
Reachability in Succinct and Parametric
One-Counter Automata

Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell

Oxford University Computing Laboratory, UK
{chrh,kreutzer,joel,jbw}@comlab.ox.ac.uk

Abstract. One-counter automata are a fundamental and widely-studied
class of infinite-state systems. In this paper we consider one-counter au-
tomata with counter updates encoded in binary—which we refer to as
the succinct encoding. It is easily seen that the reachability problem for
this class of machines is in PSpace and is NP-hard. One of the main
results of this paper is to show that this problem is in fact in NP, and
is thus NP-complete.
We also consider parametric one-counter automata, in which counter
updates be integer-valued parameters. The reachability problem asks
whether there are values for the parameters such that a final state can
be reached from an initial state. Our second main result shows decid-
ability of the reachability problem for parametric one-counter automata
by reduction to existential Presburger arithmetic with divisibility.

1 Introduction

Counter automata are a fundamental computational model, known to be equiv-
alent to Turing machines [19], and there has been considerable interest in sub-
classes of counter machines for which reachability is decidable, such as Petri
nets, one-counter automata and flat counter automata [5, 18]. As originally con-
ceived by Minsky, counters are updated either by incrementation or decrementa-
tion instructions. However, for many applications of counter machines, including
modelling computer programs, it is natural to consider more general types of up-
dates, such as adding integer constants to a counter [3, 5, 16] or adding integer
parameters [4, 12]. Parametric automata are used in various synthesis problems,
and to model open programs, whose behaviour depends on values input from
the environment [2]. In [20] parameters are also used to model resources (e.g.,
time, memory, dollars) consumed by transitions. The reachability problem for
parametric counter automata asks whether there exist values of the parameters
such that a given configuration is reachable from another given configuration.

In this paper we show NP-completeness of the reachability problem for one-
counter automata in which counters can be updated by adding integer constants,
where the latter are encoded in binary. We also show decidability of reachabil-
ity for parametric one-counter automata by reduction to existential Presburger
arithmetic with divisibility [17]. We defer consideration of the complexity of the
latter problem to the full version of this paper.

1.1 Related Work

The verification literature contains a large body of work on decidability and
complexity for various problems on restricted classes of counter automata. The
work that is closest to our own is that of Demri and Gascon on model checking
extensions of LTL over one-counter automata [8]. They consider automata with
one integer-valued counter, with updates encoded in unary, and with sign tests
on the counter. They show that reachability in this model is NL-complete. De-
termining the complexity of reachability when updates are encoded in binary is
posed as an open problem by Demri in [7], Page 61, Problem 13. Since this last
problem assumes an integer-valued counter with sign tests, it is more general
than the one considered in our Theorem 1, and it remains open.

Another work closely related to our own is that of Ibarra, Jiang, Tran and
Wang [12], which shows decidability of reachability for a subset of the class of
deterministic parametric one-counter automata with sign tests. The decidability
of reachability over the whole class of such automata is stated as an open problem
in [12]. Note that although we do not allow negative counter values and sign tests,
we allow nondeterminism. Thus our Theorem 4 is incomparable with this open
problem.

Aside from reachability, similarity and bisimilarity for one-counter automata
and one-counter nets have been considered in [1, 13, 14], among others.

For automata with more than one counter, other restrictions are required to
recover decidability of the reachability problem: for example, flatness [5, 16] and
reversal boundedness [11]. Bozga, Iosif and Lakhnech [4] show decidability of the
reachability problem for flat parametric counter automata with a single loop, by
reduction to a decidable problem concerning quadratic diophantine equations.
Such systems of equations also feature in the work of Ibarra and Dang [11].
They exhibit a connection between a decidable class of quadratic diophantine
equations and a class of counter automata with reversal-bounded counters.

2 One-Counter Automata

A one-counter automaton is a nondeterministic finite-state automaton acting
on a single counter which takes values in the nonnegative integers. Formally a
one-counter automaton is a tuple C = (V,E, λ), where V is a finite set of control
locations, E ⊆ V × V is a finite set of transitions, and λ : E → Op is a function
that assigns to each transition an operation from the set Op = {zero}∪{add(a) :
a ∈ Z}. The operation zero represents a zero test on the counter, whereas add(a)
denotes the operation of adding a to the value of the counter.

A configuration of the counter automaton C is a pair (v, c), where v ∈ V is
a control location and c ∈ N is the value of the counter. The transition relation
on the locations of C induces an unlabelled transition relation on configurations
in the obvious way: an edge (v, v′) ∈ E with labelled zero yields a single transi-
tion (v, 0) −→ (v′, 0), while the same edge with label add(a) yields a transition
(v, c) −→ (v′, c+ a), provided that both c and c+ a are both non-negative.

A computation π of a counter automaton C is a finite sequence of transitions
between configurations

π = (v0, c0) −→ (v1, c1) −→ · · · −→ (vn, cn) .

We define the length of π to be length(π) = n. We sometimes write π : (v0, c0) −→∗

(vn, cn) or (v0, c0)
π−→ (vn, cn) to denote that π is a computation from (v0, c0)

to (vn, cn).
The reachability problem asks, given a one-counter automaton C and con-

figurations (v, c) and (v′, c′), whether there is a computation starting in (v, c)
and ending in (v′, c′). The control-state reachability problem asks, given C
and two locations v and v′, whether there is a computation from (v, 0) to (v′, c′)
for some counter value c′. It is easily seen that both reachability problems are
reducible to each other in logarithmic space.

In determining the complexity of these problems we assume a standard en-
coding of counter automata and their configurations—in particular, we suppose
that integers are encoded in binary. Given a counter machine C, we denote by |C|
the length of the encoding of C. It is easy to see that the shortest computation
between two given locations may have length exponential in |C|. For example, in
the automaton in Figure 2 the unique path from (v0, 0) to (v1, 0) has length 2n.

v0 v1

add(1)

add(−2n)

Fig. 1.

The first observation is the following.

Proposition 1. The reachability problem for one-counter automata is NP-hard.

Proof. The proof is by reduction from the subset sum problem [9]. Recall that
an instance of the latter consists of a set of positive integers S = {a1, a2, . . . , an}
and a goal c, and the question asked is whether there exists a subset T ⊆ S such
that

∑
T = c. This reduces to the question of whether configuration (vn, c) is

reachable from (v0, 0) in the one-counter automaton in Figure 2. ut

Proposition 1 crucially depends on encoding integers in binary. Indeed, it
follows from Proposition 2, below, that if integers are encoded in unary then the
reachability problem becomes NL-complete, since it reduces to reachability in a
polynomial-size graph.

The first main contribution of this paper is to establish an upper bound
for the complexity of the reachability problem, matching the lower bound in
Proposition 1.

v0 · · · vn
add(0)

add(0)
add(a1)

add(0)

add(0)
add(a2)

add(0)

add(0)
add(an)

Fig. 2. Reduction from Subset Sum to reachability.

Theorem 1. The reachability problem for one-counter automata is in NP.

The idea behind the proof of Theorem 1 is as follows. Suppose one is given
a one-counter automaton C, and two configurations (v, c) and (v′, c′). One can
show that if (v′, c′) is reachable from (v, c), then there is a computation π from
(v, c) to (v′, c′) whose length is bounded by an exponential function in |C| and the
bit lengths of c and c′. This computation has a succinct certificate: a network
flow which records for each edge of C how many times it is taken in π. This
flow has a polynomial-size description, and so it can be guessed in polynomial
time. The main difficulty in fleshing out this idea is the problem of how to
validate such a certificate; that is, given a flow, to determine in polynomial
time whether it arises from a valid computation of the counter machine. To
solve this problem we define a subclass of such flows with certain structural
properties, called reachability certificates. We show that validating reachability
certificates can be done in NP, and that the computation π, above, can, without
loss of generality, be divided into sub-computations, each of which generates a
reachability certificate.

2.1 Parametric Counter Automata

A parametric one-counter automaton is a tuple C = (V,E,X, λ), where
the sets V and E of vertices and edges are as in the definition of a one-counter
automaton, X is a set of non-negative integer parameters, and the labelling
function λ : E → Op has codomain

Op = {zero} ∪ {add(a), add(x), add(−x) : a ∈ Z, x ∈ X} .

The only difference with one-counter automata is the ability to add or subtract
the value of a parameter x ∈ X to the counter. Each instantiation of the param-
eters yields a different one-counter automaton.

The reachability problem for parametric one-counter automata asks,
given configurations (v, c) and (v′, c′), whether there exist values for the parame-
ters such that there is a computation from (v, c) to (v′, c′). We exhibit reductions
in both directions between this problem and the satisfiability problem for the
existential fragment of Presburger arithmetic with divisibility, i.e., the ex-
istential theory of the structure (Z, <, | ,+, 0, 1), where | is the binary divides
predicate. Lipshitz [17] gave a procedure for deciding satisfiability of this logic.
Thus we obtain our second main result.

Theorem 2. The reachability problem for parametric one-counter automata is
decidable.

The reduction from existential Presburger arithmetic with divisibility to the
reachability problem for parametric one-counter automata is fairly straightfor-
ward, and is detailed below. It follows a similar pattern to [2], which reduces
existential Presburger arithmetic with divisibility to the reachability problem
for two-clock parametric timed automata.

Let ϕ be a quantifier-free formula of Presburger arithmetic with divisibility.
Without loss of generality, assume that ϕ is a positive Boolean combination of
atomic formulas, A = B, A < B, A | B and ¬(A | B), where A and B are
linear expressions in variables x1, . . . , xn. By representing arbitrary integers as
differences of positive integers we can also assume that the variables x1, . . . , xn
range over the positive integers.

For each such atomic sub-formula ψ we construct a one-counter automaton
Cψ, with parameters x1, . . . , xn and distinguished locations u and v, such that
(v, 0) is reachable from (u, 0) iff ψ is satisfied. We can then combine the au-
tomata representing atomic sub-formulas using sequential composition to model
conjunction and nondeterminism to model disjunction.

For an atomic formula ψ ≡ A | B, the automaton Cψ first guesses the sign of
A and B. Assume that A and B are guessed to be non-negative; the remaining
cases are similar. In this case the automaton simply loads B into its counter and
repeatedly subtracts A until the counter reaches 0.

For an atomic formula ψ ≡ ¬(A | B) the automaton Cψ first guesses the sign
of A and B. Again, assume that A and B are non-negative. Then the automaton
loads B into its counter and repeatedly subtracts A until the counter reaches a
value strictly between 0 and A. It can be checked whether the counter is strictly
between 0 and A by performing the following sequence of transitions: subtract
one; add two; add one a nondeterministic number of times; subtract A; test for
zero.

Handling the other atomic formulas is equally straightforward.

3 Weighted Graphs and Flow Networks

In this section we recall some standard definitions about weighted graphs and
flow networks.

A weighted graph is a tuple G = (V,E,w), where V is a set of vertices,
E ⊆ V × V is a set of directed edges, and w : E → Z assigns an integer weight
to each edge. Given such a graph and two distinguished vertices s, t ∈ V , a path
π from s to t, also called an s-t path, is a sequence of vertices π = v0v1 . . . vn
with v0 = s, vn = t and (vi, vi+1) ∈ E for 0 ≤ i < n. A path with the same first
and last vertices is called a cycle. To indicate that π is an s-t path we often
write π : s −→∗ t. If π : s −→∗ t and π′ : t −→∗ u, then π · π′ denotes the path
from s to u obtained by composing π and π′. Given a cycle ` on vertex v, we
define `0 = v (the trivial cycle on v) and `n+1 = `n · ` for n ∈ N.

The weight of a path π, denoted weight(π) is the sum of the weights of the
edges in π. If ` is a cycle such that weight(`)>0 then we say that ` is a positive
cycle, and if weight(`)< 0 then we say that ` is a negative cycle.

Given a weighted graph G = (V,E,w), with distinguished vertices s and t, a
flow from s to t, also called an s-t flow, is a function f : E → N satisfying the
following flow conservation condition for each vertex u ∈ V − {s, t}:∑

(v,u)∈E

f(v, u) =
∑

(u,v)∈E

f(u, v) .

The value |f | of flow f is the net flow out of the source s (equivalently the net
flow into the sink t), that is,

|f | =
∑

(s,u)∈E

f(s, u)−
∑

(u,s)∈E

f(u, s) .

The weight of the flow f is defined to be

weight(f) =
∑
e∈E

f(e) · w(e) .

An s-t path π determines an s-t flow fπ, where for each edge e ∈ E, f(e) is
defined to be the number of times edge e is taken in π. We call the class of flows
that arise in this way path flows. Just as paths can be sequentially composed,
path flows can be composed by summation: given an s-t path flow f and a t-u
path flow g, we define a s-u path flow f + g by (f + g)(e) = f(e) + g(e) for each
edge e ∈ E.

The skew transposeGop ofG is the weighted graph obtained by multiplying
all edge weights by −1 and then reversing the direction of each edge. A path
flow f from s to t in graph G induces a path flow fop from t to s in Gop , where
fop(u, v) = f(v, u).

4 Reachability Certificates

The following result [15, Lemma 42] shows that the reachability problem for
one-counter machines is in PSpace.

Proposition 2. There is a polynomial P such that given a one-counter au-
tomaton C and configurations (v, c) and (v′, c′), if (v, c) can reach (v′, c′) then
there is computation from (v, c) to (v′, c′) of length at most 2P (n), where n is the
maximum of |C| and the bit lengths of c and c′.

Let C = (V,E, λ) be a one-counter automaton. For proving NP-membership
of the reachability problem, it is no loss of generality to assume that C has no
zero tests. Indeed, since we may assume that each zero test is taken at most once,
by guessing the order in which the zero tests are taken, a reachability query on
a one-counter automaton with zero tests can be reduced to a linear number of

reachability queries on the same automaton with zero tests erased. Now a one-
counter automaton without zero tests is nothing but a weighted graph, where the
weight of an edge labelled add(a) is a ∈ Z. For emphasis, we denote automaton
C qua weighted graph by GC .

Recall that a computation π of C determines a path flow fπ in GC , mapping
each edge to its multiplicity in π. If the length of π is bounded by an exponential
function in the size of C, then fπ has a description that is polynomial in the size
of C. We regard fπ as a polynomial reachability certificate. In this section we
consider the problem of how to validate such a certificate in polynomial time;
that is, given configurations (v, c) and (v′, c′), we seek necessary and sufficient
conditions on a flow f for there to exist a computation π from (v, c) to (v′, c′)
with f = fπ, and we require that these conditions be polynomial-time checkable.

As a starting point, we recall the following straightforward variant of Euler’s
theorem.

Proposition 3. Given vertices s 6= t, an s-t flow f is a path flow if and only if
|f | = 1 and the subgraph induced by the set of edges {e ∈ E : f(e)> 0} ∪ {(t, s)}
is strongly connected.

Proposition 3 gives a way to check in linear time, given a flow f , whether
there exists a path π such that f = fπ. The difficult part is then to determine
whether π can be chosen such that it corresponds to a computation between
given source and target configurations (v, c) and (v′, c′). Informally speaking, we
need to know that taking π from (v, c) does not cause the counter to go negative.
More formally, given a path π = v0v1 . . . vn, define vertex vj to be a minimum
of π if the path π′ = v0v1 . . . vj has minimal weight among all prefixes of π; in this
case we define drop(π) to be weight(π′). Then π corresponds to a computation
from (v, c) to (v′, c′) if and only if drop(π) ≥ −c and weight(π) = c′ − c.

Given a path π from v to v′, if there is a computation over π starting in
configuration (v, c) and ending in configuration (v′, c′), we say that π can be
taken from (v, c) and taken to (v′, c′). Next we introduce two key notions
about flows which will help us to state sufficient conditions for a flow to be
realisable by a computation between given configurations.

Given a flow f in GC , a cycle in f is a cycle ` in GC such that f assigns
positive flow to each edge in `. If ` has positive (resp. negative) weight, then we
speak of f having a positive (resp. negative) cycle.

Let f be a path flow from s to t. A decomposition of f consists of an
enumeration v1, . . . , vn of the set set {v : ∃u.f(u, v)>0} of vertices with incoming
flow, together with a sequence of flows f0, . . . , fn−1 such that (i) f0 is a path
flow from s to v1, (ii) fi is a path flow from vi to vi+1 for 1 ≤ i ≤ n − 1,
(iii) f = f0 + f1 + . . .+ fn−1, and (iv) if i ≤ j then fj directs no flow into vertex
vi.

Proposition 4. Let (v, c) and (v′, c′) be configurations of C and f be a path flow
in GC from v to v′ such that weight(f) = c′ − c.

(i) If f has no positive cycles, then f = fπ for some computation π : (v, c) −→∗

(v′, c′) if and only if there is a decomposition f = f0 + . . .+ fn−1 such that∑j
i=0 weight(fi) ≥ −c, 0 ≤ j < n.

(ii) If f has no negative cycles, then f = fπ for some computation π : (v, c) −→∗

(v′, c′) if and only if there is a decomposition fop = f0 + · · ·+ fn−1 in Gop
C

such that
∑j
i=0 weight(fi) ≥ −c′, 0 ≤ j < n.

Proof (sketch).

(i) Since f has no positive cycles, any path π in GC such that f = fπ also has
no positive cycles. Thus in a computation along π, the net change in the
counter value between consecutive visits to a given location is less than or
equal to 0. Thus to check that the counter never becomes negative, we need
only verify that it is non-negative the last time π visits any given location.
It is not hard to see that there exists a path π satisfying this last condition if
and only if f has a flow decomposition satisfying the condition in (i) above.

(ii) This follows by applying the result stated in Part (i) to the flow fop on the
skew transpose of GC .

ut

In a slightly different vein to Proposition 4, Proposition 5 gives a simple con-
dition on GC , rather than on the flow f , that guarantees that (v′, c′) is reachable
from (v, c).

Proposition 5. Let (v, c) and (v′, c′) be configurations of C and f be a path flow
in GC from v to v′ such that weight(f) = c′ − c. If there is a positive cycle `
that can be taken from (v, c), and a negative cycle `′ that can be taken to (v′, c′),
then (v′, c′) is reachable from (v, c).

Proof (sketch). The idea is simple. By definition, there exists a path π from
v to v′ in GC such that f = fπ. Now π need not yield a computation from
(v, c) to (v′, c′) since it may be that drop(π) ≤ −c. However we can circumvent
this problem, and build a computation from (v, c) to (v′, c′), by first pumping
up the value of the counter by taking the positive cycle ` a number of times,
then traversing π, and then pumping down the value of the counter by taking
the negative cycle `′ a number of times. Note that if we take the positive cycle
−k ·weight(`′) times, and the negative cycle k ·weight(`) times, for some positive
integer k, then the net effect on the counter is 0. ut

A flow f is called a reachability certificate for two configurations (v, c)
and (v′, c′) if there exists a path π : (v, c) −→∗ (v′, c′) such that f = fπ and one
of the following three conditions holds: (i) f has no positive cycles; (ii) f has
no negative cycles; (iii) there exists a positive cycle ` that can be taken from
(v, c) and a negative cycle `′ that can be taken to (v′, c′). Depending on which
of the above three cases holds, we respectively call fπ a type-1, type-2 or type-3
reachability certificate. In any case, we say that the computation π yields the
reachability certificate fπ. The following corollary of Propositions 4 and 5 gives
an upper bound on the complexity of recognising a reachability certificate.

Corollary 1. Given a one-counter machine C, two configurations (v, c) and
(v′, c′), and a path flow f in GC, the problem of deciding whether f is a reacha-
bility certificate for (v, c) and (v′, c′) is in NP.

Proof. It can be checked in polynomial time whether f has any positive cycles
or any negative cycles, e.g., using the Bellman-Ford algorithm [6]. If f has no
positive cycles, then by Proposition 4(i) to show that f is a type-1 reachability
certificate we need only guess a decomposition f = f0 + · · · + fn−1 such that∑j
i=0 weight(fi) ≥ −c, 0 ≤ j<n. The case that f has no negative cycles similarly

uses Proposition 4(ii).
It remains to consider type-3 reachability certificates. To this end, observe

that there is a positive cycle ` that can be taken from (v, c) if and only if there
is a positive simple cycle in the same strongly connected component of GC as v
that can be reached and taken from (v, c). This last condition can be checked
in polynomial time using a small modification of the Bellman-Ford algorithm.
By running the same algorithm on the skew transpose of GC , it can be checked
whether there is a negative cycle `′ that can be taken to (v′, c′). ut

Note that we do not assert that the existence of a computation π : (v, c) −→∗

(v′, c′) guarantees that there is a reachability certificate for (v, c) and (v′, c′).
However, in the next section we show that the existence of a computation from
(v, c) to (v′, c′) can be witnessed using at most three polynomial-size reachability
certificates.

5 NP-Membership

Based on the ideas developed in the previous section, we are interested in paths
π for which the associated flow fπ has no positive cycles or no negative cycles. It
is important to note here that fπ may have positive cycles even though π itself
does not have any positive cycles (and similarly for negative cycles). We will use
the following proposition to overcome this problem.

Proposition 6. Let π be a computation from (v, c) to (v′, c′) in which all cycles
are negative. Then either the corresponding flow fπ has no positive cycles, or
there is a computation θ = θ1 · θ2 · θ3 from (v, c) to (v′, c′) such that length(θ1)<
length(π) and θ2 is a positive cycle.

Proof. Suppose that fπ contains a positive cycle `. Let u ∈ V be the first vertex
of ` that π reaches, and let the counter value be y when π first reaches u. We
claim that there is a positive cycle in GC that can be taken from configuration
(u, y).

If ` cannot be taken from (u, y) then we argue as follows. Factor ` as ` =
u

ρ1−→ w
ρ2−→ u, with w a minimum of ` (cf. Figure 5, which depicts the height of

the counter as ` is traversed). Then we have weight(ρ1)<−y. But π must visit
w after it first visits u (since u is the first vertex of ` visited by π), so there is a

Fig. 3. Decomposition of the loop `.

path ρ3 : u −→∗ w in GC such that weight(ρ3) ≥ drop(ρ3) ≥ −y > weight(ρ1).
Now consider the cycle `′ : u

ρ3−→ w
ρ2−→ u. The preceding inequality gives

weight(`′) = weight(ρ3) + weight(ρ2)
> weight(ρ1) + weight(ρ2)
= weight(`) ,

so that `′ is a positive cycle. We also have

drop(`′) ≥ drop(ρ3) + drop(ρ2)
≥ −y + 0
= −y ,

whence `′ can be taken from (u, y). This proves the claim.
Next we observe that the first occurrence of u in π actually lies on a negative

cycle in π. This is because π must visit u again, and all cycles in π are negative
by assumption. Thus we can factor π as

(v, c) π1−→ (u, y) π2−→ (u, y′) π3−→ (v′, c′)

such that there is a positive cycle `′ that can be taken from (u, y), and with π2

a negative cycle.
To define the required computation θ = θ1 · θ2 · θ3, we reuse an idea from

the proof of Proposition 5. Write weight(`′) = p and weight(π2) = −q, where
p, q>0. Then define θ1 = π1, θ2 = (`′)q and θ3 = (π2)p+1 ·π3. Clearly length(θ1)<
length(π) and θ2 is a positive cycle, as required. Since the positive cycle (`′)q

is cancelled out by the negative cycle (π2)p, θ is a computation from (v, c) to
(v′, c′). ut

We also have the following dual of Proposition 6.

Proposition 7. Let π be a computation from (v, c) to (v′, c′) in which all cycles
are positive. Then either the corresponding flow fπ has no negative cycles, or
there is a computation θ = θ1 · θ2 · θ3 from (v, c) to (v′, c′) such that θ2 is a
negative cycle and length(θ3)< length(π).

Next we exploit Propositions 6 and 7 to show that the reachability of a
configuration (v′, c′) from a configuration (v, c) can be witnessed by at most
three reachability certificates.

Proposition 8. If (v′, c′) is reachable from (v, c), then there exists a computa-
tion π from (v, c) to (v′, c′) that can be written π = π1 · π2 · π3, such that π1, π2

and π3 each yield reachability certificates.

Proof. Let π = v0v1 . . . vn be (the path underlying) a computation from (v, c)
to (v′, c′). Without loss of generality we assume that π contains no zero-weight
cycles. If π contains a positive cycle, then define i1 such that vi1 is the first
vertex that appears in a positive cycle in π; otherwise let i1 = n. Write π1 =
v0, v1, . . . , vi1 and assume that π is chosen such that length(π1) is minimised.
Then π1 contains only negative cycles; thus from Proposition 6 and the mini-
mality of length(π1) we deduce that the flow fπ1 has no positive cycles. We now
consider two cases.

Case (i): i1 = n. Then π = π1, and fπ1 is a reachability certificate.
Case (ii): i1 < n. If the terminal segment of π from vi1 to vn contains a

negative cycle, then define i2 ≥ i1 such that vi2 is the last vertex that appears
in a negative cycle in π; otherwise let i2 = i1. Write π3 = vi2vi2+1 . . . vn. As-
sume π is chosen, subject to the original choice to minimise length(π1), such
that length(π3) is minimised. Then π3 contains only positive cycles; thus from
Proposition 7 and the minimality of length(π3) we deduce that the flow fπ3 has
no negative cycles. We now consider two sub-cases.

Case (ii)(a): i1 = i2. Then π = π1 ·π3, and fπ1 and fπ3 are both reachability
certificates.
Case (ii)(b): i1<i2. Then write π2 = vi1vi1+1 . . . vi2 . Starting in configura-
tion (v, c), let (vi1 , ci1) be the configuration of C after executing π1, and let
(vi2 , ci2) be the configuration of C after further executing π2. By definition
of π2 there is a positive cycle that can be taken from (vi1 , ci1) and a negative
cycle that can be taken to (vi2 , ci2). Thus fπ2 is a reachability certificate and
π = π1 · π2 · π3 is the sequential composition of three paths, each of which
yields a reachability certificate.

ut

We can now complete the proof of the first main result of the paper.

Theorem 3. The reachability problem for one-counter automata is in NP.

Proof. Let C be a one-counter automaton with configurations (v, c) and (v′, c′).
If (v′, c′) is reachable from (v, c) then, by Proposition 8, there is a computation
π = π1 ·π2 ·π3 from (v, c) to (v′, c′) such that π1, π2 and π3 each yield reachability

certificates. Moreover we can assume, without loss of generality, that the lengths
of π1, π2 and π3 are bounded by 2P for some polynomial P in |C| and the bit
lengths of c and c′. The bounds on π1 and π3 follow from the fact that π1 has
only negative cycles and π3 has only positive cycles. The bound on π2 follows
from Proposition 2. Thus the reachability certificates corresponding to π1, π2

and π3 all have polynomial size, and, by Corollary 1, can be guessed and verified
in polynomial time. ut

6 Parametric Counter Automata

In this section we exploit the results developed in Section 5 to show that the
reachability problem for parametric one-counter automata can be reduced to the
satisfiability problem for a decidable extension of existential Presburger arith-
metic.

Let x1, . . . , xn be a set of integer variables. A linear polynomial is a poly-
nomial of the form a0 + a1x1 + . . .+ anxn, where the ai are integer coefficients.
A linear constraint is an inequality of the form a0 + a1x1 + . . . + anxn ≤ 0.
Define S ⊆ Zn to be an (N-)linear set if there exist vectors v0, v1, . . . , vt ∈ Zn
such that S = {v : v = v0 + b1v1 + . . . + bnvn, bi ∈ N}. A semilinear set is a
finite union of linear sets.

Presburger arithmetic is the first-order theory of the structure (Z, <,+, 0, 1).
It is well-known that the satisfiability problem for Presburger arithmetic is decid-
able, and that subsets of Zk definable by formulas of Presburger arithmetic are
effectively semilinear. Adding multiplication to Presburger arithmetic leads to
undecidability, as does adding the divides predicate n | m. However Lipshitz [17]
gave a decision procedure for the satisfiability problem for the existential frag-
ment of Presburger arithmetic with divisibility. This last result has been used
to show the decidability of certain problems concerning systems of quadratic
Diophantine equations [10, 11]. We give a simple application of this kind below.

Let {y1, . . . , yk} and {x1, . . . , xn} be disjoint sets of integer variables. For
1 ≤ i ≤ k let Ri denote the quadratic polynomial yiAi + Bi, where Ai and Bi
are linear polynomials in x1, . . . , xn. Furthermore, let P be a subset of Zk defined
by a formula of Presburger arithmetic. We consider the following problem:
Problem A: Given R1, . . . , Rk and P , are there values for x1, . . . , xn and
y1, . . . , yk such that (R1, . . . , Rk) ∈ P?

Lemma 1. Problem A is decidable.

Proof. The proof is by reduction to the satisfiability problem for the existential
fragment of Presburger arithmetic with divisibility.

Note that P ⊆ Zk, being Presburger definable, is effectively semilinear. By
case splitting we may assume that P defines a linear set, say P = {v : v =
v0 + a1v1 + . . . + atvt, ai ∈ N} where v0, . . . , vt ∈ Zk. Thus, introducing new
nonnegative integer variables w1, . . . , wt, we seek a solution to the following

system of equations

y1A1 +B1 = v0,1 + w1v1,1 + . . .+ wtvt,1

y2A2 +B2 = v0,2 + w1v1,2 + . . .+ wtvt,2
...

ykAk +Bk = v0,k + w1v1,k + . . .+ wtvt,k

But this is equivalent to finding a solution to the following formula in Presburger
arithmetic with divisibility:

k∧
i=1

Ai | (v0,i + w1v1,i + . . .+ wtvt,i −Bi) ∧
t∧
i=1

wi ≥ 0 .

Remark 1. Note that in Problem A, each variable yi occurs in a single quadratic
polynomial. It immediately follows from a result of Ibarra and Dang [10] that
generalising Problem A to allow the same variable yi to appear in two separate
quadratic polynomials leads to an undecidable problem.

6.1 Reachability

Let C = (V,E,X, λ) be a parametric one-counter automaton, and assume for
now that C does not have any zero tests. Recall that the reachability problem
asks whether there is a computation between given configurations (v, c) and
(v′, c′) for some instantiation of the parameters. By Proposition 8, the existence
of such a computation is witnessed by (at most) three reachability certificates.
Thus our strategy to show decidability of reachability is to phrase the existence
of each of the three types of reachability certificate as an instance of Problem
A, with variables representing the parameters. We illustrate the idea for type-1
certificates, the other cases being very similar.

Recall that a type-1 reachability certificate for configurations (v, c) and (v′, c′)
consists of a path flow f from v to v′ such that f has no positive cycles,
weight(f) = c′ − c, and there is a decomposition f = f0 + . . . + fn−1, such
that

n−1∧
j=0

(
j∑
i=0

weight(fi) ≥ −c

)
. (1)

In encoding the existence of such an f , let us temporarily assume that the
support Ei

def= {e ∈ E : fi(e) > 0} of each flow fi has been fixed beforehand,
subject to the requirement that f = f0 + · · · fn−1 be a flow decomposition. Thus
it only remains to determine the flow along each edge of Ei.

Let the set of edges E have cardinality m. We introduce a set of nonnegative
integer variables Y (i) = {y(i)

1 , y
(i)
2 , . . . , y

(i)
m } to represent the flow fi, 0 ≤ i < n.

The idea is that each variable represents the flow along a given edge. The flow

conservation conditions on fi and the requirement that fi have support Ei can
be expressed as a system S(i) of linear constraints on the set of variables Y (i).

We also have a set of integer variables X = {x1, x2, . . . , xk} representing the
parameters of C. The requirement that f have no positive cycles can be expressed
as a system of linear constraints:

Aj ≤ 0 , j = 0, . . . , t , (2)

where Aj is a linear polynomial in the set of variables X, and there is one
constraint for each simple cycle of f (exactly which equations need to be written
here, which depends on the simple cycles in f , is determined by the supports
E1, E2, . . . , En−1.)

The weight of flow fi can then be expressed as a quadratic expression in the
set of variables X ∪ Y (i):

weight(fi) =
m∑
j=1

y
(i)
j αj [αj ∈ Z ∪X] . (3)

The next step is to eliminate the system of constraints S(i) by a change of
variables. Note that the constraints S(i) on the set of variables Y (i) define a
linear set, thus we can introduce a set of nonnegative integer variables U (i) =
{u(i)

1 , u
(i)
2 , . . . , u

(i)
li
} and linear polynomials B(i)

j , 1 ≤ j ≤ m, in U (i), such that

(y(i)
1 , . . . , y

(i)
m) satisfies S(i) iff y(i)

j = B
(i)
j for some choice of the variables in U (i).

Applying this change of variables to Equation (3) and rearranging terms yields

weight(fi) =
li∑
j=1

u
(i)
j C

(i)
j +D(i) , (4)

where the C(i)
j and D(i) are linear polynomials in X.

We can now formulate the existence of a type-1 reachability certificate as
an instance of Problem A. To this end we introduce a family Ri,j of quadratic

polynomials over the set of variables X ∪U (i), where Ri,j
def= u

(i)
j Cj for 0 ≤ i<n

and 1 ≤ j ≤ li. By (4) the weight of each flow fi can be written as a linear
expression in D(i) and Ri,j . Thus requirements (1) and (2) can be expressed
as a Presburger definable relation P on the Ai, D(i) and Ri,j , according to the
format of Problem A.

Finally, we note that we can drop our assumption of the fixity of the supports
E1, E2, . . . , En−1 by case splitting, using the closure of Presburger definable sets
under disjunction. Thus we can phrase the existence of a type-1 reachability
certificate between two given configurations as an instance of Problem A.

In a similar fashion, the existence of type-2 and type-3 reachability certificates
can also be translated into instances of Problem A. Combining with Proposition 8
we derive our second main result:

Theorem 4. The reachability problem for parametric one-counter automata is
decidable.

References

1. P. A. Abdulla and K. Cerans. Simulation is decidable for one-counter nets (ex-
tended abstract). In CONCUR, volume 1466 of LNCS. Springer, 1998.

2. R. Alur, T.A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
STOC. ACM, 1993.

3. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs
with lists are counter automata. In CAV, volume 4144 of LNCS. Springer, 2006.

4. M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. In
ICALP, volume 4052 of LNCS. Springer, 2006.

5. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Pres-
burger arithmetic. In CAV, volume 1427 of LNCS. Springer, 1998.

6. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press
and McGraw-Hill, 1990.

7. S. Demri. Logiques pour la spécification et vérification. Mémoire d’habilitation,
Université Paris 7, 2007.

8. S. Demri and R. Gascon. The effects of bounding syntactic resources on Presburger
LTL. In TIME. IEEE Computer Society Press, 2007.

9. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

10. O. H. Ibarra and Z. Dang. On two-way finite automata with monotonic counters
and quadratic diophantine equations. Theor. Comput. Sci., 312(2-3):359–378, 2004.

11. O. H. Ibarra and Z. Dang. On the solvability of a class of diophantine equations
and applications. Theor. Comput. Sci., 352(1):342–346, 2006.

12. O. H. Ibarra, T. Jiang, N. Trân, and H. Wang. New decidability results concerning
two-way counter machines and applications. In ICALP, volume 700 of LNCS.
Springer, 1993.

13. P. Jančar, A. Kučera, F. Moller, and Z. Sawa. DP lower bounds for equivalence-
checking and model-checking of one-counter automata. Inf. Comput., 188(1):1–19,
2004.

14. A. Kučera. Efficient verification algorithms for one-counter processes. In ICALP,
volume 1853 of LNCS. Springer, 2000.

15. P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for AC-like equa-
tional theories with homomorphisms. In Research Report LSV-04-16. LSV, ENS
de Cachan, 2004.

16. J. Leroux and G. Sutre. Flat counter automata almost everywhere! In ATVA,
volume 3707 of LNCS. Springer, 2005.

17. L. Lipshitz. The diophantine problem for addition and divisibility. Transactions
of the American Mathematical Society, 235:271–283, 1976.

18. E. W. Mayr. An algorithm for the general petri net reachability problem. In
STOC, pages 238–246. ACM, 1981.

19. M. Minsky. Recursive unsolvability of Post’s problem of “Tag” and other topics
in theory of Turing machines. Annals of Math., 74(3), 1961.

20. G. Xie, Z. Dang, and O. H. Ibarra. A solvable class of quadratic diophantine
equations with applications to verification of infinite-state systems. In ICALP,
volume 2719 of LNCS. Springer, 2003.

