
1

LAPACK

Linear Algebra PACKage

Janice Giudice
David Knezevic

1

2

Motivating Question

Recalling from last week...
Level 1 BLAS: vectors ops
Level 2 BLAS: matrix-vectors ops

O() flops on O() data
Level 3 BLAS: matrix-matrix ops

O() flops on O() data

Maximize ratio flops to memory refs.

Can we provide portable software for computations in dense linear
algebra that is efficient on a wide range of modern high-performance
computers?

2n 2n

3n 2n

3

LINPACK and EISPACK
LINPACK (1970s and early 1980s) is a numerical subroutine library for
solving linear equations, least-squares problems, and for finding
singular values written in Fortran.

EISPACK (1972-1973) is a collection of double-precision Fortran
subroutines that compute the eigenvalues and eigenvectors of several
classes of matrices.

MATLAB started its life in the late 1970s as an interactive calculator
built on top of LINPACK and EISPACK, which were then state-of-the-art
Fortran subroutine libraries for matrix computation.

LINPACK and EISPACK portable... but inefficient, why? ...

4

LINPACK and EISPACK

... Because their memory access patterns disregard the multi-layered
memory hierarchies of the machines, (recall Stef’s mountain) thereby
spending too much time moving data instead of doing useful floating-
point operations...

i.e. They are based on the vector operation kernels of the Level 1 BLAS

5

What is LAPACK?
LAPACK, designed to supersede LINPACK and EISPACK, addresses
inefficiency by reorganizing the algorithms to use block matrix
operations in the innermost loops, i.e. max calls to LEVEL 3 BLAS

efficiency, functionality, algorithms
vectorization, data movement, parallelism

LAPACK is a portable, modern (1990) library of Fortran77
subroutines for solving the most commonly occurring problems in
numerical linear algebra.

linear systems of equations
eigenvalues and eigenvectors
linear least squares
singular value decomposition

Freely available on netlib
Pre-built libraries for a variety of architectures

6

The main point is...

The (higher Level) BLAS are the building
blocks of LAPACK.

7

Structure of LAPACK

Driver routines:

Computational routines:

Auxiliary routines:

8

Structure of LAPACK

Driver routines:
Solve standard types of problems.

Linear systems.

Computational routines:

Auxiliary routines:

9

Structure of LAPACK

Driver routines:
Solve standard types of problems.

Linear systems.

Computational routines:
Performs a distinct computational task.

LU factorisation.

Auxiliary routines:

10

Structure of LAPACK

Driver routines:
Solve standard types of problems.

Linear systems.

Computational routines:
Performs a distinct computational task.

LU factorisation.

Auxiliary routines:
Subtask or common low-level computation.

Matrix norm.

11

DRIVER ROUTINES
systems of linear equations

least-squares solutions of linear systems
overdetermined
underdetermined
rank deficient

eigenvalue problems
symmetric
nonsymmetric

singular value problems

12

COMPUTATIONAL ROUTINES

matrix factorizations
LU
Cholesky
QR (many variants; generalised, implicitly shifted, root free...)
LQ
SVD
Schur
generalized Schur

back subsitution
condition number estimation
error bound computation

13

COMPUTATIONAL ROUTINES
eigenvalues and vectors

Cuppen’s divide and conquer
relatively robust representaion (RRR)
bisection
inverse iteration

Matrix balancing
invariant subspaces & condition numbers

solve Sylvester matrix equation
condition numbers of eigenval/vecs of a matrix in Schur form
move eigenvalues in matrix of Schur form

14

Data Types and Precision

Real
Complex

Single
Double

Most computations have matching routines

All computations have matching routines

15

Matrix Types
Dense
Banded

But...
not general sparse matrices

16

Routine Naming

XYYZZZ

17

Routine Naming

XYYZZZ

Data Type
•S single
•D double
•C complex
•Z double complex

18

Routine Naming

XYYZZZ

Data Type
•S single
•D double
•C complex
•Z double complex

Matrix Type
•DI diagonal
•BD bidiagonal
•GE general
•OR orthogonal

19

Routine Naming

XYYZZZ

Data Type
•S single
•D double
•C complex
•Z double complex

Matrix Type
•DI diagonal
•BD bidiagonal
•GE general
•OR orthogonal

Computation
•SVD singular value decomp
•LLS linear least squares
•CON condition number
•TRF factorize

20

Routine Naming

XYYZZZ

Data Type
•S single
•D double
•C complex
•Z double complex

Matrix Type
•DI diagonal
•BD bidiagonal
•GE general
•OR orthogonal

Computation
•SVD singular value decomp
•LLS linear least squares
•CON condition number
•TRF factorize

DGESVD

21

Driver Routines
Simple

Performs the basic operation requested
solve a complete problem, like finding the eigenvalues of a
matrix or solving a set of linear equations

Expert (storage x 2 simple)

Additional options
e.g. condition number, checks for near-singularity, refinement,
error bounds.

22

Documentation
Just like the BLAS routines, the LAPACK routines are
virtually self-explanatory. Details of the input and
output parameters for any given subroutine are
contained in the header section of the file.

David now takes you through the handout....

SUBROUTINE SGESV(N, NRHS, A, LDA,
IPIV, B, LDB, INFO)

23

Benchmarks
Linear Equations

Dense
Tridiagonal

Linear Least Squares
Overdetermined

Singular Value Decomposition
For square matrices

Eigenproblem
Nonsymmetric

24

Benchmarks
Linear Equations

Dense DGESV
Tridiagonal DGTSV

Linear Least Squares
Overdetermined DGELS

Singular Value Decomposition
For square matrices DGESVD

Eigenproblem
Nonsymmetric DGEEV

25

Benchmarks
Linear Equations

Dense DGESV backslash (LU)
Tridiagonal DGTSV sparse
backslash

Linear Least Squares
Overdetermined DGELS qr

Singular Value Decomposition
For square matrices DGESVD svd

Eigenproblem
Nonsymmetric DGEEV eig

26

Benchmark Procedure
for k = 2 : maxdim

n = k^2
loops = 0
start timing
while time < maxtime

loops = loops + 1
CALL PROCEDURE (n)

end
T(k) = time/loops

end

27

Linear Equations

Ax= b
A is an n-by-n matrix,
b is an n-by-1 vector,
x is an n-by-1 vector.

DGESV – LU factorisation

28

DGESV RESULTS

29

DGTSV RESULTS

30

Linear Least Squares

A is an m-by-n matrix,
b is an m-by-1 vector,
x is an n-by-1 vector.

When m >= n, rank(A) = n, overdetermined system.

DGELS – QR or LQ factorisation

min ||b - Ax||x 2

31

DGELS RESULTS

32

Singular Value Decomposition
TA = UΣV

A is an m-by-n matrix,
U is an m-by-m orthogonal matrix,
V is an n-by-n orthogonal matrix.
Σ is an m-by-n diagonal matrix containing the singular values of A

Let m = n

DGESVD

33

DGESVD RESULTS

34

Nonsymmetric Eigenproblem

Au = λu
A is an m-by-n matrix,
u is an m vector; an eigenvector,
λ are the eigenvalues.

DGEEV

35

DGEEV RESULTS

36

Computer Suitability
Designed to give high efficiency on

vector processors
high performance “super-scalar” workstations
shared memory processors

Satisfactory use on all scalar machines
PC’s
workstations
mainframes

37

ScaLAPACK

Is a distributed-memory version of LAPACK for parallel
architectures

massively parallel SIMD machines
distributed memory machines

38

CLAPACK
CLAPACK's goal is to provide LAPACK for someone who does not
have access to a Fortran compiler.

The CLAPACK library was built using a Fortran to C conversion
utility called f2c.

The entire Fortran 77 LAPACK library is run through f2c to
obtain C code, and then modified to improve readability.

39

LAPACK Flop Counting

So far just presented timing results, but
how to measure flops and flops/s?
Easy for some operations, e.g. For NxN
matrices A and B, A*B requires 2N flops,
or LU factorisation requires 0.67N
But flops for eigenvalue computation or
SVD depend on input data

3
3

40

LAPACK Flop Counting

Best way to count flops would be to use
hardware counters – standard feature on
modern processors for software profiling
Accessing these counters can be difficult: often
poorly documented, unstable or inaccessible to
user level software
Hence cross-platform software for hardware
flop counting has traditionally been limited

41

LAPACK Flop Counting

PAPI project: aims to define standard interface to
hardware counters to simplify profiling software

See “A Scalable Cross-Platform Infrastructure for
Application Performance Tuning using Hardware
Counters”, J. Dongarra et. al.

We did not do direct flop counting, couldn't find any
simple software for LAPACK
e.g. MATLAB: >> help flops

“FLOPS Obsolete floating point operation count.
Earlier versions of MATLAB counted the number of
floating point operations. With the incorporation of
LAPACK in MATLAB 6, this is no longer practical.”

42

Synthetic Flops

Alternative approach: use “standard” flop
counts for various algorithms
DGESV (LU factorise): 0.67N
DGEEV (ew's and ev's): 26.67N
DGESVD (SVD): 6.67N

See
http://www.netlib.org/lapack/lug/node71.ht
ml

3

3

3

43

DGESV

44

DGEEV

45

DGESVD

46

Spectral Methods

LAPACK capabilities illustrated by Fortran
implementation of cheb, p13, p14, p15
from “Spectral Methods in MATLAB” by
L.N. Trefethen...

	LAPACK
	Motivating Question
	LINPACK and EISPACK
	LINPACK and EISPACK
	What is LAPACK?
	The main point is...
	Structure of LAPACK
	DRIVER ROUTINES
	COMPUTATIONAL ROUTINES
	COMPUTATIONAL ROUTINES
	Data Types and Precision
	Matrix Types
	Routine Naming
	Driver Routines
	Documentation
	Benchmarks
	Benchmark Procedure
	Linear Equations
	DGESV RESULTS
	DGTSV RESULTS
	DGELS RESULTS
	DGESVD RESULTS
	DGEEV RESULTS
	Computer Suitability
	ScaLAPACK
	CLAPACK

