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Abstract

We consider two decision problems for linear recurrence

sequences (LRS) over the integers, namely the Positivity

Problem (are all terms of a given LRS positive?) and the

Ultimate Positivity Problem (are all but finitely many terms

of a given LRS positive?). We show decidability of both

problems for LRS of order 5 or less, with complexity in

the Counting Hierarchy for Positivity, and in polynomial

time for Ultimate Positivity. Moreover, we show by way of

hardness that extending the decidability of either problem to

LRS of order 6 would entail major breakthroughs in analytic

number theory, more precisely in the field of Diophantine

approximation of transcendental numbers.

1 Introduction

A (real) linear recurrence sequence (LRS) is an
infinite sequence u = 〈u0, u1, u2, . . .〉 of real numbers
having the following property: there exist constants
a1, a2, . . . , ak (with ak 6= 0) such that, for all n ≥ 0,

(1.1) un+k = a1un+k−1 + a2un+k−2 + . . .+ akun .

If the initial values u0, . . . , uk−1 of the sequence are
provided, the recurrence relation defines the rest of the
sequence uniquely. Such a sequence is said to have
order k.1

The best-known example of an LRS was given by
Leonardo of Pisa in the 12th century: the Fibonacci
sequence 〈0, 1, 1, 2, 3, 5, 8, 13, . . .〉, which satisfies the
recurrence relation un+2 = un+1 + un. Leonardo of
Pisa introduced this sequence as a means to model the
growth of an idealised population of rabbits. Not only
has the Fibonacci sequence been extensively studied
since, but LRS now form a vast subject in their own
right, with numerous applications in mathematics and
other sciences. A deep and extensive treatise on the
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1Some authors define the order of an LRS as the least k such

that the LRS obeys such a recurrence relation. The definition we

have chosen allows for a simpler presentation of our results and is

algorithmically more convenient.

mathematical aspects of recurrence sequences is the
recent monograph of Everest et al. [26].

In this paper, we focus on two key decision problems
for LRS over the integers (or equivalently, for our
purposes, the rationals):

• The Positivity Problem: given an LRS u, are all
terms of u positive?

• The Ultimate Positivity Problem: given an
LRS u, are all but finitely many terms of u
positive?2

These problems (and assorted variants) have ap-
plications in a wide array of scientific areas, such
as theoretical biology (analysis of L-systems, popu-
lation dynamics) [36], economics (stability of supply-
and-demand equilibria in cyclical markets, multiplier-
accelerator models) [6], software verification (termina-
tion of linear programs) [45, 56, 17, 23, 16, 11], prob-
abilistic model checking (reachability and approxima-
tion in Markov chains, stochastic logics) [7, 1], quan-
tum computing (threshold problems for quantum au-
tomata) [13, 25], discrete linear dynamical systems
(reachability and invariance problems) [32, 54, 10, 20],
as well as combinatorics, formal languages, statistical
physics, generating functions, etc. For example, as dis-
cussed in [38], terms of an LRS usually have combina-
torial significance only if they are positive. Likewise, an
LRS modelling population size is biologically meaning-
ful only if it is uniformly positive.

Both Positivity and Ultimate Positivity bear some
relationship to the well-known Skolem Problem: does a
given LRS have a zero? The decidability of the Skolem
Problem is generally considered to have been open since
the 1930s (notwithstanding the fact that algorithmic de-
cision issues had not at the time acquired the impor-
tance that they have today—see [30] for a discussion on
this subject; see also [53] and [37], in which this state
of affairs—the enduring openness of decidability for the
Skolem Problem—is described as “faintly outrageous”

2Note that both problems come in two natural flavours,
according to whether strict or non-strict positivity is required.

This paper focusses on the non-strict version, but alternatives
and extensions (including strictness) are discussed in Section 6.



by Tao and a “mathematical embarrassment” by Lip-
ton). A breakthrough occurred in the mid-1980s, when
Mignotte et al. [41] and Vereshchagin [57] independently
showed decidability for real algebraic LRS of order 4 or
less. These deep results make essential use of Baker’s
theorem on linear forms in logarithms (which earned
Baker the Fields medal in 1970), as well as a p-adic
analogue of Baker’s theorem due to van der Poorten.
Unfortunately, little progress on that front has since
been recorded.3 The Skolem Problem is known to be
NP-hard if the order is unrestricted [14].

It is considered folklore that the decidability of
Positivity would entail that of the Skolem Problem
(see Section 2), noting however that the reduction
increases the order of LRS quadratically. Nevertheless,
the earliest explicit references in the literature to the
Positivity and Ultimate Positivity Problems that we
have found are from the 1970s (see, e.g., [51, 49,
12]). In [51], the Skolem and Positivity Problems
are described as “very difficult”, whereas in [48], the
authors assert that the Skolem, Positivity, and Ultimate
Positivity Problems are “generally conjectured [to be]
decidable”. Positivity and/or Ultimate Positivity are
again stated as open in [29, 8, 35, 38, 54, 52], among
others.

Unsurprisingly, progress on the Positivity and Ulti-
mate Positivity Problems has been fairly slow. In the
early 1980s, Burke and Webb showed that Ultimate Pos-
itivity is decidable for LRS of order 2 [18], and nine
years later Nagasaka and Shiue [42] showed the same for
LRS of order 3 that have repeated characteristic roots.
Much more recently, Halava et al. showed that Positivity
is decidable for integer LRS of order 2 [29], and three
years later Laohakosol and Tangsupphathawat proved
that both Positivity and Ultimate Positivity are decid-
able for integer LRS of order 3 [35]. In 2012, an arti-
cle claiming to show decidability of Positivity for LRS
of order 4 was published [52], with the authors noting
being unable to tackle the case of order 5. Unfortu-
nately, as acknowledged subsequently by the authors
themselves [34], that paper contains a major error (the
purported proof of Claim 2 on p.141, aimed at handling
the most difficult critical case at order 4, is wrong, and
appears not to be fixable without making use of sophis-
ticated tools from analytic number theory as is done in
the present paper).

To the best of our knowledge, no complexity bounds

3A proof of decidability of the Skolem Problem for LRS of

order 5 was announced in [30]. However, as pointed out in [43],

the proof seems to have a serious gap.
It is worth remarking, on the other hand, that whether an

integer LRS has infinitely many zeros is known to be decidable

at all orders [12].

currently exist in the literature concerning either the
Positivity or Ultimate Positivity Problems, other than
coNP-hardness for LRS of unbounded orders which is in-
herited from the reduction from the Skolem Problem (cf.
Section 2).

Our main results are as follows:4

• The Positivity Problem is decidable for integer LRS

of order 5 or less, with complexity in coNPPPPPPP

,
i.e., within the fourth level of the Counting Hierar-
chy.

• The Ultimate Positivity Problem is decidable for
integer LRS of order 5 or less in polynomial time.

• The decidability of either Positivity or Ultimate
Positivity for integer LRS of order 6 would en-
tail major breakthroughs in analytic number the-
ory (certain open problems in Diophantine approx-
imation of transcendental numbers long believed to
be hard would become solvable)—see Section 5 for
precise statements.

These results, which—absent major advances in
number theory—can essentially be viewed as completing
the picture on Positivity problems for linear recurrence
sequences, substantially improve the state of the art
over the last three decades’ worth of research on the sub-
ject. Most prior work on Positivity problems that we are
aware of has been confined to the use of linear algebra
and elementary algebraic number theoretic techniques.
By contrast, we are deploying in this paper an eclec-
tic arsenal of deep and sophisticated mathematical tools
from analytic and algebraic number theory, Diophantine
geometry and approximation, and real algebraic geom-
etry, notably Baker’s theorem on linear forms in loga-
rithms, Masser’s results on multiplicative relationships
among algebraic numbers, Kronecker’s theorem on si-
multaneous Diophantine approximation, and Renegar’s
work on the fine-grained complexity of the first-order
theory of the reals. These results are summarised in
Section 3. We then present a high-level overview of
our proof strategy—split in two parts—in the first half
of Section 4. Various extensions and generalisations of
our results, along with avenues for future work, are dis-
cussed in Section 6.

4The complexities are given as a function of the bit length of
standard representations of integer LRS of order k; for an LRS

as defined by Equation (1.1), this representation consists of the
2k-tuple (a1, . . . , ak, u0, . . . , uk−1) of integers.

Note also that the Counting-Hierarchy complexity class

does not require parenthesising since co(NPPPPPPP

) =

(coNP)PPPPPP

.



2 Linear Recurrence Sequences

We recall some fundamental properties of linear recur-
rence sequences. Results are stated without proof, and
we refer the reader to [26, 30] for details.

Let u = 〈un〉∞n=0 be an LRS of order k over the reals
satisfying the recurrence relation

un+k = a1un+k−1 + . . .+ akun ,

where without loss of generality we may assume that
ak 6= 0. We denote by ||u|| the bit length of its
representation as a 2k-tuple of integers, as discussed in
the previous section. The characteristic polynomial
of u is

p(x) = xn − a1x
n−1 − . . .− ak−1x− ak .

The characteristic roots of u are the roots of this
polynomial, and the dominant roots are the roots of
maximum modulus.

The characteristic roots divide naturally into those
that are real and those that are not. As we exclu-
sively deal with LRS over the reals, the characteris-
tic polynomial has real coefficients and non-real roots
therefore always arise in conjugate pairs. Thus we may
write {ρ1, . . . , ρ`, γ1, γ1, . . . , γm, γm} to represent the set
of characteristic roots of u, where each ρi ∈ R and
each γj ∈ C \ R. There are now univariate polynomials
A1, . . . , A` and C1, . . . , Cm such that, for all n ≥ 0,

un =
∑̀
i=1

Ai(n)ρni +
m∑
j=1

(
Cj(n)γnj + Cj(n)γjn

)
.

This expression is referred to as the exponential
polynomial solution of u. For integer LRS, the poly-
nomials Ai have real algebraic coefficients and the poly-
nomials Cj have complex algebraic coefficients. The de-
gree of each of these polynomials is at most one less than
the multiplicity of the corresponding characteristic root;
thus in particular, these polynomials are identically con-
stant when u has no repeated characteristic roots. For
fixed k, all coefficients appearing in these polynomials
can be computed in time polynomial in ||u||, since they
can be obtained by solving a system of linear equations
involving the first k terms of u. See Section 3 for further
details on algebraic-number manipulations.

An LRS is said to be non-degenerate if it does not
have two distinct characteristic roots whose quotient
is a root of unity. As pointed out in [26], the study
of arbitrary LRS can effectively be reduced to that of
non-degenerate LRS, by partitioning the original LRS
into finitely many subsequences, each of which is non-
degenerate. In general, such a reduction will require
exponential time. However, when restricting ourselves

to LRS of bounded order (in our case, of order at
most 5), the reduction can be carried out in polynomial
time. In particular, any LRS of order 5 or less can be
partitioned in polynomial time into at most 2520 non-
degenerate LRS of the same order or less.5 In the rest
of this paper, we shall therefore assume that all LRS we
are given are non-degenerate.

Any LRS u of order k can alternately be given in
matrix form, in the sense that there is a square matrix
M of dimension k × k, together with k-dimensional
column vectors ~v and ~w, such that, for all n ≥ 0, un =
~vTMn ~w. It suffices to take M to be the transpose of
the companion matrix of the characteristic polynomial
of u, let ~v be the vector (uk−1, . . . , u0) of initial terms
of u in reverse order, and take ~w to be the vector
whose first k − 1 entries are 0 and whose kth entry is
1. It is worth noting that the characteristic roots of
u correspond precisely to the eigenvalues of M . This
translation is instrumental in Section 4 to place the
Positivity Problem for LRS of order at most 5 within
the Counting Hierarchy.

Conversely, given any square matrix M of dimen-
sion k × k, and any k-dimensional vectors ~v and ~w, let
un = ~vTMn ~w. Then 〈~vTMn ~w〉∞n=k is an LRS of order
at most k whose characteristic polynomial is the same
as that of M , as can be seen by applying the Cayley-
Hamilton Theorem.6

Let 〈un〉∞n=0 and 〈vn〉∞n=0 be LRS of order k and l
respectively. Their pointwise product 〈unvn〉∞n=0 and
sum 〈un + vn〉∞n=0 are also LRS of order at most kl
and k + l respectively. In the special case of pointwise
squaring, the order of the LRS 〈u2

n〉∞n=0 is at most
k(k + 1)/2.

We can use the above to reduce (the complement of)
the Skolem Problem to Positivity: given an integer LRS
u = 〈un〉∞n=0, we see that un 6= 0 iff u2

n − 1 ≥ 0. Since
this reduction is polynomial in ||u||, the NP-hardness
for the Skolem Problem presented in [14] immediately
translates as coNP-hardness for Positivity, as pointed
out in [9]. In fact, since the LRS used in [14] are all
periodic, we also obtain a coNP-hardness for Ultimate
Positivity. At the time of writing, no other complexity
bounds for these problems are known.

3 Mathematical Tools

In this section we introduce the key technical tools used
in this paper.

5We obtained this value using a bespoke enumeration proce-

dure for order 5. A bound of e2
√

6·5 log 5 ≤ 1, 085, 134 can be
obtained from Corollary 3.3 of [58].

6In fact, if none of the eigenvalues of M are zero, it is easy to

see that the full sequence 〈~vTMn ~w〉∞n=0 is an LRS (of order at
most k).



For p ∈ Z[x1, . . . , xm] a polynomial with integer
coefficients, let us denote by ||p|| the bit length of its
representation as a list of coefficients encoded in binary.
Note that the degree of p is at most ||p||, and the height
of p—i.e., the maximum of the absolute values of its
coefficients—is at most 2||p||.

We begin by summarising some basic facts about
algebraic numbers and their (efficient) manipulation.
The main references include [21, 5, 46].

A complex number α is algebraic if it is a root of a
single-variable polynomial with integer coefficients. The
defining polynomial of α, denoted pα, is the unique
polynomial of least degree, and whose coefficients do not
have common factors, which vanishes at α. The degree
and height of α are respectively those of pα.

A standard representation7 for algebraic numbers
is to encode α as a tuple comprising its defining poly-
nomial together with rational approximations of its real
and imaginary parts of sufficient precision to distinguish
α from the other roots of pα. More precisely, α can be
represented by (pα, a, b, r) ∈ Z[x] × Q3 provided that
α is the unique root of pα inside the circle in C of ra-
dius r centred at a + bi. A separation bound due to
Mignotte [40] asserts that for roots α 6= β of a polyno-
mial p ∈ Z[x], we have

(3.2) |α− β| >
√

6
d(d+1)/2Hd−1

,

where d and H are respectively the degree and height
of p. Thus if r is required to be less than a quarter of
the root-separation bound, the representation is well-
defined and allows for equality checking. Given a
polynomial p ∈ Z[x], it is well-known how to compute
standard representations of each of its roots in time
polynomial in ||p|| [44, 21, 5]. Thus given α an algebraic
number for which we have (or wish to compute) a
standard representation, we write ||α|| to denote the
bit length of this representation. From now on, when
referring to computations on algebraic numbers, we
always implicitly refer to their standard representations.

Note that Equation (3.2) can be used more gener-
ally to separate arbitrary algebraic numbers: indeed,
two algebraic numbers α and β are always roots of the
polynomial pαpβ of degree at most the sum of the de-
grees of α and β, and of height at most the product of
the heights of α and β.

Given algebraic numbers α and β, one can compute
α + β, αβ, 1/α (for non-zero α), α, and |α|, all of
which are algebraic, in time polynomial in ||α|| + ||β||.
Likewise, it is straightforward to check whether α = β.
Moreover, if α ∈ R, deciding whether α > 0 can be done

7Note that this representation is not unique.

in time polynomial in ||α||. Efficient algorithms for all
these tasks can be found in [21, 5].

Remarkably, integer multiplicative relationships
among a fixed number of algebraic numbers can be
elicited systematically in polynomial time:

Theorem 3.1. Let m be fixed, and let λ1, . . . , λm be
complex algebraic numbers of modulus 1. Consider the
free abelian group L under addition given by

L = {(v1, . . . , vm) ∈ Zm : λv11 . . . λvm
m = 1} .

L has a basis { ~̀1, . . . , ~̀p} ⊆ Zm (with p ≤ m), where
the entries of each of the ~̀j are all polynomially bounded
in ||λ1|| + . . . + ||λm||. Moreover, such a basis can be
computed in time polynomial in ||λ1||+ . . .+ ||λm||.

Note in the above that the bound is on the mag-
nitude of the vectors ~̀

j (rather than the bit length of
their representation), which follows from a deep result of
Masser [39]. For a proof of Theorem 3.1, see also [27, 19].

We now turn to the first-order theory of the reals.
Let ~x = x1, . . . , xm be a list of m real-valued variables,
and let σ(~x) be a Boolean combination of atomic
predicates of the form g(~x) ∼ 0, where each g(~x) ∈
Z[~x] is a polynomial with integer coefficients over these
variables, and ∼ is either > or =. A sentence of the
first-order theory of the reals is of the form

(3.3) Q1x1 . . . Qmxm σ(~x) ,

where each Qi is one of the quantifiers ∃ or ∀. Let us
denote the above formula by τ , and write ||τ || to denote
the bit length of its syntactic representation.

Tarski famously showed that the first-order the-
ory of the reals is decidable [55]. His procedure, how-
ever, has non-elementary complexity. Many substan-
tial improvements followed over the years, starting with
Collins’s technique of cylindrical algebraic decomposi-
tion [22], and culminating with the fine-grained analysis
of Renegar [46]. In this paper, we focus exclusively on
the situation in which the number of variables is uni-
formly bounded.

Theorem 3.2. (Renegar) Let M ∈ N be fixed. Let τ
be of the form (3.3) above. Assume that the number of
variables in τ is bounded by M (i.e., m ≤M). Then the
truth value of τ can be determined in time polynomial
in ||τ ||.

Theorem 3.2 follows immediately from [46,
Thm. 1.1].

Our next result is a special case of Kronecker’s fa-
mous theorem on simultaneous Diophantine approxima-
tion, a statement and proof of which can be found in [15,
Chap. 7, Sec. 1.3, Prop. 7].



For x ∈ R, write [x]2π to denote the distance
from x to the closest integer multiple of 2π: [x]2π =
min{|x− 2πj| : j ∈ Z}.

Theorem 3.3. (Kronecker) Let
t1, . . . , tm, x1, . . . , xm ∈ [0, 2π). The following are
equivalent:

1. For any ε > 0, there exists n ∈ Z such that, for
1 ≤ j ≤ m, we have [ntj − xj ]2π ≤ ε.

2. For every tuple (v1, . . . , vm) of integers such that
[v1t1 + . . . + vmtm]2π = 0, we have [v1x1 + . . . +
vmxm]2π = 0.

We can strengthen Theorem 3.3 by requiring that
n ∈ N in the first assertion. Indeed, suppose that in a
given instance, we find that n < 0. A straightforward
pigeonhole argument shows that there exist arbitrarily
large positive integers g such that [gtj ]2π ≤ ε for
1 ≤ j ≤ m. It follows that [(g+n)tj−xj ]2π ≤ 2ε, which
establishes the claim for sufficiently large g (noting that
ε is arbitrary).

Let λ1, . . . , λm be complex algebraic numbers of
modulus 1. For each j ∈ {1, . . . ,m}, write λj = eiθj

for some θj ∈ [0, 2π). Let

L = {(v1, . . . , vm) ∈ Zm : λv11 . . . λvm
m = 1}

= {(v1, . . . , vm) ∈ Zm : [v1θ1 + . . .+ vmθm]2π = 0} .

Recall from Theorem 3.1 that L is a free abelian group
under addition with basis { ~̀1, . . . , ~̀p} ⊆ Zm, where
p ≤ m.

For each j ∈ {1, . . . , p}, let ~̀
j = (`j,1, . . . , `j,m).

Write

R = {~x = (x1, . . . , xm) ∈ [0, 2π)m :

[ ~̀j · ~x]2π = 0 for 1 ≤ j ≤ p} .

By Theorem 3.3, for an arbitrary tuple (x1, . . . , xm) ∈
[0, 2π)m, it is the case that, for all ε > 0, there exists
n ∈ N such that, for j ∈ {1, . . . ,m}, [nθj − xj ]2π ≤ ε iff
(x1, . . . , xm) ∈ R.

Now observe that (x1, . . . , xm) ∈ R iff
(eix1 , . . . , eixm) ∈ T , where

T = {(z1, . . . , zm) ∈ Cm : |z1| = . . . = |zm| = 1 and,

for each j ∈ {1, . . . , p}, z`j,1
1 . . . z`j,m

m = 1} .

Since einθj = λnj , we immediately have the follow-
ing:

Corollary 3.1. Let λ1, . . . , λm and T be as above.
Then {(λn1 , . . . , λnm) : n ∈ N} is a dense subset of T .

Finally, we give a version of Baker’s deep theorem
on linear forms in logarithms. The particular statement
we have chosen is a sharp formulation due to Baker and
Wüstholz [4].

In what follows, log refers to the principal value
of the complex logarithm function given by log z =
log |z|+ i arg z, where −π < arg z ≤ π.

Theorem 3.4. (Baker and Wüstholz) Let
α1, . . . , αm ∈ C be algebraic numbers different from 0
or 1, and let b1, . . . , bm ∈ Z be integers. Write

Λ = b1 logα1 + . . .+ bm logαm .

Let A1, . . . , Am, B ≥ e be real numbers such that, for
each j ∈ {1, . . . ,m}, Aj is an upper bound for the height
of αj, and B is an upper bound for |bj |. Let d be the
degree of the extension field Q(α1, . . . , αm) over Q.

If Λ 6= 0, then

log |Λ| > −(16md)2(m+2) logA1 . . . logAm logB .

Finally, we record the following fact, whose straight-
forward proof is left to the reader.

Proposition 3.1. Let a ≥ 2 and ε ∈ (0, 1) be real
numbers. Let B ∈ Z[x] have degree at most aD1 and
height at most 2a

D2 , and assume that 1/ε ≤ 2a
D3 ,

for some D1, D2, D3 ∈ N. Then there is D4 ∈ N
depending only on D1, D2, D3 such that, for all n ≥
2a

D4 ,
1

B(n)
> (1− ε)n.

4 Decidability and Complexity

Let u = 〈un〉∞n=0 be an integer LRS of or-
der k. As discussed in the Introduction, we as-
sume that u is presented as a 2k-tuple of integers
(a1, . . . , ak, u0, . . . , uk−1) ∈ Z2k, such that for all n ≥ 0,

(4.4) un+k = a1un+k−1 + . . .+ akun .

The Positivity Problem asks, given such an LRS
u, whether for all n ≥ 0, it is the case that un ≥ 0.
When this holds, we say that u is positive.

The Ultimate Positivity Problem asks, given
such an LRS u, whether there exists N ≥ 0 such that,
for all n ≥ N , it is the case that un ≥ 0. When this
holds, we say that u is ultimately positive.

In this section, we establish the following main
results:

Theorem 4.1. The Positivity Problem for integer LRS

of order 5 or less is decidable in coNPPPPPPP

.

Theorem 4.2. The Ultimate Positivity Problem for
integer LRS of order 5 or less is decidable in polynomial
time.



Note that the above results immediately carry over
to rational LRS. To see this, consider a rational LRS u
obeying the recurrence relation (4.4). Let ` be the least
common multiple of the denominators of the rational
numbers a1, . . . , ak, u0, . . . , uk−1, and define an integer
sequence v = 〈vn〉∞n=0 by setting vn = `n+1un for all
n ≥ 0. It is easily seen that v is an integer LRS of the
same order as u, and that for all n, vn ≥ 0 iff un ≥ 0.

Positivity—High-Level Synopsis. At a high level,
the algorithm upon which Theorem 4.1 rests proceeds
as follow. Given an LRS u, we first decide whether or
not u is ultimately positive by studying its exponential
polynomial solution—further details on this task are
provided shortly. As we prove in this paper, whenever
u is an ultimately positive LRS of order 5 or less,
there is an effective bound N of at most exponential
magnitude such that all terms of u beyond N are
positive. Next, observe that u cannot be positive unless
it is ultimately positive. Now in order to assert that
an ultimately positive LRS u is not positive, we use
a guess-and-check procedure: find n ≤ N such that
un < 0. By writing un = ~vTMn ~w, for some square
integer matrix M and vectors ~v and ~w (cf. Section 2),
we can decide whether un < 0 in PosSLP8 via iterative
squaring, which yields an NPPosSLP procedure for non-
Positivity. Thanks to the work of Allender et al. [2],

which asserts that PosSLP ⊆ PPPPPPP

, we obtain the

required coNPPPPPPP

algorithm for deciding Positivity.

The following is an old result concerning LRS;
proofs can be found in [28, Thm. 7.1.1] and [8, Thm. 2].
It also follows easily and directly from either Pring-
sheim’s theorem or from [17, Lem. 4]. It plays an impor-
tant role in our approach by enabling us to significantly
cut down on the number of subcases that must be con-
sidered, avoiding the sort of quagmire alluded to in [42].

Proposition 4.1. Let 〈un〉∞n=0 be an LRS with no real
positive dominant characteristic root. Then there are
infinitely many n such that un < 0 and infinitely many
n such that un > 0.

By Proposition 4.1, it suffices to restrict our atten-
tion to LRS whose dominant characteristic roots include
one real positive value. Given an integer LRS u, note
that determining whether the latter holds is easily done
in time polynomial in ||u||.

Thus let u be a non-degenerate integer LRS of or-
der k having a (possibly repeated) real positive dom-

8Recall that PosSLP is the problem of determining whether an

arithmetic circuit, with addition, multiplication, and subtraction
gates, evaluates to a positive integer.

inant characteristic root ρ > 0. Note that u can-
not have a real negative dominant characteristic root
(which would be −ρ), since otherwise the quotient
−ρ/ρ = −1 would be a root of unity, contradicting non-
degeneracy. Let us therefore write the characteristic
roots as {ρ, γ1, γ1, . . . , γm, γm} ∪ {γm+1, γm+2, . . . , γ`},
where we assume that the roots in the first set all have
common modulus ρ, whereas the roots in the second set
all have modulus strictly smaller than ρ. Note that for
LRS of order at most 5, m can be at most 2.

Let λi = γi/ρ for 1 ≤ i ≤ `. We can then write

(4.5)
un
ρn

= A(n) +
m∑
i=1

(
Ci(n)λni + Ci(n)λi

n
)

+ r(n) ,

for a suitable real polynomial A and complex polyno-
mials C1, . . . , Cm, where r(n) is a term tending to zero
exponentially fast.

Note that none of λ1, . . . , λm, all of which have
modulus 1, can be a root of unity, as each λi is a
quotient of characteristic roots and u is assumed to be
non-degenerate.

For i ∈ {1, . . . , `}, observe also that as each λi is a
quotient of two roots of the same polynomial of degree
k, it has degree at most k(k − 1). In fact, it is easily
seen that ||λi|| = ||u||O(1).

As noted in Section 2, the degree of polynomials
A and Ci in the exponential polynomial solution is at
most one less than the multiplicity of the corresponding
characteristic roots, and is therefore bounded above
by k − 1. Recall also that all coefficients appearing
in these polynomials are algebraic and, for fixed k,
can be computed and manipulated in time polynomial
in ||u||. It easily follows that ||A|| = ||u||O(1) and
||Ci|| = ||u||O(1).

Finally, we place bounds on the rate of convergence
of r(n). We have

r(n) = Cm+1(n)λnm+1 + . . .+ C`(n)λn` .

For fixed k, combining our estimates on the height
and degree of each λi together with the root-separation
bound given by Equation (3.2), we get

∣∣∣ 1
1−λi

∣∣∣ =

2||u||
O(1)

, for m+ 1 ≤ i ≤ `. Thanks also to the bounds
on the height and degree of the polynomials Ci, it fol-
lows that we can find ε ∈ (0, 1) and N ∈ N such that:

1/ε = 2||u||
O(1)

(4.6)

N = 2||u||
O(1)

(4.7)
For all n > N, |r(n)| < (1− ε)n .(4.8)

In addition, we can compute such ε and N in time
polynomial in ||u||. Naturally, given k, we can also



assume that we have calculated explicitly once and for
all the constants implicit in the various instances of the
O(1) notation.

We now seek to answer Positivity and Ultimate
Positivity for the LRS u = 〈un〉∞n=0 by studying the
same for 〈un/ρn〉∞n=0.

In what follows, we assume that u is as given
above; in particular, u is a non-degenerate integer LRS
having a (possibly repeated) real positive dominant
characteristic root ρ > 0.

Ultimate Positivity—High-Level Synopsis. Be-
fore launching into technical details, let us provide a
high-level overview of our proof strategy for deciding
Ultimate Positivity. Consider first the special case
of Equation (4.5) in which the polynomials A(n) and
Ci(n), Ci(n) are all identically constant. Let us rewrite
this equation as

(4.9)
un
ρn

= A+ h(λn1 , . . . , λ
n
m) + r(n) ,

where h : Cm → R is a continuous function. In
general, there will be integer multiplicative relationships
among the λ1, . . . , λm, for which we can compute a
basis B thanks to Theorem 3.1. These multiplicative
relationships define a torus T ⊆ Cm on which the
joint iterates (λn1 , . . . , λ

n
m) are dense, as per Kronecker’s

theorem (in the form of Corollary 3.1).
If r(n) is identically 0, then both Positivity and

Ultimate Positivity can be decided by determining the
sign of the expression A+ minh�T (where h�T denotes
the function h restricted to the torus T ). For fixed order
k, computing this sign can be carried out in polynomial
time via the first-order theory of the reals, thanks to
Theorem 3.2.

If r(n) is not identically 0, then for LRS of order at
most 5, we have that m is either 0 or 1, where the latter
is the interesting case. The torus T is now simply the
unit circle in the complex plane, and Equations (4.5)
and (4.9) can be rewritten as

un
ρn

= A+ 2|c1| cos(nθ1 + ϕ1) + r(n) ,

where C1(n) = c1 = |c1|eiϕ1 and θ1 = arg λ1. The
critical case now arises when A − 2|c1| = 0, which
we can determine in polynomial time. Noting that
the cosine function is minimised when its argument
is an odd integer multiple of π, we can use Baker’s
theorem to bound the expression nθ1 + ϕ1 away from
odd integer multiples of π by an inverse polynomial
in n. Using a Taylor approximation, we then argue
that cos(nθ1 + ϕ1) is itself eventually bounded away
from −1 by a (different) inverse polynomial in n, and

since r(n) decays to zero exponentially fast, we are
able to conclude that un/ρn is ultimately positive, and
can compute a bound N after which all terms un (for
n > N) are positive.

Returning to Equation (4.5), note that if the
Ci(n), Ci(n) are all identically constant but A(n) is not,
then the latter will eventually dominate and enable us to
settle the ultimate positivity question; likewise, if A(n)
is identically constant but some Ci(n), Ci(n) are not,
the latter eventually dominate and the situation can be
dealt with straightforwardly.

This analysis allows us to handle LRS of order up
to 5. At order 6, however, we encounter a critical
situation in which A(n) and C1(n), C1(n) are all linear
polynomials, which then leads to the hardness results
described in Section 5.

We now proceed with the proofs of Theorems 4.1
and 4.2, split into cases according to the number of dis-
tinct (albeit possibly repeated) dominant characteristic
roots of u. Since there is one real positive dominant
root, no real negative dominant root, and since non-
real roots always arise in pairs, the number of dominant
roots must be odd. In any event, the total number of
characteristic roots is bounded by the order of u, which
we assume to be at most 5.

4.1 One Dominant Root. In case of a single dom-
inant root ρ ∈ R, from Equation (4.5) we have that
un/ρ

n = A(n) + r(n). If A(n) is identically 0, we sim-
ply turn our attention towards r(n), which is an LRS
whose exponential polynomial solution has one fewer
term. Otherwise, it is clear that u is ultimately posi-
tive iff either A(n) is identically equal to some constant
a > 0, or limn→∞A(n) =∞, all of which can be decided
straightforwardly in time polynomial in ||u||.

Turning to positivity, assume therefore that A(n) is
either a strictly positive constant or tends to ∞. Recall
from our earlier discussion on the rate of convergence of
r(n) that we can compute in polynomial time numbers
ε ∈ (0, 1), with 1/ε = 2||u||

O(1)
, and N = 2||u||

O(1)
,

such that |r(n)| < (1 − ε)n for all n > N . We can
similarly compute a bound N ′ = 2||u||

O(1)
such that

A(n) ≥ (1− ε)n for all n > N ′. Let N ′′ = max{N,N ′}.
Then u will fail to be positive iff there is some n ≤ N ′′
such that un < 0. Since N ′′ is at most exponential in

||u||, we can decide positivity of u in coNPPPPPPP

via a
PosSLP oracle as outlined earlier.

4.2 Three Dominant Roots. Next, we consider the
case in which u has exactly three dominant characteris-
tic roots {ρ, γ1, γ1}. Two subcases arise: (i) either the



complex roots γ1 and γ1 are simple, or (ii) γ1 and γ1

are repeated.
(i) In the first subcase, the multiplicity of ρ may

range from 1 to 3. If ρ has multiplicity 3 then there can
be no other characteristic roots, and

un/ρ
n = an2 + bn+ d+ c1λ

n
1 + c1λ1

n
,

where a, b, d are real algebraic constants, and c1 is a
complex algebraic constant which we assume is non-zero
(otherwise the situation is trivial).

If a < 0, then clearly u is neither positive nor
ultimately positive. If a > 0 then u is ultimately
positive and, similarly to the case of a single dominant
root, we can use our earlier estimates on the height
and degree of a, b, d, and c1, together with the root-
separation bound given by Equation (3.2), to conclude
that there is N = 2||u||

O(1)
such that, for all n > N , we

have un ≥ 0. The positivity of u can then be decided

in coNPPPPPPP

.
Next, if a = 0 then there is potentially an expo-

nentially decaying term in the exponential polynomial
solution of un/ρn; this also covers the case in which the
multiplicity of ρ is 1 or 2:

un/ρ
n = bn+ d+ c1λ

n
1 + c1λ1

n
+ r(n) .

Here, similarly to the previous case, if b < 0 then
u is neither positive nor ultimately positive, whereas if
b > 0 then u is ultimately positive and, as before, we
obtain an exponential upper bound on the index n of
possible violations of positivity, as required.

Finally, suppose that a = 0 and b = 0. We may
assume that c1 6= 0, otherwise we are left with the term
r(n) and can simply recast our analysis appropriately
at lower order. Let θ1 = arg λ1 and ϕ1 = arg c1. We
have

un
ρn

= d+ 2|c1| cos(nθ1 + ϕ1) + r(n) .

Since λ1 is not a root of unity, it is straightforward to
see that the set {cos(nθ1 + ϕ1) : n ≥ 0} is dense in
[−1, 1]. It immediately follows that if d < 2|c1| then
u is neither positive nor ultimately positive, whereas if
d > 2|c1| then u is ultimately positive with, as before,
an exponential bound on the index of possible violations
of positivity.

It remains to tackle the case in which d = 2|c1|.
Since λ1 is not a root of unity, there is at most one
value of n such that nθ1 +ϕ1 is an odd integer multiple
of π, corresponding to λn1 = −|c1|/c1. It then follows
from Theorem 3.1 that this value (if it exists) is at most
M = ||u||O(1).

By Equations (4.6)–(4.8), we can find ε ∈ (0, 1)
and N = 2||u||

O(1)
such that for all n > N , we have

|r(n)| < (1− ε)n, and moreover 1/ε = 2||u||
O(1)

.

Let g(x) =
x2

2!
− x4

4!
. Using a Taylor approxima-

tion, we have the following:

cos(x+ π) ≥ −1 + g(x) for x ∈ (−π, π](4.10)
g(x) ≤ g(y) for |x| ≤ |y| ≤ 1(4.11)
11/24 = g(1) ≤ g(x) for 1 ≤ |x| ≤ π .(4.12)

For n ∈ N, write Λ(n) = nθ1 +ϕ1−(2j+1)π, where
j ∈ Z is the unique integer such that −π < Λ(n) ≤ π.
We now have:

un
ρn

= 2|c1|+ 2|c1| cos(nθ1 + ϕ1) + r(n)
= 2|c1|(1 + cos(Λ(n) + π)) + r(n)
≥ 2|c1|g(Λ(n))− (1− ε)n ,

where the inequality holds provided that n > N .
By Equation (4.12), when |Λ(n)| ≥ 1, we have

un
ρn
≥ 11

12
|c1| − (1− ε)n. It follows easily that un/ρn ≥

0 provided that |Λ(n)| ≥ 1 and n > N ′, for some
N ′ = 2||u||

O(1)
.

Recall that for n > M , nθ1 + ϕ1 can never be an
odd integer multiple of π, i.e., Λ(n) 6= 0. We now claim
that there is an absolute constant K ∈ N such that, for
n > M , we have |Λ(n)| > n−||u||

K

.
To see this, write

Λ(n) =
1
i

(
n log λ1 + log

c1
|c1|
− (2j + 1) log(−1)

)
.

In the above, if c1 ∈ R and c1 > 0, then simply remove
the term log

c1
|c1|

= 0 from the expression for Λ(n),

which would yield an even better lower bound than is
obtained below. We may therefore assume without loss
of generality that λ1 and c1/|c1| are different from 0 and
1.

Let H ≥ e be an upper bound for the heights of λ1

and c1/|c1|, and let D be the largest of the degrees of
λ1 and c1/|c1|. Notice that the degree of Q(λ1, c1/|c1|)
over Q is at most D2, and that |j| ≤ n. We can thus
invoke Theorem 3.4 to conclude that

|Λ(n)| > exp
(
−(48D2)10 log2H log(2n+ 1)

)
=

1
(2n+ 1)(log2H)(48D2)10

,

for n > M . The claim now follows by noting that both
logH and D are bounded above by ||λ1||+ ||(c1/|c1|)||,
and that the latter is in O(||u||).

Thus when |Λ(n)| < 1 (and n > M), we have
g(Λ(n)) ≥ g(n−||u||

K

). We can therefore find a poly-
nomial B ∈ Z[x] such that

2|c1|g(Λ(n)) ≥ 1
B(n)

,



requiring in addition that B have degree ||u||O(1) and
height 2||u||

O(1)
, where the latter is achieved via bounds

on the height of |c1|. We can now invoke Proposition 3.1
to conclude that there is N ′′ = 2||u||

O(1)
such that

N ′′ ≥ M and, for all n > N ′′, we have 1
B(n) >

(1 − ε)n. Combining our various inequalities, we see
that un/ρn ≥ 0 provided that n > max{N,N ′, N ′′},
which establishes ultimate positivity of u and moreover
once again provides an exponential bound on the index
of possible violations of positivity, as required.

This concludes Subcase (i).
(ii) Finally, we turn to the situation in which the

complex dominant roots γ1 and γ1 are repeated. Using
the same notation as above, we have

un
ρn

= a+ (c1n+ c)λn1 + (c1n+ c)λ1
n

= a+ n(c1λn1 + c1λ1
n
) + cλn1 + cλ1

n
.

Note that, unless c1 = 0, the term c1λ
n
1 + c1λ1

n
=

2|c1| cos(nθ1 + ϕ1) is infinitely often negative and
bounded away from zero, which immediately entails
that u can be neither positive nor ultimately positive.
If c1 = 0, on the other hand, we simply revert to an
instance considered under Subcase (i).

4.3 Five Dominant Roots. If an LRS of order 5 has
5 distinct dominant roots, then each root is simple, and
in Equation (4.5) we have that m = 2, r(n) is identically
0, and the polynomials A(n), C1(n), and C2(n) are all
identically constant (cf. Section 2):

un
ρn

= a+ c1λ
n
1 + c1λ1

n
+ c2λ

n
2 + c2λ2

n
,

for algebraic constants a ∈ R and c1, c2 ∈ C.
Let L = {(v1, v2) ∈ Z2 : λv11 λ

v2
2 = 1}, and

let B be a basis for L. Note that B can only have
cardinality 0 (when L is trivial) or 1, since it is easily
seen that the presence of two non-trivial independent
integer multiplicative relationships over λ1 and λ2 would
entail that λ1 and λ2 are roots of unity, contradicting
the non-degeneracy of u. Recall from Theorem 3.1 that
the basis B can be computed in polynomial time, and
moreover that elements of B may be assumed to have
magnitude polynomial in ||u||.

If B = ∅, let

T = {(z1, z2) ∈ C2 : |z1| = |z2| = 1} ,

and if B = {(`1, `2)}, write

T = {(z1, z2) ∈ C2 : |z1| = |z2| = 1 and z`11 z
`2
2 = 1} .

Define h : T → R by setting

h(z1, z2) = c1z1 + c1z1 + c2z2 + c2z2 ,

so that for all n, we have un/ρn = a + h(λn1 , λ
n
2 ). By

Corollary 3.1, the set {(λn1 , λn2 ) : n ∈ N} is a dense
subset of T . Since h is continuous, we immediately have
that

inf{un/ρn : n ∈ N} = min{a+ h(z1, z2) : (z1, z2) ∈ T} .

It follows that u is ultimately positive iff u is positive
iff min{a+ h(z1, z2) : (z1, z2) ∈ T} ≥ 0 iff

(4.13) ∀(z1, z2) ∈ T, a+ h(z1, z2) ≥ 0 .

We now show how to rewrite Assertion (4.13)
as a sentence in the first-order theory of the reals,
i.e., involving only real-valued variables and first-order
quantifiers, Boolean connectives, and integer constants
together with the arithmetic operations of addition,
subtraction, multiplication, and division.9 The idea is
to separately represent the real and imaginary parts of
each complex quantity appearing in Assertion (4.13),
and combine them using real arithmetic so as to mimic
the effect of complex arithmetic operations.

To this end, we use pairs of real variables x1, y1 and
x2, y2 to represent z1 and z2 respectively: intuitively,
z1 = x1 + iy1 and z2 = x2 + iy2. Since the real
constant a is algebraic, there is a formula σa(x) which
is true over the reals precisely for x = a. Likewise,
the real and imaginary parts Re(c1), Im(c1), Re(c2),
and Im(c2) of the complex algebraic constants c1 and
c2 are themselves real algebraic, and can be represented
as single-variable formulas in the first-order theory of
the reals. All such formulas can readily be shown to
have size polynomial in ||u||.

The terms z`11 and z`22 (if present) are simply
expanded: for example, if `1 is positive, then z`11 =
(x1 + iy1)`1 = A1(x1) + iB1(y1), where A1 and B1

are polynomials with integer coefficients, and likewise
for z`22 . Note that since the magnitudes of `1 and `2
are polynomial in ||u||, so are ||A1||, ||B1||, ||A2||, and
||B2||. The case in which `1 or `2 is negative is handled
similarly, with the additional use of a division operation.

Combining everything, we obtain a sentence τ of the
first-order theory of the reals with division which is true
iff Assertion (4.13) holds. τ makes use of at most 9 real
variables: two for each of z1 and z2, one for a, and one
for each of Re(c1), Im(c1), Re(c2), Im(c2). In removing
divisions from τ , the number of variables potentially
increases to 11. Finally, the size of τ is polynomial in
||u||. We can therefore invoke Theorem 3.2 to conclude

9In Section 3, we did not include division as an allowable

operation when we introduced the first-order theory of the reals;
however instances of division can always be removed in linear

time at the cost of introducing a linear number of existentially
quantified fresh variables.



that Assertion (4.13) can be decided in time polynomial
in ||u||.

This completes the proofs of Theorems 4.1 and 4.2.

5 Hardness at Order Six

Diophantine approximation is an old branch of number
theory concerned, among other things, with problems
related to approximating real numbers by rationals. It
is a vast and active field of research with several hard,
longstanding open problems. In this section, we present
reductions from some of these open problems to ques-
tions of Positivity and Ultimate Positivity of integer
LRS of order 6, and a fortiori of higher orders. In other
words, we show that if Positivity or Ultimate Positiv-
ity are decidable for integer LRS of order 6, then certain
hard open problems in Diophantine approximation be-
come solvable.

We survey in cursory manner some of the key defini-
tions and facts that are needed for our development. Re-
sults are stated largely without proofs—comprehensive
reference works include [3, 50, 47].

For any real number x, the Lagrange constant (or
homogeneous Diophantine approximation con-
stant) L∞(x) measures the extent to which x can be
‘well-approximated’ by rationals. It is defined as fol-
lows:

L∞(x) = inf
{
c ∈ R :

∣∣∣x− n

m

∣∣∣ < c

m2

for infinitely many n,m ∈ Z
}
.

Following Lagarias and Shallit’s terminology [33], we
also define the (homogeneous Diophantine approx-
imation) type of x:

L(x) = inf
{
c ∈ R :

∣∣∣x− n

m

∣∣∣ < c

m2
for some n,m ∈ Z

}
.

Khinchin showed in 1926 that almost all real num-
bers (in the measure-theoretic sense) have Lagrange
constant and type equal to zero. Yet real numbers with
non-zero Lagrange constant constitute an uncountable
class known as the badly approximable numbers. The
Lagrange constant and type of a real number x are
closely linked to the continued fraction expansion of x,
a fact which enabled Euler to prove that all algebraic
numbers of degree 2 are badly approximable.

An old observation of Dirichlet shows that every real
number has Lagrange constant at most 1. This bound
was improved to 1/

√
5 by Hurwitz in 1891, who also

showed that it is achieved by the golden ratio. Markov
proved in 1879 that every transcendental real number
x has L∞(x) ∈ [0, 1/3]. Considerable further work has
been devoted to the study of the Lagrange spectrum,
which records the possible values taken on by Lagrange

constants—see, e.g., [24]. Despite this, nothing further
is known about the Lagrange constant or type of the
vast majority of transcendental numbers; for example,
it is a longstanding open problem as to whether L∞(π)
is 0, 1/3, or some value in between.

Let

A = {p+ qi ∈ C : p, q ∈ Q, p2 + q2 = 1, and p, q 6= 0}

be the set of points on the unit circle in the complex
plane with rational real and imaginary parts, excluding
{1,−1, i,−i}. Note that this set is dense since 1−r2

1+r2 +
i 2r
1+r2 always lies of the unit circle for any r ∈ Q.

Clearly, A consists of algebraic numbers of degree 2,
none of which is a root of unity: indeed, the primitive
kth roots of unity are precisely the roots of the kth
cyclotomic polynomial, whose degree is ϕ(k), where ϕ
is Euler’s totient function. Standard lower bounds on
the latter imply that the only roots of unity of degree 2
are the 3rd, 4th, and 6th primitive roots of unity, all of
which either have irrational imaginary part or are ±i.

Write
T =

{argα
2π

: α ∈ A
}
.

T is a dense subset of (−1/2, 1/2) consisting exclusively
of transcendental numbers: indeed, for t = argα

2π , we
have α = e2πit = (−1)2t. Since α is not a root of
unity, t cannot be rational, and it follows that t must be
transcendental by the Gelfond-Schneider theorem (see,
e.g, [3]).

Recall that a real number x is computable if there
is an algorithm which, given any rational ε > 0 as input,
returns a rational q such that |q − x| < ε. We can now
state our main hardness results:

Theorem 5.1. Suppose that Ultimate Positivity is de-
cidable for integer LRS of order 6. Then, for any t ∈ T ,
L∞(t) is a computable number.

Theorem 5.2. Suppose that Positivity is decidable for
integer LRS of order 6. Then, for any t ∈ T , L(t) is a
computable number.

Theorems 5.1 and 5.2 strongly suggest that the
decidability of Positivity and Ultimate Positivity for
LRS of order 6 (and a fortiori higher orders) are
unlikely to be achievable without major breakthroughs
in analytic number theory. These theorems also have
partial converses (which are omitted in the interest of
brevity) which entail that, at least at order 6, proofs of
undecidability would also have substantial implications
regarding the Diophantine approximation of certain
transcendental numbers.

We now proceed with the proof of both theorems.



Choose p+ qi ∈ A and r ∈ Q such that r > 0. Let
θ = arg(p+ qi), and write

un = r sinnθ − n(1− cosnθ)
vn = −r sinnθ − n(1− cosnθ) .

It is not hard to see that u = 〈un〉∞n=0 and v =
〈vn〉∞n=0 are both rational LRS of order 6. Indeed,
writing λ = p + qi, both u and v are LRS with
characteristic roots 1, λ, and λ, each of which has
multiplicity 2. The exponential polynomial solution for
u is

un = −n1n +
1
2

(n− ri)λn +
1
2

(n+ ri)λ
n
,

from which the order-6 recurrence relation can easily be
extracted. Note that since λ and λ have rational real
and imaginary parts, by induction un is rational for all
n ≥ 0. Naturally, a similar exercise can be carried out
for v.

For n ≥ 0, let

wn = max{un, vn} = r|sinnθ| − n(1− cosnθ) .

Given ε ∈ (0, 1), there exists δ > 0 such that, for all
x ∈ [−δ, δ], we have

(1− ε)|x| ≤ |sinx| ≤ |x| , and(5.14)

(1− ε)x
2

2
≤ 1− cosx ≤ x2

2
(5.15)

Moreover, there exists N ∈ N with 2r/N ≤ δ such that,
for all x ∈ (−π, π],

(5.16) if 1− cosx <
2r
N
, then |x| ≤ δ .

For x ∈ R, recall that [x]2π denotes the distance
from x to the closest integer multiple of 2π. Let
t = θ/2π. It is straightforward to show that
(5.17)

2πL∞(t) = lim inf
m∈N

m[m(2πt)]2π = lim inf
m∈N

m[mθ]2π

and

(5.18) 2πL(t) = inf
m∈N

m[m(2πt)]2π = inf
m∈N

m[mθ]2π .

We now assert the following:

Claim 1: For any m ≥ N , if wm > 0, then

m[mθ]2π <
2r

1− ε
.

Claim 2: For any m ≥ N , if m[mθ]2π < 2r(1 − ε),
then wm > 0.

To prove Claim 1, assume that m ≥ N and wm > 0.
Then:

m(1− cosmθ) < r [by definition of wm]

⇒ 1− cosmθ <
r

m
<

2r
m
≤ 2r
N

⇒ [mθ]2π ≤ δ [by (5.16)]
⇒ 0 < wm

≤ r[mθ]2π −m(1− ε) ([mθ]2π)2

2
[(5.14), (5.15)]

⇒ m[mθ]2π <
2r

1− ε
,

as required.
For Claim 2, assume that m ≥ N and

m[mθ]2π < 2r(1 − ε). Then [mθ]2π ≤ 2r/N ≤ δ,

whence wn ≥ r(1− ε)[mθ]2π −m
([mθ]2π)2

2
by (5.14)

and (5.15), and also m
([mθ]2π)2

2
< r(1− ε)[mθ]2π.10

Combining the last two inequalities yields wn > 0 as
required.

Observe that if −u and −v are both ultimately
positive,11 then for all sufficiently large m, we have
wm ≤ 0, and therefore, by Claim 2, m[mθ]2π ≥ 2r(1−ε).
Since this holds for all ε ∈ (0, 1), it follows from
Equation (5.17) that L∞(t) ≥ r/π.

On the other hand, if one or both of −u and −v fail
to be ultimately positive, then there must be infinitely
many values of m such that wm > 0. Claim 1 and
Equation (5.17) then entail that L∞(t) ≤ r/π.

Since r can be chosen arbitrarily, this establishes
Theorem 5.1.

A similar procedure can be used to approximate
L(t). Note that arbitrarily good upper bounds can
always be guessed and, if correct, be verified effectively,
by enumerating pairs of integers until a suitable pair is
found.12

Suppose now that we wish to validate a purported
lower bound b < L(t). Guess rational values of r
and ε such that 2πb < 2r(1 − ε) < 2r

1−ε < 2πL(t).
Note that one can readily compute the value of the
corresponding integer N in the notation of our proof.
Invoke the Positivity oracle on the LRS 〈−um〉∞m=N

and 〈−vm〉∞m=N . The outcome must be that both are
positive, otherwise there would be some value of m ≥ N
such that wm > 0, from which we would conclude

10Recall that p+qi is not a root of unity, and hence [mθ]2π 6= 0.
11Recall from Section 4 that decision procedures for Positivity

and Ultimate Positivity of integer LRS are readily applicable to
rational LRS.

12Note that this requires some numerical analysis, which we

take for granted, in order to perform approximations with suffi-
cient precision.



via Claim 1 that m[mθ]2π < 2r
1−ε , contradicting our

assumption that 2r
1−ε < 2πL(t).

Since both LRS are revealed to be positive, we know
that for all m ≥ N , wm ≤ 0 and therefore (thanks to
Claim 2) that m[mθ]2π ≥ 2r(1 − ε). It now suffices to
verify individually each value of m ∈ {0, . . . , N − 1} to
conclude that 2πL(t) ≥ 2r(1 − ε) > 2πb, as required.
This completes the proof of Theorem 5.2.

Let us finally remark that other hardness results,
similar in both form and spirit to Theorems 5.1 and
5.2, can also be formulated, notably via the use of tech-
niques on inhomogeneous Diophantine approximation of
certain transcendental numbers.

6 Extensions and Future Work

Several of the results presented in this paper have
natural extensions or generalisations, some of which we
briefly mention here.

Define an LRS u = 〈un〉∞n=0 to be strictly positive
(respectively ultimately strictly positive) if un > 0
for all n (respectively for all sufficiently large n). An
examination of our proofs readily shows that all our de-
cidability and complexity results, with the exception of
the decidability and complexity of Positivity for integer
LRS of order 5, carry over without difficulty to the anal-
ogous strict formulation. A useful observation in this
regard is that for non-degenerate LRS, Ultimate Posi-
tivity and Ultimate Strict Positivity agree: indeed, as
can be seen from the proof of the Skolem-Mahler-Lech
theorem [26], any non-degenerate LRS is either identi-
cally zero or has only finitely many zeros. Let us also
mention that our Diophantine-approximation hardness
results are easily seen to carry over mutatis mutandis to
Strict Positivity and Ultimate Strict Positivity.

All our decidability results also carry over to LRS
over real algebraic numbers, as can readily be seen by
examining the relevant proofs. Our complexity upper
bounds, however, are more delicate, and it is an open
question whether they continue to hold in the algebraic
setting. Hardness results, on the other hand, obviously
carry over to the more general algebraic world.

It seems likely that the techniques developed in this
paper could be usefully deployed to tackle other natu-
ral decision problems for linear recurrence sequences,
such as divergence to infinity, reachability and ultimate
reachability of semi-linear sets, etc. In turn such de-
cision procedures—or corresponding hardness results—
may find applications in some of the areas mentioned
in the Introduction, such as the analysis of termina-
tion of linear programs or the behaviour of discrete lin-
ear dynamical systems. More ambitiously, in the spirit
of synthesis, one could seek to explore computational
problems for parametric LRS, where the aim is to char-

acterise ranges for the parameters guaranteeing certain
behaviours, etc.

Another interesting question concerns the complex-
ity of Positivity at low orders. Recall that the PosSLP
oracle used in our main decision procedure is invoked to
check whether the quantity ~vTMn ~w is strictly negative,
where M is a k × k matrix of integers, ~v and ~w are k-
dimensional integer vectors, and n is encoded in binary.
It is conceivable—especially for small fixed k, as in the
situation at hand—that the complexity of this problem
is significantly lower than that of PosSLP. See [31] for
initial progress on related questions.

Finally, the various discrete problems discussed in
the present paper also have natural counterparts in a
continuous setting. See [9], for example, which stud-
ies the Skolem and Positivity Problems over continuous
time using similar tools. This remains a largely unex-
plored research landscape.
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