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Abstract. Metric Temporal Logic (MTL) is a real-time extension of
Linear Temporal Logic that was proposed fifteen years ago and has since
been extensively studied. Since the early 1990s, it has been widely be-
lieved that some very small fragments of MTL are undecidable (i.e.,
have undecidable satisfiability and model-checking problems). We re-
cently showed that, on the contrary, some substantial and important
fragments of MTL are decidable [19, 20]. However, until now the ques-
tion of the decidability of full MTL over infinite timed words remained
open.
In this paper, we settle the question negatively. The proof of undecidabil-
ity relies on a surprisingly strong connection between MTL and a partic-
ular class of faulty Turing machines, namely ‘insertion channel machines
with emptiness-testing’.

1 Introduction

The theory of automated verification in the untimed world has by now achieved
a respectable maturity: there is a plethora of modelling and specification for-
malisms, with well-understood associated algorithms—see, e.g., [22] for a com-
prehensive survey of the field. Over the past two decades, many researchers have
attempted to extend this methodology to the real-time world, in which quanti-

tative timing constraints are of interest. One of the earliest and most prominent
real-time specification formalisms to be proposed was Metric Temporal Logic
(MTL) [16, 6], which extends Linear Temporal Logic (LTL) in that the various
temporal operators are annotated with time intervals. For example, whereas the
LTL formula �(req =⇒ ♦grant) specifies that every req is always eventually
followed by a grant , the MTL formula �(req =⇒ ♦[3,5]grant)1 specifies in ad-
dition that the grants shall happen within 3 to 5 time units of the occurrence of

each req . This type of bounded-response property arises naturally when consid-
ering safety-critical systems such as a car’s braking system, or a power plant’s
shutdown mechanism.

MTL formulas are usually interpreted over dense time, which is typically
modelled using the non-negative real numbers R≥0.

2 Furthermore, an important

1 The � operator is here implicitly annotated with the interval [0,∞).
2 By contrast, in discrete-time settings the underlying model is typically the non-

negative integers, yielding more tractable theories that however correspond less
closely to physical reality [13, 3].
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distinction among real-time models is whether one assumes that the system
under consideration is observed at every instant in time, leading to an interval-

based semantics [4, 21, 14], or whether one only records a countable sequence
of snapshots of the system, leading to a point-based semantics [11, 6, 7, 12, 13,
24]. The interval-based semantics is somewhat more intuitive if one interprets
atomic MTL formulas as state propositions, whereas the point-based semantics
lends itself more naturally to the interpretation of atomic MTL formulas as
instantaneous events or actions. Our main (undecidability) result concerns the
point-based semantics, and accordingly that is the semantics we focus on in this
paper. As it turns out, the corresponding undecidability result in the interval-
based setting has been known for quite some time; see, e.g., [11, 5].

As is the case for LTL, it is possible to extend MTL with past temporal
operators, although this variant is seldom seen in the literature. MTL with past
operators, in turn, is subsumed by a certain monadic logic of timed state se-
quences introduced in [6]. The satisfiability problem for this logic is shown in
that paper to be undecidable. The idea is to encode the halting computations of a
given Turing machine as a set of timed words, which can themselves be captured
by a monadic formula: configurations of the machine can be encoded within a
single unit-duration time interval, since the density of time can accommodate
arbitrarily large tape contents. The formula need only specify that the configu-
rations are accurately propagated from one time interval to the next. As a result,
the formula is satisfiable iff the Turing machine has a halting computation.

This construction easily carries over to MTL with past operators, and in fact
the key ingredient required is merely punctuality : the ability to specify that
two events occur exactly one time unit apart from each other. Unfortunately,
a small oversight led to the claim, subsequently reproduced many times—see,
e.g., [5, 6, 12, 15], among others—that any logic strong enough to express for-
ward punctuality, i.e., formulas of the form �(p =⇒ ♦[1,1]q), is automatically
undecidable.

In [19] we showed this claim to be erroneous by proving that the satisfiability
problem for MTL over finite timed words is decidable. Recently, we also showed
that the safety fragment of MTL, in which all ‘eventuality’ operators are time-
bounded, is also decidable [20]. Another important decidability result appears
in [4, 21, 14], where the fragment of MTL that disallows singular intervals is
proved to be decidable. Yet another decidability result for a fragment of MTL
can be found in [13], exploiting digitization techniques.

In light of these developments, the question of the decidability of (standard)
MTL, incorrectly considered settled for many years, took on a new urgency.
This paper closes the gap by showing that the (infinite) satisfiability and model-
checking problems for MTL are undecidable. The proof proceeds by establish-
ing a strong connection between MTL formulas and a particular class of faulty
Turing machines, namely insertion channel machines with emptiness-testing, or
ICMET. Using this connection, satisfiability questions about MTL formulas can
be translated back and forth to ‘recurrent-state problems’ for ICMETs. We show
the latter to be undecidable in general from first principles.
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Our undecidability result also ties up a couple of loose ends. In [19], for
instance, we show that MTL formulas can be encoded into one-clock timed al-
ternating automata (see also [18]) with a weak parity acceptance condition. MTL
satisfiability then corresponds to the non-emptiness problem for these automata,
which this paper therefore shows to be undecidable. Our present results also im-
ply the undecidability of universality for one-clock Büchi timed automata [2, 17],
since these subsume one-clock timed alternating automata.

2 Faulty Turing Machines

A channel machine [1, 9, 23] consists of a finite-state automaton acting on a
finite number of unbounded fifo channels (queues, buffers). We are interested in
a particular type of channel machines, which we call insertion channel machines

with emptiness-testing, or ICMET . An ICMET is a tuple C = (S, init , M, C, ∆),
where S is a finite set of control states, init ∈ S is the initial control state, M is
a finite set of messages, C is a finite set of channels, and ∆ ⊆ S × L × S is the
transition relation over label set L = {c!m, c?m, c=∅ | c ∈ C ∧ m ∈ M}.

Intuitively, a c!m-transition corresponds to writing m to the tail of channel c,
a c?m-transition corresponds to reading m from the head of channel c, whereas
a c=∅-transition is only enabled if channel c is empty. The latter transitions,
which we call emptiness-testing, are useful in the presence of insertion errors, as
we explain shortly.

A global state of an ICMET C is a tuple (s, x), where s ∈ S is the control
state and x ∈ (M∗)C represents the contents of all the channels. We write xc to
denote the contents of a given channel c. The rules in ∆ induce an L-labelled
transition relation on the set of global states as follows: (s, c!m, t) ∈ ∆ yields a

transition (s, . . . , xc, . . .)
c!m
−→(t, . . . , xc·m, . . .) that writes m ∈ M to the tail of

channel c, and leaves all other channels unchanged. Likewise, (s, c?m, t) ∈ ∆

yields a transition (s, . . . , m·xc, . . .)
c?m
−→(t, . . . , xc, . . .) that reads m ∈ M from

the head of channel c, and again leaves all other channels unchanged. Finally,

(s, c=∅, t) ∈ ∆ yields a transition (s, x)
c=∅
−→(t, x), provided that channel c is

empty, i.e., xc = ε.

If the above transitions were the only ones allowed, then C would be an error-

free channel machine. An ICMET, however, may suffer from insertion errors,
which are represented by certain additional transitions.

Given x, y ∈ M∗, write x v y if x can be obtained from y by deleting any
number of letters. For example, HIGMAN v HIGHMOUNTAIN, as indicated by
the underlining. Extend this relation to (M∗)C by writing x v y if, for all c ∈ C,
xc v yc.

Insertion errors are then introduced by extending the transition relation on
global states with the following clause: if (s, x)

α
−→(t, y), x′ v x, and y v y′, then

(s, x′)
α

−→(t, y′).
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A computation of C is a finite or infinite sequence of transitions between
global states (s0, x0)

α0−→(s1, x1)
α1−→(s2, x2)

α2−→· · · , with s0 = init .3

Note 1. Channel machines with insertion errors were first considered in [9], and
later used to obtain complexity lower bounds for real-time verification problems
in [19, 2]. Emptiness-testing is a well-known computational device (used, for ex-
ample, in counter machines), which however adds no intrinsic power to error-free

channel machines. In the presence of insertion errors, emptiness-testing provides
a restricted amount of error detection, yet this combination has, to the best of
our knowledge, never been studied before. As Theorem 2 indicates, the resulting
class ICMET has computational power strictly between that of channel machines
with insertion errors and that of perfect channel machines, and turns out to be
a useful tool to study Metric Temporal Logic.

We are interested in the following decision problems concerning ICMETs. Let
C = (S, init , M, C, ∆) be an arbitrary ICMET, and let t ∈ S be a particular con-
trol state of C. The halting problem (also known as the control-state reachability

problem) asks whether there is a computation of C that reaches t (irrespective of
the contents of the channels). The recurrent-state problem, on the other hand,
asks whether C has an infinite computation that visits t infinitely often (again,
irrespective of channel contents).

Theorem 2. The halting problem for ICMETs is decidable, with non-primitive

recursive complexity. The recurrent-state problem for ICMETs is undecidable.

Note that both problems are undecidable for error-free channel machines,
since these are Turing-powerful. On the other hand, both problems are trivially
decidable (with polynomial-time complexity) for channel machines with insertion
errors (but without emptiness-testing), since insertion errors make the contents
of channels irrelevant (all read- and write-transitions of every control state are at
all times enabled)—see [9]. We conclude that emptiness-testing imparts a genuine
amount of computational power to channel machines with insertion errors, which
however falls short of that of perfect channel machines.

Proof. The proof of decidability relies on the theory of well-structured transition
systems [10], whereas the complexity lower bound is a corollary of Proposition 25
of [19], which itself makes use of a result of Schnoebelen [23]. Both proofs are
omitted here for reasons of space.

For the purposes of this paper the most important result is the undecidability
of the recurrent-state problem, and accordingly we now present the proof in
detail.

Let C = (S, init , M, C, ∆) be an ICMET. Let m ∈ M be a message and
c ∈ C be a channel. We would first like to define a ‘macro’ operation, called
occurrence-testing, that succeeds only if c does not comprise any occurrence of
m.

3 One might in addition require that x0 = (ε, . . . , ε), but in the presence of insertion
errors this constraint is pointless.
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To this end, assume that C has an extra working channel, called temp. To
perform occurrence-testing for message m on channel c, do the following:

1. Repeatedly read off messages from c and copy them onto temp; if any of
these messages turn out to be m, halt.

2. At some point, nondeterministically do an emptiness test on c, i.e., proceed
if c is empty, otherwise halt. This guarantees that the whole of c has been
copied onto temp.

3. Copy back the contents of temp onto c, ascertaining success by doing an
emptiness test on temp.

Bearing in mind that insertion errors can occur at any time, the only con-
clusions that can be drawn from a successful ‘m/∈c’-occurrence-test are that
(i) immediately prior to performing occurrence-testing, m did not occur within
c, and (ii) upon completing occurrence-testing, c comprises at least all of its
original contents, in the right order.

In what follows, occurrence-testing will repeatedly be invoked as if it were
a bona fide atomic operation. In fact, we will also perform occurrence-testing
for sets of messages, to be understood as a sequence of occurrence-tests for each
element.

Let T be a deterministic one-tape Turing machine with tape alphabet Σ.
Assume that in any infinite computation of T the tape contents grows unbound-
edly. (If this is not outright the case, simply augment T with a counter that
periodically gets incremented.) For technical reasons, assume also that once the
tape head visits a particular cell, that cell is never blank afterwards (a blank
cell is represented by the symbol B ∈ Σ; the assumption is therefore that B
can only be read by the head, but not written). The (suitably defined) halting
problem for T , when starting on a blank tape, is well-known to be undecidable.

It is equally well-known that a Turing machine such as T can easily be
simulated by an error-free channel machine [8]. A single channel is required,
which is used to mimic the tape of T . The set M of channel messages includes
{a, â | a ∈ Σ}. The ‘hatted’ versions of the symbols are used to indicate the
current position of the head on the tape—accordingly, a channel should always
comprise exactly one hatted symbol, except perhaps during the simulation of a
head transition. M may contain other messages, to keep track, for example, of
the leftmost and rightmost tape letters, etc.

The channel machine simulates a head transition by cycling through the
entire channel once. Moving the head one cell to the right is straightforward,
whereas the easiest way to move the head one cell to the left is to use nonde-
terminism: guess the new head position, and carry on with the simulation only
if it is subsequently immediately confirmed that the chosen cell was the right
one. All other transitions of the Turing machine are equally straightforward to
simulate.

Note that nothing precludes the above procedure from being carried out by
a channel machine that suffers from insertion errors; in that case, however, the
‘simulation’ is not guaranteed to accurately reflect the behaviour of T .
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A space-bounded computation of T is one in which T uses no more than
some fixed, predetermined number of tape cells (say n). To simulate such a
computation, one initialises the channel with exactly n blanks, and afterwards
strictly alternates read-transitions with write-transitions. In other words, in the
absence of insertion errors the channel size remains essentially constant having
at all times either n or n − 1 messages.4 The simulation proceeds until the
channel machine, in attempting to access a blank, is unable to do so. Note that
in the presence of insertion errors, the absence of blanks can be ascertained by
occurrence-testing for B.

Given T as above, we construct an ICMET C = (S, init , M, C, ∆) composed
of several components (cf. Figure 1). One of these components is a ‘space-
bounded simulator’ for T . The simulator has its own dedicated channel, which is
at the beginning initialised with a certain number of blanks. (One can ascertain
that only blanks are initially on the channel by occurrence-testing for every other
message in M .) The simulator then simulates T until either T halts, in which
case C also halts, or until all blanks are exhausted, in which case the simulator
subroutine returns.

This space-bounded simulator is embedded within a ‘decreasing device’. Once
all blanks are exhausted and the simulator returns, the decreasing device does the
following: it cycles through the whole channel of the simulator and re-initialises
every symbol to B (ascertaining success via occurrence-testing). It then deletes
one of the Bs and launches a fresh new simulation of T all over again.

The decreasing device only returns when, upon having re-initialised the sim-
ulator’s channel with blanks and deleted one, it finds the channel to be empty.

C also keeps a counter, encoded in unary (using the symbol B, say), which
starts at 1 and is subsequently periodically incremented. This counter is at all
times stored either on channel count or channel count ′. The role of the counter
is to indicate how many blanks are to be initially provided upon freshly entering
a decreasing-device cycle. This proceeds as follows. Assuming that the counter
is stored on channel count , for every B in count a B is written both onto the
simulator’s channel and onto count ′. This continues until count is empty, at
which point control is passed to the space-bounded simulator. (The next time
around proceeds similarly except that the roles of count and count ′ are inverted,
and so on.)

Once the decreasing device returns—upon finding the simulator’s channel
empty, as explained earlier—C visits a distinguished control state t ∈ S, incre-
ments the counter, and starts a new cycle.

The ICMET C is represented diagrammatically in Figure 1. Note that, while
T is a deterministic Turing machine, C is a nondeterministic channel machine.

We claim that C has an infinite computation that visits control state t in-
finitely often iff T does not halt when started on a blank tape. It immediately
follows that the recurrent-state problem for ICMETs is undecidable.

4 Note that in the ‘unconstrained’ simulation of T described earlier, the channel may
grow unboundedly (even without insertion errors) as the channel machine periodi-
cally adds blanks to it as needed to accurately mimic T ’s unbounded tape.
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space−bounded
simulator

initialise simulator channel
with counter number of blanks

increment counterto 1set counter

init change every symbol to blank
and then delete one blank

simulator

empty
channel

all blanks exhausted

t

Fig. 1. A schematic representation of the ICMET C. The starting state is init , and
we are interested in computations that visit state t infinitely often. Note that C is a
nondeterministic machine; the two transitions emerging from ‘change every symbol to

blank and then delete one blank’, for instance, are not mutually exclusive.

It remains to establish the claim. The right-to-left implication is immediate:
if T does not halt, then consider an error-free computation of C. Since by as-
sumption T ’s tape contents grows unboundedly with time, every space-bounded
simulation of T eventually exhausts all blanks (recall that T never writes a fresh
blank). As the starting number of blanks in successive space-bounded simula-
tions always decreases by one, the channel always eventually becomes empty and
C therefore always eventually reaches t.

Assume now that C has an infinite computation that visits t infinitely often,
and suppose on the contrary that T halts. Let n be the total number of tape cells
visited by T in the course of its halting computation. Since C always increments
its counter after visiting t, and since insertion errors can only increase, but not
decrease, the value of the counter, eventually the counter reaches some value
greater than or equal to n.

At that point, C initiates a space-bounded simulation of T starting with p1

blanks, where p1 ≥ n. The simulation continues until no blanks remain on the
tape, at which point all symbols are converted to blanks and one blank is deleted.
Let us say there are then p2 blanks on the channel. Note that, although C never
‘knowingly’ inserts any extra symbol (blank or otherwise) on the simulator’s
channel during a space-bounded simulation, insertion errors can occur, so that
p2 could be larger than p1. In fact, it is clear that p2 = p1 − 1 iff no insertion
error occurred throughout the entire space-bounded simulation (including the
channel re-initialisation step).

Continuing in this way, we get a sequence of numbers p1, p2, p3, . . . , pk which
denote the number of blanks on the channel at the beginning of every space-
bounded simulation. Since by assumption the computation of C we are consid-
ering always eventually visits t, and since t can only be reached if the simulator
channel is empty, we have pk = 0. Since p1 ≥ n, and since the number of blanks
decreases by at most 1 in going from any pi to pi+1, we conclude that there
is some j such that pj = n and pj+1 = n − 1. In other words, the j-th space-
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bounded simulation was an error-free simulation of T that started on a channel
with n blanks. Since T is deterministic, this simulation should have led to T
halting, which in turn should have halted C as well, contradicting our initial
hypothesis.

This concludes the proof of Theorem 2. ut

3 Metric Temporal Logic

We now formally present Metric Temporal Logic (MTL). Given the leisurely
background review offered in the Introduction, the present treatment is rather
succinct. For a more detailed and comprehensive account of MTL we refer the
reader to [6].

A time sequence τ = τ0τ1 . . . is a finite or infinite sequence of time values
τi ∈ R≥0 with τi ≤ τi+1 for all i < |τ | − 1. Here |τ | denotes the length of τ . If τ
is infinite, we require that {τi | i ∈ N} be unbounded (non-Zenoness).

A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where σ = σ0σ1 . . . is
a word over Σ and τ is a time sequence of the same length. We also occasionally
refer to a pair (σi, τi) as a timed event, having τi as a timestamp. Finally, we
write TΣ∗ for the set of finite timed words over alphabet Σ, and TΣω for the
set of infinite timed words over Σ.5

Given a finite alphabet Σ of atomic events, the formulas of MTL are built up
from Σ by Boolean connectives and time-constrained versions of the temporal
operators next (©), eventually (♦), always (�), and until (U), as follows:

ϕ ::= > | ϕ1 ∧ ϕ2 | ¬ϕ | a | ©Iϕ | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2

where a ∈ Σ, and I ⊆ R≥0 is an open, closed, or half-open interval with end-
points in N ∪ {∞}. If I = [0,∞), then we omit the annotation I in the corre-
sponding temporal operator. We also use pseudo-arithmetic expressions to de-
note intervals. For example, the expression ‘≥1’ denotes [1,∞) and ‘=1’ denotes
the singleton {1}.

Given a (finite or infinite) timed word ρ = (σ, τ) and an MTL formula ϕ,
the satisfaction relation (ρ, i) |= ϕ (read ρ satisfies ϕ at position i) is defined
inductively as follows:

– (ρ, i) |= >
– (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

– (ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ
– (ρ, i) |= a iff i < |ρ| and σi = a
– (ρ, i) |= ©Iϕ iff i + 1 < |ρ|, (ρ, i + 1) |= ϕ, and τi+1 − τi ∈ I
– (ρ, i) |= ♦Iϕ iff there exists j such that i ≤ j < |ρ|, (ρ, j) |= ϕ, and τj−τi ∈ I
– (ρ, i) |= �Iϕ iff for all j such that i ≤ j < |ρ|, if τj − τi ∈ I then (ρ, j) |= ϕ

5 Note that we are adopting a weakly monotonic view of time, in that several events
are allowed to share the same timestamp. The results presented here however carry
over verbatim under a strongly monotonic interpretation of time.
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– (ρ, i) |= ϕ1 UI ϕ2 iff there exists j such that i ≤ j < |ρ|, (ρ, j) |= ϕ2,
τj − τi ∈ I , and (ρ, k) |= ϕ1 for all k with i ≤ k < j.

We say that ρ satisfies ϕ, denoted ρ |= ϕ, if (ρ, 0) |= ϕ. Additional Boolean
and temporal operators can be defined via the usual conventions. Note that
the expected relationships among the constrained temporal operators hold, viz.
♦Iϕ ≡ > UI ϕ and �Iϕ ≡ ¬♦I¬ϕ. We have nonetheless defined ♦I and �I sepa-
rately because our main undecidability result does not require the UI operators.

Büchi timed automata [3] are real-time extensions of Büchi automata that
accept infinite timed words. It is not necessary for our purposes to say anything
more about these, other than to state that there exists a (rather trivial) Büchi
timed automaton that accepts TΣω, the set of all infinite timed words.

Given an MTL formula ϕ, the finite-satisfiability problem asks if there exists
a finite timed word that satisfies ϕ; this problem was shown to be decidable,
with non-primitive recursive complexity, in [19]. The infinite-satisfiability prob-

lem asks if there is an infinite timed word that satisfies ϕ. Finally, the infinite

model-checking problem asks, given a Büchi timed automaton A, whether all
infinite timed words accepted by A satisfy ϕ. The main result of this paper is
the following:

Theorem 3. The infinite-satisfiability and infinite model-checking problems for

MTL are undecidable. In fact, these problems are already undecidable for the

fragment of MTL that excludes all constrained ‘until’ operators UI .

Proof. The infinite-satisfiability part follows immediately from Theorem 4.3 (in
the next section) and Theorem 2.

For the infinite model-checking statement, consider a universal Büchi timed
automaton (i.e., one that accepts every timed word). Model checking this au-
tomaton against an MTL formula is equivalent to asking whether the formula is
valid, i.e., whether its negation is unsatisfiable. ut

4 Two-way Reductions

We exhibit a correspondence between the faulty Turing machines studied in
Section 2 and Metric Temporal Logic formulas. More precisely, we show how
to effectively translate finite (respectively infinite) MTL satisfiability questions
into halting (respectively recurrent-state) problems for ICMETs, and vice-versa.
It is of some interest to note that these reductions are polynomial-time in the
syntactic sizes of the objects in question.

The advantage of this correspondence is that many questions about MTL,
whose dense-time semantics is sometimes considered somewhat awkward and
counter-intuitive [15], can be translated into the purely discrete framework of
ICMETs.

Theorem 4. The following reductions between ICMETs and MTL formulas are

all effective and polynomial-time:
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1. Let (C, t) be an instance of the halting problem for ICMETs. Then there

exists an MTL formula ϕ such that C reaches t iff ϕ is satisfiable by some

finite word.
2. Let ϕ be an MTL formula. Then there exists an ICMET C together with a

distinguished control state t of C such that ϕ is satisfiable by some finite word

iff C reaches t.
3. Let (C, t) be an instance of the recurrent-state problem for ICMETs. Then

there exists an MTL formula ϕ such that C has a t-recurrent computation iff

ϕ is satisfiable by some infinite word.

4. Let ϕ be an MTL formula. Then there exists an ICMET C together with a

distinguished control state t of C such that ϕ is satisfiable by some infinite

word iff C has a t-recurrent computation.

Moreover, for statements 1 and 3 the fragment of MTL that excludes all con-

strained ‘until’ operators UI suffices.

Proof. For the purposes of this paper the most important statement is 3, and
accordingly we give full details of that proof and briefly comment on the other
cases afterwards.

Let C = (S, init , M, C, ∆) be an ICMET, with t ∈ S the distinguished control
state. The idea is to encode valid t-recurrent computations of C as timed words,
that are in turn captured by an MTL formula ϕ.

To this end, assume that C has k channels, say C = {c1, . . . , ck}. Define an
alphabet Σ = S ∪M ∪∆∪ {Bi, Ei | 1 ≤ i ≤ k}. A global state (s, x1, . . . , xk) of
C is encoded as a finite timed word of total duration 2k, as follows:

– s occurs at time 0.
– The contents xi of channel ci is encoded in the open interval (2i − 1, 2i) as

a matching sequence of timed events. The latest event corresponds to the
message at the head of the channel, and so on.

– The event Bi occurs at time 2i−1, and the event Ei occurs at time 2i. These
two events therefore delineate the contents of channel ci.

Moreover, the timed word is strongly monotonic (no two timed events share the
same timestamp), and contains no timed events other than the ones listed above.
In particular, the open time intervals (2i, 2i + 1) are empty.

Note that the density of time allows such timed words to accommodate ar-
bitrarily large channel contents. Note also that any such timed word can be
uniquely converted into a global state of C.

A computation (s0, x0)
α0−→(s1, x1)

α1−→(s2, x2)
α2−→· · · of C can then be en-

coded as an infinite timed word, by time-shifting and concatenating the timed
words corresponding to each global state and interspersing the transitions αj ,
as follow:

– If s0 occurs at time τ0, then sj occurs at time (2k +2)j + τ0, followed by the
encoding of the remainder of the j-th global state, as detailed above.

– αj occurs at time (2k + 2)(j + 1) − 1 + τ0, i.e., exactly one time unit after
the end of the encoding of the j-th global state, and exactly one time unit
before event sj+1.
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– If message m in channel ci, in global state j, is not read off while performing
the transition αj , then the difference between the timestamps of the two
occurrences of m in the encodings of the (j+1)-th and j-th global states is
exactly 2k + 2.

The last clause ensures that channel contents are preserved between transi-
tions; nothing prevents, however, insertion errors from occurring, in the form of
timed events with no matching events 2k + 2 time units earlier.

Observe that any infinite computation of C can immediately be recovered
from its encoding as an infinite timed word.

It remains to exhibit an MTL formula ϕ that captures precisely the timed
words corresponding to the t-recurrent infinite computations of C. We first build
various useful components, as follows:

We first want to restrict ourselves to strongly monotonic timed words:

ϕsm = �©>0>.

The first event is the control state init , and afterwards control states are
forever spaced exactly 2k + 2 time units apart:

ϕS = init ∧ �

(∨
S =⇒

(
♦=2k+2

∨
S ∧ �<2k+2¬

∨
S
))

.

The structure of global-state encodings is captured by the following formulas,
for 1 ≤ i ≤ k:

ϕBi
= �

(∨
S =⇒

(
♦=2i−1Bi ∧ �[0,2i−1)∪(2i−1,2k+2)¬Bi

))

ϕEi
= �

(∨
S =⇒

(
♦=2iEi ∧ �[0,2i)∪(2i,2k+2)¬Ei

))

ϕci
= �

(∨
S =⇒

(
�(2i−1,2i)

∨
M ∧ �(2i,2i+1)⊥

))
.

Interspersing transitions:

ϕ∆ = �

(∨
S =⇒

(
♦=2k+1

∨
∆ ∧ �<2k+1¬

∨
∆ ∧ �(2k+1,2k+2)⊥

))
.

We now define components that ensure the validity of the encoded compu-
tation.

Consecutive control states should match the source and target of the inter-
vening transitions; to this end, for any pair of control states s, s′, let ∆s,s′ =
{(s,−, s′) ∈ ∆}.

ϕ∆S =
∧

s,s′∈S

�

(
(s ∧ ♦=2k+2s

′) =⇒ ♦=2k+1

∨
∆s,s′

)
.

To handle channel integrity, first define:

ϕcopy = �(0,1)

∧

m∈M

(m =⇒ ♦=2k+2m) .
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Then, for 1 ≤ i ≤ k and m ∈ M , let:

ϕci=∅ =
∨

S ∧
∧

1≤j≤k

♦=2j−1ϕcopy ∧ �(2i−1,2i)⊥

ϕci!m =
∨

S ∧
∧

1≤j≤k

♦=2j−1ϕcopy ∧ ♦[2i−1,2i) (©Ei ∧ ♦=2k+2 © m)

ϕci?m =
∨

S ∧
∧

1≤j≤k

j 6=i

♦=2j−1ϕcopy ∧ ♦=2i−1 © (m ∧ ϕcopy) .

Channel contents should vary according to the relevant transitions. Recall
that L = {c!m, c?m, c=∅ | c ∈ C ∧m ∈ M}. For l ∈ L, let ∆l = {(−, l,−) ∈ ∆}.

ϕ∆C = �

(
∨

S =⇒
∧

l∈L

(
♦=2k+1

∨
∆l =⇒ ϕl

))
,

where the formulas ϕl are defined above.
We are interested in t-recurrent computations of C, which are captured by

requiring:
ϕrec = �♦t.

Finally, let:

ϕ = ϕsm ∧ ϕS ∧
∧

1≤i≤k

(ϕBi
∧ ϕEi

∧ ϕci
) ∧ ϕ∆ ∧ ϕ∆S ∧ ϕ∆C ∧ ϕrec.

By construction, infinite timed words that satisfy ϕ can be translated into
valid t-recurrent computations of C, and vice-versa. It is also clear that ϕ has
size polynomial in that of C. Lastly, observe that ϕ does not use any UI operator,
concluding the proof of Statement 3.

Note that a proof of Statement 1 can easily be engineered along the same
lines as the above.

For Statement 4, one first reduces infinite satisfiability for MTL to a non-
emptiness problem for one-clock timed alternating automata with a weak parity
acceptance condition, by extending the construction presented in [19]. Next, one
translates this non-emptiness problem into the existence of a Büchi path in a
certain well-structured transition system, which can itself be described using a
perfect channel machine, again following a construction of [19]. One then argues
that insertion errors can only cause valid Büchi paths to be rejected, thereby
preserving correctness.

Finally, Statement 2 can be handled by following a simplified version of the
above procedure. ut

5 Summary

The main result of this paper is that the satisfiability and model checking prob-
lems for Metric Temporal Logic, interpreted over infinite timed words, are unde-
cidable. As such, this closes a gap between a host of decidability and undecidabil-
ity results for various variants of MTL. The crux of our approach is to establish
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a strong correspondence between problems about Metric Temporal Logic and
problems about ICMETs, a particular brand of faulty Turing machines, as de-
picted in Figure 2.

MTL ICMET Complexity

Finite satisfiability Halting problem Non-primitive recursive

Infinite satisfiability Recurrent-state problem Undecidable

Fig. 2. A summary of the two-way reductions between Metric Temporal Logic and
faulty Turing machine problems.

An interesting question is whether this correspondence can be leveraged, in
one direction or the other, to obtain additional results or insights about the two
entities MTL and ICMET.
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