The Type Object Pattern

Ralph Johnson Bobby Woolf

johnson@cs.uiuc.edu Knowledge Systems Corp.
4001 Weston Pkwy, Cary, NC 27513-2303
919-677-1119 x541, bwoolf@ksccary.com

Tvypre OBJECT Object Structural

I ntent

Decouple instances from their classes so that those classes can be implemented as instances of a
class. Type Object allows new "classes” to be created dynamically at runtime, lets a system provide
its own type—checking rules, and can lead to simpler, smaller systems.

Also Known As
Power Type [MO95], Item Descriptor [Coad93], Metaobject [KRB91]

Motivation

Sometimes a class not only requires an unknown number of instances, but an unknown number of
subclasses as well. Although an object system can create new instances on demand, it usually cannot
create new classes without recompilation. A design in which a class has an unknown number of
subclasses can be converted to one in which the class has an unknown number of instances.

Consider a system for tracking the videotapes in a video rental store’s inventory. The system will
obviously require a class called "Videotape.” Each instance of Vi deot ape will represent one of the
videotapes in the store’s inventory. However, since many of the videotapes are very similar, the

Vi deot ape instances will contain a lot of redundant information. For example, all copies of Star
Wars have the same title, rental price, MPAA! rating, etc. This information is different for The
Terminator, but all copies of The Terminator have the same data. Thus repeating this information
through all copies of Star Wars or all copies of The Terminator is redundant.

One way to solve this problem is to create a subclass of Vi deot ape for each movie. Thus two of
the subclasses would be St ar War sTape and Ter m nat or Tape. The class itself would keep the
information for that movie. So the information common to all copies of Star Wars would be stored
only once. It might be hardcoded on the instance side of St ar \ar sTape or stored in variables on
the class side or in an object assigned to the class for this purpose. Now Vi deot ape would be an
abstract class; the system would not create instances of it. Instead, when the store bought a new
videotape and started renting it, the system would create an instance of the class for that movie. So if
the new videotape were for The Terminator, the system would create an instance of

Ter m nat or Tape.

This solution works, but not very well. One problem is that if the store stocks lots of different
movies, Vi deot ape could require a huge number of subclasses. Another problem is what would
happen when the system is deployed and the store starts stocking a new movie—perhaps
Independence Day. There is no | ndependenceDay Tape class in the system. If the developer did
not predict this situation, he would have to modify the code to add a new | ndependenceDayTape
class, recompile the system, and redeploy it. If the developer did predict this situation, he could
provide a special subclass of Vi deot ape-such as UnknownTape—and the store would create an
instance of it for all videotapes of the new movie. The problem with UnknownTape is that it has the

! The Motion Picture Association of America, the industry group that rates movies in the United States as
G, PG, R, etc.

10/19/96 22:21 1o0f 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

same lack of flexibility that Vi deot ape had. Just as Vi deot ape required subclasses, so will
UnknownTape, so UnknownTape is not a very good solution.

Instead, since the number of types of videotapes is unknown, each type of videotape needs to be an
instance of a class. However, each videotape needs to be an instance of a type of videotape. Class—
based object languages give support for instances of classes, but they do not give support for
instances of instances of classes. So to implement this solution in a typical class—based language,
you need to implement two classes: one to represent a type of videotape (Movi e) and one to
represent a videotape (Vi deot ape). Each instance of Vi deot ape would have a pointer to its
corresponding instance of Mbvi e.

novi e

Movi e Vi deot ape
title() i sRent ed()
rental Price() renter()

This class diagram illustrates how each instance of Vi deot ape has a corresponding instance of
Movi e. It shows how properties defined by the type of videotape are separated from those which
differ for each particular videotape. In this case, the movie’s title and how much is costs to rent are
separated from whether the tape is rented and who is currently renting it.

aMovi e aVi deot ape
Star Wars John’'s Star Wars
movi e
aMovi e aVi deot ape
Sue’s Star Wars
movi e

This instance diagram shows how there is an instance of Movi e to represent each type of videotape
and an instance of Vi deot ape to represent each video the store stocks. Sar Wars and The
Terminator are movies; videotapes are the copy of Star Wars that John is renting verses the one that
Sue is renting. It also shows how each Vi deot ape knows what type it is because of its relationship
to a particular instance of Movi e.

If a new movie, such as Independence Day, were to be rented to Jack, the system would create a new
Movi e and a new Vi deot ape that points to the Movi e. The movie is Independence Day and the
tape is the copy of Independence Day that Jack ends up renting.

Vi deot ape, Movi e, and the is—instance—of relationship between them (a Vi deot ape is an
instance of a Mbvi e) is an example of the Type Object pattern. It is used to create instances of a set
of classes when the number of classes is unknown. It allows an application to create new “classes" at
runtime because the classes are really instances of a class. The application must then maintain the
relationship between the real instances and their class—like instances.

The key to the Type Object pattern is two concrete classes, one whose instances represent the
application’s instances and another whose instances represent types of application instances. Each
application instance has a pointer to its corresponding type.

Applicability
Use the Type Object pattern when:

» instances of a class need to be grouped together according to their common attributes and/or
behavior.

» the class needs a subclass for each group to implement that group’s common attributes/behavior.

10/19/96 22:21 20f13

The Type Object Pattern Ralph Johnson and Bobby Woolf

» theclassrequires alarge number of subclasses and/or the total variety of subclasses that may be
required is unknown.

e you want to be able to create new groupings at runtime that were not predicted during design.

e you want to be able to change an object’ s subclass after its been instantiated without having to
mutate it to a new class.

e you want to be able to nest groupings recursively so that a group isitself an item in another
group.
Structure

type
Typed ass yp d ass

typeAttribute attribute

The Type Object pattern has two concrete classes, one that represents objects and another that
represents their types. Each object has a pointer to its corresponding type.

aTyped ass ad ass
TypeQbj ect 1 hj ect 1A

type
aTyped ass ad ass
TypeQbj ect 2 hj ect 1B

type

For example, the system usesa TypeQbj ect to represent each type in the system and an Cbj ect
to represent each of the instances of those TypeQbj ect s. Each Cbj ect hasa pointer to its
TypeQj ect .

Participants
« Typed ass (Movi e)
— istheclassof Type(bj ect .
— hasaseparate instance for each type of Qbj ect .
« TypeObj ect (Star Wars, The Terminator, Independence Day)
— isaningtance of Typed ass.

— represents atype of Obj ect . Establishes all properties of an Cbj ect that are the same for
all Qoj ect s of the same type.

« (ass (Vi deot ape)
— istheclassof Obj ect .
— representsinstances of Typed ass.
 (bj ect (John's Star Wars, Sue's Star Wars)
— isaninstanceof O ass.

— represents a unique item that has a unique context. Establishes all properties of that item
that can differ between items of the same type.

10/19/96 22:21 3of 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

— hasan associated Type(hj ect that describesits type. Delegates properties defined by its
typetoits TypeObj ect .

Typed ass and Ol ass areclasses. TypeObj ect and Obj ect areinstances of their respective
classes. Aswith any instance, a TypeQbj ect or Gbj ect knowswhat itsclassis. In addition, an
hj ect hasapointer toits TypeChj ect so that it knowswhat its TypeQbj ect is. The Cbj ect
usesits Typebj ect to define itstype behavior. When the Cbj ect receives requests that are type
specific but not instance specific, it delegates those requeststo its Type(hj ect . A Type(hj ect
can also have pointersto all of its Obj ect s.

ThusMovi e isaTyped ass and Vi deot ape isad ass. Instances of Movi e like Star Wars,
The Terminator, and Independence Day are Type(Qbj ect s. Instances of Vi deot ape like John's
Star Wars and Sue's Star Wars are (bj ect s. Since an Obj ect hasapointer to its Typebj ect ,
John’ s videotape and Sue’ s videotape have pointers to their corresponding Movi e, which in this case
is Star Wars for both videotapes. That is how the videotapes know that they contain Star Wars and
not some other movie.

Collaborations

* Annj ect getstwo categories of requests. those defined by its instance and those defined by
itstype. It handles the instance requests itself and delegates the type requests to its
Typej ect .

* Some clients may want to interact with the TypeQbj ect sdirectly. For example, rather than
iterate through all of the Vi deot apesthe store has in stock, arenter might want to browse all
of the Movi esthat the store offers.

* If necessary, the Type(Cbj ect can have a set of pointersto its Obj ect s. Thisway the system
can easily retrieve an bj ect that fitsa TypeQbj ect 'sdescription. Thiswould be similar to
theal | I nst ances message that Smalltalk classesimplement. For example, once a renter
finds an appealing Mbvi e, he would then want to know which videotapes the store has that fit
the description.

Consequences
The advantages of the Type Object pattern are:

* Runtime class creation. The pattern allows new "classes’ to be created at runtime. These new
classes are not actually classes, they are instances called TypeQbj ect sthat are created by the
Typed ass just like any instance is created by its class.

* Avoids subclass explosion. The system no longer needs numerous subclasses to represent
different types of Cbj ect s. Instead of numerous subclasses, the system can use one
Typed ass and numerous TypeQbj ect s.

» Hides separation of instance and type. An Cbj ect 's clients does not need to be aware of the
separation between Cbj ect and TypeObj ect . The client makes requests of the Cbj ect , and
the Cbj ect in turn decides which requests to forward to the TypeCbj ect . Clientsthat are
aware of the Typebj ect s may collaborate with them directly without going through the
hj ect s.

» Dynamic type change. The pattern allows the Cbj ect to dynamically change its TypeQbj ect ,
which hasthe effect of changing its class. Thisis simpler than mutating an object to a new class.
[DeKezel 96]

* Independent subclassing. TypeC ass and Cl ass can be subclassed independently.

* Multiple Type Objects. The pattern allows an Gbj ect to have multiple TypeObj ect swhere
each defines some part of the Obj ect 'stype. The Gbj ect must then decide which type
behavior to delegate to which TypeQbj ect .

10/19/96 22:21 4 0of 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

The disadvantages of the Type Object pattern are:

Design complexity. The pattern factors one logical object into two classes. Their relationship, a
thing and its type, is difficult to understand. This is confusing for modelers and programmers
alike. It is difficult to recognize or explain the relationship between a TypeQbj ect and an
(nj ect . This confusion hurts simplicity and maintainability. In a nutshell: "Use inheritance;
it’s easier."

Implementation complexity. The pattern moves implementation differences out of the subclasses
and into the state of the TypeQbj ect instances. Whereas each subclass could implement a
method differently, now the Typed ass can only implement the method one way and each
TypeQbj ect ’s state must make the instance behave differently.

Reference management. Each Qbj ect must keep a reference to its TypeQbj ect . Just as an
object knows what its class is, an Cbj ect knows what its TypeCbj ect is. But whereas the
object system or language automatically establishes and maintains the class—instance
relationship, the application must itself establish and maintain the TypeCbj ect —Obj ect
relationship.

I mplementation

There are several issues that you must always address when implementing the Type Object pattern:

1.

oj ect references TypeQbj ect . Each Obj ect has a reference to its TypeQbj ect , and
delegates some of its responsibility to the TypeQbj ect . An Cbj ect Os TypeObj ect must
be specified when the Qbj ect is created.

bj ect behavior vs. TypeCbj ect behavior. An Obj ect Os behavior can either be
implemented in its class or can be delegated to its TypeCbj ect. The Type(hj ect
implements behavior common to the type, while the Obj ect implements behavior that differs
for each instance of a type. When the Obj ect delegates behavior to its TypeQbj ect , it can
pass a reference to itself so that the TypeQbj ect can access its data or behavior. The Obj ect
may decide to perform additional operations before and after forwarding the request, similar to
the way a Decorator can enhance the requests it forwards to its Component [GHJV95, page 175].

TypeObj ect isnot multiple inheritance. The O ass—not the TypeQbj ect —is the template
for the new Cbj ect . The messages that Gbj ect understands are defined by its Cl ass, not by
its TypeCbj ect . The C ass’ implementation decides which messages to forward to the
Typebj ect ; the Cbj ect does not inherit the TypeQhj ect ’s messages. Whenever you add
behavior to Typed ass, you must also add a delegating method to Cl ass before the behavior
is available to the Cbj ect s.

There are other issues you may need to consider when implementing the Type Object pattern:

3.

hj ect creationusing a TypeQbj ect . Often, a new Cbj ect is created by sending a request
to the appropriate TypeCbj ect . This is notable because the TypeCbj ect is an instance and
instance creation requests are usually sent to a class, not an instance. But the TypeQbj ect is
like a class to the Cbj ect , so it often has the responsibility of creating new Cbj ect s.

Multiple TypeObj ect s. An Obj ect can have more than one TypeCbj ect , but this is
unusual. In this case, the O ass would have to decide which TypeChj ect to delegate each
request to.

Changing Ty peQbj ect . The Type Object pattern lets an object dynamically change its "class,"
the type object. It is simpler for an object to change its pointer to a different type object (a
different instance of the same class) than to mutate to a new class.

For example, suppose that a shipment to the video store is supposed to contain three copies of
The Terminator and two copies of Star Wars, so those objects are entered into the system. When
the shipment arrives, it really contains two copies of The Terminator and three copies of Sar
Wars. So one of the three new copies of The Terminator in the system needs to be changed to a

10/19/96 22:21 50f 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

copy of Star Wars. This can easily be done by changing the videotape’s Movi e pointer from
The Terminator to Star Wars.

7. Subclassing O ass and Typed ass. It is possible to subclass either Cl ass or TypeC ass.
The video store could support videodisks by making another Cl ass called Vi deodi sk. A new
Vi deodi sk instance would point to its Movi e instance just like a Vi deot ape would. If the
store carried three tapes and two disks of the same movie, three Vi deot apes and two
Vi deodi sks would all share the same Movi e.

8. The hard part of Type Object occurs after it has been used. There is an almost irresistible urge to
make the TypeQbj ect s more composable, and to build tools that let non—programmers specify
new Typebj ect s. These tools can get quite complex, and the structure of the TypeChj ect s can
get quite complex. Avoid any complexity unless it brings a big payoff.

Sample Code
Video Store
Start with two classes, Movi e and Vi deot ape.
hj ect
Movie (title rentalPrice rating ...)
Vi deot ape (novie isRented renter ...)

Notice how the attributes are factored between the two classes. If there are several videotapes of the
same movie, some can be rented while others are not. Various copies can certainly be rented to
different people. Thus the attributes i sRent ed and r ent er are assigned at the Vi deot ape level.
On the other hand, if all of the videotapes in the group contain the same movie, they will all have the
same name, will rent for the same price, and will have the same rating. Thus the attributesti t 1 e,
rental Price,andrati ng are assigned at the Movi e level. This is the general technique for
factoring the TypeQbj ect out of the Cbj ect : Divide the attributes that vary for each instance
from those that are the same for a given type.

You create a new Movi e by specifying its title. In turn, a Movi e knows how to create a new
Vi deot ape.

Movi e class>>title: aString
N"self new initTitle: aString

Movie>>initTitle: aString
title := aString

Movi e>>newVi deot ape
Vi deot ape novie: self

Vi deot ape cl ass>>novie: aMvie
~self new inithMvie: aMvie

Vi deot ape>>i ni t Movi e: alMovi e
novi e : = alMvie
Since Movi e is Vi deot ape’s Typed ass, Vi deot ape has a novi e attribute that contains a
pointer to its corresponding Movi e instance. This is how a Vi deot ape knows what its Movi e is.
The movi e attribute is set when the Vi deot ape instance is created by Vi deot ape
cl ass>>novi e: .

A Vi deot ape knows how to be rented. It knows whether it is already being rented. Although it
does not know its price directly, it knows how to determine its price.

Vi deot ape>>r ent To: aCust omner
sel f checkNot Rent ed.
aCust onmer addRental : sel f.
sel f makeRent edTo: aCust omer

Vi deot ape>>checkNot Rent ed
i SRented ifTrue: [“self error]

10/19/96 22:21 6 of 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

Cust orer >>addRent al : aVi deot ape
rental s add: aVi deot ape.
sel f chargeForRental : aVi deotape rental Price

Vi deot ape>>rental Price
Nself novie rental Price

Vi deot ape>>novi e
~novi e

Movi e>>rental Price
Arental Price

Vi deot ape>>makeRent edTo: aCust oner
i sRented : = true.
renter := aCustoner

Thus it chooses to implement its i sRent ed behavior itself but delegates itsr ent al Pri ce
behavior to its Type Object.

When Independence Day is released on home video, the system creates a Movi e for it. It gathers the
appropriate information about the new movie (title, rental price, rating, etc.) via a GUI and executes
the necessary code. The system then creates the new Vi deot apes using the new Movi e.

Video Store—Nested Type Objects

The Type Object pattern can be nested recursively. For example, many video stores have categories
of movies—such as New Release (high price), General Release (standard price), Classic (low price),
and Children’s (very low price). If the store wanted to raise the price on all New Release rentals from
$3.00 to $3.50, it would have to iterate through all of the New Release movies and raise their rental
price. It would be easier to store the rental price for a New Release in one place and have all of the
New Release movies reference that one place.

Thus the system needs a Movi eCat egor y class that has four instances. The Movi eCat egor y
would store its rental price and each Movi e would delegate to its corresponding Movi eCat egor y
to determine its price. Thus a Movi eCat egor y is the Type Qbj ect fora Movi e, and a Movi e is
the Type Cbj ect for a Vi deot ape.

A Movi eCat egor y class requires refactoring Movi e’s behavior.

hj ect
Movi eCat egory (nanme rental Price ...)
Movi e (category title rating ...)
Vi deot ape (novie isRented renter ...)

Before, r ent al Pri ce was a attribute of Movi e because all videotapes of the same movie had the
same price. Now all movies in the same category will have the same price, sorent al Pri ce
becomes an attribute of Mbvi eCat egor y. Since Movi e now has a type object, it has an attribute—
cat egor y—to point to its type object.

Now behavior like r ent al Pri ce gets delegated in two stages and implemented by the third.

Vi deot ape>>rental Pri ce
Nself novie rental Price

Movi e>>rental Price
"sel f category rental Price

Movi eCat egory>>rental Price
Arental Price

This example nests the Type Object pattern recursively where each Mbvi eCat egor y has Movi e
instances and each Movi e has Vi deot ape instances. The system still works primarily with

Vi deot apes, but they delegate their type behavior to Movi es, which in turn delegate their type
behavior to Movi eCat egor ys. Vi deot ape hides from the rest of the system where each set of
behavior is implemented. Each piece of information about a tape is stored in just one place, not
duplicated by various tapes. The system can easily add new Movi eCat egor ys, Movi es, and

Vi deot apes when necessary by creating new instances.

10/19/96 22:21 70f13

The Type Object Pattern Ralph Johnson and Bobby Woolf

Video Store—Dynamic Type Change

Once Independence Day is no longer a New Release, its category can easily be changed to a General
Release because its category is a Type Object and not its class.

Movi e>>changeCat egor yTo: aMovi eCat egory
sel f category renoveMovie: self.
sel f category: alMvieCategory.
sel f category addMovie: self.

With the Type Object pattern, an Object can easily change its Type Object when desired.
Video Store—Independent Subclassing

The system could also support videodisks. The commonalties of videotapes and videodisks are
captured in the abstract superclass Rent abl el t em where Vi deot ape and Vi deodi sk are
subclasses. Both concrete classes delegate their type behavior to Movi e, so Movi e does not need to
be subclassed.

oj ect ()
Movi eCat egory (nanme rental Price ...)
Movie (category title rating ...)
Rent abl eltem (novie i sRented renter ...)
Vi deot ape (i sRewound ...)
Vi deodi sk (nunberOF Di sks . ..)

Most of Vi deot ape’s behavior and implementation is moved to Rent abl el t em Now
Vi deodi sk inherits this code for free.

Movi e may turn out to be a specific example of a more general Ti t | e class. Ti t | e might have
subclasses like Movi e, Docunent ar y, and HowTo. Movi es have ratings whereas Docunent ary
and HowTo videos often do not. HowTo videos often come in a series or collection that is rented all
at once whereas Movi es and Document ar ys do not. Thus Ti t | e might also need a Composite
[GHJV95, page 163] subclass such as HowToSer i es. Movi e itself might also have subclasses like
Rat edMovi e for those that have MPAA ratings and Unr at edMovi e for those that don’t.
hj ect
Movi eCat egory (nanme rental Price ...)
Title (category title ...)
Docunentary (...)
HowTo (...)
Movie (...
Rat edMovi e (rating ...)
Unr at edMbvie (...)
Titl eConmposite (children ...)
HowToSeries (...)
Rent abl eltem (novie 1 sRented rented ...)
Vi deot ape (i sRewound ...)
Vi deodi sk (nunberOf Di sks . ..)

Movi e and Ti t | e can be subclassed without affecting the way Rent abl el t emand Vi deot ape
are subclassed. This ability to independently subclass Ti t | e and Rent abl el t emwould be
impossible to achieve if the videotape object had not first been divided into Movi e and

Vi deot ape components. Obviously, all of this nesting and subclassing can get complex, but it
shows the flexibility the Type Object pattern can give you—flexibility that would be impossible
without the pattern.

Manufacturing

Consider a factory with many different machines manufacturing many different products. Every
order has to specify the kinds of products it requires. Each kind of product has a list of parts and a
list of the kinds of machines needed to make it. One approach is to make a class hierarchy for the
kinds of machines and the kinds of products. But this means that adding a new kind of machine or
product requires programming, since you have to define a new class. Moreover, the main difference
between different products is how they are made. You can probably specify a new kind of product
just by specifying its parts and the sequence of machine tools that is needed to make it.

10/19/96 22:21 8 of 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

It is better to make objects that represent "kind of product” and "kind of machine.” They are both
examples of type objects. Thus, there will be classes Machi ne, Pr oduct , Machi neType, and
Pr oduct Type. A Product Type has a "manufacturing plan” which knows the Machi neTypes
that make it. But a particular instance of Pr oduct was made on a particular set of Machi nes.
This lets you tell which machine is at fault when a product is defective.

Suppose we want to schedule orders for the factory. When an order comes in, the system will figure
out the earliest that it can fill the order. Each order knows what kind of product it is going to
produce. For simplicity, weOll assume each order consists of one kind of product. WeOll also
assume that each kind of product is made on one kind of machine. But that product is probably
made up of other products, which will probably require many other machines. Thus, Pr oduct isan
example of the Composite pattern [GHJV95, page 163] (not shown below). For example, a hammer
consists of a handle and a head, which are combined at an assembly station. The wooden handle is
carved at one machine, and the head is cast at another. Pr oduct Type and Or der are also
composites, but are not shown.

There are six main classes:

oj ect ()
Machi neType (nane machines ...)
Machi ne (type location age schedule ...)
Product Type (manufacturingMachi ne duration parts ...)
Product (type creationDate machine parts ...)

Order (product Type dueDate requestor parts ...)
Factory (machi nes orders)

We will omit all the accessing methods, since they are similar to those in the video store example.
Instead, we will focus on how a factory schedules an order.

A factory acts as a Facade [GHJV95, page 185], creating the order and then scheduling it.

Fact or y>>or der Product: aType by: aDate for: aCustoner
| order
order := Order product: aType by: aDate for: aCustoner.
order schedul eFor: self.
~or der

10/19/96 22:21 90f 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

O der >>schedul eFor: aFactory
| partDate earliestDate |
partDate : = dueDate m nusDays: product Type duration.
parts := product Type parts collect: [:eachType |

aFactory
order Product: eachType
by: partDate

for: order]
pr oduct Type
schedul e: self
bet ween: self dat ePart sAreReady
and: dueDate

Product Type>>schedul e: anOrder between: startDate and: dueDate
(startDate plusDays: duration) > dueDate
i fTrue: [anOrder fixSchedul e].
manuf act uri ngMachi ne
schedul e: anCOrder
bet ween: startDate
and: dueDate

There are at least two different subclasses of Pr oduct Type, one for machines that can only be
used to make one product at a time, and one for assembly lines and other machines that can be
pipelined and so make several products at a time. A non—pipelined machine type is scheduled by
finding a machine with a schedule with enough free time open between the st ar t Dat e and the
dueDat e.

Nonpi pel i nedMachi neType>>schedul e: anOrder between: startDate and:
dueDat e

machi nes do: [:each | | theDate |
t heDate := each schedul e
slotOF Si ze: anOrder duration
freeBet ween: startDate
and: dueDat e.
t heDate not Ni |

i fTrue: [~each schedule: anOrder at: theDate]].
anOrder fixSchedul e.

A pipelined machine type is scheduled by finding a machine with an open slot between the
st art Dat e and the dueDat e.

Pi pel i nedMachi neType>>schedul e: anOrder between: startDate and:
dueDat e
machi nes do: [:each | | theDate |
theDate : = each schedul e
slotOFSize: 1
freeBetween: startDate
and: dueDat e.
t heDate not Ni |

i fTrue: [~each schedule: anOrder at: theDate]].
anOrder fixSchedul e.

This design lets you define new Pr oduct Types without programming. This lets product managers,
who usually arenOt programmers, specify a new product type. It will be possible to design a tool
that product managers can use to define a new product type by specifying the manufacturing plan,
defining the labor and raw materials needed, the price of the final product, and so on. As long as a
new kind of product can be defined without subclassing Pr oduct , it will be possible for product
managers to do their work without depending on programmers.

There are constraints between types. For example, the sequence of actual Machi neTool s that
manufactured a Pr oduct must match the Machi neTool Types in the manufacturing plan of its
Pr oduct Type. This is a form of type checking, but it can only be done at runtime. It might not be
necessary to check that the types match when the sequence of Machi neTool s is assigned to a

Pr oduct , because this sequence will be built by iterating over a manufacturing plan to find the
available Machi neTool s. However, scheduling can be complex, and errors are likely, so it is

10/19/96 22:21 10 of 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

probably a good idea to double—check that a Pr oduct ’s sequence of Machi neTool s matches
what its Pr oduct Type says it should be.

Known Uses
Coad

CoadOs Item Description pattern is the Type Object pattern except that he only emphasized the fact
that a Type holds values that all its Instances have in common. He used an “aircraft description”
object as an example. [Coad92]

Hay

Hay uses Type Object in many of his data modeling patterns, and discusses it as a modeling
principle, but doesn’t call it a separate pattern. He uses it to define types for activities, products,
assets (a supertype of product), incidents, accounts, tests, documents, and sections of a Material
Safety Data Sheet. [Hay96]

Fowler

Fowler talks about the separate Object Type and Object worlds, and calls these the "knowledge
level” and the "operational level." He uses Type Object to define types for organizational units,
accountability relationships, parties involved in relationships, contracts, the terms for contracts, and
measurements, as well as many of the things that Hay discussed. [Fowler97]

Odell

Odell’s Power Type pattern is the Type Object pattern. He illustrates it with the example of tree
species and tree. A tree species describes a type of tree such as American elm, sugar maple, apricot,
or saguaro. A tree represents a particular tree in my front yard or the one in your back yard. Each tree
has a corresponding tree species that describes what kind of tree it is. [MO95]

Sample Types and Samples

The Type Object pattern has been used in the medical field to model medical samples. A sample has
four independent properties:

* the system it is taken from (e.g., John Doe)

* the subsystem (e.g., blood, urine, sputum)

» the collection procedure (aspiration, drainage, scraping)
» the preservation additive (heparin, EDTA)

This is easily modeled as a Sanpl e object with four attributes: system, subsystem, collection
procedure, and additive. Although the system (the person who gave the sample) is different for
almost all samples, the triplet (subsystem, collection procedure, and additive) is shared by a lot of
samples. For example, medical technicians refer to a "blood"” sample, meaning a
blood/aspiration/EDTA sample. Thus the triplet attributes can be gathered into a single

Sanpl eType object.

A Sanpl eType is responsible for creating new Sanpl e objects. There are about 5,000 different
triplet combinations possible, but most of them don’t make any sense, so the system just provides the
most common Sanpl eTypes. If another Sanpl eType is needed, the users can create a new one
by specifying its subsystem, collection procedure, and additive. While the system tracks tens of
thousands of Sanpl es, it only needs to track about one—hundred Sanpl eTypes. So the

Sanpl eTypesare TypeObj ect s and the Sanpl es are their Cbj ect s. [DeKezel96]

Signals and Exceptions

The Type Object pattern is more common in domain frameworks than vendor frameworks, but one
vendor example is the Si gnal /Except i on framework in VisualWorks Smalltalk. When Smalltalk
code encounters an error, it can raise an Except i on. The Except i on records the context of
where the error occurred for debugging purposes. Yet the Except i on itself doesn’t know what

10/19/96 22:21 11 0f 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

went wrong, just where. It delegates the what information to a Si gnal . Each Si gnal describes a
potential type of problem such as user—interrupt, message—not—understood, and subscript—out—of-
bounds. Thus two message—not—understood errors create two separate Except i on instances that
point to the same Si gnal instance. Si gnal isthe TypeCd ass and Excepti on isthe C ass.

[VW95]
Reflection

Type Object is present in most reflective systems, where a type object is often called a metaobject.
The class/instance separation in Smalltalk is an example of the Type Object pattern. Programmers
can manipulate classes directly, adding methods, changing the class hierarchy, and creating new
classes. By far the most common use of a class is to make instances, but the other uses are part of the
culture and often discussed, even if not often used. [KRB91]

Reflection has a well-deserved reputation for being hard to understand. Type Object pattern shows
that it does not have to be difficult, and can be an easy entrance into the more complex world of
reflective programming.

Related Patterns

The Type Object pattern is similar to the Strategy and State patterns [GHJV95, page 315 and page
305]. All three patterns break an object into pieces and the Oreal objectO delegates to the new
object—either the Type Object, the Strategy, or the State. Strategy and State are usually pure
behavior, while a Type Object often holds a lot of shared state. States change frequently, while Type
Objects rarely change. A Strategy usually has one main responsibility, while a Type Object usually
has many responsibilities. So, the patterns are not exactly the same, even though their object
diagrams are similar.

Any system with a Type Object is well on its way to having a Reflective Architecture [BMRSS96].
Often a Type Object holds Strategies for its instances. This is a good way to define behavior in a

type.

A Type Object implementation can become complex enough that there are Class and Type Class
hierarchies. These hierarchies look a lot like the Abstraction and Implementor hierarchies in the
Bridge pattern [GHJV95, page 151], where Class is the abstraction and Type Class is the
implementation. However, clients can collaborate directly with the Type Objects, an interaction that
usually doesn’t occur with Concrete Implementors.

An Object can seem to be a Decorator [GHJV95, page 175] for its Type Object. An Object and its
Type Object have similar interfaces and the Object chooses which messages to forward to its Type
Object and which ones to enhance. However, a Decorator does not behave like an instance of its
Component.

The Type Objects can seem like Flyweights [GHJV95, page 195] to their Objects. Two Objects using
the same Type Object might think that they each have their own copy, but instead are sharing the
same one. Thus it is important that neither Object change the intrinsic state of the Type Object.

Another way to make one object act like the type of another is with the Prototype pattern [GHJV95,
page 117], when each object keeps track of its prototype and delegates requests to it that it does not
know how to handle.

References

[BMRSS96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern—Oriented Software Architecture — A System of Patterns. Wiley and Sons Ltd.,
1996.

[Coad92] Peter Coad. "Object—oriented Patterns,” Communications of the ACM. 35(9):152-159,
September 1992.

[Fowler97] Martin Fowler. Analysis Patterns: Reusable Object Models, Addison—Wesley, 1997.

[DeKezel96] Raoul De Kezel. E-mail correspondence.

10/19/96 22:21 12 of 13

The Type Object Pattern Ralph Johnson and Bobby Woolf

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object—Oriented Software. Addison—-Wesley, Reading, MA,
1995; http://mwww.aw.com/cp/Gamma.html.

[Hay96] David Hay. Data Modeling Patterns, Dorsett House Publishing, 1996.

[KRB91] Gregor Kiczales, Jim des Rivieres, and Daniel Bobrow. The Art of the Metaobject
Protocol. The MIT Press, Cambridge, Massachusetts, 1991.

[MO95] James Martin and James Odell. Object Oriented Methods: A Foundation. Prentice Hall,
Englewood Cliffs, NJ, 1995.

[VW95] VisualWorks Release 2.5, ParcPlace—Digitalk, Inc., Sunnyvale, CA, 1995;
http://www.parcplace.com.

10/19/96 22:21 13 0f 13

