
Zone-Based Universality Analysis for

Single-Clock Timed Automata

Parosh Aziz Abdulla1, Joël Ouaknine2, Karin Quaas1, and James Worrell2

1 Department of Computer Systems, Uppsala University, Sweden
{parosh,karin}@it.uu.se

2 Oxford University Computing Laboratory, UK
{joel,jbw}@comlab.ox.ac.uk

Abstract. During the last years, timed automata have become a popu-
lar model for describing the behaviour of real-time systems. In particular,
there has been much research on problems such as language inclusion and
universality. It is well-known that the universality problem is undecidable
for the class of timed automata with two or more clocks. Recently, it was
shown that the problem becomes decidable if the automata are restricted
to operate on a single clock variable. However, existing algorithms use a
region-based constraint system and suffer from constraint explosion even
for small examples. In this paper, we present a zone-based algorithm for
solving the universality problem for single-clock timed automata. We ap-
ply the theory of better quasi-orderings, a refinement of the theory of well
quasi-orderings, to prove termination of the algorithm. We have imple-
mented a prototype based on our method, and checked universality for a
number of timed automata. Comparisons with a region-based prototype
confirm that zones are a more succinct representation, and hence allow
a much more efficient implementation of the universality algorithm.

1 Introduction

Timed automata have emerged as one of the most popular models for specifi-
cation and analysis of real-time systems. An execution of such an automaton
can be viewed as a timed word consisting of a sequence of events and their as-
sociated timestamps. Furthermore, different properties of the automaton can be
expressed as languages of timed words. Since their introduction by Alur and Dill
[7], timed automata have been used as the foundation for several verification al-
gorithms and tools (see [10] for a survey). One of the most fundamental results
about timed automata is the undecidability of the universality problem: Given
a timed automaton A, is the language of A universal? (i.e., is every timed word
accepted by A?). This problem is undecidable when the automaton A is allowed
to have two or more clocks. In this context it is natural to seek subclasses of
timed automata, with reduced expressive power, for which universality (or the
more general problem of language inclusion) is decidable [9, 11, 10, 8, 13, 17].

In particular, the paper [18] shows that both the universality and language
inclusion problems are decidable for the class of timed automata which are re-
stricted to operate on a single clock. The paper uses a variant of regions as a

symbolic representation for sets of states in the universality algorithm; and uses
the theory of well quasi-orderings, for proving termination of the algorithm.
Despite the positive result in [18], deriving an algorithm which has a reason-
able efficiency is still a difficult challenge. In fact, it is shown in [2] that the
universality problem has a non-primitive recursive complexity for single-clock
timed automata. In addition, it is well-known that the region representation is
in general very inefficient and tends to explode even on very small examples.

In this paper, we propose a new formalism based on zones as a symbolic
representation of sets of states in the universality algorithm. Our motivation
is twofold. On one hand, several existing verification algorithms for classes of
systems with well quasi-ordered state spaces perform well in practice when com-
bined with efficient symbolic representations (despite non-primitive recursive
complexities). Examples include lossy channel systems [3] and timed Petri nets
[6]. On the other hand, zones often provide a much more compact representa-
tion of states than regions. Therefore, zones are used for instance in the design
of existing tools for verification of real-time systems, such as KRONOS [19] and
UPPAAL [14].

We solve the universality problem, by adapting the standard subset construc-
tion method. In particular we compute configurations: each configuration is the
set of states which the automaton reaches through the execution of one timed
word. We use zones as symbolic representations of (infinite) sets of configura-
tions. One important aspect of the universality problem is that there is no bound
on the number of clock variables in the zones which arise in the analysis. This
makes the algorithm much more difficult to design compared to other zone-based
algorithms such as the ones used in the above mentioned tools. A main challenge
then is to show that the algorithm is still guaranteed to terminate. To achieve
this, we show that zones are well quasi-ordered. More precisely, we show that, for
each infinite sequence of zones Z0, Z1, Z2, . . ., there are i and j with i < j such
that the non-universality of Zj is “entailed” by the non-universality of Zi. To
show the well quasi-ordering of zones, we follow the methodology of [5], and show
that zones in fact satisfy a stronger property than well quasi-ordering, namely
that they are better quasi-ordered.

We have implemented a prototype based on our method and have checked
a number of timed automata for universality. Comparisons with a region-based
prototype confirm that zones are a more succinct representation, and hence
universality analysis is much more efficient when it operates on zones rather
than regions.

Outline In the next section, we give some preliminaries of timed automata. In
Section 3 we consider the universality problem for configurations. In Section 4,
we introduce zones, and in Section 5, we describe the zone-based universality
algorithm. In Section 6, we show that the algorithm is guaranteed to terminate.
We devote Section 7 and Section 8 to describe how to implement the different
steps of the algorithm; more precisely, we show how to compute successors of
zones in the algorithm, and how to check the entailment relation on zones. In

Section 9, we report some experimental results. Finally, we give some conclusions
and directions for future work in Section 10.

2 Timed Automata

In this section, we recall the basic definitions for timed automata, and concen-
trate on the class where the automata operate on a single clock.

We use N and R+ to denote the sets of natural numbers and non-negative
reals respectively. For ν ∈ R+, let bνc and fract (ν) be the integral resp. fractional
part of ν.

Timed Words Let Σ be a finite alphabet. A timed event is a pair (t, a), where
t ∈ R+ is called the timestamp of the event a ∈ Σ. A timed word is a finite
sequence t = (t0, a0)(t1, a1)(t2, a2) . . . (tn, an) of timed events whose sequence
of timestamps t0t1t2 . . . tn is non-decreasing. We write TΣ∗ for the set of finite
timed words over the alphabet Σ.

Timed Automata We consider timed automata which operate on a single clock
(in the sequel referred to as clock c). We define the set Φ of clock constraints
to be conjunctions of formulas of the form c ∼ k, k ∼ c, where k ∈ N and
∼∈ {<,≤, >,≥}. A timed automaton is a tuple A = (Σ,S, sinit , F, E), where

– Σ is a finite alphabet of events,
– S is a finite set of control states,
– sinit ∈ S is the initial control state,
– F ⊆ S is a set of accepting control states,
– E ⊆ S × S × Φ × Σ × {tt ,ff } is a finite set of edges. An edge (s, s′, φ, a,R)

allows an a-labelled transition from s to s′, provided that the precondition
φ on clock c is met. Afterwards, c is either reset to 0 (if R = tt), or its value
remains unchanged (if R = ff).

We let cmax be the maximum natural number which appears on the edges of
the automaton. A global state q of A is a pair (s, ν), where s ∈ S is a control
state and ν ∈ R+ represents the value of clock c. We use state (q) and val (q)
to denote s and ν. We say that q is accepting if state (q) ∈ F . The initial global
state qinit is of the form (sinit , 0).

Transition System We define a transition relation on global states. For a
global state q, we let q + δ be the global state q′ such that state (q′) = state (q)

and val (q′) = val (q) + δ. A timed transition is of the form q
δ−→T q′, where

q′ = q + δ. A discrete transition is of the form (s, ν) a−→D (s′, ν′) such that there
is an edge (s, s′, φ, a,R) in E and the following conditions are satisfied: (i) ν

satisfies φ; (ii) ν ′ = 0 if R = tt ; and (iii) ν ′ = ν if R = ff . We write q
δ, a
−→ q′ to

denote that q
δ−→T q + δ

a−→D q′. For a global state q, a run (of A) from q is a
finite sequence of transitions

q0
δ0, a0

−→ q1
δ1, a1

−→ q2
δ2, a2

−→ · · ·
δn−1, an−1

−→ qn (1)

where q0 = q. The run is accepting if qn is accepting. We use L(q) to denote the
set of timed words of the form (t0, a0)(t1, a1) . . . (tn−1, an−1) such that there is an

accepting run from q of the above form and tj =
∑j

i=0 δi for each j : 0 ≤ j < n.
We say that q is universal if L(q) = TΣ∗. In the universality problem, we are

given an automaton, and are asked whether the initial global state is universal
or not.

3 Configurations

To solve the universality problem for global states, we study a more general
problem, namely the universality problem for (sets of) configurations.

Configurations A configuration γ is a finite set of global states. A configura-
tion is said to be accepting if some q ∈ γ is accepting. We lift the transition

relation from global states to configurations. We use γ
δ−→T γ′ to denote that

γ′ =
{

q′| ∃q ∈ γ. q
δ−→T q′

}

. The definitions of the relations a−→D and
δ, a
−→ are

extended to configurations in a similar manner. For a configuration γ, a run (of
A) from γ is a finite sequence of transitions

γ0
δ0, a0

−→ γ1
δ1, a1

−→ γ2
δ2, a2

−→ · · ·
δn−1, an−1

−→ γn (2)

where γ0 = γ. The run is accepting if γn is accepting. We define L(γ) in a similar
manner to the case of global states. We say that γ is universal if L(γ) = TΣ∗.
Notice that L(γ) =

⋃

q∈γ L(q).

Sets of Configurations A set Γ of configurations is said to be accepting

if all its members are accepting. We use Γ
δ−→T Γ ′ to denote that Γ ′ =

{

γ′| ∃γ ∈ Γ. γ
δ−→T γ′

}

. The definitions of the other transition relations are

extended analogously. Also the notions of a run, an accepting run, L(Γ), and
universality, are extended in a similar manner to the case of sets of configura-
tions.

We write Γ =⇒ Γ ′ to denote that Γ
δ−→T Γ ′′ a−→D Γ ′ for some δ, a, and

Γ ′′. We define (Γ =⇒) to be the set {Γ ′| Γ =⇒ Γ ′}.

Region Equivalence For configurations γ and γ ′, and a bijection h : γ 7→ γ′,
we write γ ≡h γ′ to denote that the following conditions are satisfied for each
q, q1, q2 ∈ γ:

– state (q) = state (h(q)).
– val (q) ≤ cmax iff val (h(q)) ≤ cmax .
– if val (q) ≤ cmax then bval (q)c = bval (h(q))c.
– if val (q) ≤ cmax then fract (val (q)) = 0 iff fract (val (h(q))) = 0.
– if val (q1) ≤ cmax and val (q2) ≤ cmax then fract (val (q1)) ≤ fract (val (q2))

iff fract (val (h(q1))) ≤ fract (val (h(q2))).

We write γ ≡ γ′ to denote that γ ≡h γ′ for some h. The relation ≡ is an
equivalence, and is a modification of the standard region equivalence on global
states. The latter relates (multi-clock) global states, while we here relate sets
of global states each with a single clock. The following lemma is an adaptation
from the classical theory of timed automata [7].

Lemma 1. For configurations γ1, γ2, and γ3, if γ1
δ, a
−→ γ2 and γ1 ≡ γ3, then

there is a γ4 such that γ3
δ, a
−→ γ4 and γ2 ≡ γ4.

Entailment We define an entailment relation v on (sets of) configurations. For
configurations γ and γ′, we write γ v γ′ to denote that there is a γ′′ ⊆ γ′ such
that γ′′ ≡ γ. For sets of configurations Γ and Γ ′, we use Γ v Γ ′ to denote that
for each γ′ ∈ Γ ′, there is a γ ∈ Γ such that γ v γ′. We write Γ ≡ Γ ′ to denote
that both Γ v Γ ′ and Γ ′ v Γ . The following lemma follows from Lemma 1.

Lemma 2. Let Γ1, Γ2, Γ3 be sets of configurations. If Γ1 =⇒ Γ2 and Γ3 v Γ1,
then there is a set of configurations Γ4 such that Γ3 =⇒ Γ4 and Γ4 v Γ2.

For a set Γ of configurations, we define the distance dist(Γ) of Γ to be the
smallest n such there is a sequence Γ0 =⇒ Γ1 =⇒ Γ2 =⇒ · · · =⇒ Γn, where Γ0 =
Γ , and Γn is not accepting. In other words, dist(Γ) gives the shortest distance
through =⇒ from Γ to a non-accepting set of configurations. If Γ is universal
then we define dist(Γ) = ∞. Notice that dist(Γ) = 0 iff Γ is not accepting. The
following two lemmas relate (non-)universality of a set Γ of configurations to
the (non-)universality of its successors.

Lemma 3. For a set Γ of configurations, if 0 < dist(Γ) < ∞ then there is a
Γ ′ ∈ (Γ =⇒) such that dist(Γ ′) < dist(Γ).

Lemma 4. For a set Γ of configurations, Γ is universal iff Γ is accepting and
each Γ ′ ∈ (Γ =⇒) is universal.

Notice that if Γ v Γ ′ and Γ ′ is not accepting then Γ is not accepting. This,
together with Lemma 2, implies the following lemma. The lemma shows the
relation between the entailment relation and the distance function.

Lemma 5. For sets Γ and Γ ′ of configurations, if Γ v Γ ′ then dist(Γ) ≤
dist(Γ ′).

4 Zones

We will use zones as a symbolic representation of (infinite) sets of configu-
rations in our universality algorithm. We assume a timed automaton A =
(Σ,S, sinit , F, E). For each s ∈ S, we will use a set Xs of variables ranging
over R+. We use X to denote the set

⋃

s∈S Xs. For x ∈ Xs, we use type (x) to
denote the control state s.

Zones A zone condition ϕ is one of the forms x ∼ k, k ∼ x, or y − x ∼ k,
where ∼∈ {≤, <}, x, y ∈ X, and k is an integer. A zone Z is a finite conjunction
of zone conditions. Sometimes, we consider a zone Z to be a set and write, for
instance, (x ∼ k) ∈ Z to indicate that x ∼ k is one of the conjuncts in Z. We
use Var (Z) to denote the set of variables which occur in Z.

Consider a zone Z, a configuration γ, and a mapping h : Var (Z) 7→ γ. We
write γ |=h Z to denote that, for each x, y ∈ Var (Z), the following conditions
are satisfied:

– type (x) = state (h(x)).
– if (x ∼ k) ∈ Z then val (h(x)) ∼ k.
– if (k ∼ x) ∈ Z then k ∼ val (h(x)).
– if (y − x ∼ k) ∈ Z then val (h(y)) − val (h(x)) ∼ k.

We write γ |= Z to denote that γ |=h Z for some h. We use [[Z]] to denote the
set {γ| γ |= Z}. Intuitively, each variable in Var (Z) represents one global state.
The configurations in [[Z]] contain global states whose control states are defined
by the types of the corresponding variables, and whose clock values are related
according to the zone conditions.

We say that Z is universal if [[Z]] is universal. Similarly, we say that Z is
accepting if [[Z]] is accepting. Let Y be a set of variables. By Z [Y], we mean the
zone we get from Z by removing all conjuncts which contain a variable in Y .
For a set Z of zones, we use Z [Y] to denote the set {Z [Y] | Z ∈ Z}.

For zones Z and Z ′, abusing notation, we use Z ≡ Z ′ resp. Z v Z ′ to denote
that [[Z]] ≡ [[Z ′]] resp. [[Z]] v [[Z ′]] , and use dist(Z) to denote dist([[Z]]). We use
Post(Z) to denote a finite set Z of zones such that

⋃

Z′∈Z [[Z ′]] = ([[Z]] =⇒). In
Section 7, we show that such a set exists and is computable. A zone Z is said to
be consistent if [[Z]] 6= ∅.

Lemma 6. For a zone Z, we can check whether Z is consistent or not.

Notice that an inconsistent zone is trivially universal.

Normal Form A zone Z is said to be in stable if the following four conditions
are satisfied:

– If (y − x ≤ k1) ∈ Z and (z − y ≤ k2) ∈ Z then (z − x ≤ k3) ∈ Z for some
k3 ≤ k1 + k2.

– If (x ≤ k1) ∈ Z and (y − x ≤ k2) ∈ Z then (y ≤ k3) ∈ Z for some k3 ≤
k1 + k2.

– If (y − x ≤ k1) ∈ Z and (k2 ≤ y) ∈ Z then (k3 ≤ x) ∈ Z for some k3 ≥
k2 − k1.

– If (y − x ≤ k1) ∈ Z then (k2 ≤ x) ∈ Z for some k2 ≥ −k1.
– Similar conditions hold in the case of strict inequalities.

A zone Z is said to be in normal form if all the constants appearing in the
definition of Z are less than or equal to cmax . It is straightforward [12] to show
the following

Lemma 7. For each zone Z, we can construct:

– a stable zone ZS such that (i) Var (ZS) = Var (Z); and (ii) γ |=h ZS iff
γ |=h Z for each γ and h

– A zone ZN in normal form such that ZN ≡ Z.

Notice that the first part of the lemma implies that [[ZS]] = [[Z]]. We use
Stabilize(Z) and Norm(Z) to denote ZS and ZN respectively. For a set Z of
zones, we define Stabilize(Z) = {Stabilize(Z)| Z ∈ Z and Z is consistent}.

5 Algorithm

The zone-based universality algorithm is defined as follows:

Algorithm 1: Zone-Based Universality Checking
Input: A zone Zinit .
Output: Is Zinit universal?

ToExplore := {Zinit}
Explored := ∅
while ToExplore 6= ∅

remove some Z from ToExplore

if Z is not accepting then

return (false)
else if ∃Z ′ ∈ Explored. Z′ v Z then

discard Z

else

ToExplore := ToExplore
S

{Norm(Z′)| Z′ ∈ Post(Z)}
Explored := {Z}

S

{Z′| Z′ ∈ Explored ∧ (Z 6v Z
′)}

return (true)
end

The algorithm inputs a zone Zinit , and should check whether Zinit is universal
or not. The algorithm maintains two sets of zones: a set ToExplore, initialized
to {Zinit}, of zones which have not yet been analyzed; and a set Explored,
initialized to the empty set, of zones which contains information about the set of
zones which already have been analyzed. The algorithm preserves the following
two invariants:

– some zone in (ToExplore
⋃

Explored) is non-universal iff Zinit is non-
universal; and

– If Zinit is non-universal, then ∃Z ∈ ToExplore. ∀Z′ ∈ Explored. dist(Z) <

dist(Z′).

Due to the invariants, the following two conditions can be checked during each
step of the algorithm:

– if ToExplore becomes empty then the algorithm terminates with a positive
answer; and

– if a non-accepting zone is detected then the algorithm terminates with a
negative answer.

If neither of the two conditions is satisfied, the algorithm proceeds by picking
and removing a zone Z from ToExplore. Two possibilities arise depending on
the value of Z:

– If there exists a zone Z ′ ∈ Explored with Z ′ v Z, then we discard Z. The
first invariant is preserved by Lemma 5. If Zinit is non-universal, then the
second invariant and Lemma 5 imply that there is still some Z ′′ ∈ ToExplore

such that dist(Z ′′) < dist(Z ′) ≤ dist(Z). This means that the second invari-
ant will also be preserved by this step.

– Otherwise, we generate the zones in Post(Z), normalize each one of them
(Lemma 7), and then put it in ToExplore. The first invariant will be pre-
served by Lemma 4, while the second invariant will be preserved by Lemma 7,
Lemma 5, and Lemma 3.

Partial correctness of the algorithm follows immediately from the invariant. It
remains to show that:

– The algorithm terminates (done in Section 6).
– We can compute Post and can check the entailment relation v on zones

(done in Section 7 and Section 8).

Remark Observe that the correctness of the algorithm is preserved in case we
replace v in the algorithm by any ordering v′ such that v′⊆v (i.e., Z v′ Z ′

implies Z v Z ′).

6 Termination

Using the methodology of [1] it can be shown that the universality algorithm of
Section 5 is guaranteed to terminate in case v is a well quasi-ordering (WQO).
Following the framework of [5], we show that v in fact satisfies a stronger prop-
erty than WQO; namely that it is a better quasi-ordering (BQO).

6.1 WQOs and BQOs

A quasi-ordering, or a QO for short, is a pair (A,�) where � is a reflexive and
transitive (binary) relation on a set A. A QO (A,�) is a well quasi-ordering, or
a WQO for short, if for each infinite sequence a1, a2, a3, . . . of elements of A,
there are i < j such that ai � aj . For a set B ⊆ A, we define min(B) to be a
subset of B which satisfies the following two properties:

– for each a ∈ B there is a b ∈ min(B) with b � a.
– the elements of min(B) are not related by �, i.e., there are no a, b ∈ min(B)

with a � b.

If there are several sets satisfying the above two conditions, then we assume that
min(B) gives an arbitrary (but fixed) such a set. Notice that if � is a WQO then
min(B) is finite.

Given a QO (A,�), we define a QO (A∗,�∗) on the set A∗ such that
x1 x2 · · · xm �∗ y1 y2 · · · yn if and only if there is a strictly monotone injection
h from {1, . . . ,m} to {1, . . . , n} such that xi � yh(i) for each i : 1 ≤ i ≤ m. We
define the relation �P on the set P(A) of finite subsets of A, so that A1 �P A2

if and only if ∀b ∈ A2 : ∃a ∈ A1 : a � b.

Lemma 8. For sets A1, A2 ⊆ A, we have A1 �P A2 iff min(A1) �
P min(A2).

In the following lemma we state some properties of BQOs3 [5, 15].

Lemma 9. 1. Each BQO is WQO.
2. If A is finite then (A,=) is BQO.
3. If (A,�) is BQO then (A∗,�∗) is BQO.
4. If (A,�) is BQO then

(

P(A),�P
)

is BQO.
5. If (A,�1) is BQO and �1⊆�2 then (A,�2) is BQO.

(Sets of) Configurations are BQO Fix an automaton A = (Σ,S, sinit , F, E).
For a global state q, we define the signature sign (q) to be a pair (s, k) ∈ S ×
{0, 1, 2, . . . , 2 · cmax + 1}, where s = state (q) and k is defined as follows:

– k = 2 · bval (q)c if val (q) ≤ cmax and fract (val (q)) = 0.
– k = 2 · bval (q)c + 1 if val (q) < cmax and fract (val (q)) > 0.
– k = 2 · cmax + 1 if val (q) > cmax .

For a configuration γ, we define sign (γ) to be a word over S×{0, 1, . . . , 2 · cmax + 1}
of the form r0r1 · · · rn such that the following properties are satisfied:

– {sign (q) | q ∈ γ} = r0 ∪ r1 ∪ · · · ∪ rn.
– If q ∈ ri and q′ ∈ rj then fract (q) ≤ fract (q′) iff i ≤ j.

The signature can be viewed as an encoding of the region to which the configu-
ration belongs. The ordering among the sets inside the word reflects the relative
ordering of the fractional parts. The control states, the integral parts of the clock
values, and whether the fractional part is equal to zero, are all stored inside the
signature of each global state. Observe that a signature is not an exact encoding
of region, as the former keeps track of the fractional parts of clocks greater than
cmax , while a region equates all such clock values. We define an ordering on
configurations induced by signatures as follows. Consider configurations γ and
γ′ such that sign (γ) = r0r1 · · · rm and sign (γ′) = r′0r

′
1 · · · r

′
n. We use γ � γ′ to

denote that there is a strictly monotonic4 injection h : {0, . . . ,m} 7→ {0, . . . , n}
such that ri ⊆ r′h(i) for each i : 0 ≤ i ≤ m. The above mentioned relation be-

tween regions and signatures is captured in the following lemma (a formal proof
can be given in a similar manner to see [4] or [18]).

3 The technical definition of BQOs is quite complicated and can be found in e.g. [5].
The actual definition is not needed for understanding the rest of the paper, and is
therefore omitted here.

4 Strict monotonicity means that i < j implies h(i) < h(j).

Lemma 10. For configurations γ and γ ′ if γ � γ′ then γ v γ′

We observe that the signature of each configuration is a finite word over finite
sets over a finite alphabet (namely finite sets over S×{0, 1, 2, . . . , 2 · cmax + 1}).
Consequently, Lemma 9 (Property 2 and Property 3) gives the following:

Lemma 11. � is a BQO on the set of configurations.

From Lemma 10, Lemma 11, and Lemma 9 (Property 5) we get the following:

Corollary 1. v is a BQO on the set of configurations.

From the definition of v on zones, Corollary 1, Lemma 8, and Lemma 9 (Prop-
erty 4) we get the following

Lemma 12. v is a BQO on zones.

Lemma 12 and Lemma 9 (Property 1) give the following:

Corollary 2. v is a WQO on zones.

7 Computing Successors

In this section, we show how to compute Post(Z) for some zone Z. We compute
Post(Z) as PostD(PostT (Z)), where PostT and PostD characterize timed resp.
discrete successors of Z.

Timed Successors For a zone Z, we let PostT (Z) denote the zone Z ′ such

that [[Z]] δ−→T [[Z ′]]. In other words, Z ′ characterizes the set of configurations
which are timed successors of configurations in [[Z]]. To compute Z ′, we first
compute the zone Z ′′ where Z ′′ is stable and where [[Z ′′]] = [[Z]] (Lemma 7). We
can derive PostT (Z) from Z ′′ by deleting all clock conditions of the forms x ≤ k

and x < k in Z ′′. This gives the following:

Lemma 13. For a zone Z, we can compute PostT (Z).

Discrete Successors Fix a timed automaton A = (Σ,S, sinit , F, E) and a
zone Z. Informally, the idea of computing PostD(Z) is as follows. We recall that
each variable in x ∈ Var (Z) represents one global state q in a configuration
γ ∈ [[Z]]. The global state q (represented by x) produces a (possibly empty)
set of successors. More precisely, each edge e = (s, s′, φ, a,R) which “matches”
x may produce a successor global state q′. Here, x and e are considered to be
matching if type (x) is identical to the source control state s in e. Notice that a
successor is generated only if val (q) satisfies φ. In this manner, a configuration γ

produces a set of successors, reflecting the different successors of the individual
global states in γ. We formalize the above reasoning in a number of steps.

First, we define the set of matching variables and edges. For a variable x ∈
Var (Z) and a label a ∈ Σ, we let E(x, a) be the set of edges whose source
control state is type (x) and whose label is a. For an a ∈ Σ, we define the set

Z � a = {(e, x) | x ∈ Var (Z) ∧ e ∈ E(x, a)}. For each pair (e, x) ∈ (Z � a),
we use a fresh variable y(e,x) (i.e., y(e,x) is not a member of Var (Z)). We define

type
(

y(e,x)

)

to be the target control state of e. Intuitively, for e = (s, s′, φ, a,R),
the set Z�a contains all pairs (e, x) which are matching, i.e., type (x) = s. Each
such a pair can potentially generate a new global state, represented by a new
variable y(e,x) in PostD(Z). Since the control state of the new global state will
be s′, the type of y(e,x) is also defined to be s′.

For (e, x) ∈ Z � a with e = (s, s′, φ, a,R), we define Z ⊗ (e, x) to be one of
the following sets:

– if R = ff then Z ⊗ (e, x) =
{

(y(e,x) = x) ∧ φ(x) , ¬φ(x)
}

.

– if R = tt then Z ⊗ (e, x) =
{

(y(e,x) = 0) ∧ φ(x) , ¬φ(x)
}

.

Intuitively, for each pair (e, x), there are two possibilities: either (i) the guard
φ is satisfied, in which case we generate a new global state represented by the
new variable y(e,x) in Post(Z); or (ii) φ is not satisfied in which case no new
variable is added to Post(Z). If a new global state is added then, depending on
the value of R, there are two possibilities: either (i) its clock value is equal to
the clock value of the original global state; or (ii) its clock value is equal to 0. In
the first case we add the condition y(e,x) = x, while in the second case we add
the condition y(e,x) = 0.

For a ∈ Σ, we define Z ⊗ a to be the set of zones of the form





∧

(e,x)∈(Z�a)

φ(e,x)



 ∧ Z

where φ(e,x) ∈ (Z ⊗ (e, x)) for each (e, x) ∈ (Z � a). Finally, we define:

Z ⊕ a = (Stabilize (Z ⊗ a)) [Var (Z)]

Each member of Z ⊗a is a zone which represents the conjunction of the original
zone Z with one of the zones in PostD(Z). To obtain the new zone, we abstract
from the variables of Z. The purpose of stabilization is to avoid losing information
when removing the elements of Var (Z). The following lemma shows correctness
of the above construction.

Lemma 14. PostD(Z) =
⋃

a∈Σ

Z ⊕ a.

8 Checking Entailment

In this section, we describe how to implement the entailment relation v on
zones. In fact, there are two methods of computing Z1 v Z2. The first method
is to generate the regions in Z1 and Z2, and compare them for entailment. This
method is still less sensitive to constraint explosion than regions-based methods
(methods which only use regions), since only a subset of the regions (namely the

ones in Z1 and Z2) need to be stored at a time. Another method (which we have
used in our experimentation) is to construct a logical formula (in a decidable
theory) which gives a characterization of the entailment relation. More precisely,
the formula corresponds to an ordering v′ on zones which implies v. As indicated
in Section 5, the correctness of the universality algorithm will be preserved using
the new ordering v′. However, the algorithm will not be guaranteed to terminate
unless v′ itself is a WQO. This is due to the fact that zones may avoid being
discarded although they are entailed (according to v) by other zones. The use
of v′ may still be motivated if they run efficiently on more examples in practice.

Here, we use formulas in a decidable logic which we call Difference Bound
Logic (DBL). The atomic formulas are either of the form x ≤ k or of the form y−
x ∼ k, where x and y are variables interpreted over R+ and k ∈ N. Furthermore
the set of formulas is closed under the propositional connectives. It is easy to see
that validity of DBL-formulas is NP-complete.

Given a zone Z with Var (Z) = {x1, . . . , xm}, it is sometimes convenient to
view Z as a predicate Z(x1, . . . , xm) on the set N

m. Observe that γ |=h Z iff
Z(h(x1), . . . , h(xn)) holds. For zones Z1 and Z2, a renaming from Z1 to Z2 is
a mapping R : Var (Z1) 7→ Var (Z2) such that type (x) = type (R(x)). We use
Ren(Z1)(Z2) to denote the set of renamings from Z1 to Z2.

Lemma 15. For zones Z1 and Z2 with Var (Z1) = {x1, . . . , xm} and Var (Z2) =
{y1, . . . , yn}, if

∀y1, . . . , yn.









Z2(y1, . . . , yn) =⇒

∨

R∈Ren(Z1)(Z2)

Z1(R(x1), . . . ,R(xm))









then Z1 v Z2.

Notice that the above is a DBL-formula.

Remark Lemma 15 defines an ordering v′ which implies v. More precisely, in
v′ we take into consideration clock differences even for clocks whose values are
greater than cmax . In fact, we can modify v′ so that it coincides with v. This
can be achieved by modifying the disjunction through adding formulas which
equate clock values greater than cmax . This can be expressed as a DBL-formula
in a straightforward manner. In this manner, the termination of the algorithm
will still be guaranteed when using v′.

9 Experimentation

We have implemented two prototypes to check universality for single-clock timed
automata. One of the implementations is based on zones, whereas the other one
uses a more compact representation of zones, called Difference Decision Diagrams
(DDD), and is based on a package developed at the Technical University of

Denmark [16]. We have used these prototypes to check several timed automata
for universality. As a reference tool, we used the region-based implementation
developed at the Oxford University Computing Laboratory.

In Table 1 we present the results of the tests. For each timed automaton, we
give the number of control states, edges, cmax , whether universality holds or
not, and the execution time for each of the three methods. We use “not term.”
to indicate that the program did not terminate after more than 24 hours, or
that the program stopped without solving the problem due to an out-of-memory
exception. All tests were conducted on a Sun workstation with 4.0 GB memory
and a 1.0 GHz UltraSPARC-IIIi processor. For both the zone- and region-based
implementations we used Java version 1.5.0 05. The DDD-based implementation
is compiled with gcc version 2.7.2.3.

Table 1. Experimental results

|S| |E| cmax univ? Region Zone DDD

3 4 1 no 21 ms 13 ms 10 ms
3 4 25 no 364 ms 13 ms 0 ms
3 4 50 no 636 ms 14 ms 10 ms
3 4 10000 no 4 hr 49 min 38 sec 601 ms 13 ms 10 ms
10 22 2 yes 639 ms 61 ms 70 ms
10 22 6 yes 550 ms 41 ms 50 ms
10 22 25 yes 1 sec 526 ms 40 ms 70 ms
10 29 135 yes 20 s 981 ms 4 sec 418 ms not term.
10 29 235 yes 1 min 9 sec 20 ms 3 sec 558 ms not term.
10 29 335 yes 2 min 24 sec 21 ms 3 sec 746 ms not term.
10 38 335 yes 1 min 43 sec 175 ms 20 sec 184 ms not term.
10 44 35 no 3 sec 181 ms 4 min 28 sec 762 ms 1 sec 10 ms
10 44 170 no 27 sec 227 ms 2 min 57 sec 715 ms 670 ms
10 44 560 no 1 min 25 sec 289 ms 6 sec 758 ms 870 ms
10 44 1635 no 41 min 20 sec 623 ms 3 sec 523 ms 320 ms
10 44 2635 no 2 hr 44 sec 135 ms 10 sec 300 ms 1 sec 600 ms
10 44 3635 no 2 hr 1 min 26 sec 921 ms 14 sec 174 ms 1 sec 580 ms
10 44 5635 no 5 hr 21 min 9 sec 24 ms 13 sec 457 ms 1 sec 680 ms
10 44 11635 no not term. 15 sec 207 ms 1 sec 540 ms
10 30 9335 yes not term. 3 sec 599 ms not term.
20 53 4335 yes not term. 7 sec 061 ms not term.
25 63 3000 yes not term. 40 sec 324 ms not term.
20 53 4335 no not term. 13 sec 132 ms 12 sec 410 ms
10 30 9880 no not term. 11 sec 52 ms 300 ms
25 65 10000 no not term. 1 sec 225 ms 480 ms
25 65 10000 no not term. 10 min 27 sec 614 ms 2 sec 670 ms

In 16 out of 26 tests the execution time of the DDD-based program is smaller
than that of the other programs. However, the zone-based prototype is almost as
efficient as the DDD-based prototype, as the differences between the execution
times are very small, i.e., within a time span of no more than seconds in most of
the cases. This is in contrast to the significant differences between the run times
of region- and zone-based implementations, varying between milliseconds and
hours. As expected, the region-based implementation performs badly for high
values of cmax . Notice that the run times of both the DDD- and the zone-based
prototypes remain relatively stable under changes of the value of cmax .

10 Conclusions and Future Work

We have presented a zone-based algorithm for solving the universality problem
for timed automata with a single clock. We prove termination of the algorithm
using the theory of better quasi-orderings, a refinement of the theory of well
quasi-orderings. One interesting direction for future work is to extend the algo-
rithm so that we solve the more general problem of language inclusion. Another
challenge is to extend the algorithm to deal with the case of general (multi-
clock) timed automata. In fact, we can modify the notion of zones by adding
extra information to keep track of clocks which belong to the same state inside a
configuration. In such a case, computing successors and checking entailment can
be carried out in a similar manner to the methods of this paper. However, the
entailment relation will not be a well quasi-ordering, and therefore the univer-
sality algorithm will no more be guaranteed to terminate. This is expected since
the problem is undecidable for multi-clock timed automata. Despite this, using
zones may make the algorithm terminate sufficiently often so that it becomes
practically interesting even for the general case.

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and T. Yih-Kuen. Algorithmic analy-
sis of programs with well quasi-ordered domains. Information and Computation,
160:109–127, 2000.

2. P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity
results for timed automata via channel machines. In Proc. ICALP ’05, 32nd In-

ternational Colloquium on Automata, Languages, and Programming, volume 3580
of Lecture Notes in Computer Science, 2005.

3. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In-

formation and Computation, 127(2):91–101, 1996.
4. P. A. Abdulla and B. Jonsson. Verifying networks of timed processes. In B. Steffen,

editor, Proc. TACAS ’98, 4th Int. Conf. on Tools and Algorithms for the Construc-

tion and Analysis of Systems, volume 1384 of Lecture Notes in Computer Science,
pages 298–312, 1998.

5. P. A. Abdulla and A. Nylén. Better is better than well: On efficient verification
of infinite-state systems. In Proc. LICS’ 00 16th IEEE Int. Symp. on Logic in

Computer Science, pages 132–140, 2000.
6. P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proc. ICATPN’2001:

22nd Int. Conf. on application and theory of Petri nets, volume 2075 of Lecture

Notes in Computer Science, pages 53 –70, 2001.
7. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126:183–235, 1994.
8. R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctually. Journal

of the ACM, 43:116–146, 1996.
9. R. Alur, L. Fix, and T. Henzinger. Event-clock automata: A determinizable class

of timed automata. Theoretical Computer Science, 211:253–273, 1999.
10. R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In

4th Intl. School on Formal Methods for Computer, Communication, and Software

Systems: Real Time, volume 3185 of Lecture Notes in Computer Science, 2004.

11. R. Alur, S. L. Torre, and P. Madhusudan. Perturbed timed automata. In Proc.

HSCC 05, volume 3414 of Lecture Notes in Computer Science, 2005.
12. J. Bengtsson and F. Larsson. Uppaal a tool for automatic verification of real-time

systems. Technical Report 96/97, DoCS, Uppsala University, 1996.
13. T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Proc.

ICALP ’92, volume 623 of Lecture Notes in Computer Science, 1992.
14. K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Software Tools for

Technology Transfer, 1(1-2), 1997.
15. A. Marcone. Foundations of bqo theory. Transactions of the American Mathemat-

ical Society, 345(2), 1994.
16. J. Møller and J. Lichtenberg. Difference decision diagrams. Master’s thesis, De-

partment of Information Technology, Technical University of Denmark, Building
344, DK-2800 Lyngby, Denmark, Aug. 1998.

17. J. Ouaknine and J. Worrell. Universality and language inclusion for open and closed
timed automata. In Proc. HSCC 03, volume 2623 of Lecture Notes in Computer

Science, 2003.
18. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:

Closing a decidability gap. In Proc. LICS’ 04 20th IEEE Int. Symp. on Logic in

Computer Science, 2004.
19. S. Yovine. Kronos: A verification tool for real-time systems. Journal of Software

Tools for Technology Transfer, 1(1-2), 1997.

