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Abstract. We consider the decidability and complexity of the Ultimate
Positivity Problem, which asks whether all but finitely many terms of
a given rational linear recurrence sequence (LRS) are positive. Using
lower bounds in Diophantine approximation concerning sums of S-units,
we show that for simple LRS (those whose characteristic polynomial
has no repeated roots) the Ultimate Positivity Problem is decidable in
polynomial space. If we restrict to simple LRS of a fixed order then
we obtain a polynomial-time decision procedure. As a complexity lower
bound we show that Ultimate Positivity for simple LRS is at least as hard
as the decision problem for the universal theory of the reals: a problem
that is known to lie between coNP and PSPACE.

1 Introduction

A linear recurrence sequence (LRS) is an infinite sequence u = 〈u0, u1, . . .〉
of rational numbers satisfying a recurrence relation

un+k = a1un+k−1 + a2un+k−2 + . . .+ akun (1)

for all n ≥ 0, where a1, a2, . . . , ak are fixed rational numbers with ak 6= 0. Such
a sequence is determined by its initial values u0, . . . , uk−1 and the recurrence
relation. We say that the recurrence has characteristic polynomial

f(x) = xk − a1x
k−1 − . . .− ak−1x− ak .

The least k such that u satisfies a recurrence of the form (1) is called the order
of u. If the characteristic polynomial of this (unique) recurrence has no repeated
roots then we say that u is simple.

Given an LRS u there are polynomials p1, . . . , pk ∈ C[x] such that

un = p1(n)γn1 + . . .+ pk(n)γnk ,

where γ1, . . . , γk are the roots of the characteristic polynomial. Moreover u is
simple if and only if it admits such a representation in which each polynomial
pi is a constant. Simple LRS are a natural and widely studied subclass of LRS
whose analysis nevertheless remains extremely challenging [1, 10, 12, 24].

? The full version of this paper is available as [23].



Motivated by questions in language theory and formal power series, Rozen-
berg, Salomaa, and Soittola [27, 29] highlight the following four decision problems
concerning LRS. Given an LRS 〈un〉∞n=0 (represented by a linear recurrence and
sequence of initial values):

1. Does un = 0 for some n?
2. Does un = 0 for infinitely many n?
3. Is un ≥ 0 for all n?
4. Is un ≥ 0 for all but finitely many n?

Linear recurrence sequences are ubiquitous in mathematics and computer
science, and the above four problems (and assorted variants) arise in a variety
of settings; see [25] for references. For example, an LRS modelling population
size is biologically meaningful only if it never becomes negative.

Problem 1 is known as Skolem’s Problem, after the Skolem-Mahler-Lech
Theorem [18, 19, 28], which characterises the set {n ∈ N : un = 0} of zeros of an
LRS u as an ultimately periodic set. The proof of the Skolem-Mahler-Lech The-
orem is non-effective, and the decidability of Skolem’s Problem is open. Blondel
and Tsitsiklis [6] remark that “the present consensus among number theorists is
that an algorithm [for Skolem’s Problem] should exist”. However, so far decid-
ability is known only for LRS of order at most 4: a result due independently to
Vereschagin [32] and Mignotte, Shorey, and Tijdeman [21]. At order 5 decidabil-
ity is not known, even for simple LRS [22]. Decidability of Skolem’s Problem is
also listed as an open problem and discussed at length by Tao [30, Section 3.9].
The problem can furthermore be seen as a generalisation of the Orbit Problem,
studied by Kannan and Lipton [16, Section 5].

In contrast to the situation with Skolem’s Problem, Problem 2—hitting zero
infinitely often—was shown to be decidable for arbitrary LRS by Berstel and
Mignotte [4].

Problems 3 and 4 are respectively known as the Positivity and Ultimate
Positivity Problems. The problems are stated as open in [2, 14, 17], among
others, while in [27] the authors assert that the problems are “generally conjec-
tured [to be] decidable”. Decidability of Positivity entails decidability of Skolem’s
Problem via a straightforward algebraic transformation of LRS (which however
does not preserve the order) [14].

Hitherto, all decidability results for Positivity and Ultimate Positivity have
been for low-order sequences. The paper [25] gives a detailed account of these
results, obtained over a period of time stretching back some 30 years, and proves
decidability of both problems for sequences of order at most 5. It is moreover
shown in [25] that obtaining decidability for either Positivity or Ultimate Pos-
itivity at order 6 would necessarily entail major breakthroughs in Diophantine
approximation.

The main result of this paper is that the Ultimate Positivity Problem for
simple LRS of arbitrary order is decidable. The restriction to simple LRS allows
us to circumvent the strong “mathematical hardness” result for sequences of
order 6 alluded to above. However, our decision procedure is non-constructive:
given an ultimately positive LRS 〈un〉∞n=0, the procedure does not compute a



threshold N such that un ≥ 0 for all n ≥ N . Indeed the ability to compute such
a threshold N would immediately yield an algorithm for the Positivity Problem
for simple LRS since the signs of u0, . . . , uN−1 can be checked directly. In turn
this would yield decidability of Skolem’s Problem for simple LRS. But Skolem’s
Problem is open for simple LRS of order 5, while (as discussed below) Positivity
for simple LRS is only known to be decidable up to order 9.

The non-constructive aspect of our results arises from our use of lower bounds
in Diophantine approximation concerning sums of S-units. These bounds were
proven in [11, 31] using Schlickewei’s p-adic generalisation of Schmidt’s Subspace
Theorem (itself a far-reaching generalisation of the Thue-Siegel-Roth Theorem),
and therein applied to study the asymptotic growth of LRS in absolute value.
By contrast, in [24] we use Baker’s Theorem on linear forms in logarithms to
show decidability of Positivity for simple LRS of order at most 9. Unfortunately,
while Baker’s Theorem yields effective Diophantine-approximation lower bounds,
it appears only to be applicable to low-order LRS. In particular, the analytic
and geometric arguments that are used in [24] to bring Baker’s Theorem to bear
(and which give that work a substantially different flavour to the present paper)
do not apply beyond order 9.

Relying on complexity bounds for the decision problem for first-order for-
mulas over the field of real numbers, we show that our procedure for deciding
Ultimate Positivity requires polynomial space in general and polynomial time for
LRS of each fixed order. As a complexity lower bound, we give a polynomial-time
reduction of the decision problem for the universal theory of the reals to both the
Positivity and Ultimate Positivity Problems for simple LRS. The decision prob-
lem for the universal theory of the reals is easily seen to be coNP-hard and, from
the work of Canny [8], is contained in PSPACE. Thus the complexity of the
Ultimate Positivity problem for simple LRS lies between coNP and PSPACE.
Hitherto the best lower bound known for either Positivity or Ultimate Positivity
was coNP-hardness [3].

Full proofs of all results can be found in the long version of this paper [23].

2 Background

Number Theory. A complex number α is algebraic if it is a root of a univariate
polynomial with integer coefficients. The defining polynomial of α, denoted
pα, is the unique integer polynomial of least degree, whose coefficients have no
common factor, that has α as a root. The degree of α is the degree of pα, and
the height of α is the maximum absolute value of the coefficients of pα. If pα is
monic then we say that α is an algebraic integer.

For computational purposes an algebraic number α can be represented by a
polynomial f that has α as a root, together with an approximation of α with
rational real and imaginary parts of sufficient accuracy to distinguish α from the
other roots of f [15]. We denote by ||α|| the length of this representation.1 It
1 In general we denote by ||X|| the length of the binary representation of a given

object X.



can be shown that ||α|| is polynomial in the degree and logarithm of the height
of α. Given a univariate polynomial f , it is moreover known how to obtain
representations of each of its roots in time polynomial in ||f ||.

A number field K is a finite-dimensional extension of Q. The set of algebraic
integers in K forms a ring, denoted O. Given two ideals I, J in O, the product
IJ is the ideal generated by the elements ab, where a ∈ I and b ∈ J . An ideal P
of O is prime if ab ∈ P implies a ∈ P or b ∈ P . The fundamental theorem of
ideal theory states that any non-zero ideal in O can be written as the product
of prime ideals, and the representation is unique if the order of the prime ideals
is ignored.

We will need the following classical result of Dirichlet [13].

Theorem 2.1 (Dirichlet). Let P be the set of primes and Pa,b the set of primes
congruent to a mod b, where gcd(a, b) = 1. Then

lim
n→∞

|Pa,b ∩ {1, . . . , n}|
|P ∩ {1, . . . , n}|

=
1

ϕ(b)
,

where ϕ denotes Euler’s totient function.

Linear Recurrence Sequences. Let u = 〈un〉∞n=0 be a sequence of rational num-
bers satisfying the recurrence relation un+k = a1un+k−1 + . . . + akun. We rep-
resent such an LRS as a 2k-tuple (a1, . . . , ak, u0, . . . , uk−1) of rational numbers
(encoded in binary). Given an arbitrary representation of u, we can compute the
coefficients of the unique minimal-order recurrence satisfied by u in polynomial
time by straightforward linear algebra. Henceforth we will always assume that an
LRS is presented in terms of its minimal-order recurrence. By the characteristic
polynomial of an LRS we mean the characteristic polynomial of the minimal-
order recurrence. The roots of this polynomial are called the characteristic
roots. The characteristic roots of maximum modulus are said to be dominant.

It is well-known (see, e.g., [2, Thm. 2]) that if an LRS u has no real positive
dominant characteristic root then there are infinitely many n such that un <
0 and infinitely many n such that un > 0. Clearly such an LRS cannot be
ultimately positive.

Since the characteristic polynomial of u has real coefficients, its set of roots
can be written in the form {ρ1, . . . , ρ`, γ1, γ1, . . . , γm, γm}, where each ρi ∈ R.
If u is simple then there are non-zero real algebraic constants b1, . . . , b` and
complex algebraic constants c1, . . . , cm such that, for all n ≥ 0,

un =
∑̀
i=1

biρ
n
i +

m∑
j=1

(
cjγ

n
j + cjγj

n
)
. (2)

Conversely, a sequence u that admits the representation (2) is a simple LRS
over R, with characteristic roots among ρ1, . . . , ρ`, γ1, γ1, . . . , γm, γm. Arbitrary
LRS admit a more general “exponential-polynomial” representation in which the
coefficients bi and cj are replaced by polynomials in n.



An LRS is said to be non-degenerate if it does not have two distinct char-
acteristic roots whose quotient is a root of unity. A non-degenerate LRS is either
identically zero or only has finitely many zeros. The study of arbitrary LRS can
effectively be reduced to that of non-degenerate LRS using the following result
from [10].

Proposition 2.2. Let 〈un〉∞n=0 be an LRS of order k over Q. There is a constant
M = 2O(k

√
log k) such that each subsequence 〈uMn+l〉∞n=0 is non-degenerate for

0 ≤ l < M .

The constant M in Proposition 2.2 is the least common multiple of the orders
of all roots of unity appearing as quotients of characteristic roots of u. This
number can be computed in time polynomial in ||u|| since determining whether
an algebraic number α is a root of unity (and computing the order of the root)
can be done in polynomial time in ||α|| [15]. From the representation (2) we
see that if the original LRS is simple with characteristic roots λ1, . . . , λk, then
each subsequence 〈uMn+l〉∞n=0 is also simple, with characteristic roots among
λM1 , . . . , λMk .

The following is a celebrated result on LRS [18, 19, 28].

Theorem 2.3 (Skolem-Mahler-Lech). The set {n : un = 0} of zeros of an
LRS u comprises a finite set together with a finite number of arithmetic pro-
gressions. If u is non-degenerate and not identically zero, then its set of zeros is
finite.

Suppose that u and v are LRS of orders k and l respectively, then the point-
wise sum 〈un + vn〉∞n=0 is an LRS of order at most k + l, and the pointwise
product 〈unvn〉∞n=0 is an LRS of order at most kl. Given representations of u
and v we can compute representations of the sum and product in polynomial
time by straightforward linear algebra.

First-Order Theory of the Reals. Let x = x1, . . . , xm be a list of m real-valued
variables, and let σ(x) be a Boolean combination of atomic predicates of the
form g(x) ∼ 0, where each g(x) is a polynomial with integer coefficients in the
variables x, and ∼ is either > or =. We consider the problem of deciding the
truth over the field R of sentences ϕ in the form

Q1x1 . . . Qmxm σ(x) , (3)

where each Qi is one of the quantifiers ∃ or ∀. We write ||ϕ|| for the length of
the syntactic representation of ϕ.

The collection of true sentences of the form (3) is called the first-order
theory of the reals. Tarski famously showed that this theory admits quan-
tifier elimination and is therefore decidable. In this paper we rely on decision
procedures for two fragments of this theory. We use the result of Canny [8] that
if each Qi is a universal quantifier, then the truth of ϕ can be decided in space
polynomial in ||ϕ||. We also use the result of Renegar [26] that for each fixed



M ∈ N, if the number of variables in ϕ is at most M , then the truth of ϕ can
be determined in time polynomial in ||ϕ||.

Given a representation of an algebraic number α, as described in Section 2,
both the real and imaginary parts of α are straightforwardly definable by quantifier-
free formulas ϕ(x) of size polynomial in ||α||.

3 Multiplicative Relations

Throughout this section let λ = (λ1, . . . , λs) be a tuple of algebraic numbers,
each of height at most H and degree at most d. Assume that each λi is repre-
sented in the manner described in Section 2.

We define the group of multiplicative relations holding among the λi to be
the subgroup L(λ) of Zs defined by

L(λ) = {(v1, . . . , vs) ∈ Zs : λv11 . . . λvs
s = 1} .

Bounds on the complexity of computing a basis of L(λ), considered as a free
abelian group, can be obtained from the following result of Masser [20] which
gives an upper bound on the magnitude of the entries of the vectors in such a
basis.

Theorem 3.1 (Masser). The free abelian group L(λ) has a basis v1, . . . ,vl ∈
Zs for which

max
1≤i≤l, 1≤j≤s

|vi,j | = (d logH)O(s2) .

Corollary 3.2. A basis of L(λ) can be computed in space polynomial in ||λ||.
If s and d are fixed, such a basis can be computed in time polynomial in ||λ||.

Proof. Masser’s bound entails that there is a basis v1, . . . ,vl whose total bit
length is polynomial in s, log d and log logH, all of which are polynomial in
||λ||. Moreover the membership problem “λv11 . . . λvs

s = 1?” for a potential basis
vector v ∈ Zs is decidable in space polynomial in ||λ|| by reduction to the
decision problem for existential sentences over the reals.

A set of vectors v1, . . . ,vl in L(λ) is a basis if every vector v ∈ L(λ) whose
entries satisfy the bound in Theorem 3.1 lies in the integer span of v1, . . . ,vl. For
each such vector v this can be checked by solving a system of linear equations
over the integers. Thus we can compute a basis of L(λ) in space polynomial in
||λ|| by brute-force search.

If s and d are fixed then the same brute-force search can be done in time
polynomial in ||λ||, noting that the number of possible bases is polynomial in ||λ||
and the membership problem “λv11 . . . λvs

s = 1?” is decidable in time polynomial
in ||λ|| by reduction to the decision problem for existential sentences over the
reals with a fixed number of variables. ut

The following is an easy consequence of Corollary 3.2.



Corollary 3.3. Given M ∈ N, a basis of L(λM1 , . . . , λMs ) can be computed in
space polynomial in ||M || and ||λ||.

Next we relate the group L(λ) to the orbit {(λn1 , . . . , λns ) | n ∈ N} of λ.
Recall from [9] the following classical theorem of Kronecker on inhomogeneous
Diophantine approximation.

Theorem 3.4 (Kronecker). Let θ1, . . . , θs and ψ1, . . . , ψs be real numbers.
Suppose moreover that for all integers u1, . . . , us, if u1θ1 + . . . + usθs ∈ Z then
also u1ψ1 + . . . + usψs ∈ Z, i.e., all integer relations among the θi also hold
among the ψi (modulo Z). Then for each ε > 0, there exist integers p1, . . . , ps
and a non-negative integer n such that |nθi − pi − ψi| ≤ ε.

Write T = {z ∈ C : |z| = 1} and consider the s-dimensional torus Ts as
a group under coordinatewise multiplication. The following can be seen as a
multiplicative formulation of Kronecker’s Theorem.

Proposition 3.5. Let λ = (λ1, . . . , λs) ∈ Ts and consider the group L(λ) of
multiplicative relations among the λi. Define a subgroup T (λ) of the torus Ts by

T (λ) = {(µ1, . . . , µs) ∈ Ts | µv11 . . . µvs
s = 1 for all v ∈ L(λ)} .

Then the orbit S = {(λn1 , . . . , λns ) | n ∈ N} is a dense subset of T (λ).

Proof. For j = 1, . . . , s, let θj ∈ R be such that λj = e2πiθj . Notice that multi-
plicative relations λv11 . . . λvs

s = 1 are in one-to-one correspondence with additive
relations θ1v1 + . . .+ θsvs ∈ Z. Let (µ1, . . . , µs) be an arbitrary element of T (λ),
with µj = e2πiψj for some ψj ∈ R. Then the hypotheses of Theorem 3.4 apply to
θ1, . . . , θs and ψ1, . . . , ψs. Thus given ε > 0, there exist n ≥ 0 and p1, . . . , ps ∈ Z
such that |nθj − pj − ψj | ≤ ε for j = 1, . . . , s. Whence for j = 1, . . . , s,

|λnj − µj | = |e2πi(nθj−pj) − e2πiψj | ≤ |2π(nθj − pj − ψj)| ≤ 2πε .

It follows that (µ1, . . . , µs) lies in the closure of S. ut

4 Algorithm for Ultimate Positivity

Let K be a number field of degree d over Q. Recall that there are d distinct
field monomorphisms σ1, . . . , σd : K → C (see, e.g., [13]). Given a finite set S
of prime ideals in the ring of integers O of K, we say that α ∈ O is an S-unit
if the principal ideal (α) is a product of prime ideals in S. The following lower
bound on the magnitude of sums of S-units, whose key ingredient is Schlickewei’s
p-adic generalisation of Schmidt’s Subspace Theorem, was established in [11, 31]
to analyse the growth of LRS.

Theorem 4.1 (Evertse, van der Poorten, Schlickewei). Let m be a positive
integer and S a finite set of prime ideals in O. Then for every ε > 0 there exists
a constant C, depending only on m, K, S, and ε with the following property:



for any set of S-units x1, . . . , xm ∈ O such that
∑
i∈I xi 6= 0 for all non-empty

I ⊆ {1, . . . ,m}, it holds that

|x1 + . . .+ xm| ≥ CXY −ε , (4)

where X = max{|xi| : 1 ≤ i ≤ m}, Y = max{|σj(xi)| : 1 ≤ i ≤ m, 1 ≤ j ≤ d}.
We first consider how to decide Ultimate Positivity in the case of a non-

degenerate simple LRS u. As explained in Section 2, we can assume without
loss of generality that u has a positive real dominant root. Furthermore, by
considering the LRS 〈kn+1un〉∞n=0 for a suitable integer k ≥ 1, we may assume
that the characteristic roots and coefficients in the closed-form solution (2) are
all algebraic integers.

Suppose that u has dominant characteristic roots ρ, γ1, γ1, . . . , γs, γs, where
ρ is real and positive. Then we can write u in the form

un = bρn + c1γ
n
1 + c1γ1

n + . . .+ csγ
n
s + csγs

n + r(n) , (5)

where r(n) = o(ρn(1−ε)) for some ε > 0. Now let λi = γi/ρ for i = 1, . . . , s. Then
we can write

un = ρnf(λn1 , . . . , λ
n
s ) + r(n) , (6)

where f : Ts → R is defined by f(z1, . . . , zs) = b+ c1z1 + c1z1 + . . .+ cszs+ cszs.

Proposition 4.2. The LRS 〈un〉∞n=0 is ultimately positive if and only if f(z) ≥
0 for all z ∈ T (λ).

Proof. Consider the expression (5). Let K be the number field generated over Q
by the characteristic roots of u and let S be the set of prime ideal divisors of the
dominant characteristic roots ρ, γ1, γ1, . . . , γs, γs and the associated coefficients
b, c1, c1, . . . , cs, cs. (These coefficients lie in K by straightforward linear algebra.)
Then the term

bρn + c1γ
n
1 + c1γ1

n + . . .+ csγ
n
s + csγs

n (7)

is a sum of S-units.
Applying Theorem 4.1 to the sum of S-units in (7), we have X = C1ρ

n

for some constant C1 > 0 and Y = C2ρ
n for some constant C2 > 0 (since an

embedding of K into C maps characteristic roots to characteristic roots). The
theorem tells us that for each ε > 0 there is a constant C > 0 such that

|bρn + c1γ
n
1 + c1γ1

n + . . .+ csγ
n
s + csγs

n| ≥ Cρn(1−ε)

for all but finitely many values of n. (Since u is non-degenerate, it follows from
the Skolem-Mahler-Lech Theorem that each non-empty sub-sum of the left-hand
side vanishes for finitely many n.)

Now choose ε > 0 such that r(n) = o(ρn(1−ε)) in (5). Then for all sufficiently
large n, un ≥ 0 if and only if bρn + c1γ

n
1 + c1γ1

n + . . . + csγ
n
s + csγs

n > 0.
Equivalently, looking at (6), for all sufficiently large n we have un ≥ 0 if and
only if f(λn1 , . . . , λ

n
s ) ≥ 0. But the orbit {(λn1 , . . . , λns ) : n ∈ N} is a dense subset

of T (λ) by Proposition 3.5. Thus un is ultimately positive if and only if f(z) ≥ 0
for all z ∈ T (λ). ut



We can now state and prove our main result.

Theorem 4.3. The Ultimate Positivity Problem for simple LRS is decidable in
polynomial space in general, and in polynomial time for LRS of fixed order.

Proof. A decision procedure is given in the table below. Correctness follows from
the fact that u is ultimately positive if and only if each of the non-degenerate
subsequences v considered in Step 2 is ultimately positive. But ultimate posi-
tivity of these subsequences is determined in Step 2.4 using Proposition 4.2. It
remains to account for the complexity of each step.

As noted in Section 2, Step 1 requires time polynomial in ||u||.
For LRS of fixed order, there is an absolute bound on M in Step 2, while for

LRS of arbitrary order, M is exponentially bounded in ||u|| by Proposition 2.2.
We show that for each subsequence v, Steps 2.1–2.4 require polynomial time for
fixed-order LRS and polynomial space in general.

Using iterated squaring, the coefficients bi and cj in the expression (8) for
v are definable in terms of the characteristic roots of u and the corresponding
coefficients in the closed-form expression for u by a polynomial-size first-order
formula that uses only universal quantifiers. This accomplishes Step 2.1.

Combining Corollaries 3.2 and 3.3, Step 2.3 can be done in polynomial space
for arbitrary LRS and polynomial time for LRS of fixed order.

Step 2.4 uses a decision procedure for universal sentences over the reals,
having already noted that the coefficients bi and cj are first-order definable.
By the results described in Section 2 this can be done in polynomial space for
arbitrary LRS and polynomial time for LRS of fixed order. ut

Decision procedure for ultimate positivity of a simple LRS u

1. Compute the characteristic roots {ρ1, . . . , ρ`, γ1, γ1, . . . , γm, γm} of u.
Writing α ∼ β if α/β is a root of unity, let M = lcm{ord(α/β) :
α ∼ β are characteristic roots}. Moreover let {ρi : i ∈ I} ∪ {γj , γj : j ∈ J}
contain a unique representative from each equivalence class.

2. For l = 0, . . . ,M − 1, check ultimate positivity of the non-degenerate subse-
quence vn = uMn+l as follows:
2.1. Compute the coefficients bi and cj in the closed-form solution

vn =
X
i∈I

biρ
Mn
i +

X
j∈J

“
cjγ

Mn
j + cjγj

Mn
”
. (8)

2.2. If v 6≡ 0 and there is no dominant real characteristic root in (8) then v is
not ultimately positive.

2.3. Let ρ1, γ1, γ1, . . . , γs, γs be dominant among the characteristic roots ap-
pearing in (8). Define λ1 = γ1/ρ1, . . . , λs = γs/ρ1 and compute a basis of
L(λM

1 , . . . , λ
M
s ).

2.4. Define f : Ts → R by f(z1, . . . , zs) = b1 + c1z1 + c1z1 + . . .+ cszs + cszs.
Then v is ultimately positive if and only if f(z) ≥ 0 for all z ∈ T (λM ).



We note that a related proof strategy (passing from a finitely generated group
to its closure and appealing to the theory of the reals) was used in [5] in the
context of threshold problems for quantum automata.

5 Complexity Lower Bound

In this section we give a reduction of the decision problem for universal sentences
over the field of real numbers to the Positivity and Ultimate Positivity Problems.
The former problem is easily seen to be coNP-hard and, through the work of
Canny [8], is known to be in PSPACE. Typically this PSPACE upper bound is
stated for the complement problem: the decision problem for existential sentences
over the field of reals.

It is known that the problem 4-FEAS of whether a degree-4 polynomial has a
real root is polynomial-time equivalent to the decision problem for the existential
theory of the reals [7]. Here we consider a related problem, 4-POS, which asks
whether a degree-4 polynomial f(x1, . . . , xn) with rational coefficients satisfies
f(x) ≥ 0 for all x ∈ [0, 1]n. Using the above-mentioned result on 4-FEAS in
tandem with bounds on magnitude of definable numbers in the existential theory
of the reals we can prove:

Theorem 5.1. There is a polynomial-time reduction of the decision problem for
the universal theory of the reals to the problem 4-POS.

We now reduce 4-POS to the Positivity and Ultimate Positivity Problems.
The first step of the reduction is to compute a collection of s multiplicatively
independent algebraic numbers of absolute value 1.

By a classical result of Lagrange, a prime number is congruent to 1 modulo 4
if and only if it can be written as the sum of two squares [13]. By Theorem 2.1,
the class of such primes has asymptotic density 1/2 in the set of all primes, and
therefore, by the Prime Number Theorem, asymptotic density 1/(2 log n) in the
set of natural numbers. It follows that one can compute the first s such primes
p1, . . . , ps and their decomposition as sums of squares in time polynomial in s.
Writing pj = a2

j + b2j , where aj , bj ∈ Z, define λj = aj+ibj

aj−ibj
for j = 1, . . . , s. Then

each λj is an algebraic number of degree 2 and absolute value 1.

Proposition 5.2. λ1, . . . , λs are multiplicatively independent.

Proof. Recall that the ring of Guassian integers Z(i) is a unique factorisation
domain and that a+ ib ∈ Z(i) is prime iff a2 + b2 is a rational prime [13]. Now
λn1

1 . . . λns
s = 1 if and only if

(a1 + ib1)n1 . . . (as + ibs)ns = (a1 − ib1)n1 . . . (as − ibs)ns

But each factor aj + ibj and aj − ibj is prime by construction. Thus by unique
factorisation we must have n1 = 0, . . . , ns = 0. ut

Theorem 5.3. There are polynomial-time reductions from 4-POS to the Posi-
tivity and Ultimate Positivity Problems for LRS.



Proof. Suppose we are given an instance of 4-POS, consisting of a polynomial
f(x1, . . . , xs). Let λ1, . . . , λs be multiplicatively independent algebraic numbers,
constructed as in Proposition 5.2. For j = 1, . . . , s, the sequence 〈yj,n : n ∈ N〉
defined by yj,n = 1

2 (λnj +λj
n
) satisfies a second-order linear recurrence yj,n+2 =

(2aj/pj)yj,n+1 − yj,n with rational coefficients.
Recall, moreover, that given two simple LRS of respective orders l and m,

their sum is a simple LRS of order at most l+m, their product is a simple LRS
of order at most lm, and representations of both can be computed in polynomial
time in the size of the input LRS. Thus the sequence u = 〈un : n ∈ N〉 given by
un = f(y2

1,n, . . . , y
2
s,n) is a simple LRS over the rationals. Since f has degree at

most 4, the order of u is at most 44 times the number of monomials in f and the
recurrence satisfied by u can be computed in time polynomial in ||f ||. (Observe
that if the degree of f were not fixed, then the above reasoning would yield an
upper bound on the order of u that is exponential in the degree of f .)

From Propositions 3.5 and 5.2 it follows that the orbit {(λn1 , . . . , λns ) : n ∈ N}
is dense in the torus Ts. Thus the set {(y2

1,n, . . . , y
2
s,n) : n ∈ N} is dense in [0, 1]s

and f assumes a strictly negative value on [0, 1]s if and only if un < 0 for some
(equivalently infinitely many) n. This completes the reduction. ut

6 Conclusion

We have shown that the Ultimate Positivity Problem for simple LRS is decidable
in polynomial space and as hard as the decision problem for universal sentences
over the field of real numbers. A more careful accounting of the complexity
of our decision procedure places it in coNP with an oracle for the universal
theory of the reals. Thus a PSPACE-hardness result for Ultimate Positivity
would have non-trivial consequences for the complexity of decision problems for
first-order logic over the reals. On the other hand, the obstacle to improving
the polynomial-space upper bound is the complexity of computing a basis of the
group of multiplicative relations among the characteristic roots of the recurrence.
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