
Safety Metric Temporal Logic is Fully Decidable

Joël Ouaknine and James Worrell

Oxford University Computing Laboratory, UK
{joel,jbw}@comlab.ox.ac.uk

Abstract. Metric Temporal Logic (MTL) is a widely-studied real-time
extension of Linear Temporal Logic. In this paper we consider a frag-
ment of MTL, called Safety MTL, capable of expressing properties such
as invariance and time-bounded response. Our main result is that the
satisfiability problem for Safety MTL is decidable. This is the first posi-
tive decidability result for MTL over timed ω-words that does not involve
restricting the precision of the timing constraints, or the granularity of
the semantics; the proof heavily uses the techniques of infinite-state ver-
ification. Combining this result with some of our previous work, we con-
clude that Safety MTL is fully decidable in that its satisfiability, model
checking, and refinement problems are all decidable.

1 Introduction

Timed automata and real-time temporal logics provide the foundation for sev-
eral well-known and mature tools for verifying timed and hybrid systems [21].
Despite this success in practice, certain aspects of the real-time theory are no-
tably less well-behaved than in the untimed case. In particular, timed automata
are not determinisable, and their language inclusion problem is undecidable [4].
In similar fashion, the model-checking problems for (linear-time) real-time logics
such as Metric Temporal Logic and Timed Propositional Temporal Logic are also
undecidable [5, 6, 17].

For this reason, much interest has focused on fully decidable real-time speci-
fication formalisms. We explain this term in the present context as follows. We
represent a computation of a real-time system as a timed word : a sequence of
instantaneous events, together with their associated timestamps. A specification
denotes a timed language: a set of allowable timed words. Then a formalism (a
logic or class of automata) is fully decidable if it defines a class of timed lan-
guages that is closed under finite unions and intersections and has a decidable
language-inclusion problem1. Note that language emptiness and universality are
special cases of language inclusion.

1 This phrase was coined in [12] with a slightly more general meaning: a specification
formalism closed under finite unions, finite intersections and complementation, and
for which language emptiness is decidable. However, since the main use of comple-
mentation in this context is in deciding language inclusion, we feel that our definition
is in the same spirit.

In this paper we are concerned in particular with Metric Temporal Logic
(MTL), one of the most widely known real-time logics. MTL is a variant of
Linear Temporal Logic in which the temporal operators are replaced by time-
constrained versions. For example, the formula �[0,5]ϕ expresses that ϕ holds
for the next 5 time units. Until recently, the only positive decidability results
for MTL involved placing syntactic restrictions on the precision of the timing
constraints, or restricting the granularity of the semantics. For example, [5, 12,
19] ban punctual timing constraints, such as ♦=1ϕ (ϕ is true in exactly one time
unit). Semantic restrictions include adopting an integer-time model, as in [6, 11],
or a bounded-variation dense-time model, as in [22]. These restrictions guaran-
tee that a formula has a finite tableau: in fact they yield decision procedures
for model checking and satisfiability that use exponential space in the size of
the formula. However, both the satisfiability and model checking problems are
undecidable in the unrestricted logic, cf. [5, 17].

The main contribution of this paper is to identify a new fully decidable frag-
ment of MTL, called Safety MTL. Safety MTL consists of those MTL formulas
which, when expressed in negation normal form, are such that the interval I
is bounded in every instance of the constrained until operator UI and the con-
strained eventually operator ♦I . For example, the time-bounded response for-
mula �(a → ♦=1b) (every a-event is followed after one time unit by a b-event) is
in Safety MTL, but not �(a → ♦(1,∞)b). Because we place no limit on the preci-
sion of the timing constraints or the granularity of the semantics, the tableau of a
Safety MTL formula may have infinitely many states. However, using techniques
from infinite-state verification, we show that the restriction to safety properties
facilitates an effective analysis.

In [16] we already gave a procedure for model checking Alur-Dill timed au-
tomata against Safety MTL formulas. As a special case we obtained the de-
cidability of the validity problem for Safety MTL (‘Is a given formula satisfied
by every timed word?’). The two main contributions of the present paper com-
plement this result, and show that Safety MTL is fully decidable. We show the
decidability of the satisfiability problem (‘Is a given Safety MTL formula satisfied
by some timed word?’) and, more generally, we claim decidability of the refine-
ment problem (‘Given two Safety MTL formulas ϕ1 and ϕ2, does every timed
word that satisfies ϕ1 also satisfy ϕ2?’). Note that Safety MTL is not closed
under negation, so neither of these results follow trivially from the decidability
of validity.

Closely related to MTL are timed alternating automata, introduced in [15,
16]. Both cited works show that the language-emptiness problem for one-clock
timed alternating automata over finite timed words is decidable. This result is the
foundation of the above-mentioned model-checking procedure for Safety MTL.
The procedure involves translating the negation of a Safety MTL formula ϕ into
a one-clock timed alternating automaton over finite words that accepts all the
bad prefixes of ϕ. (Every infinite timed word that fails to satisfy a Safety MTL
formula ϕ has a finite bad prefix, that is, a finite prefix none of whose extensions

satisfies ϕ.) In contrast, the results in the present paper involve considering
timed alternating automata over infinite timed words.

Our main technical contribution is to show the decidability of language-
emptiness over infinite timed words for a class of timed alternating automata
rich enough to capture Safety MTL formulas. A key restriction is that we only
consider automata in which every state is accepting. We have recently shown
that language emptiness is undecidable for one-clock alternating automata with
Büchi or even weak parity acceptance conditions [17]. Thus the restriction to
safety properties is crucial.

As in [16], we make use of the notion of a well-structured transition system
(WSTS) [9] to give our decision procedure. However, whereas the algorithm in
[16] involved reduction to a reachability problem on a WSTS, here we reduce
to a fair nontermination problem on a WSTS. The fairness requirement is con-
nected to the assumption that timed words are non-Zeno. Indeed, we remark
that our results provide a rare example of a decidable nontermination problem
on an infinite-state system with a nontrivial fairness condition. For comparison,
undecidability results for nontermination under various different fairness condi-
tions for Lossy Channel Systems, Timed Networks, and Timed Petri Nets can
be found in [2, 3].

Related Work. An important distinction among real-time models is whether
one records the state of the system of interest at every instant in time, leading to
an interval semantics [5, 12, 19], or whether one only sees a countable sequence of
instantaneous events, leading to a point-based or trace semantics [4, 6, 7, 10, 11,
22]. In the interval semantics the temporal operators of MTL quantify over the
whole time domain, whereas in the point-based semantics they quantify over a
countable set of positions in a timed word. For this reason the interval semantics
is more natural for reasoning about states, whereas the point-based semantics is
more natural for reasoning about events. In this paper we adopt the latter.

MTL and Safety MTL do not differ in terms of their decidability in the
interval semantics: Alur, Feder, and Henzinger [5] showed that the satisfiability
problem for MTL is undecidable, and it is easy to see that their proof directly
carries over to Safety MTL. We pointed out in [16] that the same proof does not
apply in the point-based semantics, and we recently gave a different argument
to show that MTL is undecidable in this setting. However, our proof crucially
uses a ‘liveness formula’ of the form �♦p, and it does not apply to Safety MTL.
The results in this paper confirm that by excising such formulas we obtain a
fully decidable logic in the point-based setting.

2 Metric Temporal Logic

In this section we define the syntax and semantics of Metric Temporal Logic
(MTL). As discussed above, we adopt a point-based semantics over timed words.

A time sequence τ = τ0τ1τ2 . . . is an infinite nondecreasing sequence of time
values τi ∈ R≥0. Here it is helpful to adopt the convention that τ−1 = 0. If
{τi : i ∈ N} is bounded then we say that τ is Zeno, otherwise we say that

τ is non-Zeno. A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where
σ = σ0σ1 . . . is an infinite word over Σ and τ is a time sequence. We also represent
a timed word as a sequence of timed events by writing ρ = (σ0, τ0)(σ1, τ1)
Finally, we write TΣω for the set of non-Zeno timed words over Σ.

Definition 1. Given an alphabet Σ of atomic events, the formulas of MTL are
built up from Σ by monotone Boolean connectives and time-constrained versions
of the next operator ©, until operator U and the dual until operator Ũ as
follows:

ϕ ::= > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | a | ©I ϕ | ϕ1 UI ϕ2 | ϕ1 ŨI ϕ2

where a ∈ Σ, and I ⊆ R≥0 is an open, closed, or half-open interval with end-
points in N ∪ {∞}.

Safety MTL is the fragment of MTL obtained by requiring that the interval I
in each ‘until’ operator UI have finite length. (Note that no restriction is placed

on the dual until operators ŨI or next operators ©I .)

Additional temporal operators are defined using the usual conventions. We
have the constrained eventually operator ♦Iϕ ≡ > UI ϕ, and the constrained
always operator �I ϕ ≡ ⊥ ŨI ϕ. We use pseudo-arithmetic expressions to denote
intervals. For example, the expression ‘= 1’ denotes the interval [1, 1]. In case
I = [0,∞) we simply omit the annotation I on temporal operators. Finally,
given a ∈ Σ, we write ¬a for

∨
b∈Σ\{a} b.

Definition 2. Given a timed word ρ = (σ, τ) and an MTL formula ϕ, the satis-
faction relation (ρ, i) |= ϕ (read ρ satisfies ϕ at position i) is defined as follows:

– (ρ, i) |= a iff σi = a
– (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

– (ρ, i) |= ϕ1 ∨ ϕ2 iff (ρ, i) |= ϕ1 or (ρ, i) |= ϕ2

– (ρ, i) |= ©I ϕ iff τi+1 − τi ∈ I and (ρ, i + 1) |= ϕ
– (ρ, i) |= ϕ1 UI ϕ2 iff there exists j > i such that (ρ, j) |= ϕ2, τj − τi ∈ I, and

(ρ, k) |= ϕ1 for all k with i 6 k < j.

– (ρ, i) |= ϕ1 ŨI ϕ2 iff for all j > i such that τj − τi ∈ I, either (ρ, j) |= ϕ2 or
there exists k with i 6 k < j and (ρ, k) |= ϕ1.

We say that ρ satisfies ϕ, denoted ρ |= ϕ, if (ρ, 0) |= ϕ. The language of ϕ is
the set L(ϕ) = {ρ ∈ TΣω : ρ |= ϕ} of non-Zeno words that satisfy ϕ.

Example 1. Consider an alphabet Σ = {req i, aq i, rel i : i = X,Y } denoting the
actions of two processes X and Y that request, acquire, and release a lock. The
following formulas are all in Safety MTL.

–
�

(aqX →
�

<3¬aqY) says that Y cannot acquire the lock less than 3 seconds
after X acquires the lock.

–
�

(aqX → relX Ũ<3 ¬aqY) says that Y cannot acquire the lock less than 3
seconds after X acquires the lock, unless X first releases it.

–
�

(reqX → ♦<2(aqX ∧♦=1relX)) says that whenever X requests the lock, it
acquires the lock within 2 seconds and releases it exactly one second later.

3 Timed Alternating Automata

In this paper, following [15, 16], a timed alternating automaton is an alternating
automaton augmented with a single clock variable2.

We use x to denote the single clock variable of an automaton. A clock con-
straint is a term of the form x ./ c, where c ∈ N and ./ ∈ {<,6,>, >}. Given a
set S of locations, Φ(S) denotes the set of formulas generated from S and the set
of clock constraints by positive Boolean connectives and variable binding. Thus
Φ(S) is generated by the grammar

ϕ ::= s | x ./ c | > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | x.ϕ ,

where s ∈ S and x.ϕ binds x to 0 in ϕ.

In the definition of a timed alternating automaton, below, the transition
function δ maps each location s ∈ S and event a ∈ Σ to an expression in Φ(S).
Thus alternating automata allow two modes of branching: existential branching,
represented by disjunction, and universal branching, represented by conjunction.
Variable binding corresponds to the automaton resetting x to 0. For example,
δ(s, a) = (x < 1) ∧ s ∧ x.t means that when the automaton is in location s with
clock value less than 1, it can make a simultaneous a-labelled transition to loca-
tions s and t, resetting the clock as it enters t.

Definition 3. A timed alternating automaton is a tuple A = (Σ,S, s0, δ), where

– Σ is a finite alphabet

– S is a finite set of locations

– s0 ∈ S is the initial location

– δ : S × Σ → Φ(S) is the transition function.

We consider all locations of A to be accepting.

The following example illustrates how a timed alternating automaton accepts
a language of timed words.

Example 2. We define an automaton A over the alphabet Σ = {a, b} that accepts
all those timed words in which every a-event is followed one time unit later by a
b-event. A has three locations {s, t, u}, with s the initial location. The transition
function δ is given by the following table:

a b
s s ∧ x.t s
t t ∧ (x 6 1) (t ∧ (x < 1)) ∨ (u ∧ (x = 1))
u u u

2 Virtually all decision problems, and in particular language emptiness, are undecid-
able for alternating automata with more than one clock.

A run of A starts in location s. Every time an a-event occurs, the automaton
makes a simultaneous transition to both s and t, thus opening up a new thread
of computation. The automaton resets a fresh copy of clock x when it moves
from location s to t, and in location t it only performs transitions as long as the
clock does not exceed one. Therefore if location t is entered at some point in a
non-Zeno run, it must eventually be exited. Inspecting the transition table, we
see that the only way for this to happen is if a b-event occurs exactly one time
unit after the a-event that spawned the t-state.

Next we proceed to the formal definition of a run.
Define a tree to be a directed acyclic graph (V,E) with a distinguished root

node such that every node is reachable by a unique finite path from the root. It
is clear that every tree admits a stratification, level : V → N, such that v E v′

implies level(v′) = level(v) + 1 and the root has level 0.
Let A = (Σ,S, s0, δ) be an automaton. A state of A is a pair (s, ν), where

s ∈ S is a location and ν ∈ R≥0 is the clock value. Write Q = S × R≥0 for
the set of all states. A finite set of states is a configuration. Given a clock value
ν, we define a satisfaction relation |=ν between configurations and formulas in
Φ(S) according to the intuition that state (s, ν) can make an a-transition to
configuration C if C |=ν δ(s, a). The definition of C |=ν ϕ is given by induction
on ϕ ∈ Φ(S) as follows: C |=ν t if (t, ν) ∈ C, C |=ν x ./ c if ν ./ c, C |=ν x.ϕ if
C |=0 ϕ, and we handle the Boolean connectives in Φ(S) in the obvious way.

Definition 4. A run ∆ of A on a timed word (σ, τ) consists of a tree (V,E)
and a labelling function l : V → Q such that if l(v) = (s, ν) for some level-n
node v ∈ V , then {l(v′) | v E v′} |=ν′ δ(s, σn), where ν′ = ν + (τn − τn−1).

The language of A, denoted L(A), consists of all non-Zeno words over which
A has a run whose root is labelled (s0, 0).

Figure 1 depicts part of a run of the automaton A from Example 2 on the
timed word 〈(a, 0.3), (b, 0.5), (a, 0.8), (b, 1.3), (b, 1.8) . . .〉.

(s,0.5)

(t,0.2)

(s,0.3)
(t,0)

(s,0.8)

(t,0)

(s,1.3) (s,1.8)
0.5,b0.2,b0.3,a

(s,0)

(t,0.5)

0.3,a 0.5,b

(t,0.5)

(u,1)

(u,1)

(u,1.5)

4 530 1 2∆ ∆ ∆ ∆ ∆∆

Fig. 1. Consecutive levels in a run of A.

One typically applies the acceptance condition in an alternating automaton
to all paths in the run tree [20]. In the present context, since every location
is accepting, the tree structure plays no role in the definition of acceptance; in
this respect, a run could be viewed simply as a sequence of configurations. This
motivates the following definition.

Definition 5. Given a run ∆ = ((V,E), l) of A, for each n ∈ N the configu-
ration ∆n = {l(v) | v ∈ V, level(v) = n} consists of the states at level n in ∆
(cf. the dashed boxes in Figure 1).

The reader may wonder why we mention trees at all in Definition 4. The
reason is quite subtle: the tree structure is convenient for expressing a certain
fairness property (cf. Lemma 2) that allows a Zeno run to be transformed into
a non-Zeno run by inserting extra time delays.

Definition 4 only allows runs that start in a single state. More generally, we
allow runs that start in an arbitrary configuration C = {(si, νi)}i∈I . Such a run
is a forest consisting of |I| different run trees, where the i-th run starts at (si, νi).

3.1 Translating Safety MTL into Timed Automata

Given a Safety MTL formula ϕ, one can define a timed alternating automaton
Aϕ such that L(Aϕ) = L(ϕ). Since space is restricted, and since we have already
given a similar translation in [16], we refer the reader to [18] for details. However,
we draw the reader’s attention to two important points. First, it is the restriction
to timed-bounded until operators combined with the adoption of a non-Zeno
semantics that allows us to translate a Safety MTL formula into an automaton
in which every location is accepting; this is illustrated in Example 2, where
location t, corresponding to the response formula ♦=1b, is accepting. Secondly,
we point out that each automaton Aϕ is local according to the definition below.
This last observation is important because it is the class of local automata for
which Section 5 shows decidability of language emptiness.

Definition 6. An automaton A = (Σ,S, s0, δ) is local if for each s ∈ S and
a ∈ Σ, each location t 6= s appearing in δ(s, a) lies within the scope of a re-
set quantifier x.(−), i.e., the automaton resets the clock whenever it changes
location.

We call such automata local because the static and dynamic scope of any
reset quantification agree, i.e., the scope does not ‘extend’ across transitions to
different locations. An investigation of the different expressiveness of local and
non-local temporal logics is carried out in [8].

4 The Region Automaton

Throughout this section let A = (Σ,S, s0, δ) be a timed alternating automaton,
and let cmax be the maximum constant appearing in a clock constraint in A.

4.1 Abstract Configurations

We partition the set R≥0 of nonnegative real numbers into the set REG =
{r0, r1, . . . , r2cmax+1} of regions, where r2i = {i} for i 6 cmax , r2i+1 = (i, i + 1)
for i < cmax , and r2cmax+1 = (cmax ,∞). The successor of each region is given by

succ(ri) = ri+1 for i < 2cmax + 1 and succ(r2cmax+1) = r2cmax+1. Henceforth let
rmax denote r2cmax+1 and write reg(u) to denote the region containing u ∈ R≥0.

The fractional part of a nonnegative real x ∈ R≥0 is frac(x) = x − bxc.
We use the regions to define a discrete representation of configurations that

abstracts away from precise clock values, recording only their values to the near-
est integer and the relative order of their fractional parts, cf. [4].

Definition 7. An abstract configuration is a finite word over the alphabet
Λ = ℘(S × REG) of nonempty finite subsets of S × REG.

Define an abstraction function H : ℘(Q) → Λ∗, yielding an abstract con-
figuration H(C) for each configuration C as follows. First, lift the function reg
to configurations by reg(C) = {(s, reg(ν)) : (s, ν) ∈ C}. Now given a configu-
ration C, partition C into a sequence of subsets C1, . . . , Cn, such that for all
(s, ν) ∈ Ci and (t, ν′) ∈ Cj , frac(ν) 6 frac(ν ′) iff i 6 j (so (s, ν) and (t, ν ′) are
in the same block Ci iff ν and ν′ have the same fractional part). Then define
H(C) = 〈reg(C1), . . . , reg(Cn)〉 ∈ Λ∗.

Example 3. Consider the automaton A from Example 1. The maximum clock
constant appearing in A is 1, and the corresponding regions are r0 = {0},
r1 = (0, 1), r2 = {1} and r3 = (1,∞). Given a concrete configuration C =
{(s, 1), (t, 0.4), (s, 1.4), (t, 0.8)}, the corresponding abstract configuration H(C)
is 〈{(s, r2)}, {(t, r1), (s, r3)}, {(t, r1)}〉.

The image of the function H, which is a proper subset of Λ∗, is the set of
well-formed words according to the following definition.

Definition 8. Say that an abstract configuration w ∈ Λ∗ is well-formed if it
is empty or if both of the following hold.

– The only letter of w containing a pair (s, r) with r a singular region is the
first letter w0.

– Whenever w0 contains a singular region, the only nonsingular region that
also appears in w0 is rmax .

Write W ⊆ Λ∗ for the set of well formed words.

We model the progression of time by introducing the notion of the time
successor of an abstract configuration. We first illustrate the idea informally
with concrete configurations.

Example 4. Consider a configuration C = {(s, 1.2), (t, 2.5), (s, 0.8)}. Intuitively,
the time successor of C is C ′ = {(s, 1.4), (t, 2.7), (s, 1)}, where time has advanced
0.2 units and the clock value in C with largest fractional part has moved to a new
region. On the other hand, a time successor of C = {(s, 1), (t, 0.5)} is obtained
after any time evolution δ, with 0 < δ < 0.5, so that the clock value with zero
fractional part moves to a new region, while all other clock values remain in
the same region. (Different values of δ lead to different configurations, but the
underlying abstract configuration is the same.)

The definition below formally introduces the time successor of an abstract
configuration. The two clauses correspond to the two different cases in Exam-
ple 4. The first clause models the case where a clock with zero fractional part
advances to the next region, while the second clause models the case where the
clock with maximum fractional part advances to the next region.

Definition 9. Let w = w0 · · ·wn ∈ W be an abstract configuration. We say that
w is transient if w0 contains a pair (s, r) with r singular.

– If w = w0 · · ·wn is transient, then its time successor is w′
0w1 · · ·wn, where

w′
0 = {(s, succ(r)) : (s, r) ∈ w0}.

– If w = w0 · · ·wn is not transient, then its time successor is w′
nw0 · · ·wn−1,

where w′
n = {(s, succ(r)) : (s, r) ∈ wn}.

4.2 Definition of R(A)

The region automaton R(A) is a nondeterministic infinite-state untimed au-
tomaton (with ε-transitions) that mimics A. The states of R(A) are abstract
configurations, representing levels in a run of A, and the transition relation
contains those pairs of states representing consecutive levels in a run. We par-
tition the transitions into two classes: conservative and progressive. Intuitively,
a transition is progressive if it cycles the fractional order of the clock values in
a configuration. This notion will play a role in our analysis of non-Zenoness in
Section 5.

The definition of R(A) is as follows:

– Alphabet. The alphabet of R(A) is Σ.
– States. The set of states of R(A) is the set W ⊆ Λ∗ of well-formed words

over alphabet Λ = ℘(S × REG). The initial state is {(s0, r0)}.
– ε-transitions. If w ∈ W has time successor w′ 6= w, then we include a

transition w
ε

−→ w′ (excluding self-loops here is a technical convenience).
This transition is classified as conservative if w is transient, otherwise it is
progressive.

– Labelled transitions. Σ-labelled transitions in R(A) represent instanta-

neous transitions of A. Given a ∈ Σ, we include a transition w
a

−→ w′ in
R(A) if there exist A-configurations C and C ′ with H(C) = w, H(C ′) = w′,
C = {(si, νi)}i∈I and

C ′ =
⋃

i∈I

{Mi : Mi |=νi
δ(si, a)} .

We say that this transition is progressive if C ′ = ∅ or

max{frac(ν) : (s, ν) ∈ C ′} < max{frac(ν) : (s, ν) ∈ C} , (1)

otherwise we say that the transition is conservative. Note that (1) says that
the clocks in C with maximal fractional part get reset in the course of the
transition.

The above definition of the Σ-labelled transition relation (as a quotient) is
meant to be succinct and intuitive. However, it is straightforward to compute
the successors of each state w ∈ W directly from the transition function δ of
A. For example, if δ(s, a) = s ∧ x.t then we include a transition 〈{(s, r1)}〉

a
−→

〈{(t, r0)}, {(s, r1)}〉 in R(A).

Given a ∈ Σ, write w
a

=⇒ w′ if w′ can be reached from w by a sequence of
ε-transitions, followed by a single a-transition. The following is a variant of [16,
Definition 15].

Lemma 1. Let ∆ be a run of A on a timed word (σ, τ), and recall that ∆n ⊆ Q
is the set of states labelling the n-th level of ∆. Then R(A) has a run

[∆] : H(∆0)
σ0=⇒ H(∆1)

σ1=⇒ H(∆2)
σ2=⇒ · · ·

on the untimed word σ ∈ Σω.
Conversely, if R(A) has an infinite run r on σ ∈ Σω, then there is a time

sequence τ and a run ∆ of A on (σ, τ) such that [∆] = r.

Lemma 1 is a first step towards reducing the language-emptiness problem for
A to the language-emptiness problem for R(A). What is lacking is a characteri-
sation of non-Zeno runs of A in terms of R(A). Also, since R(A) has infinitely
many states, its own language-emptiness problem is nontrivial. We deal with
both these issues in Section 5.

5 A Decision Procedure for Satisfiability

Let A be a local timed alternating automaton. We give a procedure for deter-
mining whether A has nonempty language. The key ideas are as follows. We
define the notion of a progressive run of the region automaton R(A), such that
R(A) has a progressive run iff A has a non-Zeno run. We then use a backward-
reachability analysis to determine the set of states of R(A) from which there is a
progressive run. The effectiveness of this analysis depends on a well-quasi-order
on the states of R(A).

5.1 Background on Well-quasi-orders

Recall that a quasi-order on a set Q is a reflexive and transitive relation 4 ⊆
Q × Q. Given such an order we say that L ⊆ Q is a lower set if x ∈ Q, y ∈ L
and x 4 y implies x ∈ L. The notion of an upper set is similarly defined. We
define the upward closure of S ⊆ Q, denoted ↑ S, to be {x | ∃y ∈ S : y 4 x}.
This is the smallest upper set that contains S. A basis of an upper set U is a
subset Ub ⊆ U such that U = ↑Ub. A cobasis of a lower set L is a basis of the
upper set Q \ L.

Definition 10. A well-quasi-order (wqo) is a quasi-order (Q,4) such that
for any infinite sequence q0, q1, q2, . . . in Q, there exist indices i < j such that
qi 4 qj.

Example 5. Let 6 be a quasi-order on a finite alphabet Λ. Define the induced
monotone domination order 4 on Λ∗, the set of finite words over Λ, by a1 . . . am 4

b1 . . . bn if there exists a strictly increasing function f : {1 . . . m} → {1, . . . , n}
such that ai 6 bf(i) for all i ∈ {1, . . . ,m}. Higman’s Lemma states that if 6 is
a wqo on Λ, then the induced monotone domination order 4 is a wqo on Λ∗.

Proposition 1. [9, Lemma 2.4] Let (Q,4) be a wqo. Then

1. each lower set L ⊆ Q has a finite cobasis;
2. each infinite decreasing sequence L0 ⊇ L1 ⊇ L2 ⊇ · · · of lower sets eventually

stabilises, i.e., there exists k ∈ N such that Ln = Lk for all n > k.

5.2 Progressive Runs

Definition 11. Overloading terminology, we say that a run r : w −→ w′ −→
w′′ −→ · · · of R(A) is progressive if it contains infinitely many progressive
transitions.

The above definition is motivated by the notion of a progressive run of an
(ordinary) timed automaton [4, Definition 4.11]. However our definition is more
primitive. In particular, Lemma 2, which for us is a property of progressive runs,
is the actual analog of Alur and Dill’s definition of a progressive run.

Lemma 2. Suppose ∆ is a run of A over (σ, τ) such that the corresponding
run [∆] of R(A) is progressive. Then there exists an infinite sequence of integers
n0<n1<· · · such that τn0

<τn1
<· · · and every path in ∆ running from a level-ni

node to a level-ni+1 node contains a node (s, ν) in which ν = 0 or ν > cmax .

We use Lemma 2 in the proof of Theorem 1 below, which closely follows [4,
Lemma 4.13].

Theorem 1. A has a non-Zeno run iff R(A) has a progressive run.

Proof (sketch). It is straightforward that if ∆ is a non-Zeno run of A, then [∆]
is a progressive run of R(A). The interesting direction is the converse.

Suppose that R(A) has a progressive run r on a word σ ∈ Σω. Then by
Lemma 1 there is a time sequence τ and a run ∆ of A over (σ, τ) such that
[∆] = r. If τ is non-Zeno then there is nothing to prove. We therefore suppose
that τ is Zeno, and show how to modify ∆ by inserting extra time delays to
obtain a non-Zeno run ∆′.

Since τ is Zeno there exists N ∈ N such that τj − τi < 1/4 for all i, j > N .
Let n0 < n1 < · · · be the sequence of integers in Lemma 2 where, without loss of
generality, N < n0. Define a new time sequence τ ′ by inserting extra delays in τ
as follows:

τ ′
i+1 − τ ′

i =

{
τi+1 − τi if i 6∈ {n1, n2, . . .}
1/2 if i ∈ {n1, n2, . . .}.

Clearly τ ′ is non-Zeno. We claim that a run ∆′ over the timed word (σ, τ ′) can be
constructed by appropriately modifying the clock values of the states occurring

in ∆ to account for the extra delay. What needs to be checked here is that the
modified clock values remain in the same region.

Consider a path π through ∆, and let π[m,n] denote the segment of π from
level m to level n in ∆. If the clock x does not get reset in the segment π[n0, ni]
for some i, then, by Lemma 2, it is continuously greater than cmax along the
segment π[n1, ni]: so the extra delay in ∆′ is harmless on this part of π. Now if
x gets reset in the segment π[ni, ni+1] for some i, it can thereafter never exceed
1/4 along π. Thus, by Lemma 2, it must get reset at least once in every segment
π[nj , nj+1] for j > i. In this case the extra delay in ∆′ is again harmless. ut

5.3 Fixed-Point Characterisation

Let PR ⊆ W denote the set of states of R(A) from which a progressive run can
originate. In order to compute PR we first characterise it as a fixed-point.

Definition 12. Let I ⊆ W be a set of states of R(A). Define Pred+(I) to consist
of those w ∈ W such that there is a (possibly empty) sequence of conservative
transitions w −→ w′ −→ w′′ −→ · · · −→ w(n), followed by a single progressive
transition w(n) −→ w(n+1), such that w(n+1) ∈ I.

It is straightforward that PR is the greatest fixed point of Pred+(−) : 2W →
2W with respect to the set-inclusion order3. Given this characterisation, one idea
to compute PR is via the following decreasing chain of approximations:

W ⊇ Pred+(W) ⊇ (Pred+)2(W) ⊇ · · · . (2)

But it turns out that we have to refine this idea a little to get an effective
procedure. We start by observing the existence of a well-quasi-order on W .

Definition 13. Define the quasi-order 4 on W ⊆ Λ∗ to be the monotone dom-
ination order over Λ (cf. Example 5).

We might hope to use Proposition 1 to show that the chain (2) stabilises
after finitely many steps. However Pred+ does not map lower sets to lower sets
in general. This reflects a failure of the progressive-transition relation to be
downwards compatible with 4 in the sense of [9]. (This is not surprising—the
possibility of w ∈ W performing a progressive transition depends on its first and
last letters.)

Example 6. Consider the automaton A in Example 2, with associated regions in-
cluding r0 = {0}, r1 = (0, 1) and r2 = {1}. Then, in R(A), w = 〈{(s, r1)}, {(t, r1)}〉
makes a progressive ε-transition to w′ = 〈{(t, r2)}, {(s, r1)}〉. However, 〈{(s, r1)}〉,
which is a subword of w, does not belong to Pred+(↓ w′). Indeed, any state reach-
able from 〈{(s, r1)}〉 by a sequence of conservative transitions followed by a single
progressive transition must contain the letter {(s, r2)}.

3 It is not possible for w to belong to the greatest fixed point of Pred+ merely by virtue
of being able to perform an infinite consecutive sequence of ε-transitions that includes
infinitely many progressive ε-transitions. The reason is that once all the clock values
in a configuration have advanced beyond the maximum of clock constant cmax , then
the configuration is no longer capable of performing ε-transitions (cf. Section 4.2.)

Although Pred+ fails to enjoy one-step compatibility with 4, it satisfies a
kind of infinitary compatibility. More precisely, even though Pred+ does not map
lower sets to lower sets, its greatest fixed point is a lower set.

Proposition 2. PR is a lower set.

Proof. We exploit the correspondence between non-Zeno runs of A and progres-
sive runs of R(A), as given in Proposition 1.

Suppose w′ ∈ PR and w 4 w′. Then there exist A-configurations C,C ′ such
that C ⊆ C ′, H(C) = w and H(C ′) = w′. Since w′ ∈ PR, by Proposition 1 A
has a run ∆′ on some non-Zeno word ρ such that ∆′

0 = C ′. Now let ∆ be the
subgraph of ∆′ consisting of all nodes reachable from those level-0 nodes of ∆′

labelled by elements of C ⊆ C ′. Then ∆ is also a run of A on ρ, so w ∈ PR by
Proposition 1 again. ut

In anticipation of applying Proposition 2, we make the following definition.

Definition 14. Define Ψ : 2W → 2W by Ψ(I) = W\ ↑ (W \ Pred+(I)).

By construction, Ψ maps lower sets to lower sets. Also, being a monotone
self-map of (2W ,⊆), it has a greatest fixed point, denoted gfp(Ψ).

Proposition 3. PR is the greatest fixed point of Ψ .

Proof. Since PR is both a fixed point of Pred+ and a lower set we have:

Ψ(PR) = W\ ↑ (W \ Pred+(PR))

= W\ ↑ (W \ PR)

= W \ (W \ PR)

= PR .

That is, PR is a fixed point of Ψ . It follows that PR ⊆ gfp(Ψ).
The reverse inclusion, gfp(Ψ) ⊆ PR follows easily from the fact that Ψ(I) ⊆

Pred+(I) for all I ⊆ W . ut

Next we assert that Ψ is computable.

Proposition 4. Given a finite cobasis of a lower set L ⊆ W , there is a procedure
to compute a finite cobasis of Ψ(L).

Proposition 4 is nontrivial since the definition of Ψ involves Pred+, which
refers to multi-step reachability (by conservative transitions), not just single-
step reachability. We refer the reader to [18] for a detailed proof. The proof
exploits the fact that conservative transitions on local automata have a very
restricted ability to transform a configuration—for instance, the only way they
can change the order of the fractional values of the clocks is by resetting some
clocks to 0.

5.4 Main Results

Theorem 2. The satisfiability problem for Safety MTL is decidable.

Proof. Since every Safety MTL formula can be translated into a local automaton,
it suffices to show that language emptiness is decidable for local automata.

Given a local automaton A, let Ψ be as in Definition 14. Since Ψ is monotone
and maps lower sets to lower sets, W ⊇ Ψ(W) ⊇ Ψ 2(W) ⊇ · · · is a decreasing
sequence of lower sets in (W,4). By Proposition 1 this sequence stabilises after
some finite number of iterations. By construction, the stabilising value is the
greatest fixed point of Ψ , which by Proposition 3 is the set PR. Furthermore,
using Proposition 4 we can compute a finite cobasis of each successive iterate
Ψn(W) until we eventually obtain a cobasis for PR. We can then decide whether
the initial state of R(A) is in PR which, by Theorem 1, holds iff A has nonempty
language. ut

We leave the complexity of the satisfiability problem for future work. The
argument used to derive the nonprimitive recursive lower bound for MTL satis-
fiability over finite timed words [16] does not apply here.

By combining the techniques used to prove Theorem 2 with the techniques
used in [16] to show that the model-checking problem is decidable for Safety
MTL, one can show the decidability of the refinement problem: ‘Given two Safety
MTL formulas ϕ1 and ϕ2, does every word satisfying ϕ1 also satisfy ϕ2?’

Theorem 3. The refinement problem for Safety MTL is decidable.

6 Conclusion

It is folklore that extending linear temporal logic in any way that enables express-
ing the punctual specification ‘in one time unit ϕ will hold’ yields an undecidable
logic over a dense-time semantics. Together with [17], this paper reveals that
there is an unexpected factor affecting the truth or falsity of this belief. While
[17] shows that Metric Temporal Logic is undecidable over timed ω-words, the
proof depends on being able to express liveness properties, such as �♦p. On
the other hand, this paper shows that the safety fragment of MTL remains
fully decidable in the presence of punctual timing constraints. This fragment
is not closed under complement, and the decision procedures for satisfiability
and model checking are quite different. The algorithm for satisfiability solves a
nontermination problem on a well-structured transition system by iterated back-
ward reachability, while the algorithm for model checking, given in a previous
paper [16], used forward reachability.

Acknowledgement. The authors would like to thank the anonymous ref-
erees for providing many helpful suggestions to improve the presentation of the
paper.

References

1. P. A. Abdulla, J. Deneux, J. Ouaknine and J. Worrell. Decidability and complexity
results for timed automata via channel systems. In Proceedings of ICALP 05, LNCS
3580, 2005.

2. P. A. Abdulla and B. Jonsson. Undecidable verification problems with unreliable
channels. Information and Computation, 130:71–90, 1996.

3. P. A. Abdulla, B. Jonsson. Model checking of systems with many identical timed
processes. Theoretical Computer Science, 290(1):241–264, 2003.

4. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

5. R. Alur, T. Feder and T. A. Henzinger. The benefits of relaxing punctuality. Jour-

nal of the ACM, 43:116–146, 1996.
6. R. Alur and T. A. Henzinger. Real-time logics: complexity and expressiveness.

Information and Computation, 104:35–77, 1993.
7. R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41:181–

204, 1994.
8. P. Bouyer, F. Chevalier and N. Markey. On the expressiveness of TPTL and MTL.

Research report LSV-2005-05, Lab. Spécification et Vérification, May 2005.
9. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! The-

oretical Computer Science, 256(1-2):63–92, 2001.
10. T. A. Henzinger. It’s about time: Real-time logics reviewed. In Proceedings of

CONCUR 98, LNCS 1466, 1998.
11. T. A. Henzinger, Z. Manna and A. Pnueli. What good are digital clocks? In Pro-

ceedings of ICALP 92, LNCS 623, 1992.
12. T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time lan-

guages. In Proceedings of ICALP 98, LNCS 1443, 1998.
13. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London

Mathematical Society, 2:236–366, 1952.
14. R. Koymans. Specifying real-time properties with metric temporal logic. Real-time

Systems, 2(4):255–299, 1990.
15. S. Lasota and I. Walukiewicz. Alternating timed automata. In Proceedings of FOS-

SACS 05, LNCS 3441, 2005.
16. J. Ouaknine and J. Worrell. On the decidability of Metric Temporal Logic. In

Proceedings of LICS 05, IEEE Computer Society Press, 2005.
17. J. Ouaknine and J. Worrell. Metric temporal logic and faulty Turing machines.

Proceedings of FOSSACS 06, LNCS, 2006.
18. J. Ouaknine and J. Worrell. Safety MTL is fully decidable. Oxford University

Programming Research Group Research Report RR-06-02.
19. J.-F. Raskin and P.-Y. Schobbens. State-clock logic: a decidable real-time logic. In

Proceedings of HART 97, LNCS 1201, 1997.
20. M. Vardi. Alternating automata: Unifying truth and validity checking for temporal

logics. In Proceedings of CADE 97, LNCS 1249, 1997.
21. F. Wang. Formal Verification of Timed Systems: A Survey and Perspective. Pro-

ceedings of the IEEE, 92(8):1283–1307, 2004.
22. T. Wilke. Specifying timed state sequences in powerful decidable logics and timed

automata. Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS
863, 1994.

