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Abstract. Herman’s algorithm is a synchronous randomized protocol for achieving self-stabilization in a
token ring consisting of N processes. The interaction of tokens makes the dynamics of the protocol very
difficult to analyze. In this paper we study the distribution of the time to stabilization, assuming that there
are three tokens in the initial configuration. We show for arbitrary N and for an arbitrary timeout t that the
probability of stabilization within time t is minimized by choosing as the initial three-token configuration
the configuration in which the tokens are placed equidistantly on the ring. Our result strengthens a corollary
of a theorem of McIver and Morgan [13], which states that the expected stabilization time is minimized by
the equidistant configuration.

1. Introduction

Self-stabilization is a concept of fault-tolerance in distributed computing. A system is self-stabilizing if,
starting in an arbitrary state, it reaches a correct or legitimate state and remains in a legitimate state
thereafter. Thus a self-stabilizing system is able to recover from transient errors such as state-corrupting
faults. The study of self-stabilizing algorithms originated in an influential paper of Dijkstra [4]. By now there
is a considerable body of work in the area, see [16, 5].

In this paper we consider self-stabilization in a classical context that was also treated in Dijkstra’s original
paper—a token ring, i.e., a ring of N identical processes, exactly one of which is meant to hold a token at
any given time. If, through some error, the ring enters a configuration with multiple tokens, self-stabilization
requires that the system be guaranteed to reach a configuration with only one token. In particular, we are
interested in analyzing a self-stabilization algorithm proposed by Herman [8].

Herman’s algorithm is a randomized procedure by which a ring of processes connected uni-directionally
can achieve self-stabilization almost surely. The algorithm works by having each process synchronously
execute the following action at each time step: if the process possesses a token then it passes the token to its
clockwise neighbor with probability 1/2 and keeps the token with probability 1/2. If such a process decides
to keep its token and if it receives a token from its neighbor then the two tokens are annihilated. Due to the
way the algorithm is implemented we can assume that an error state always has an odd number of tokens,
thus this process of pairwise annihilation eventually leads to a configuration with a single token.

It is easy to see that Herman’s algorithm is almost surely self-stabilizing, but computing the time to
termination is a challenging problem. This is characteristic of systems of interacting particles under random
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motion, which are ubiquitous in the physical and medical sciences, including statistical mechanics, neu-
ral networks and epidemiology [12]. The analysis of such systems typically requires delicate combinatorial
arguments [6]. Our case is no exception.

Given some initial configuration, let T be the time until the token ring stabilizes under Herman’s al-
gorithm. Previous analysis of T focused largely on ET, the expected value of the self-stabilization time.
Herman’s original paper [8] showed that ET ≤ (N2 logN)/2 in the worst case (i.e., over all initial con-
figurations with N processes). It also mentions an improved upper bound of O(N2) due to Dolev, Israeli,
and Moran, without giving a proof or a further reference. In 2005, three papers [7, 13, 15] were published,
largely independently, all of them giving improved O(N2) bounds. In [10] we studied various extensions of
the protocol and improved the upper bound for an arbitrary initial configuration to ET ≤ 0.64N2.

McIver and Morgan [13] paid special attention to initial configurations with exactly three tokens. In this
case, the protocol stabilizes as soon as two tokens meet. They found an explicit formula for computing ET
for any initial configuration with exactly three tokens: if a, b, c ∈ N with a + b + c = N denote the initial
token distances, then it holds that

ET = 4abc/N . (1)

Assuming that N is a multiple of 3, we obtain ET = 4
27N

2 for an equidistant configuration, which is a
configuration with three equally spaced tokens. It follows from (1) that an equidistant configuration maxi-
mizes ET over all three-token configurations. Furthermore, it was conjectured in [13] that this is the worst
case among all starting configurations, including those with more than three tokens. This intriguing conjec-
ture is supported by experimental evidence [2].

In this paper we analyze the distribution of T for three-token configurations in more detail. We show for
an arbitrary timeout t ∈ N that any equidistant configuration minimizes the probability P (T ≤ t) among
all three-token configurations. As T is an N-valued random variable, we have ET =

∑∞
t=0 P (T > t), so our

result strengthens the above-mentioned consequence of (1) that equidistant configurations maximize ET over
the three-token configurations. We illustrate our result with experimental data generated by the probabilistic
model checker apex [14, 11, 9].

In [10] we analyzed ET by exploiting and adapting a technique that was developed by Balding [1] for
a scenario from physical chemistry. The technique uses an application of the reflection principle to express
the dynamics of the token interaction in terms of one-dimensional random walks with absorbing barriers.
We reuse this technique in this paper to compute the distribution of T in the three-token case. Although
notation considerably simplifies in the three-token case, the core of Balding’s argument is preserved, so we
hope that giving full details for the three-token case is worthwhile. The second ingredient of our analysis is
an inductive argument about P (T ≤ t) over the timeout t. Using Balding’s technique it suffices to give an
inductive expression for the probability that by time t a one-dimensional random walk has hit a barrier.

Organization of the paper. After some preliminaries in Section 2, we prove in Section 3 our main re-
sult which states that equidistant configurations minimize the probability P (T ≤ t) among the three-token
configurations. We obtain explicit expressions for P (T ≤ t) in Section 4. We also show how the apex tool
can be used to automatically compute these numbers, taking as input only an implementation of Herman’s
algorithm. We conclude in Section 5.

Happy birthday!

2. Preliminaries

We assume N ≥ 3 processes organized in a ring topology, numbered from 1 to N , clockwise, according to their
position in the ring. Each process may or may not have a token. Herman’s protocol works as follows: in each
time step, each process that has a token passes its token to its clockwise neighbor with probability 1/2 and
keeps it with probability 1/2; if a process keeps its token and receives another token from its counterclockwise
neighbor, then both of those tokens are annihilated. Notice that the number of tokens never increases, and
can decrease only by even numbers. We assume in the following that initially exactly three processes have a
token. Thus an initial configuration z is given by three numbers 1 ≤ z1 < z2 < z3 ≤ N such that process zi
initially has a token; in other words, zi is the position of the ith token. We are interested in the time Tz until
the (only) annihilation takes place. We may drop the subscript if the initial configuration z is understood.

The protocol can be viewed as a Markov chain with two strongly connected components, a transient SCC
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Fig. 1. An example of an equidistant configuration with N = 13 processes, token positions (z1, z2, z3) = (2, 6, 11), and token
separations (a, b, c) = (4, 5, 4).

containing the three-token configurations, and a recurrent SCC containing the one-token configurations. So
a one-token configuration is almost surely reached, i.e., T <∞ holds with probability 1.

We denote by a, b, c ∈ N the initial token distances, i.e., a := z2 − z1, b := z3 − z2, and c := z1 − z3 +N .
Observe that a + b + c = N . A configuration is called equidistant if bN/3c ≤ a, b, c ≤ dN/3e. Figure 1
illustrates an equidistant configuration for N = 13. For fixed N , all equidistant configurations are essentially
the same (by rotational symmetry), so we sometimes speak about the equidistant configuration.

3. Main Result

In this section we prove our main result, which states that the equidistant configuration minimizes the
probability of annihilation within time t.

Theorem 1. Let N, t ∈ N with N ≥ 3. Let z∗ denote the equidistant three-token configuration. Then

P (Tz∗ ≤ t) ≤ P (Tz ≤ t) for all three-token configurations z.

Fix N for the rest of the section. Proposition 2 below expresses P (T ≤ t) in terms of a discrete one-
dimensional random walk on {0, . . . , N} with transitions

x
1/4−−→ x− 1

0 1−→ 0 x
1/2−−→ x N

1−→ N for x ∈ {1, . . . , N − 1} . (2)

x
1/4−−→ x+ 1

For t ∈ N, denote by ft : {0, . . . , N} → [0, 1] the function such that ft(x) is the probability that such a
random walk started at x has hit the left absorbing barrier 0 by time t. Observe that

ft(0) = 1 and ft(N) = 0 for all t ∈ N. (3)

Proposition 2 (cf. [1, Theorem 2.1] and [10, Proposition 3]). Let N, t ∈ N with N ≥ 3 and consider
an initial three-token configuration with distances a, b, c. Then

P (T ≤ t) = ft(a) + ft(b) + ft(c)− ft(a+ b)− ft(a+ c)− ft(b+ c) .

Proof. Fix a timeout t. We consider several events, i.e., sets of possible “trajectories” of the three tokens.
We can formally think of a trajectory as a function ω : {0, . . . , t} × {1, 2, 3} → {1, . . . , N}, assigning to a
point in time and to a token its position on the ring. We have ω(0, i) = zi for i ∈ {1, 2, 3}. Annihilations
are disregarded, but given a trajectory ω it is clear, if, when and where tokens meet and would therefore be
annihilated in Herman’s algorithm.
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Define D0
12 as the event that, by time t, tokens 1 and 2 have met, and no other pair of tokens has met

before the first meeting of tokens 1 and 2. Note that in Herman’s algorithm, the event D0
12 is that by time t

tokens 1 and 2 have been annihilated. We define events D0
23 and D0

31 analogously for token pairs (2, 3) and
(3, 1). Then we have

“T ≤ t” = D0
12 ∪D0

23 ∪D0
31 , (4)

where the unions are disjoint.
Define D12 as the event that by time t token 1 has “caught up” with token 2 in the clockwise direction

(possibly after other collisions involving token 3). More formally, let ∆ω(s) := (ω(s, 2) − ω(s, 1)) mod N
represent the clockwise distance from token 1 to token 2 at time point s ≤ t. Then D12 is the event that
∆ω(s) reaches 0 by time t and moreover that it first reaches 0 from value 1. The events D13, D23, D21, D31

and D32 are defined analogously.
We partition D12 into three disjoint events D12 = D0

12 ∪ D31
12 ∪ D23

12, where D0
12 was defined above;

D31
12 := D0

31 ∩D12 is the event that the first collision is between tokens 1 and 3, before token 1 eventually
catches up with token 2; D23

12 := D0
23 ∩ D12 is the event that the first collision is between tokens 2 and 3,

before token 1 eventually catches up with token 2. Events D12
13, D

23
13, D

12
23, D

31
23, D

23
21, D

31
21, D

23
31, D

12
31, D

31
32, D

12
32

are defined analogously, so that we have

D12 = D0
12 ∪D31

12 ∪D23
12 D21 = D23

21 ∪D31
21

D23 = D0
23 ∪D12

23 ∪D31
23 D32 = D31

32 ∪D12
32 (5)

D31 = D0
31 ∪D23

31 ∪D12
31 D13 = D12

13 ∪D23
13 ,

where the unions are disjoint. Observe that token 2 cannot catch up with token 1 before token 1 or token 2
meets token 3, so there are no events D0

21, D0
32 or D0

13.
By the reflection principle, the events D31

12 and D31
32 have the same probability. To show this in detail,

we establish a bijection π between D31
12 and D31

32 as follows. Given ω ∈ D31
12 we define the trajectory π(ω) by

“switching” the movements of tokens 1 and 3 after their first collision. Formally, let t′ < t be the time of the
first meeting of tokens 1 and 3, i.e., ω(t′, 1) = ω(t′, 3). Define

π(ω)(t′′, 1) :=
{
ω(t′′, 1) t′′ ≤ t′
ω(t′′, 3) t′′ ≥ t′

π(ω)(t′′, 2) := ω(t′′, 2)

π(ω)(t′′, 3) :=
{
ω(t′′, 3) t′′ ≤ t′
ω(t′′, 1) t′′ ≥ t′ ,

Notice that the trajectories ω and π(ω) have the same probability and that π indeed defines a bijection
between D31

12 and D31
32. Similarly, one can show

P
(
D31

12

)
= P

(
D31

32

)
P
(
D12

23

)
= P

(
D12

13

)
P
(
D23

31

)
= P

(
D23

21

)
P
(
D23

12

)
= P

(
D23

13

)
P
(
D31

23

)
= P

(
D31

21

)
P
(
D12

31

)
= P

(
D12

32

)
.

(6)

Combining all these observations, we obtain

P (“T ≤ t”)
(4)
= P

(
D0

12

)
+ P

(
D0

23

)
+ P

(
D0

31

)
(6)
=
(
P
(
D0

12

)
+ P

(
D31

12

)
+ P

(
D23

12

))
+
(
P
(
D0

23

)
+ P

(
D12

23

)
+ P

(
D31

23

))
+
(
P
(
D0

31

)
+ P

(
D23

31

)
+ P

(
D12

31

))
−
(
P
(
D23

21

)
+ P

(
D31

21

))
−
(
P
(
D31

32

)
+ P

(
D12

32

))
−
(
P
(
D12

13

)
+ P

(
D23

13

))
(5)
= P (D12) + P (D23) + P (D31)− P (D21)− P (D32)− P (D13)
= ft(a) + ft(b) + ft(c)− ft(a+ b)− ft(a+ c)− ft(b+ c) .

For the final equality, notice that P (D12) = ft(a), because the event D12 (where token 1 catches up with
token 2, disregarding token 3) is in a bijection with the event that the one-dimensional random walk started
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at a = z2 − z1 has been absorbed at 0 by time t: the random walk models the distance between tokens 1
and 2. Similarly, we have P (D21) = ft(b+ c) etc.

For t ∈ N and y ∈ {0, . . . , N}, define a function gt,y : {0, . . . , N − y} → [0, 1] by

gt,y(x) := ft(x) + ft(y) + ft(N − x− y)− ft(x+ y)− ft(N − y)− ft(N − x) .

Observe that we have P (T ≤ t) = gt,b(a) by Proposition 2, which establishes the range [0, 1] of gt,y. If the
initial positions of tokens 2 and 3 are fixed (thus determining their distance b), the function gt,b describes
how P (T ≤ t) depends on the initial position of token 1 (which determines a). The following lemma states
that gt,b is minimized by placing token 1 “halfway” between tokens 2 and 3.

Lemma 3. Let t ∈ N and y ∈ {0, . . . , N}. The function gt,y is minimized by x = b(N − y)/2c and x =
d(N − y)/2e.

Proof. Define Gt,y : {0, . . . , N − y} → R by

Gt,y(x) := ft(x) + ft(N − x− y)− ft(x+ y)− ft(N − x) . (7)

Notice that Gt,y differs from gt,y only by a constant ft(y)− ft(N − y). The definition of the one-dimensional
random walk (2) implies

ft(x) =
1
4
ft−1(x− 1) +

1
2
ft−1(x) +

1
4
ft−1(x+ 1) for t ≥ 1 and 1 ≤ x ≤ N − 1, (8)

hence we have for t ≥ 1 and y ∈ {0, . . . , N} and 1 ≤ x ≤ N − y − 1:

Gt,y(x)
(7)
= ft(x) + ft(N − x− y)− ft(x+ y)− ft(N − x)
(8)
=

1
4
ft−1(x− 1) +

1
2
ft−1(x) +

1
4
ft−1(x+ 1)

+
1
4
ft(N − x+ 1− y) +

1
2
ft(N − x− y) +

1
4
ft(N − x− 1− y)

− 1
4
ft−1(x− 1 + y)− 1

2
ft−1(x+ y)− 1

4
ft−1(x+ 1 + y)

− 1
4
ft−1(N − x+ 1)− 1

2
ft−1(N − x)− 1

4
ft−1(N − x− 1)

(7)
=

1
4
Gt−1,y(x− 1) +

1
2
Gt−1,y(x) +

1
4
Gt−1,y(x+ 1) .

(9)

Recall from (3) that ft(0) = 1 and ft(N) = 0, hence gt,y(0) = 1. We now prove that the function gt,y is
monotonically decreasing in {0, . . . , b(N −y)/2c}, which suffices to prove the statement of the lemma, as gt,y
is, by its definition, symmetric around (N−y)/2. We proceed by induction on t. For t = 0 and y = 0 we have
g0,0(x) = 1 for x ≥ 0. For t = 0 and y > 0 we have g0,y(0) = 1 > 0 = g0,y(x) for x ∈ {0, . . . , b(N − y)/2c}.
Let t ≥ 1. We show gt,y(x− 1) ≥ gt,y(x) for x ∈ {1, . . . , b(N − y)/2c}.

• Let x = 1. Then gt,y(0) = 1 ≥ gt,y(1).

• Let 2 ≤ x < (N − y)/2. Then

Gt,y(x− 1)
(9)
=

1
4
Gt−1,y(x− 2) +

1
2
Gt−1,y(x− 1) +

1
4
Gt−1,y(x)

IH
≥ 1

4
Gt−1,y(x− 1) +

1
2
Gt−1,y(x) +

1
4
Gt−1,y(x+ 1)

(9)
= Gt,y(x) ,

where the inequality marked with “IH” holds by the induction hypothesis. This implies gt,y(x − 1) ≥
gt,y(x), as Gt,y and gt,y differ only by a constant.
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• Let x = (N − y)/2. (This case only occurs if N − y is even.) Then

Gt,y(x− 1)
(9)
=

1
4
Gt−1,y(x− 2) +

1
2
Gt−1,y(x− 1) +

1
4
Gt−1,y(x)

S=
1
4
Gt−1,y(x− 2) +

1
4
Gt−1,y(x− 1) +

1
4
Gt−1,y(x) +

1
4
Gt−1,y(x+ 1)

IH
≥ 1

4
Gt−1,y(x− 1) +

1
2
Gt−1,y(x) +

1
4
Gt−1,y(x+ 1)

(9)
= Gt,y(x) ,

where the inequalities marked with “S” and “IH” hold by symmetry around x and by the induction
hypothesis, respectively. This implies gt,y(x− 1) ≥ gt,y(x), as in the previous case.

Now we can prove Theorem 1.

Proof of Theorem 1. Suppose that z is a three-token configuration with minimum probability (among
three-token configurations) to stabilize by time t. Write a, b, c for the token distances in z and recall
that P (T ≤ t) = gt,b(a). The function gt,b is minimized at a, thus, applying Lemma 3, we have that
b(a + c)/2c ≤ a ≤ d(a + c)/2e. We conclude that |a − c| ≤ 1 and, by symmetry, we likewise have that
|a− b|, |b− c| ≤ 1. This implies bN/3c ≤ a, b, c ≤ dN/3e, i.e., z is equidistant.

4. Computing Self-Stabilization Probabilities

For a concrete expression for P (T ≤ t), we only need an expression for ft and to apply Proposition 2. By [3,
Section 2.2, Equation (25)], if we define

u(x, j) :=
sin jπ

N

1− cos jπN
· sin jπx

N
and v(j) := 1− 1

2

(
1− cos

jπ

N

)
,

we get

ft(x) = 1− x

N
− 1
N
·
N−1∑
j=1

u(x, j)v(j)t for t ∈ N and x ∈ {0, . . . , N}. (10)

We apply (10) to compute P (T ≤ t) for the three-token configurations in a ring with N = 9 processes.
Figure 2 shows all (up to rotational symmetry) such configurations.2 We thus obtain the numbers reported
in Figure 3. Observe that the equidistant configuration “J” indeed minimizes P (T ≤ t).

The same numbers can be obtained using the probabilistic model checker apex [14, 11, 9]. The tool apex
needs as input only an implementation of Herman’s algorithm. In Figure 4 we show such an implementation
for N = 9. Running apex on this code produces the probability P (T ≤ 5) for the equidistant configuration J .
The other probabilities from Figure 3 are obtained by straightforward modifications of the the code. Thus
apex provides a way of computing these numbers without a specially tailored analysis of Herman’s algorithm.
The implementation in Figure 4 uses the classical encoding of configurations, where each process holds a
single bit: a process has a token if and only if the process’s bit coincides with the bit of the counterclockwise
neighbor process. See [11] for more details on apex and its application on Herman’s algorithm.

5. Conclusions

We have studied the distribution of the self-stabilization time T for three-token configurations. Our analysis
relies on the reflection principle which allows one to reduce the interactions of the tokens to a few one-
dimensional random walks. Arguing by induction on t then suffices to prove our main result, which states

2 We do not consider mirror symmetry because the apex implementation below is not mirror symmetric.
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A B C D E

F G H I J

Fig. 2. All three-token configurations for N = 9.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

A .50000 .68750 .78125 .83594 .87109 .89526 .91278 .92606 .93650 .94499
B .25000 .43750 .56250 .64844 .70996 .75586 .79144 .81996 .84344 .86317
C .25000 .43750 .56250 .64844 .70996 .75586 .79144 .81996 .84344 .86317
D .25000 .37500 .45313 .51563 .57031 .61914 .66278 .70168 .73624 .76690
E .25000 .37500 .46875 .54297 .60352 .65405 .69696 .73384 .76582 .79370
F .25000 .37500 .46875 .54297 .60352 .65405 .69696 .73384 .76582 .79370
G 0 .12500 .25000 .35547 .44238 .51465 .57562 .62775 .67275 .71189
H 0 .06250 .14062 .22266 .30273 .37793 .44696 .50946 .56556 .61562
I 0 .06250 .14062 .22266 .30273 .37793 .44696 .50946 .56556 .61562
J 0 0 .04687 .11719 .19629 .27612 .35248 .42334 .48793 .54615

Fig. 3. P (T ≤ t) for the configurations from Figure 2, rounded to 5 decimal places.

that the equidistant configuration minimizes P (T ≤ t) for any timeout t. We also have numerically confirmed
our results by computing P (T ≤ t) both using our tailored analysis and the general-purpose apex tool.

A conjecture by McIver and Morgan [13] states that the three-token equidistant configuration maxi-
mizes ET among all configurations, even among those with more tokens. Our result may give evidence for
a stronger conjecture: Does the three-token equidistant configuration minimize P (T ≤ t) among all config-
urations and for all t? Numerical experiments with 5 and more tokens seem to support this conjecture.
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