ ∆ yields a transition (s,m·x) m?−→
(t, x) that reads m ∈ M from the head of the channel. If we
only allow the transitions indicated above, then we call C an
error-free channel machine. A computation of such a machine
is a finite sequence of transitions between global states

(s0, x0)
α0−→ (s1, x1)

α1−→ · · ·
αn−1

−→ (sn, xn).

We also consider channel machines that operate with inser-
tion errors. Given x, y ∈M∗, write x v y if x can be obtained
from y by deleting any number of letters, e.g., sub v stubborn,
as indicated by the underlining. (This is an instance of the
monotone domination order introduced earlier.) Following [26]
we enable insertion errors by extending the transition relation
on global states with the following clause: if (s, x) α−→ (t, y),
x′ v x and y v y′, then (s, x′) α−→ (t, y′). Dually, we define
lossy channel machines by adding a clause: if (s, x) α−→ (t, y),
x v x′ and y′ v y, then (s, x′) α−→ (t, y′). The notion of
a computation of a channel machine with insertion errors or
lossiness errors is defined analogously to the error-free case.

The control-state reachability problem asks, given a chan-
nel machine C = (S,M,∆) and two distinct control states
sinit , sfin ∈ S, whether there is a finite computation of C start-
ing in global state (sinit , ε) and ending in global state (sfin , x)
for some x ∈ M∗. This problem was proved to be decid-
able for lossy channel machines by Abdulla and Jonsson [3].
Later Schnoebelen [26] showed that it has non-primitive recur-
sive complexity. The dual control-state reachability problem
asks, given a channel machine C = (S,M,∆) and two distinct
control states sinit , sfin ∈ S, whether there is a finite compu-
tation of C starting in control state (sfin , x) and ending in state
(sinit , ε), for some initial channel contents x ∈M ∗.

Proposition 25: The dual control-state reachability problem
for channel machines with insertion errors has non-primitive
recursive complexity.

Proof: Given a channel machine C = (S,M,∆), the
opposite channel machine is defined by Cop = (S,M,∆op)



where

∆op = {(s,m!, t) : (t,m?, s) ∈ ∆}∪

{(s,m?, t) : (t,m!, s) ∈ ∆}.

Note that C has a computation from (s, x) to (t, y) with lossi-
ness errors iff Cop has a computation from (t, yop) to (s, xop)
with insertion errors, where (−)op : M∗ →M∗ reverses the or-
der of a word. Thus the dual control-state reachability problem
for C with insertion errors is clearly equivalent to the control-
state reachability problem for Cop with lossiness errors. But, as
we mentioned above, this last problem is known to be decidable
with non-primitive recursive complexity.

Theorem 26: The satisfiability and model checking prob-
lems for MTL over finite words have non-primitive recursive
complexity.

Proof: We give a reduction of the dual control-state
reachability problem for channel machines with insertion er-
rors to the satisfiability problem for MTL8. For this reduc-
tion it is helpful to introduce the non-strict henceforth operator
�ϕ ≡ ϕ ∧ �ϕ.

Let C = (S,M,∆) and sinit , sfin ∈ S be an instance of
the dual control-state reachability problem. We consider MTL
formulas over the alphabet Σ = S ∪ {m!,m? : m ∈ M}.
We use the formula ϕCHAN below to capture the channel dis-
cipline: every write-event is followed one time unit later by a
matching read-event. However, there is no guarantee that every
read-event is preceded one time unit earlier by a write-event, so
the channel may have insertion errors.

ϕCHAN ≡
∧

m∈M �(m! → ♦=1m?).

In order that there be no confusion in terms of matching
write-events with their corresponding subsequent read-events,
we require that time be strongly monotonic (no two events can
occur at the same time):

ϕSM ≡ � �=0 ⊥.

Note that this formula achieves its aim thanks to our strict-
future semantics for � which places no obligations on the cur-
rent state but only on subsequent ones.

We encode the finite control of C using the formula ϕCONT :

ϕCONT ≡
∧

s∈S

(s→
∨

(s,µ,t)∈∆

(©µ ∧©© t)).

We then use ϕRUN to assert that a run must start in control
state sfin and obey the discrete controller until it terminates, in
control state sinit :

ϕRUN ≡ sfin ∧ ϕCONT ∧ (ϕCONT U (sinit ∧ � ⊥)) .

We combine all these requirements into ϕREACH :

ϕREACH ≡ ϕCHAN ∧ ϕSM ∧ ϕRUN .

8Recall that we are using the strict-future semantics, though it is straightfor-
ward to modify the proof to accommodate the non-strict semantics.

Suppose we are given a timed word ρ satisfying ϕREACH ;
then we can construct a computation of C as follows. Note
that ρ consists of an alternating sequence of events from S and
events from {m!,m? : m ∈ M}. This gives the sequence of
control states and transitions in the desired computation; it re-
mains to construct the contents of the channel at each control
state. Suppose event s ∈ S occurs at some point along ρ with
timestamp t. Then the channel contents associated to this oc-
currence of s is the sequence of read-events occurring in ρ in the
time interval (t, t+1). Observe how this definition ensures that
a message can only be read from the head of the channel, and
how each write-event adds a message to the tail of the chan-
nel. Note also that in this reconstruction of a computation of
C, all insertion errors add messages to the tail of the channel.
Finally, observe that any timed word satisfying ϕREACH must
have sinit as its last event; this ensures that the channel is empty
at that point.

Conversely, suppose we are given a computation of C,

(s0, x0)
α0−→ (s1, x1)

α1−→ · · ·
αn−1

−→ (sn, xn)

with s0 = sfin , sn = sinit and xn = ε. We then derive
a timed word ρ = (σ, τ) that satisfies ϕREACH . We define
σ = s0α0s1α1 . . . sn; this guarantees that ρ satisfies ϕCONT .
It remains to choose a sequence of timestamps τ such that
ϕCHAN ∧ ϕSM is also satisfied.

Since the given computation of C ends with the empty chan-
nel, every message that is written to the channel is eventually
read from the channel. Thus for each write event m! in σ there
is a ‘matching’ read event m? later on. We choose the times-
tamps τ so that each such matching pair is separated by one
time unit. Formally we choose the τi sequentially, starting with
τ0 = 0 and maintaining the following invariant: τi is chosen
such that for each matching pair σj = m! and σk = m?, if
j < k = i then τi − τj = 1, and if j < i < k then τi − τj < 1. It
is clearly possible to do this using the density of time.

Thus a channel machine C = (S,M,∆) and pair of control
states sinit , sfin ∈ S is a positive instance of the dual reacha-
bility problem iff the formula ϕREACH is satisfiable.

Finally, note that the model checking and satisfiability prob-
lems for MTL are equivalent, since MTL is closed under nega-
tion.

6. Infinite Words: Safety MTL
In this section we use the techniques developed in Section 3

to prove the decidability of the model-checking problem over
infinite words for a subset of MTL, called Safety MTL. Safety
MTL consists of those MTL formulas in positive normal form
that only include instances of the constrained until operator UI

in which interval I has bounded length. Note that no restrictions
are placed on the dual-until operator ŨI .

Safety MTL can express time-bounded response properties,
but not arbitrary response formulas. For instance, the formulas
ϕ1 ≡ �(a → ♦=1b) and ϕ2 ≡ �(a → ♦≤5(b ∧ ♦=1c))



are in Safety MTL. Note in passing that, intuitively, there is
a qualitative difference in the difficulty of model checking ϕ1

compared with model checking ϕ2. To find a counterexample
to ϕ1 one need only guess an a-event, and check that there is
no b-event one time unit later—a task requiring only one clock.
On the other hand, to find a counterexample to ϕ2 one must not
only guess an a-event, but also check that every b-event in the
ensuing five time units fails to have a matching c event one time
unit later—a task requiring a potentially unbounded number of
clocks.

To explain the name Safety MTL, recall from [14] that L ⊆
TΣω is a safety property relative to the divergence of time if for
every ρ 6∈ L there exists n ∈ N such that no infinite timed word
in TΣω extending ρ[0 . . . n − 1] is contained in L. In this case
we say that ρ[0 . . . n− 1] is a bad prefix of ρ.

Proposition 27: For every Safety MTL formula ϕ, Lω(ϕ) is
a safety property relative to the divergence of time.

Proof: This is a straightforward structural induction on ϕ.

To model check ϕ on an Alur-Dill timed automaton B we
need only check whether any of the bad prefixes of ϕ are pre-
fixes of words accepted by B. We can do this using a variant of
the idea used in the proof of Theorem 20. To set up this decision
prodecure we first define a translation of ϕ into a one-clock al-
ternating automaton Asafe

ϕ in which every location is accepting.
We define Asafe

ϕ as a modification of the automaton Aϕ from
Subsection 5.1. Asafe

ϕ has the same alphabet, locations and ini-
tial location as Aϕ, but we declare every location of Asafe

ϕ to
be accepting. To compensate for this last change, we slightly
modify the definition of the transition function δ—the clause
for ϕ1 UI ϕ2 is altered as we indicate below. Here we use
the notation x ≤ I to mean x < k if I is right-open with right
endpoint k, and x ≤ k if I is right-closed with right endpoint
k.

δ(ψ1 UI ψ2, a) = (init(ψ2, a) ∧ x ∈ I)∨

(init(ψ1, a) ∧ x ≤ I ∧ (ψ1 UI ψ2)).

Thus we use a timeout rather than an acceptance condition
to ensure that the second argument of UI eventually becomes
true. This strategy works because of the assumption that time
diverges in infinite timed words.

Note that so far we have only considered alternating au-
tomata on finite words. In order to state the correctness of the
definition of Asafe

ϕ we first define a run of Asafe
ϕ on an infinite

timed word ρ = (σ, τ) to be an infinite alternating sequence of
edge steps and flow steps in TAsafe

ϕ
:

C0
σ0→ C1

d0

 C2
σ1→ C3

d1

 · · ·
dn−1

 C2n
σn→ · · · ,

where C0 is the initial configuration and di = τi+1 − τi. Next
we define Lω(Asafe

ϕ ), the infinitary language of ϕ, to be the set
of ρ ∈ TΣω over which Asafe

ϕ has a run. (Since every state of
Asafe

ϕ is accepting there is no need to consider an acceptance
condition here.)

Proposition 28: Lω(ϕ) = Lω(Asafe
ϕ ) for each Safety MTL

formula ϕ.
Proof: The proof of Proposition 28 is a straightforward

modification of the proof of Proposition 23.
As a corollary we get that the complement automaton

(Asafe
ϕ )c (as defined in Subsection 3.1) accepts a bad prefix of

each timed word that doesn’t satisfy ϕ. Note that this automa-
ton does not have any accepting locations—it accepts by mov-
ing to an empty configuration.

Corollary 29: Let ϕ be a Safety MTL formula. For all ρ ∈
TΣω , ρ 6|= ϕ iff ∃n ∈ N such that ρ[0 . . . n−1] ∈ Lf ((Asafe

ϕ )c).
Proof: We sketch the only-if direction. If ρ 6|= ϕ then,

by Proposition 28, Asafe
ϕ does not have a run on ρ. By König’s

lemma there exists n ∈ N such that Asafe
ϕ does not have a run on

the finite word ρ[0 . . . n− 1]. Thus the complement automaton
(Asafe

ϕ )c accepts ρ[0 . . . n− 1].
Given an Alur-Dill timed automaton B, we sketch a de-

cision procedure for the model-checking problem ‘Lω(B) ⊆
Lω(ϕ)?’. This uses the same techniques as the proof in Section
3 to the effect that emptiness is decidable for one-clock alter-
nating automata. We assume in the discussion below that the
reader is familiar with the operational semantics of Alur-Dill
timed automata.

Theorem 30: The model-checking problem for Safety MTL
over infinite words is decidable: given a timed automaton B
and a Safety MTL formula ϕ, there is an algorithm to decide
whether or not Lω(B) ⊆ Lω(ϕ).

Proof: Suppose that B has n clocks. A state of B is a pair
γ = (s,v), where s is a location of B and v ∈ (R≥0)

n is a vec-
tor of values for the clocks of B. Following the pattern of Defi-
nition 15 we define a labelled transition system TB,ϕ represent-
ing B and (Asafe

ϕ )c executing in parallel. The states of TB,ϕ are
pairs (γ,C), where γ is a state of B and C is a configuration of
(Asafe

ϕ )c. As in Definition 15 we define an (R≥0)-labelled flow-

step transition relation by (γ,C) t
 (γ+t, C+t) for t ≥ 0, and

a Σ-labelled edge-step transition relation by (γ,C) a→ (γ′, C ′)
if γ a→ γ′ and C a→ C ′ for some a ∈ Σ. A state ((s,0), C) of
TB,ϕ is said to initial if s is an initial location of B and C is the
initial configuration of (Asafe

ϕ )c.
Since (Asafe

ϕ )c can only accept by moving to the empty con-
figuration, a timed word ρ ∈ Lω(B) fails to satisfy ϕ iff there is
a computation of (Asafe

ϕ )c on a finite prefix of ρ that reaches ∅.
Motivated by this observation, we say that a state (γ,C) of TB,ϕ

is doomed if C = ∅, i.e., (Asafe
ϕ )c has reached an accepting

configuration, and if B can accept some infinite time-divergent
word starting in state γ. Then Lω(B) 6⊆ Lω(ϕ) iff there is a
doomed state (γ, ∅) that is reachable from the initial state of
TB,ϕ. Below we sketch how we can use Proposition 18 to prove
that this reachability problem is decidable.

To set up the application of Proposition 18 we can reuse
constructions from Section 3 to show that TB,ϕ admits a quo-
tient transition system WB,ϕ that is a WSTS. Suppose that
B has set of locations S and (Asafe

ϕ )c has set of locations T ,
where S and T are disjoint. Define a finite alphabet Λ =



℘(((S ×{1, . . . , n})∪ T )×REGk), where k is the maximum
constant mentioned in the clock constraints of B and (Asafe

ϕ )c.
The set Λ∗ of finite words over Λ is the state space of WB,ϕ.
We reuse the function H from Section 3 to encode states of
TB,ϕ as states of WB,ϕ. Encode a state ((s,v), C) of TB,ϕ as a
word H({((s, 1), v1), . . . , ((s, n), vn)} ∪ C). From this word
we can reconstruct all clock values in ((s,v), C) up to the near-
est integer and also the relative order of the fractional parts of
the clocks. Similarly to the Bisimulation Lemma, Lemma 12,
we use this observation to prove that the kernel of H is a time-
abstract bisimulation on TB,ϕ, and thus induces a quotient tran-
sition structure on WB,ϕ.

We define a word WB,ϕ to be initial (respectively doomed)
if it is the image under H of an initial (respectively doomed)
state of TB,ϕ. Since WB,ϕ is a quotient of TB,ϕ, the inclusion
Lω(B) ⊆ Lω(ϕ) holds iff it is not possible to reach a doomed
state from the initial state in WB,ϕ. Finally, since the set of
doomed states in WB,ϕ is trivially downward-closed with re-
spect to the monotone domination order, and since it is decid-
able whether a state is doomed or not (thanks to [4]), Proposi-
tion 18 gives us a decision procedure for the language inclusion
question ‘Lω(B) ⊆ Lω(ϕ)?’.

7. Conclusion

In this paper, we have shown that Metric Temporal Logic
is decidable over finite timed words in its standard dense-
time, point-based semantics, with non-primitive recursive com-
plexity. Over infinite words, we have shown that the impor-
tant safety fragment of Metric Temporal Logic can be model
checked, although we do not know the complexity of this prob-
lem.

As future work, we would like to settle the question of the
decidability of the full logic MTL over infinite words. In this
context it is natural to consider the language-emptiness problem
for one-clock timed alternating automata over infinite words.
Indeed Proposition 23, which asserts the correctness of the
translation from MTL formulas to automata, extends to infinite
words provided that we endow the automata with weak parity
acceptance conditions.

We have recently shown that the universality problem for
one-clock Alur-Dill timed automata with Büchi acceptance
conditions is undecidable9 [1]. It follows that the language-
emptiness problem for one-clock timed alternating automata
with co-Büchi acceptance conditions is undecidable. However
these appear to be more general than weak parity acceptance
conditions, so that the problem remains open.
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9This result was discovered concurrently by Lasota and Walukiewicz [22].
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