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Motivating Question

Recalling from last week...
Level 1 BLAS: vectors ops
Level 2 BLAS: matrix-vectors ops

O(  ) flops on O(  ) data
Level 3 BLAS: matrix-matrix ops

O(  ) flops on O(  ) data

Maximize ratio flops to memory refs.

Can we provide portable software for computations in dense linear 
algebra that is efficient on a wide range of modern high-performance 
computers?

2n 2n
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LINPACK and EISPACK
LINPACK (1970s and early 1980s) is a numerical subroutine library for 
solving linear equations, least-squares problems, and for finding 
singular values written in Fortran.

EISPACK (1972-1973) is a collection of double-precision Fortran 
subroutines that compute the eigenvalues and eigenvectors of several 
classes of matrices.

MATLAB started its life in the late 1970s as an interactive calculator 
built on top of LINPACK and EISPACK, which were then state-of-the-art 
Fortran subroutine libraries for matrix computation.

LINPACK and EISPACK portable... but inefficient, why? ...
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LINPACK and EISPACK

... Because their memory access patterns disregard the multi-layered 
memory hierarchies of the machines, (recall Stef’s mountain) thereby 
spending too much time moving data instead of doing useful floating-
point operations... 

i.e. They are based on the vector operation kernels of the Level 1 BLAS
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What is LAPACK?
LAPACK, designed to supersede LINPACK and EISPACK, addresses 
inefficiency by reorganizing the algorithms to use block matrix 
operations in the innermost loops, i.e. max calls to LEVEL 3 BLAS

efficiency, functionality, algorithms
vectorization, data movement, parallelism

LAPACK is a portable, modern (1990) library of Fortran77 
subroutines for solving the most commonly occurring problems in 
numerical linear algebra.

linear systems of equations
eigenvalues and eigenvectors
linear least squares
singular value decomposition

Freely available on netlib
Pre-built libraries for a variety of architectures
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The main point is...

The (higher Level) BLAS are the building 
blocks of LAPACK.
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Structure of LAPACK

Driver routines:

Computational routines:

Auxiliary routines:
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Structure of LAPACK

Driver routines:
Solve standard types of problems.

Linear systems.

Computational routines:

Auxiliary routines:
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Structure of LAPACK

Driver routines:
Solve standard types of problems.

Linear systems.

Computational routines:
Performs a distinct computational task.

LU factorisation.

Auxiliary routines:
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Structure of LAPACK

Driver routines:
Solve standard types of problems.

Linear systems.

Computational routines:
Performs a distinct computational task.

LU factorisation.

Auxiliary routines:
Subtask or common low-level computation.

Matrix norm.
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DRIVER ROUTINES
systems of linear equations 

least-squares solutions of linear systems
overdetermined
underdetermined
rank deficient

eigenvalue problems
symmetric
nonsymmetric

singular value problems
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COMPUTATIONAL ROUTINES

matrix factorizations
LU
Cholesky
QR (many variants; generalised, implicitly shifted, root free...)
LQ
SVD
Schur
generalized Schur

back subsitution
condition number estimation
error bound computation
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COMPUTATIONAL ROUTINES
eigenvalues and vectors

Cuppen’s divide and conquer
relatively robust representaion (RRR)
bisection
inverse iteration

Matrix balancing
invariant subspaces & condition numbers

solve Sylvester matrix equation
condition numbers of eigenval/vecs of a matrix in Schur form
move eigenvalues in matrix of Schur form
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Data Types and Precision

Real
Complex

Single
Double

Most computations have matching routines

All computations have matching routines
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Matrix Types
Dense 
Banded 

But...
not general sparse matrices
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Routine Naming

XYYZZZ
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Routine Naming

XYYZZZ

Data Type
•S   single
•D  double
•C  complex
•Z  double complex
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Routine Naming

XYYZZZ

Data Type
•S   single
•D  double
•C  complex
•Z  double complex

Matrix Type
•DI   diagonal
•BD  bidiagonal
•GE  general
•OR  orthogonal
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Routine Naming

XYYZZZ

Data Type
•S   single
•D  double
•C  complex
•Z  double complex

Matrix Type
•DI   diagonal
•BD  bidiagonal
•GE  general
•OR  orthogonal

Computation
•SVD  singular value decomp
•LLS   linear least squares
•CON  condition number
•TRF   factorize
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Routine Naming

XYYZZZ

Data Type
•S   single
•D  double
•C  complex
•Z  double complex

Matrix Type
•DI   diagonal
•BD  bidiagonal
•GE  general
•OR  orthogonal

Computation
•SVD  singular value decomp
•LLS   linear least squares
•CON  condition number
•TRF   factorize

DGESVD
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Driver Routines
Simple

Performs the basic operation requested
solve a complete problem, like finding the eigenvalues of a 
matrix or solving a set of linear equations

Expert (storage x 2 simple)

Additional options
e.g. condition number, checks for near-singularity, refinement, 
error bounds.
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Documentation
Just like the BLAS routines, the LAPACK routines are 
virtually self-explanatory. Details of the input and 
output parameters for any given subroutine are 
contained in the header section of the file.

David now takes you through the handout....

SUBROUTINE SGESV( N, NRHS, A, LDA, 
IPIV, B, LDB, INFO )
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Benchmarks
Linear Equations

Dense
Tridiagonal

Linear Least Squares
Overdetermined

Singular Value Decomposition
For square matrices

Eigenproblem
Nonsymmetric



24

Benchmarks
Linear Equations

Dense DGESV
Tridiagonal DGTSV

Linear Least Squares
Overdetermined DGELS

Singular Value Decomposition
For square matrices DGESVD

Eigenproblem
Nonsymmetric DGEEV
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Benchmarks
Linear Equations

Dense DGESV backslash (LU)
Tridiagonal DGTSV sparse 
backslash

Linear Least Squares
Overdetermined DGELS qr

Singular Value Decomposition
For square matrices DGESVD svd 

Eigenproblem
Nonsymmetric DGEEV eig
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Benchmark Procedure
for k = 2 : maxdim

n = k^2
loops = 0
start timing 
while time < maxtime 

loops = loops + 1
CALL PROCEDURE (n)

end
T(k) = time/loops

end
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Linear Equations

Ax= b
A is an n-by-n matrix,
b is an n-by-1 vector,
x is an n-by-1 vector.

DGESV – LU factorisation
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DGESV RESULTS
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DGTSV RESULTS
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Linear Least Squares

A is an m-by-n matrix,
b is an m-by-1 vector,
x is an n-by-1 vector.

When m >= n, rank(A) = n, overdetermined system.

DGELS – QR or LQ factorisation

min ||b - Ax||x 2
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DGELS RESULTS
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Singular Value Decomposition
TA = UΣV

A is an m-by-n matrix,
U is an m-by-m orthogonal matrix,
V is an n-by-n orthogonal matrix.
Σ is an m-by-n diagonal matrix containing the singular values of A

Let m = n

DGESVD
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DGESVD RESULTS
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Nonsymmetric Eigenproblem

Au = λu
A is an m-by-n matrix,
u is an m vector; an eigenvector,
λ are the eigenvalues.

DGEEV
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DGEEV RESULTS
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Computer Suitability
Designed to give high efficiency on 

vector processors
high performance “super-scalar” workstations
shared memory processors

Satisfactory use on all scalar machines
PC’s
workstations
mainframes
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ScaLAPACK

Is a distributed-memory version of LAPACK for parallel 
architectures

massively parallel SIMD machines
distributed memory machines
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CLAPACK
CLAPACK's goal is to provide LAPACK for someone who does not 
have access to a Fortran compiler. 

The CLAPACK library was built using a Fortran to C conversion 
utility called f2c.

The entire Fortran 77 LAPACK library is run through f2c to 
obtain C code, and then modified to improve readability. 



39

LAPACK Flop Counting

So far just presented timing results, but 
how to measure flops and flops/s?
Easy for some operations, e.g. For NxN
matrices A and B, A*B requires 2N flops, 
or LU factorisation requires 0.67N
But flops for eigenvalue computation or 
SVD depend on input data

3
3
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LAPACK Flop Counting

Best way to count flops would be to use 
hardware counters – standard feature on 
modern processors for software profiling
Accessing these counters can be difficult: often 
poorly documented, unstable or inaccessible to 
user level software
Hence cross-platform software for hardware 
flop counting has traditionally been limited
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LAPACK Flop Counting

PAPI project: aims to define standard interface to 
hardware counters to simplify profiling software

See “A Scalable Cross-Platform Infrastructure for 
Application Performance Tuning using Hardware 
Counters”, J. Dongarra et. al.

We did not do direct flop counting, couldn't find any 
simple software for LAPACK
e.g. MATLAB: >> help flops

“FLOPS Obsolete floating point operation count. 
Earlier versions of MATLAB counted the number of 
floating point operations. With the incorporation of 
LAPACK in MATLAB 6, this is no longer practical.”
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Synthetic Flops

Alternative approach: use “standard” flop 
counts for various algorithms
DGESV (LU factorise): 0.67N
DGEEV (ew's and ev's): 26.67N
DGESVD (SVD): 6.67N

See 
http://www.netlib.org/lapack/lug/node71.ht
ml

3

3

3
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DGESV
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DGEEV
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DGESVD
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Spectral Methods

LAPACK capabilities illustrated by Fortran 
implementation of cheb, p13, p14, p15 
from “Spectral Methods in MATLAB” by 
L.N. Trefethen...
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