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Abstract. We consider two computational problems for linear recur-
rence sequences (LRS) over the integers, namely the Positivity Problem
(determine whether all terms of a given LRS are positive) and the ef-
fective Ultimate Positivity Problem (determine whether all but finitely
many terms of a given LRS are positive, and if so, compute an index
threshold beyond which all terms are positive). We show that, for simple
LRS (those whose characteristic polynomial has no repeated roots) of
order 9 or less, Positivity is decidable, with complexity in the Count-
ing Hierarchy, and effective Ultimate Positivity is solvable in polynomial
time.

1 Introduction

A (real) linear recurrence sequence (LRS) is an infinite sequence
u = 〈u0, u1, u2, . . .〉 of real numbers having the following property: there
exist constants a1, a2, . . . , ak (with ak 6= 0) such that, for all n ≥ 0,

un+k = a1un+k−1 + a2un+k−2 + . . .+ akun . (1)

If the initial values u0, . . . , uk−1 of the sequence are provided, the recur-
rence relation defines the rest of the sequence uniquely. Such a sequence
is said to have order k.1

The best-known example of an LRS was given by Leonardo of Pisa in
the 12th century: the Fibonacci sequence 〈0, 1, 1, 2, 3, 5, 8, 13, . . .〉, which
satisfies the recurrence relation un+2 = un+1 +un. Leonardo of Pisa intro-
duced this sequence as a means to model the growth of an idealised pop-
ulation of rabbits. Not only has the Fibonacci sequence been extensively
studied since, but LRS now form a vast subject in their own right, with
? This research was partially supported by EPSRC. We are also grateful to Matt Daws

for considerable assistance in the initial stages of this work.
1 Some authors define the order of an LRS as the least k such that the LRS obeys such

a recurrence relation. The definition we have chosen allows for a simpler presentation
of our results and is algorithmically more convenient.
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numerous applications in mathematics and other sciences. A deep and
extensive treatise on the mathematical aspects of recurrence sequences is
the recent monograph of Everest et al. [13].

Given an LRS u satisfying the recurrence relation (1), the charac-
teristic polynomial of u is

p(x) = xn − a1x
n−1 − . . .− ak−1x− ak .

An LRS is said to be simple if its characteristic polynomial has no re-
peated roots. Simple LRS, such as the Fibonacci sequence, possess a num-
ber of desirable properties which considerably facilitates their analysis—
see, e.g., [13, 14]. They constitute a large and well-studied class of se-
quences, and correspond to diagonalisable matrices in the matricial for-
mulation of LRS—see Section 2.

In this paper, we focus on two key computational problems for simple
LRS over the integers (or equivalently, for our purposes, the rationals):

– The Positivity Problem: given an LRS u, are all terms of u positive?
– The (effective) Ultimate Positivity Problem: given an LRS u,

are all but finitely many terms of u positive?2 Effectiveness requires
in addition that, when u is ultimately positive, a threshold beyond
which all terms are positive be explicitly produced.

As detailed in [28], these problems (and assorted variants) have ap-
plications in a wide array of scientific areas, including theoretical biology,
economics, software verification, probabilistic model checking, quantum
computing, discrete linear dynamical systems, combinatorics, formal lan-
guages, statistical physics, generating functions, etc.

Both Positivity and effective Ultimate Positivity bear an important
relationship to the well-known Skolem Problem: does a given LRS have a
zero? The decidability of the Skolem Problem is generally considered to
have been open since the 1930s (notwithstanding the fact that algorith-
mic decision issues had not at the time acquired the importance that they
have today—see [18] for a discussion on this subject; see also [36] and [21],
in which this state of affairs—the enduring openness of decidability for
the Skolem Problem—is described as “faintly outrageous” by Tao and a
“mathematical embarrassment” by Lipton). A breakthrough occurred in
the mid-1980s, when Mignotte et al. [25] and Vereshchagin [39] indepen-
dently showed decidability for real algebraic LRS of order 4 or less. These
2 Note that both problems come in two natural flavours, according to whether strict

or non-strict positivity is required. This paper focusses on the non-strict version,
but alternatives and extensions (including strictness) are discussed in Section 5.
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deep results make essential use of Baker’s theorem on linear forms in loga-
rithms (which earned Baker the Fields medal in 1970), as well as a p-adic
analogue of Baker’s theorem due to van der Poorten. Unfortunately, little
progress on that front has since been recorded.3

It is considered folklore that the decidability of either Positivity or
effective Ultimate Positivity (for arbitrary LRS) would entail that of the
Skolem Problem [28], noting however that the reduction increases the
order of LRS quadratically. Nevertheless, the earliest explicit references
in the literature to the Positivity and Ultimate Positivity Problems that
we have found are from the 1970s (see, e.g., [34, 33, 5]). In [34], the Skolem
and Positivity Problems are described as “very difficult”, whereas in [32],
the authors assert that the Skolem, Positivity, and Ultimate Positivity
Problems are “generally conjectured [to be] decidable”. Positivity and/or
Ultimate Positivity are again stated as open in [17, 4, 20, 22, 37, 28],
among others.

Unsurprisingly, progress on the Positivity and Ultimate Positivity
Problems has been fairly slow. In the early 1980s, Burke and Webb showed
that effective Ultimate Positivity is decidable for LRS of order 2 [9], and
nine years later Nagasaka and Shiue [26] showed the same for LRS of or-
der 3 that have repeated characteristic roots. Much more recently, Halava
et al. showed that Positivity is decidable for integer LRS of order 2 [17],
and three years later Laohakosol and Tangsupphathawat proved that both
Positivity and effective Ultimate Positivity are decidable for integer LRS
of order 3 [20]. In 2012, an article claiming to show decidability of Positiv-
ity for LRS of order 4 was published [35], with the authors noting being
unable to tackle the case of order 5. Unfortunately, as pointed out in [28]
and acknowledged by the authors themselves [19], that paper contains
a major error. Very recently, Positivity and effective Ultimate Positivity
were shown decidable for arbitrary integer LRS of order 5 or less [28],
with complexity in the Counting Hierarchy for the former and in poly-
nomial time for the latter; moreover, the same paper shows by way of
hardness that the decidability of either Positivity or Ultimate Positivity
for integer LRS of order 6 would entail major breakthroughs in analytic
number theory (certain Diophantine approximation problems long con-
sidered to be hard would become solvable). In [29], the authors show that
non-effective Ultimate Positivity for simple integer LRS of unrestricted
order is decidable within PSPACE, and in polynomial time if the order
is fixed.

3 A proof of decidability of Skolem’s Problem for LRS of order 5 was announced in [18].
However, as pointed out in [27], the proof seems to have a serious gap.
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The main results of this paper are as follows:4

– The Positivity Problem for simple integer LRS of order 9 or less is

decidable in coNPPPPPPP

, i.e., within the fourth level of the Counting
Hierarchy.

– The effective Ultimate Positivity Problem for simple integer LRS of
order 9 or less is decidable in polynomial time. When the LRS is
ultimately positive, an index threshold of at most exponential magni-
tude can be computed in polynomial time as well, beyond which the
remaining terms of the sequence are positive.

It is important to note the fundamental difference between the results
presented here—and in particular the effectiveness component of the de-
cidability of Ultimate Positivity for simple LRS of order 9 or less—with
those of [29], in which among others Ultimate Positivity is shown to be
decidable for simple LRS of all orders, but in a non-effective sense: no
threshold whatsoever is provided. In fact, as noted in [29], merely ob-
taining an effective threshold for Ultimate Positivity for simple LRS of
order at most 14 would immediately entail the decidability of the Skolem
problem for arbitrary LRS of order 5, a longstanding and major open
problem.

Comparison with Related Work. As this paper deals with linear re-
currence sequences, it naturally includes and summarises a certain amount
of standard and routine material on the subject. We also recall the state-
ments of various mathematical tools needed in our development, notably
Baker’s theorem on linear forms in logarithms, Masser’s results on mul-
tiplicative relationships among algebraic numbers, Kronecker’s theorem
on simultaneous Diophantine approximation, and Renegar’s work on the
fine-grained complexity of quantifier elimination in the first-order theory
of the reals.

Our overall approach is similar to that followed in [28], attacking
the problem using sophisticated tools from analytic and algebraic num-
ber theory, Diophantine geometry and approximation, and real algebraic
geometry. However the present paper makes vastly greater and deeper
use of real algebraic geometry, particularly in the form of Lemmas 11
4 The complexities are given as a function of the bit length of standard representations

of integer LRS of order k; for an LRS as defined by Equation (1), this representation
consists of the 2k-tuple (a1, . . . , ak, u0, . . . , uk−1) of integers.

Note also that the Counting-Hierarchy complexity class does not require paren-

thesising since co(NPPPPPPP

) = (coNP)PPPPPP

.
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and 12 (which serve to establish the key fact that certain varieties are
zero-dimensional, enabling our application of Baker’s theorem in higher
dimensions), and throughout the whole of Subsection 4.2, which handles
what is by far the most difficult and complex critical case in our analysis.
Both Lemmas 11 and 12, as well as the development of Subsection 4.2,
are entirely new.

The present paper also markedly differs from [29]. In fact, aside from
sharing standard material on LRS, the non-effective approach of [29] es-
chews most of the real-algebraic treatment of the present paper, as well
as Baker’s theorem, and is underpinned instead by non-constructive lower
bounds on sums of S-units, which in turn follow from deep results in Dio-
phantine approximation (Schlickewei’s p-adic generalisation of Schmidt’s
Subspace theorem). It is also worth noting that, due to its intrinsically
non-effective nature, it does not seem possible to use the approach of [29]
to decide the Positivity Problem for simple LRS of any order.

Section 2 summarises standard facts on LRS, and Section 3 presents
the main mathematical tools used in our development. A high-level over-
view of our proof strategy—split in two parts—can be found at the be-
ginning of Section 4; the remainder of the section is then devoted to the
proof of our main results. Various extensions and generalisations, along
with avenues for future work, are finally discussed in Section 5.

2 Linear Recurrence Sequences

We recall some fundamental properties of (simple) linear recurrence se-
quences. Results are stated without proof, and we refer the reader to [13,
18] for details.

Let u = 〈un〉∞n=0 be an LRS of order k over the reals satisfying the
recurrence relation un+k = a1un+k−1 + . . .+ akun, where without loss of
generality we may assume that ak 6= 0. We denote by ||u|| the bit length
of its representation as a 2k-tuple of integers, as discussed in the previous
section. The characteristic roots of u are the roots of its characteristic
polynomial (as defined earlier), and the dominant roots are the roots
of maximum modulus.

The characteristic roots divide naturally into ones that are real and
ones that are not. As we exclusively deal with LRS over the reals, the char-
acteristic polynomial has real coefficients and non-real roots therefore al-
ways come in conjugate pairs. Thus we may write {ρ1, . . . , ρ`, γ1, γ1, . . . , γm, γm}
to represent the set of characteristic roots of u, where each ρi ∈ R and
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each γj ∈ C \ R. If u is a simple LRS, there are algebraic constants
a1, . . . , a` ∈ R and c1, . . . , cm such that, for all n ≥ 0,

un =
∑̀
i=1

aiρ
n
i +

m∑
j=1

(
cjγ

n
j + cjγj

n
)
. (2)

This expression is referred to as the exponential polynomial solu-
tion of u. For fixed k, all constants ai and cj can be computed in time
polynomial in ||u||, since they can be obtained by solving a system of lin-
ear equations involving the first k instances of Equation (2). See Section 3
for further details on algebraic-number manipulations.

An LRS is said to be non-degenerate if it does not have two dis-
tinct characteristic roots whose quotient is a root of unity. As pointed out
in [13], the study of arbitrary LRS can effectively be reduced to that of
non-degenerate LRS, by partitioning the original LRS into finitely many
subsequences, each of which is non-degenerate. In general, such a reduc-
tion will require exponential time. However, when restricting ourselves to
LRS of bounded order (in our case, of order at most 9), the reduction
can be carried out in polynomial time. In particular, any LRS of order 9
or less can be partitioned in polynomial time into at most 3.9 · 107 non-
degenerate LRS of the same order or less.5 Note that if the original LRS is
simple, this process will yield a collection of simple non-degenerate subse-
quences. In the rest of this paper, we shall therefore assume that all LRS
we are given are non-degenerate.

Any LRS u of order k can alternately be given in matrix form, in
the sense that there is a square matrix M of dimension k × k, together
with k-dimensional column vectors v and w, such that, for all n ≥ 0,
un = vTMnw. It suffices to take M to be the transpose of the com-
panion matrix of the characteristic polynomial of u, let v be the vector
(uk−1, . . . , u0) of initial terms of u in reverse order, and take w to be
the vector whose first k − 1 entries are 0 and whose kth entry is 1. It is
worth noting that the characteristic roots of u correspond precisely to the
eigenvalues of M , and that if u is simple then M is diagonalisable. This
translation is instrumental in Section 4 to place the Positivity Problem
for simple LRS of order at most 9 within the counting hierarchy.

Conversely, given any square matrix M of dimension k × k, and any
k-dimensional vectors v and w, let un = vTMnw. Then 〈vTMnw〉∞n=k is
an LRS of order at most k whose characteristic polynomial divides that
5 We obtained this value using a bespoke enumeration procedure for order 9. A bound

of e2
√

6·9 log 9 ≤ 2.9 · 109 can be obtained from Corollary 3.3 of [40].
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of M , as can be seen by applying the Cayley-Hamilton Theorem.6 When
M is diagonalisable, the resulting LRS is simple.

3 Mathematical Tools

In this section we introduce the key technical tools used in this paper.
For p ∈ Z[x1, . . . , xm] a polynomial with integer coefficients, let us

denote by ||p|| the bit length of its representation as a list of coefficients
encoded in binary. Note that the degree of p is at most ||p||, and the height
of p—i.e., the maximum of the absolute values of its coefficients—is at
most 2||p||.

We begin by summarising some basic facts about algebraic numbers
and their (efficient) manipulation. The main references include [11, 3, 31].

A complex number α is algebraic if it is a root of a single-variable
polynomial with integer coefficients. The defining polynomial of α,
denoted pα, is the unique polynomial of least degree, and whose coeffi-
cients do not have common factors, which vanishes at α. The degree and
height of α are respectively those of pα.

A standard representation7 for algebraic numbers is to encode α as a
tuple comprising its defining polynomial together with rational approx-
imations of its real and imaginary parts of sufficient precision to distin-
guish α from the other roots of pα. More precisely, α can be represented
by (pα, a, b, r) ∈ Z[x]×Q3 provided that α is the unique root of pα inside
the circle in C of radius r centred at a + bi. A separation bound due to
Mignotte [24] asserts that for roots α 6= β of a polynomial p ∈ Z[x], we
have

|α− β| >
√

6
d(d+1)/2Hd−1

, (3)

where d and H are respectively the degree and height of p. Thus if r
is required to be less than a quarter of the root-separation bound, the
representation is well-defined and allows for equality checking. Given a
polynomial p ∈ Z[x], it is well-known how to compute standard represen-
tations of each of its roots in time polynomial in ||p|| [30, 11, 3]. Thus
given α an algebraic number for which we have (or wish to compute) a
standard representation, we write ||α|| to denote the bit length of this rep-
resentation. From now on, when referring to computations on algebraic
numbers, we always implicitly refer to their standard representations.
6 In fact, if none of the eigenvalues of M are zero, it is easy to see that the full sequence
〈vT Mnw〉∞n=0 is an LRS (of order at most k).

7 Note that this representation is not unique.
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Note that Equation (3) can be used more generally to separate ar-
bitrary algebraic numbers: indeed, two algebraic numbers α and β are
always roots of the polynomial pαpβ of degree at most the sum of the
degrees of α and β, and of height at most the product of the heights of α
and β.

Given algebraic numbers α and β, one can compute α+β, αβ, 1/α (for
non-zero α), α, and |α|, all of which are algebraic, in time polynomial in
||α||+ ||β||. Likewise, it is straightforward to check whether α = β. More-
over, if α ∈ R, deciding whether α > 0 can be done in time polynomial
in ||α||. Efficient algorithms for all these tasks can be found in [11, 3].

Remarkably, integer multiplicative relationships among a fixed num-
ber of algebraic numbers can be elicited systematically in polynomial
time:

Theorem 1. Let m be fixed, and let λ1, . . . , λm be complex algebraic
numbers of modulus 1. Consider the abelian group L under addition given
by

L = {(v1, . . . , vm) ∈ Zm : λv11 . . . λvm
m = 1} .

L has a basis {`1, . . . , `p} ⊆ Zm (with p ≤ m), where the entries of
each of the `j are all polynomially bounded in ||λ1||+. . .+||λm||. Moreover,
such a basis can be computed in time polynomial in ||λ1||+ . . .+ ||λm||.

Note in the above that the bound is on the magnitude of the entries
of the `j (rather than their bit length), which follows from a deep result
of Masser [23]. For a proof of Theorem 1, see also [15, 10].

We now turn to the first-order theory of the reals. Let x = (x1, . . . , xm)
and y = (y1, . . . , yr) be tuples of real-valued variables, and let σ(x,y) be a
Boolean combination of atomic predicates of the form g(x,y) ∼ 0, where
each g(x,y) ∈ Z[x,y] is a polynomial with integer coefficients over these
variables, and ∼ is either > or =. A formula of the first-order theory
of the reals is of the form

Q1x1 . . . Qmxm σ(x,y) , (4)

where each Qi is one of the quantifiers ∃ or ∀. Let us denote the above
formula by τ(y), whose free variables are contained in y. When τ has no
free variables, we refer to it as a sentence. Naturally, ||τ(y)|| denotes
the bit length of the syntactic representation of the formula, and the
degree and height of τ(y) refer to the maximum degree and height of
the polynomials g(x,y) appearing in τ(y).
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Tarski [38] famously showed that the first-order theory of the reals
admits quantifier elimination: that is, given τ(y) as above, there is a
quantifier-free formula χ(y) that is equivalent to τ : for any tuple ŷ =
(ŷ1, . . . , ŷr) ∈ Rr of real numbers, τ(ŷ) holds iff χ(ŷ) holds. An immediate
corollary is that the first-order theory of the reals is decidable.

Tarski’s procedure, however, has non-elementary complexity. Many
substantial improvements followed over the years, starting with Collins’s
technique of cylindrical algebraic decomposition [12]. For our purposes,
we require bounds not only on the computation time, but also on the
degree and height of the resulting equivalent quantifier-free formula, as
well as on the number of atomic predicates it comprises. Such bounds
are available thanks to the work of Renegar [31]. In this paper, we focus
exclusively on the situation in which the number of variables is uniformly
bounded.

Theorem 2 (Renegar). Let M ∈ N be fixed. Let τ(y) be of the form (4)
above. Assume that the number of (free and bound) variables in τ(y) is
bounded by M (i.e., m+ r ≤M). Denote the degree of τ(y) by d and the
number of atomic predicates in τ(y) by n.

Then there is a procedure which computes an equivalent quantifier-free
formula

χ(y) =
I∨
i=1

Ji∧
j=1

hi,j(y) ∼i,j 0

in disjunctive normal form, where each ∼i,j is either > or =, with the
following properties:

1. Each of I and Ji (for 1 ≤ i ≤ I) is bounded by (nd)O(1);
2. The degree of χ(y) is bounded by (nd)O(1);
3. The height of χ(y) is bounded by 2||τ(y)||(nd)O(1)

.

Moreover, this procedure runs in time polynomial in ||τ(y)||.

Note in particular that, when τ is a sentence, its truth value can be
determined in polynomial time.

Theorem 2 follows immediately from Theorem 1.1 (for the case in
which τ is a sentence) and Theorem 1.2 of [31].

Our next result is a special case of Kronecker’s famous theorem on
simultaneous Diophantine approximation, a statement and proof of which
can be found in [7, Chap. 7, Sec. 1.3, Prop. 7].

For x ∈ R, write [x]2π to denote the distance from x to the closest
integer multiple of 2π: [x]2π = min{|x− 2πj| : j ∈ Z}.
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Theorem 3 (Kronecker). Let t1, . . . , tm, x1, . . . , xm ∈ [0, 2π). The fol-
lowing are equivalent:

1. For any ε > 0, there exists n ∈ Z such that, for 1 ≤ j ≤ m, we have
[ntj − xj ]2π ≤ ε.

2. For every tuple (v1, . . . , vm) of integers such that [v1t1+. . .+vmtm]2π =
0, we have [v1x1 + . . .+ vmxm]2π = 0.

We can strengthen Theorem 3 by requiring that n ∈ N in the first
assertion. Indeed, suppose that in a given instance, we find that n < 0.
A straightforward pigeonhole argument shows that there exist arbitrarily
large positive integers g such that [gtj ]2π ≤ ε for 1 ≤ j ≤ m. It follows
that [(g + n)tj − xj ]2π ≤ 2ε, which establishes the claim for sufficiently
large g (noting that ε is arbitrary).

Let λ1, . . . , λm be complex algebraic numbers of modulus 1. For each
j ∈ {1, . . . ,m}, write λj = eiθj for some θj ∈ [0, 2π). Let

L = {(v1, . . . , vm) ∈ Zm : λv11 . . . λvm
m = 1}

= {(v1, . . . , vm) ∈ Zm : [v1θ1 + . . .+ vmθm]2π = 0} .

Recall from Theorem 1 that L is an abelian group under addition with
basis {`1, . . . , `p} ⊆ Zm, where p ≤ m.

For each j ∈ {1, . . . , p}, let `j = (`j,1, . . . , `j,m). Write

R = {x = (x1, . . . , xm) ∈ [0, 2π)m : [`j · x]2π = 0 for 1 ≤ j ≤ p} .

By Theorem 3, for an arbitrary tuple (x1, . . . , xm) ∈ [0, 2π)m, it is the
case that, for all ε > 0, there exists n ∈ N such that, for j ∈ {1, . . . ,m},
[nθj − xj ]2π ≤ ε iff (x1, . . . , xm) ∈ R.

Now observe that (x1, . . . , xm) ∈ R iff (eix1 , . . . , eixm) ∈ T , where

T = {(z1, . . . , zm) ∈ Cm : |z1| = . . . = |zm| = 1 and,

for each j ∈ {1, . . . , p}, z`j,1

1 . . . z
`j,m
m = 1} .

Since einθj = λnj , we immediately have the following:

Corollary 4. Let λ1, . . . , λm and T be as above. Then {(λn1 , . . . , λnm) :
n ∈ N} is a dense subset of T .

Finally, we give a version of Baker’s deep theorem on linear forms in
logarithms. The particular statement we have chosen is a sharp formula-
tion due to Baker and Wüstholz [2].

In what follows, log refers to the principal value of the complex loga-
rithm function given by log z = log |z|+ i arg z, where −π < arg z ≤ π.
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Theorem 5 (Baker and Wüstholz). Let α1, . . . , αm ∈ C be algebraic
numbers different from 0 or 1, and let b1, . . . , bm ∈ Z be integers. Write

Λ = b1 logα1 + . . .+ bm logαm .

Let A1, . . . , Am, B ≥ e be real numbers such that, for each j ∈ {1, . . . ,m},
Aj is an upper bound for the height of αj, and B is an upper bound for
|bj |. Let d be the degree of the extension field Q(α1, . . . , αm) over Q.

If Λ 6= 0, then log |Λ| > −(16md)2(m+2) logA1 . . . logAm logB.

Corollary 6. There exists D ∈ N such that, for any algebraic numbers
λ, ζ ∈ C of modulus 1, and for all n ≥ 2, whenever λn 6= ζ, then

|λn − ζ| > 1
n(||λ||+||ζ||)D .

Proof. We can clearly assume that λ 6= 1, otherwise the result follows
immediately from Equation (3). Likewise, the case ζ = 1 is easily handled
along the same lines as the proof below, so we assume ζ 6= 1.

Let θ = arg λ and ϕ = arg ζ. Then for all n ∈ N, there is j ∈ Z with
|j| ≤ n such that

|λn − ζ| > 1
2
|nθ − ϕ− 2jπ| = 1

2
|n log λ− log ζ − 2j log(−1)| .

Let H ≥ e be an upper bound for the heights of λ and ζ, and let d
be the largest of the degrees of λ and ζ. Notice that the degree of Q(λ, ζ)
over Q is at most d2. Applying Theorem 5 to the right-hand side of the
above equation, we get

|λn−ζ| > 1
2

exp
(
−(48d2)10 log2H log(2n+ 1)

)
=

1
2(2n+ 1)(log2H)(48d2)10

.

for n ≥ 1, provided λn 6= ζ.
The required result follows by noting that logH ≤ ||λ|| + ||ζ|| and

d ≤ ||λ||+ ||ζ||. ut

Finally, we record the following fact, whose straightforward proof is
left to the reader.

Proposition 7. Let a ≥ 2 and ε ∈ (0, 1) be real numbers. Let B ∈ Z[x]
have degree at most aD1 and height at most 2a

D2 , and assume that 1/ε ≤
2a

D3 , for some D1, D2, D3 ∈ N. Then there is D4 ∈ N depending only on

D1, D2, D3 such that, for all n ≥ 2a
D4 ,

1
B(n)

> (1− ε)n.
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4 Decidability and Complexity

Let u = 〈un〉∞n=0 be an integer LRS of order k. As discussed in the
Introduction, we assume that u is presented as a 2k-tuple of integers
(a1, . . . , ak, u0, . . . , uk−1) ∈ Z2k, such that for all n ≥ 0,

un+k = a1un+k−1 + . . .+ akun . (5)

The Positivity Problem asks, given such an LRS u, whether for
all n ≥ 0, it is the case that un ≥ 0. When this holds, we say that u is
positive.

The (effective) Ultimate Positivity Problem asks, given such an
LRS u, whether there exists a threshold N ≥ 0 such that, for all n ≥ N ,
it is the case that un ≥ 0. When this holds, we say that u is ultimately
positive. Effectiveness requires in addition that the threshold N be ex-
plicitly produced.

In this section, we establish the following main results:

Theorem 8. The Positivity Problem for simple integer LRS of order 9

or less is decidable in coNPPPPPPP

.

Theorem 9. The effective Ultimate Positivity Problem for simple integer
LRS of order 9 or less is decidable in polynomial time. When the LRS is
ultimately positive, an index threshold of at most exponential magnitude
can be computed in polynomial time as well, beyond which the remaining
terms of the sequence are positive.

Note that deciding whether the characteristic roots are simple can
easily be done in polynomial time.

Observe also that the above results immediately carry over to rational
LRS. To see this, consider a rational LRS u obeying the recurrence rela-
tion (5). Let ` be the least common multiple of the denominators of the
rational numbers a1, . . . , ak, u0, . . . , uk−1, and define an integer sequence
v = 〈vn〉∞n=0 by setting vn = `n+1un for all n ≥ 0. It is easily seen that
v is an integer LRS of the same order as u, and that for all n, vn ≥ 0 iff
un ≥ 0. Moreover, v is simple iff u is simple.

Positivity—High-Level Synopsis. At a high level, the algorithm upon
which Theorem 8 rests proceeds as follow. Given an LRS u, we first
decide whether or not u is ultimately positive by studying its exponential
polynomial solution—further details on this task are provided below. We
show that whenever u is an ultimately positive LRS of order 9 or less,
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there is an effective bound N of at most exponential magnitude such
that all terms of u beyond N are positive. Next, observe that u cannot
be positive unless it is ultimately positive. Now in order to assert that
an ultimately positive LRS u is not positive, we use a guess-and-check
procedure: find n ≤ N such that un < 0. By writing un = vTMnw, for
some square integer matrix M and vectors v and w (cf. Section 2), we can
decide whether un < 0 in PosSLP8 via iterative squaring, which yields an
NPPosSLP procedure for non-Positivity. Thanks to the work of Allender

et al. [1], which asserts that PosSLP ⊆ PPPPPPP

, we obtain the required

coNPPPPPPP

algorithm for deciding Positivity.

The following is an old result concerning LRS; proofs can be found
in [16, Thm. 7.1.1] and [4, Thm. 2]. It also follows easily and directly from
either Pringsheim’s theorem or from [8, Lem. 4]. It plays an important role
in our approach by enabling us to significantly cut down on the number of
subcases that must be considered, avoiding the sort of quagmire alluded
to in [26].

Proposition 10. Let 〈un〉∞n=0 be an LRS with no real positive dominant
characteristic root. Then there are infinitely many n such that un < 0
and infinitely many n such that un > 0.

By Proposition 10, it suffices to restrict our attention to LRS whose
dominant characteristic roots include one real positive value. Given an
integer LRS u, note that determining whether the latter holds is easily
done in time polynomial in ||u||.

Thus let u be a non-degenerate simple integer LRS of order k ≤ 9
having a real positive dominant characteristic root ρ > 0. Note that u
cannot have a real negative dominant characteristic root (which would be
−ρ), since otherwise the quotient −ρ/ρ = −1 would be a root of unity,
contradicting non-degeneracy. Let us therefore write the characteristic
roots as {ρ, γ1, γ1, . . . , γm, γm} ∪ {γm+1, γm+2, . . . , γ`}, where we assume
that the roots in the first set all have common modulus ρ, whereas the
roots in the second set all have modulus strictly smaller than ρ.

Let λi = γi/ρ for 1 ≤ i ≤ `. We can then write

un
ρn

= a+
m∑
j=1

(
cjλ

n
j + cjλj

n
)

+ r(n) , (6)

8 Recall that PosSLP is the problem of determining whether an arithmetic circuit,
with addition, multiplication, and subtraction gates, evaluates to a positive integer.
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for some real algebraic constant a and complex algebraic constants c1, . . . , cm,
where r(n) is a term tending to zero exponentially fast.

Note that none of λ1, . . . , λm, all of which have modulus 1, can be
a root of unity, as each λi is a quotient of characteristic roots and u
is assumed to be non-degenerate. Likewise, for i 6= j, λi/λj and λi/λj
cannot be roots of unity.

For i ∈ {1, . . . , `}, observe also that as each λi is a quotient of two roots
of the same polynomial of degree k, it has degree at most k(k−1). In fact,
it is easily seen that ||λi|| = ||u||O(1), ||a|| = ||u||O(1), and ||ci|| = ||u||O(1).

Finally, we place bounds on the rate of convergence of r(n). We have
r(n) = cm+1λ

n
m+1 + . . . + c`λ

n
` . Combining our estimates on the height

and degree of each λi together with the root-separation bound given by
Equation (3), we get

∣∣∣ 1
1−λi

∣∣∣ = 2||u||
O(1)

, for m+ 1 ≤ i ≤ `. Thanks also to
the bounds on the height and degree of the constants ci, it follows that
we can find ε ∈ (0, 1) and N ∈ N such that:

1/ε = 2||u||
O(1)

(7)

N = 2||u||
O(1)

(8)
For all n > N, |r(n)| < (1− ε)n . (9)

In addition, we can compute such ε and N in time polynomial in ||u||.
Naturally, given k, we can also assume that we have calculated explicitly
once and for all the constants implicit in the various instances of the O(1)
notation.

We now seek to answer Positivity and Ultimate Positivity questions
for the LRS u = 〈un〉∞n=0 by studying the same for 〈un/ρn〉∞n=0.

In what follows, we assume that u is as given above; in particular, u
is a non-degenerate simple integer LRS having a real positive dominant
characteristic root ρ > 0.

Effective Ultimate Positivity—High-Level Synopsis. Before launch-
ing into technical details, let us provide a high-level overview of our proof
strategy for deciding Ultimate Positivity. Let us rewrite Equation (6) as

un
ρn

= a+ h(λn1 , . . . , λ
n
m) + r(n) , (10)

where h : Cm → R is a continuous function. In general, there will be
integer multiplicative relationships among the λ1, . . . , λm, for which we
can compute a basis B thanks to Theorem 1. These multiplicative rela-
tionships define a torus T ⊆ Cm on which the joint iterates (λn1 , . . . , λ

n
m)

are dense, as per Kronecker’s theorem (in the form of Corollary 4).
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Now the critical case arises when

a+ minh�T = 0 ,

where h�T denotes the function h restricted to the torus T . Provided
that h�T achieves its minimum −a at only finitely many points, we can
use Baker’s theorem (in the form of Corollary 6) to bound the iterates
(λn1 , . . . , λ

n
m) away from these points by an inverse polynomial in n. By

combining Renegar’s results (Theorem 2) with techniques from real al-
gebraic geometry, we then argue that h(λn1 , . . . , λ

n
m) is itself eventually

bounded away from the minimum −a by a (different) inverse polynomial
in n, and since r(n) decays to zero exponentially fast, we are able to
conclude that un/ρn is ultimately positive, and can compute a bound N
after which all terms un (for n > N) are positive.

Note in the above that a key component is the requirement that h�T
achieve its minimum at finitely many points. Lemmas 11 and 12 show that
this is the case provided that B, the basis of the integer multiplicative
relationships among the λ1, . . . , λm, has cardinality 0, 1, m− 1, or m. In
fact, simple counterexamples can be manufactured in the other instances,
which seems to preclude the use of Baker’s theorem. Since non-real char-
acteristic roots always come in conjugate pairs, the earliest appearance of
this vexing state of affairs is at order 10: one real dominant root, m = 4
pairs of complex dominant roots, one non-dominant root ensuring that
the term r(n) is not identically 0, and a basis B of cardinality 2. The
difficulty encountered there is highly reminiscent of (if technically differ-
ent from) that of the critical unresolved case for the Skolem Problem at
order 5, as described in [27].

Let us begin by stating and proving Lemmas 11 and 12, which con-
stitute the cornerstone of our approach involving Baker’s theorem.

Lemma 11. Let a1, . . . , am ∈ R and ϕ1, . . . , ϕm ∈ R be two collections
of real numbers, with each of the ai non-zero, and let `1, . . . , `m ∈ Z be m
integers. Define f, g : Rm → R by setting

f(x1, . . . , xm) =
m∑
i=1

ai cos(xi + ϕi) and g(x1, . . . , xm) =
m∑
i=1

`ixi .

Assume that g(x1, . . . , xm) is not of the form `(xi±xj), for some non-zero
` ∈ Z and indices i 6= j. Let ψ ∈ R.

Then the function f , subject to the constraint g(x1, . . . , xm) = ψ,
achieves its minimum at only finitely many points over the domain [0, 2π)m.
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Proof. We will establish the slightly stronger statement that f , subject
to the constraint g = ψ, achieves its minimum over Rm only finitely often
modulo 2π.

Note that by performing the substitutions x′i = xi+ϕi (for 1 ≤ i ≤ m)
and ψ′ = ψ +

∑m
i=1 ϕi, and rephrasing the statement in terms of the

primed variables and constant ψ′, we see that we may assume without
loss of generality that each ϕi = 0.

Observe that if each `i = 0 (corresponding to there being no con-
straint), the result is immediate: f is minimised when each xi is either an
odd or even multiple of π, depending on the sign of ai. Without loss of
generality, let us therefore assume that `1 is non-zero. The case of m = 1
is also immediate, since the constraint then reduces the domain of the
unique variable x1 to a singleton. Let us therefore assume that m ≥ 2.

We use the method of Lagrange multipliers. Minima of f subject to
the constraint g = ψ must satisfy ∇f = λ∇g for some λ ∈ R, i.e.,
−ai sinxi = λ`i, for 1 ≤ i ≤ m. Note that λ must satisfy |λ| ≤ |ai|

|`i| for all
1 ≤ i ≤ m. Observe also that each choice of λ gives rise to only finitely
many choices of x1, . . . , xm (modulo 2π) which satisfy these equations.

From −ai sinxi = λ`i, it follows that cos2 xi = 1− λ2`2i
a2

i
. Taking square

roots gives us 2m choices of signs, and for each choice let us write

f̃(λ) =
m∑
i=1

±ai

√
1− λ2

`2i
a2
i

.

Let us denote by µ the global minimum of f subject to g = ψ. Suppose
that there are infinitely many values of (x1, . . . , xm) (modulo 2π) such
that g(x1, . . . , xm) = ψ and f(x1, . . . , xm) = µ. It then follows that, for
some fixed choice of signs, there must be infinitely many values of λ such
that f̃(λ) = µ.

Assume without loss of generality that |a1|
|`1| ≤

|ai|
|`i| for 2 ≤ i ≤ m. Notice

that f̃(λ) is analytic (equal to its Taylor power series) on (−|a1|
|`1| ,

|a1|
|`1| ). Now

if the set of λ such that f̃(λ) = µ has an accumulation point in (−|a1|
|`1| ,

|a1|
|`1| ),

then f̃ is identically equal to µ on [−|a1|
|`1| ,

|a1|
|`1| ]. Thus in any case the set of

λ such that f̃(λ) = µ must have an accumulation point at |a1|
|`1| .

Observe that if |a1|
|`1| <

|ai|
|`i| for all 2 ≤ i ≤ m, then a contradiction is

reached as f̃ cannot infinitely often take on the constant value µ as λ
approaches |a1|

|`1| . To see this, examine the derivative of each term of the
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form
√

1− λ2 `
2
i

a2
i
: they remain bounded for i 6= 1, but tends to −∞ for

i = 1.
Let I be the set of indices i ∈ {1, . . . ,m} such that |ai|

|`i| = |a1|
|`1| . By the

same argument as above, for the given choice of signs in f̃ , we must have∑
i∈I
± ai = 0, and therefore for all λ ∈ [−|a1|

|`1| ,
|a1|
|`1| ],

f̃(λ) =
∑
i/∈I

±ai

√
1− λ2

`2i
a2
i

. (11)

Observe that |I| ≥ 2. Two cases now arise, according to whether
(i) |I| ≥ 3 or (ii) |I| = 2. In both cases, we derive a contradiction by
showing that f subject to g = ψ can achieve a value strictly lower than
µ.

(i) Suppose without loss of generality that I = {1, 2, . . . , p}, where
p ≥ 3, and that |ap| ≤ |ai| for 1 ≤ i ≤ p − 1. Pick x̂1, . . . , x̂m ∈ R
such that f(x̂1, . . . , x̂m) = µ and g(x̂1, . . . , x̂m) = ψ. There is some value
λ̂ ∈ [−|a1|

|`1| ,
|a1|
|`1| ] such that −ai sin x̂i = λ̂`i, for 1 ≤ i ≤ m. Now for the

given choice of signs in f̃ ,

p∑
i=1

±ai

√
1− λ̂2

`2i
a2
i

= 0 and
m∑

i=p+1

±ai

√
1− λ̂2

`2i
a2
i

= µ ,

or equivalently,

p∑
i=1

ai cos x̂i = 0 and
m∑

i=p+1

ai cos x̂i = µ . (12)

In order to make f assume a value strictly smaller than µ, pick
x̌1, . . . , x̌p−1 to be π or 0 depending respectively on the signs of a1, . . . , ap−1,
and pick x̌p so that g(x̌1, . . . , x̌p, x̂p+1, . . . , x̂m) = ψ (noting that `p 6= 0
since p ∈ I). Then

p∑
i=1

ai cos x̌i ≤ −

(
p−1∑
i=1

|ai|

)
+ |ap| < 0 ,

where the strict inequality follows from the fact that p ≥ 3 and |ap| ≤ |ai|
for 1 ≤ i ≤ p− 1.
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It then follows by the right-hand side of (12) that

f(x̌1, . . . , x̌p, x̂p+1, . . . , x̂m) < µ ,

concluding Case (i).
(ii) Without loss of generality, let us have I = {1, 2}, so that |a1| = |a2|

and |`1| = |`2|. Note that we then cannot have `3, . . . , `m all zero, other-
wise g would be of the form `1(x1 ± x2), violating one of our hypotheses.
It therefore also follows that m ≥ 3.

We can thus assume without loss of generality that `3 is non-zero,
and furthermore that |a3|

|`3| ≤
|ai|
|`i| for 4 ≤ i ≤ m. From Equation (11), we

see that f̃ can be analytically extended to the larger domain (−|a3|
|`3| ,

|a3|
|`3| ),

and by a similar line of reasoning as earlier, we can then conclude that
there must be a non-empty set J ⊆ {3, . . . ,m} such that, for all j ∈ J ,
|aj |
|`j | = |a3|

|`3| and moreover
∑
j∈J
± aj = 0 for the given choice of signs in f̃ .

We can therefore write

f̃(λ) =
∑
i/∈I∪J

±ai

√
1− λ2

`2i
a2
i

.

But this situation is entirely similar to Case (i) since |I∪J | ≥ 3, which
concludes Case (ii) and the proof of Lemma 11. ut

Lemma 12. Let u be a non-degenerate simple LRS, with dominant char-
acteristic roots ρ ∈ R and γ1, γ1, . . . , γm, γm ∈ C \ R. Write λi = γi/ρ
for 1 ≤ i ≤ m, and let L = {(v1, . . . , vm) ∈ Zm : λv11 . . . λvm

m = 1}.
Let {`1, . . . , `m−1} be a basis for L of cardinality m − 1, and write
`j = (`j,1, . . . , `j,m) for 1 ≤ j ≤ m− 1. Let

M =


`1,1 `1,2 . . . `1,m−1 `1,m
`2,1 `2,2 . . . `2,m−1 `2,m

...
...

. . .
...

...
`m−1,1 `m−1,2 . . . `m−1,m−1 `m−1,m

 .

Let a1, . . . , am ∈ R and ϕ1, . . . , ϕm ∈ R be two collections of m real
numbers, with each of the ai non-zero, and let q = (q1, . . . , qm−1) ∈ Zm−1

be a column vector of m−1 integers. Let us further write x = (x1, . . . , xm)
to denote a column vector of m real-valued variables.

Then the function

f(x1, . . . , xm) =
m∑
i=1

ai cos(xi + ϕi) ,
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subject to the constraint Mx = 2πq, achieves its minimum at only finitely
many points over the domain [0, 2π)m.

Proof. By repeatedly making use of the following row operations:

1. Swapping two rows,
2. Multiplying any row by a non-zero integer, and
3. Adding to any row any integer linear combination of any of the other

rows,

we can transform the augmented matrix (M |q) into the matrix

(N |p) =


n1,1 0 . . . . . . . . . . . . . 0 b1

0 n2,2 0 . . . . . . . . . 0 b2
...

. . . . . . . . .
...

...
0 . . . 0 nm−2,m−2 0 bm−2

0 . . . . . . . 0 nm−1,m−1 bm−1

∣∣∣∣∣∣∣∣∣∣∣

p1

p2
...

pm−2

pm−1

 .

In the above, all entries are integer. Without loss of generality (rela-
belling variables and constants if necessary), we can assume that this was
achieved without the need for any row-swapping operations.

Note that the rows of N remain in L (though need no longer form
a basis). Hence for each i ∈ {1, . . . ,m − 1}, the λ1, . . . , λm satisfy the
equation λ

ni,i

i λbim = 1. Since N has rank m − 1, no row can be 0. From
this and the fact that the LRS u is non-degenerate we may conclude that
no ni,i can be zero (otherwise λm would be a root of unity), and likewise
no bi can be zero (otherwise λi would be a root of unity). Furthermore, we
can never have ni,i = −bi (otherwise λi/λm would be a root of unity) nor
can we have ni,i = bi (otherwise λi/λm would be a root of unity). In other
words, we always have n2

i,i 6= b2i . Finally, for i 6= j, bi
ni,i
6= bj

nj,j
: indeed,

since λni,i

i λbim = 1, we have λni,ibj
i λ

bibj
m = 1, and likewise λnj,jbi

j λ
bibj
m = 1,

from which we deduce that λni,ibj
i = λ

nj,jbi
j . But if we had bi

ni,i
= bj

nj,j
,

it would follow that λi/λj is a root of unity. Similarly, by noting that
λj
−nj,j = λ

nj,j

j and repeating the calculation, we deduce that bi
ni,i
6= − bj

nj,j

for i 6= j. Combining the last two disequalities, we have that b2i
n2

i,i
6= b2j

n2
j,j

for i 6= j.
It is clear that the constraints Mx = 2πq and Nx = 2πp are equiva-

lent. From the latter, we may write xi = pi

ni,i
− bi

ni,i
xm for 1 ≤ i ≤ m− 1.
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For ease of notation, let us set

di = − bi
ni,i

for 1 ≤ i ≤ m− 1, and dm = 1 ;

νi =
pi
ni,i

+ ϕi for 1 ≤ i ≤ m− 1, and νm = ϕm .

From our earlier observations, let us record that:

1. Each di is non-zero, and
2. For 1 ≤ i < j ≤ m, we have d2

i 6= d2
j .

Indeed, we have already seen that the second assertion holds when j ≤
m− 1. But since n2

i,i 6= b2i , for 1 ≤ i ≤ m− 1 we have that d2
i 6= 1 = d2

m.
Substituting into f yields

f̃(xm) =
m∑
i=1

ai cos(dixm + νi) ,

where f̃ is now unconstrained. Since any value of xm in [0, 2π) minimising
f̃ yields at most one point in [0, 2π)m at which f is minimal, it remains
to show that f̃ can achieve its minimum only finitely often over [0, 2π).

Thus suppose, to the contrary, that f̃ achieves its global minimum at
infinitely many points in [0, 2π). These points must accumulate, and since
f̃ is analytic over R, f̃ must be identically equal to its minimum all over
the reals. It follows that derivatives of all orders must vanish everywhere.
Now for j ≥ 1, the (2j − 1)th derivative of f̃ is given by

f (2j−1)(xm) =
m∑
i=1

(−1)jd2j−1
i ai sin(dixm + νi) .

Writing

D =


1 1 . . . . . . . 1
−d2

1 −d2
2 . . . . . . . −d2

m

d4
1 d4

2 . . . . . . . d4
m

...
...

...
...

(−1)m−1d
2(m−1)
1 (−1)m−1d

2(m−1)
2 . . . (−1)m−1d

2(m−1)
m

 ,

we therefore have that
f (1)(xm)
f (3)(xm)

...
f (2m−1)(xm)

 = D


−d1a1 sin(d1xm + ν1)
−d2a2 sin(d2xm + ν2)

...
−dmam sin(dmxm + νm)

 =


0
0
...
0


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must hold for all xm ∈ R.
But this is a contradiction since D is a Vandermonde matrix which is

invertible (given that for i 6= j, we have −d2
i 6= −d2

j ) and the vector
−d1a1 sin(d1xm + ν1)
−d2a2 sin(d2xm + ν2)

...
−dmam sin(dmxm + νm)


clearly cannot be identically 0. ut

We now proceed with the algorithm for deciding Positivity and Ulti-
mate Positivity. Recall that we are given a non-degenerate simple LRS
u of order most 9, with a real positive dominant characteristic root
ρ > 0 and complex dominant roots γ1, γ1, . . . , γm, γm ∈ C \ R. We write
λj = γj/ρ for 1 ≤ j ≤ m.

Since the number of dominant roots is odd and at most 9, we split
our analysis into two cases, there being exactly 9 dominant roots (Sub-
section 4.1), and there being 7 or fewer dominant roots (Subsection 4.2).
Our starting point is Equation (6).

Let L = {(v1, . . . , vm) ∈ Zm : λv11 . . . λvm
m = 1}, and let {`1, . . . , `p} be

a basis for L of cardinality p. Write `q = (`q,1, . . . , `q,m) for 1 ≤ q ≤ p.
Recall from Theorem 1 that such a basis may be computed in polynomial
time, and moreover that each `q,j may be assumed to have magnitude
polynomial in ||u||.

4.1 Nine Dominant Roots.

If u has 9 dominant roots, then m = 4 and r(n) is identically 0 in Equa-
tion (6).

Write

T = {(z1, . . . , z4) ∈ C4 : |z1| = . . . = |z4| = 1 and,

for each q ∈ {1, . . . , p}, z`q,1

1 . . . z
`q,4

4 = 1} .

Define h : T → R by setting h(z1, . . . , z4) =
∑4

j=1(cjzj+cjzj), so that
for all n, un/ρn = a+h(λn1 , . . . , λ

n
4 ). By Corollary 4, the set {(λn1 , . . . , λn4 ) :

n ∈ N} is a dense subset of T . Since h is continuous, we immediately have
that inf{un/ρn : n ∈ N} = a + minh�T . It follows that u is ultimately
positive iff u is positive iff minh�T ≥ −a iff

∀(z1, z2, z3, z4) ∈ T, h(z1, z2, z3, z4) ≥ −a . (13)
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We now show how to rewrite Assertion (13) as a sentence in the
first-order theory of the reals, i.e., involving only real-valued variables
and first-order quantifiers, Boolean connectives, and integer constants
together with the arithmetic operations of addition, subtraction, multi-
plication, and division.9 The idea is to separately represent the real and
imaginary parts of each complex quantity appearing in Assertion (13),
and combine them using real arithmetic so as to mimic the effect of com-
plex arithmetic operations.

To this end, we use two real variables xj and yj to represent each of the
zj : intuitively, zj = xj+iyj . Since the real constant a is algebraic, there is
a formula σa(x) which is true over the reals precisely for x = a. Likewise,
the real and imaginary parts Re(cj) and Im(cj) of the complex algebraic
constants cj are themselves real algebraic, and can be represented as
formulas in the first-order theory of the reals. All such formulas can readily
be shown to have size polynomial in ||u||.

Terms of the form z
`q,j

j are simply expanded: for example, if `q,j is

positive, then z`q,j

j = (xj + iyj)`q,j = Aq,j(xj) + iBq,j(yj), where A and B
are polynomials with integer coefficients. Note that since the magnitude
of `q,j is polynomial in ||u||, so are ||A|| and ||B||. The case in which
`q,j is negative is handled similarly, with the additional use of a division
operation.

Combining everything, we obtain a sentence τ of the first-order theory
of the reals with division which is true iff Assertion (13) holds. τ makes
use of at most 17 real variables: two for each of z1, . . . , z4, one for a, and
one for each of Re(c1), Im(c1), . . . ,Re(c4), Im(c4). In removing divisions
from τ , the number of variables potentially swells to 29. Finally, the size
of τ is polynomial in ||u||. We can therefore invoke Theorem 2 to conclude
that Assertion (13) can be decided in time polynomial in ||u||.

4.2 Seven or Fewer Dominant Roots.

We now turn to the situation in which u has 7 dominant roots, so that
m = 3 in Equation (6). The cases of 1, 3, and 5 dominant roots are very
similar—if slightly simpler—and are therefore omitted.

9 In Section 3, we did not have division as an allowable operation when we intro-
duced the first-order theory of the reals; however instances of division can always
be removed in linear time at the cost of introducing a linear number of existentially
quantified fresh variables.
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As before, let us write

T = {(z1, z2, z3) ∈ C3 : |z1| = |z2| = |z3| = 1 and,

for each q ∈ {1, . . . , p}, z`q,1

1 z
`q,2

2 z
`q,3

3 = 1} .

Define h : T → R by setting h(z1, z2, z3) =
∑3

j=1(cjzj + cjzj), so that
for all n,

un

ρn
= a+ h(λn1 , λ

n
2 , λ

n
3 ) + r(n) . (14)

By Corollary 4, the set {(λn1 , λn2 , λn3 ) : n ∈ N} is a dense subset of T . Since
h is continuous, we have inf{h(λn1 , λ

n
2 , λ

n
3 ) : n ∈ N} = minh�T = µ, for

some µ ∈ R.
We can represent µ via the following formula τ(y):

∃(ζ1, ζ2, ζ3) ∈ T (h(ζ1, ζ2, ζ3) = y ∧ ∀(z1, z2, z3) ∈ T, y ≤ h(z1, z2, z3)) .

Similarly to the translation carried out in Section 4.1, we can construct
an equivalent formula τ ′(y) in the first-order theory of the reals, over a
bounded number of real variables, with ||τ ′(y)|| = ||u||O(1). According
to Theorem 2, we can then compute in polynomial time an equivalent
quantifier-free formula

χ(y) =
I∨
i=1

Ji∧
j=1

hi,j(y) ∼i,j 0 .

Recall that each ∼i,j is either > or =. Now χ(y) must have a satisfiable
disjunct, and since the satisfying assignment to y is unique (namely y =
µ), this disjunct must comprise at least one equality predicate. Since
Theorem 2 guarantees that the degree and height of each hi,j are bounded
by ||u||O(1) and 2||u||

O(1)
respectively, we immediately conclude that µ is

an algebraic number and moreover that ||µ|| = ||u||O(1).
Returning to Equation (14), we see that if a+µ < 0, then u is neither

positive nor ultimately positive, whereas if a+µ > 0 then u is ultimately
positive. In the latter case, thanks to our bounds on ||µ||, together with
the root-separation bound given by Equation (3), we have 1

a+µ = 2||u||
O(1)

.
The latter, together with Equations (7)–(9), implies an exponential upper
bound on the index of possible violations of positivity, as required.

It remains to analyse the case in which µ = −a. To this end, let
λj = eiθj for 1 ≤ j ≤ 3. From Equation (6), we have:

un
ρn

= a+
3∑
j=1

2|cj | cos(nθj + ϕj) + r(n) .
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In the above, cj = |cj |eiϕj for 1 ≤ j ≤ 3. We make the further assumption
that each cj is non-zero; note that if this did not hold, we could simply
recast our analysis in a lower dimension.

We first claim that the function h achieves its minimum µ only finitely
many times over T . To establish the claim, we proceed according to the
cardinality p of the basis {`1, . . . , `p} of L:

(i) We first consider the case in which p = 1, and handle the case
p = 0 immediately afterwards. Let `1 = (`1,1, `1,2, `1,3) ∈ Z3 be the sole
vector spanning L. For x ∈ R, recall that we denote by [x]2π the distance
from x to the closest integer multiple of 2π. Write

R = {(x1, x2, x3) ∈ [0, 2π)3 : [`1,1x1 + `1,2x2 + `1,3x3]2π = 0} .

Clearly, for any (x1, x2, x3) ∈ [0, 2π)3, we have (x1, x2, x3) ∈ R iff (eix1 , eix2 , eix3) ∈
T . Define f : R3 → R by setting

f(x1, x2, x3) =
3∑
j=1

2|cj | cos(xj + ϕj) .

Clearly, for all (x1, x2, x3) ∈ [0, 2π)3, we have f(x1, x2, x3) = h(eix1 , eix2 , eix3),
and therefore the minima of f over R are in one-to-one correspondence
with those of h over T .

Define g : R3 → R by setting

g(x1, x2, x3) = `1,1x1 + `1,2x2 + `1,3x3 .

Note that g(x1, x2, x3) cannot be of the form `(xi − xj), for non-zero
` ∈ Z and i 6= j, otherwise λ`iλ

−`
j = 1, i.e., λi/λj would be a root of unity,

contradicting the non-degeneracy of u. Likewise, g cannot be of the form
`(xi + xj), otherwise λi/λj would be a root of unity.

Finally, observe that for (x1, x2, x3) ∈ [0, 2π)3, we have (x1, x2, x3) ∈
R iff `1,1x1+`1,2x2+`1,3x3 = 2πq, for some q ∈ Z with |q| ≤ |`1,1|+|`1,2|+
|`1,3|. For each of these finitely many q, we can invoke Lemma 11 with f ,
g, and ψ = 2πq, to conclude that f achieves its minimum µ finitely many
times over R, and therefore that h achieves the same minimum finitely
many times over T .

The case p = 0, i.e., in which there are no non-trivial integer multi-
plicative relationships among λ1, λ2, λ3, is now a special case of the above,
where we have `1,1 = `1,2 = `1,3 = 0.

(ii) We now turn to the case p = 2. We have `1 = (`1,1, `1,2, `1,3) ∈ Z3

and `2 = (`2,1, `2,2, `2,3) ∈ Z3 spanning L. Let x denote the column vector
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(x1, x2, x3), and write

R = {(x1, x2, x3) ∈ [0, 2π)3 : [`1 · x]2π = 0 and [`2 · x]2π = 0} .

Define f : R3 → R by setting f(x1, x2, x3) =
3∑
j=1

2|cj | cos(xj + ϕj). As

before, the minima of f over R are in one-to-one correspondence with
those of h over T .

For (x1, x2, x3) ∈ [0, 2π)3, we have [`1 · x]2π = 0 and [`2 · x]2π = 0
iff there exist q1, q2 ∈ Z, with |q1| ≤ |`1,1| + |`1,2| + |`1,3| and |q2| ≤
|`2,1| + |`2,2| + |`2,3|, such that `1 · x = 2πq1 and `2 · x = 2πq2. For
each of these finitely many q = (q1, q2), we can invoke Lemma 12 with

f , M =
(
`1,1 `1,2 `1,3
`2,1 `2,2 `2,3

)
, and q, to conclude that f achieves its minimum

µ finitely many times over R, and therefore that h achieves the same
minimum finitely many times over T .

(iii) Finally, we observe that the case p = 3 cannot occur: indeed, a
basis for L of dimension 3 would immediately entail that every λj is a
root of unity.

This concludes the proof of the claim that h achieves its minimum at
a finite number of points Z = {(ζ1, ζ2, ζ3) ∈ T : h(ζ1, ζ2, ζ3) = µ}. We
concentrate on the set Z1 of first coordinates of Z. Write

τ1(x) = ∃z1 (Re(z1) = x ∧ z1 ∈ Z1)
τ2(y) = ∃z1 (Im(z1) = y ∧ z1 ∈ Z1) .

Similarly to our earlier constructions, τ1(x) is equivalent to a formula
τ ′1(x) in the first-order theory of the reals, over a bounded number of real
variables, with ||τ ′1(x)|| = ||u||O(1). Thanks to Theorem 2, we then obtain
an equivalent quantifier-free formula

χ1(x) =
I∨
i=1

Ji∧
j=1

hi,j(x) ∼i,j 0 .

Note that since there can only be finitely many x̂ ∈ R such that
χ1(x̂) holds, each disjunct of χ1(x) must comprise at least one equality
predicate, or can otherwise be entirely discarded as having no solution.

A similar exercise can be carried out with τ2(y). The bounds on the
degree and height of each hi,j in χ1(x) and χ2(y) then enable us to con-
clude that any ζ1 = x̂ + iŷ ∈ Z1 is algebraic, and moreover satisfies
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||ζ1|| = ||u||O(1). In addition, bounds on I and Ji guarantee that the
cardinality of Z1 is at most polynomial in ||u||.

Since λ1 is not a root of unity, for each ζ1 ∈ Z1 there is at most one
value of n such that λn1 = ζ1. Theorem 1 then entails that this value (if it
exists) is at most M = ||u||O(1), which we can take to be uniform across
all ζ1 ∈ Z1. We can now invoke Corollary 6 to conclude that, for n > M ,
and for all ζ1 ∈ Z1, we have

|λn1 − ζ1| >
1

n||u||D
, (15)

where D ∈ N is some absolute constant.
Let b > 0 be minimal such that the set

{z1 ∈ C : |z1| = 1 and, for all ζ1 ∈ Z1, |z1 − ζ1| ≥
1
b
}

is non-empty. Thanks to our bounds on the cardinality of Z1, we can use
the first-order theory of the reals, together with Theorem 2, to conclude
that b is algebraic and ||b|| = ||u||O(1).

Define the function g : [b,∞)→ R as follows:

g(x) = min{h(z1, z2, z3)− µ : (z1, z2, z3) ∈ T and,
for all ζ1 ∈ Z1, |z1 − ζ1| ≥

1
x
} .

It is clear that g is continuous and g(x) > 0 for all x ∈ [b,∞). More-
over, g can be translated in polynomial time into a function in the first-
order theory of the reals over a bounded number of variables. It follows
from Proposition 2.6.2 of [6] (invoked with the function 1/g) that there
is a polynomial P ∈ Z[x] such that, for all x ∈ [b,∞),

g(x) ≥ 1
P (x)

. (16)

Moreover, an examination of the proof of [6, Prop. 2.6.2] reveals that P
is obtained through a process which hinges on quantifier elimination. By
Theorem 2, we are therefore able to conclude that ||P || = ||u||O(1), a fact
which relies among others on our upper bounds for ||b||.

By Equations (7)–(9), we can find ε ∈ (0, 1) and N = 2||u||
O(1)

such
that for all n > N , we have |r(n)| < (1−ε)n, and moreover 1/ε = 2||u||

O(1)
.

Moreover, by Proposition 7, there is N ′ = 2||u||
O(1)

such that

1
P (n||u||D)

> (1− ε)n (17)
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for all n ≥ N ′.
Combining Equations (14)–(17), we get

un

ρn
= a+ h(λn1 , λ

n
2 , λ

n
3 ) + r(n)

≥ − µ+ h(λn1 , λ
n
2 , λ

n
3 )− (1− ε)n

≥ g(n||u||
D

)− (1− ε)n

≥ 1
P (n||u||D)

− (1− ε)n

≥ 0 ,

provided n > max{M,N,N ′}, which establishes ultimate positivity of
u and provides an exponential upper bound on the index of possible
violations of positivity, as required.

This completes the proof of Theorems 8 and 9.

5 Extensions and Future Work

Several of the results presented in this paper have natural extensions or
generalisations, some of which we briefly mention here.

Define an LRS u = 〈un〉∞n=0 to be strictly positive (respectively
ultimately strictly positive) if un > 0 for all n (respectively for all
sufficiently large n). An examination of our proofs readily shows that
all our effective decidability and complexity results carry over without
difficulty to the analogous strict formulation for simple integer LRS of
order 8 or less.10 This can also be seen by observing that for u a given
simple integer LRS of order k, the sequence 〈un − 1〉∞n=0 is a simple LRS
of order at most k + 1.

All our decidability results also carry over to LRS over real algebraic
numbers, as can readily be seen by examining the relevant proofs. Our
complexity upper bounds, however, are more delicate, and it is an open
question whether they continue to hold in the algebraic setting.

It seems likely that the techniques developed in this paper could be
usefully deployed to tackle other natural problems for simple LRS or
sequences of powers of diagonalisable matrices, which in turn may find
applications in some of the areas mentioned in the Introduction, such as
the analysis of termination of linear programs or the behaviour of discrete

10 The decidability of Strict Positivity and effective Ultimate Strict Positivity for LRS
of order 9 appear to be difficult problems and are presently open.
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linear dynamical systems. More ambitiously, one could seek to explore
computational problems for parametric simple LRS, where the aim is to
characterise ranges for the parameters guaranteeing certain behaviours,
etc.
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linéaires. Bull. Soc. Math. France, 104, 1976.

[6] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer, 1998.
[7] N. Bourbaki. Elements of Mathematics: General Topology (Part 2). Addison-

Wesley, 1966.
[8] M. Braverman. Termination of integer linear programs. In Proc. Intern. Conf.

on Computer Aided Verification (CAV), volume 4144 of LNCS. Springer, 2006.
[9] J. R. Burke and W. A. Webb. Asymptotic behavior of linear recurrences. Fib.

Quart., 19(4), 1981.
[10] J.-Y. Cai, R. J. Lipton, and Y. Zalcstein. The complexity of the A B C problem.

SIAM J. Comput., 29(6), 2000.
[11] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-

Verlag, 1993.
[12] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. In Proc. 2nd GI Conf. Automata Theory and Formal Languages.
Springer-Verlag, 1975.

[13] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence Se-
quences. American Mathematical Society, 2003.

[14] J.-H. Evertse, H. P. Schlickewei, and W. M. Schmidt. Linear equations in variables
which lie in a multiplicative group. Ann. Math., 155(3), 2002.

[15] G. Ge. Algorithms Related to Multiplicative Representations of Algebraic Num-
bers. PhD thesis, U.C. Berkeley, 1993.

[16] I. Gyori and G. Ladas. Oscillation Theory of Delay Differential Equations. Oxford
Mathematical Monographs. Oxford University Press, 1991.

[17] V. Halava, T. Harju, and M. Hirvensalo. Positivity of second order linear recurrent
sequences. Discrete Appl. Math., 154(3), 2006.

[18] V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s problem — on
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