Exercise Sheet 3

James Worrell

1. Write down formulas in first-order logic with equality expressing the following requirements.
(a) Unary function f is an onto function.
(b) Binary relation R is an equivalence relation.
(c) Unary predicate P holds for exactly three different elements.
2. Consider the following structures over a signature with a single binary relation symbol R :

$$
\begin{aligned}
& U_{\mathcal{A}}=\mathbb{N} \text { and } R_{\mathcal{A}}=\{(n, m) \in \mathbb{N} \times \mathbb{N}: n<m\} \\
& U_{\mathcal{B}}=\mathbb{Z} \text { and } R_{\mathcal{B}}=\{(n, m) \in \mathbb{Z} \times \mathbb{Z}: n<m\} \\
& U_{\mathcal{C}}=\mathbb{Q} \text { and } R_{\mathcal{C}}=\{(n, m) \in \mathbb{Q} \times \mathbb{Q}: n<m\}
\end{aligned}
$$

Give a formula that is satisfied by \mathcal{B} but not by \mathcal{A}, and a formula that is satisfied by \mathcal{C} but not by \mathcal{B}.
3. Translate the following formula to rectified form, then to prenex form, and finally to Skolem form:

$$
\forall z \exists y(Q(x, g(y), z) \vee \neg \forall x P(x)) \wedge \neg \forall z \exists x \neg R(f(x, z), z) .
$$

4. Are the following claims correct? Justify your answers.
(a) For any formula F and term t, if F is valid then $F[t / x]$ is valid.
(b) $\exists x(P(x) \rightarrow \forall y P(y))$ is valid.
(c) For any formula F and constant symbol c, if $F[c / x]$ is valid and c does not appear in F then $\forall x F$ is valid.
5. Let σ be a signature with finitely many relation and constant symbols, but no function symbols.
(a) Given σ-formulas G_{1}, \ldots, G_{n} and a propositional formula F that mentions variables P_{1}, \ldots, P_{n}, let $F\left[G_{1} / P_{1}, \ldots, G_{n} / P_{n}\right]$ denote the σ-formula obtained by substituting G_{i} for all occurrences of P_{i} in F. Give a formal definition of $F\left[G_{1} / P_{1}, \ldots, G_{n} / P_{n}\right]$.
(b) Given propositional formulas $F \equiv F^{\prime}$, both over variables P_{1}, \ldots, P_{n}, and σ-formulas $G_{1} \equiv G_{1}^{\prime}, \ldots, G_{n} \equiv G_{n}^{\prime}$, show that $F\left[G_{1} / P_{1}, \ldots, G_{n} / P_{n}\right] \equiv F^{\prime}\left[G_{1}^{\prime} / P_{1}, \ldots, G_{n}^{\prime} / P_{n}\right]$.
(c) Fix $n \in \mathbb{N}$. Show that up to logical equivalence there are only finitely many quantifierfree σ-formulas that use first-order variables x_{1}, \ldots, x_{n}.
(d) Fix $n, k \in \mathbb{N}$. Show that up to logical equivalence there are only finitely many σ-formulas of quantifier depth at most k that use first-order variables x_{1}, \ldots, x_{n}.
6. Fix a signature σ. Consider a relation \sim on σ-assignments that satisfies the following two properties:
(P1) If $\mathcal{A} \sim \mathcal{B}$ then for every atomic formula F we have $\mathcal{A} \models F$ iff $\mathcal{B} \models F$.
(P2) If $\mathcal{A} \sim \mathcal{B}$ then for each variable x we have (i) for each $a \in U_{\mathcal{A}}$ there exists $b \in U_{\mathcal{B}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$, and (ii) for all $b \in U_{\mathcal{B}}$ there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$.

Prove that if $\mathcal{A} \sim \mathcal{B}$ then for any formula $F, \mathcal{A} \models F$ if and only if $\mathcal{B} \models F$. You may assume that F is built from atomic formulas using the connectives \wedge and \neg and the quantifier \exists.
7. In this question we work with first-order logic without equality.
(a) Consider a signature σ containing only a binary relation symbol R. For each positive integer n show that there is a satisfiable σ-formula F_{n} such that every model \mathcal{A} of F_{n} has at least n elements.
(b) Consider a signature σ containing only unary predicate symbols P_{1}, \ldots, P_{k}. Using Question 6 , or otherwise, show that any satisfiable σ-formula has a model with at most 2^{k} elements.

