
Chapter 5
Calculating Functional Programs

Jeremy Gibbons

Abstract. Functional programs are merely equations; they may be ma-
nipulated by straightforward equational reasoning. In particular, one can
use this style of reasoning to calculate programs, in the same way that
one calculates numeric values in arithmetic. Many useful theorems for
such reasoning derive from an algebraic view of programs, built around
datatypes and their operations. Traditional algebraic methods concen-
trate on initial algebras, constructors, and values; dual co-algebraic meth-
ods concentrate on final co-algebras, destructors, and processes. Both
methods are elegant and powerful; they deserve to be combined.

1 Introduction

These lecture notes on algebraic and coalgebraic methods for calculating func-
tional programs derive from a series of lectures given at the Summer School on
Algebraic and Coalgebraic Methods in the Mathematics of Program Construction
in Oxford in April 2000. They are based on an earlier series of lectures given at
the Estonian Winter School on Computer Science in Palmse, Estonia, in 1999.

1.1 Why calculate programs?

Over the past few decades there has been a phenomenal growth in the use of
computers. Alongside this growth, concern has naturally grown over the cor-
rectness of computer systems, for example as regards human safety, financial
security, and system development budgets. Problems in developing software and
errors in the final product have serious consequences; such problems are the
norm rather than the exception. There is clearly a need for more reliable meth-
ods of program construction than the traditional ad hoc methods in use today.
What is needed is a science of programming, instead of today’s craft (or perhaps
black art). As Jeremy Gunawardena points out [15], computation is inherently
more mathematical than most engineering artifacts; hence, practising software
engineers should be at least as familiar with the mathematical foundations of
software engineering as other engineers are with the foundations of their own
branches of engineering.
By ‘mathematical foundations’, we do not necessarily mean obscure aspects

of theoretical computer science. Rather, we are referring to simple properties
and laws of computer programs: equivalences between programming constructs,
relationships between well-known algorithms, and so on. In particular, we are
interested in calculating with programs, in the same way that we calculate with
numeric quantities in algebra at school.

5. Calculating Functional Programs 149

1.2 Functional programming

One particularly appropriate framework for program calculation is functional
programming, simply because the absence of side-effects ensures referential trans-
parency — all that matters of any expression is the value it denotes, not any
other characteristic such as the method by which it computed, the time taken to
evaluate it, the number of characters used to express it, and so on. Expressions
in a functional programming language behave as they do in ordinary mathemat-
ics, in the sense that an expression in a given context may be replaced with a
different expression yielding the same value, without changing its meaning in
the surrounding context. This makes calculations much more straightforward.
Functional programming is programming with expressions, which denote val-

ues, as opposed to statements, which denote actions. A program consists of a
collection of equations defining new functions. For example, here is a simple
functional program:

square x = x * x

This program defines the function square. The fact that it is written as an
equation implies that any occurrence of an expression square x is equivalent to
the expression x * x, whatever the expression x.

1.3 Universal properties

Suppose one has to define a function satisfying a given specification. Two ap-
proaches to solving this problem spring to mind. One, the explicit approach, is
to provide an implementation of the function. The other, the implicit approach,
is to provide a property that completely characterizes the function. Such a prop-
erty is known as a universal property. The implicit approach is less direct, and
requires more machinery, but turns out to be more convenient for calculating
with. Universal properties are a central theme of these lectures.

1.3.1 Example: fork

Given two functions f :: A→ B (which from an A computes a B) and g :: A→ C
(which from an A computes a C), consider the problem of constructing a function
of type A→B×C (which from an A computes both a B and a C). We will write
this induced function ‘fork (f , g)’. We will think of fork itself as a higher-order
operator, taking functions to functions.

1.3.2 Solution using explicit approach

The explicit approach to constructing this function fork consists of providing an
implementation

fork (f , g) a = (f a, g a)

150 Jeremy Gibbons

That is, applying the function fork(f , g) to the argument a yields the pair whose
left component is f a and whose right component is g a. Now the existence of
a solution to the problem is ‘obvious’. (Actually, the existence of solutions to
equations like this is a central theme in semantics of functional programming,
but that is beyond the scope of these lectures.) However, proofs of properties of
the function can be rather laborious, as we show below.

1.3.3 Projections eliminate fork

We claim that
exl ◦ fork (f , g) = f
exr ◦ fork (f , g) = g

where exl and exr are the pair projections or destructors, yielding the left and
right components of a pair respectively. (Here, ◦ is function composition; exl ◦
fork (f , g) is the composition of the two functions exl and fork (f , g), so that

(exl ◦ fork (f , g)) a = exl (fork (f , g) a)
for any a.) The proof of the first property is as follows:

(exl ◦ fork (f , g)) a
=

{
composition

}

exl (fork (f , g) a)
=

{
fork

}

exl (f a, g a)
=

{
exl

}

f a

and so exl◦fork(f , g) = f as required. The proof of the second property is similar.

1.3.4 Any pair-forming function is a fork

We claim that, for pair-forming h (that is, h :: A→ B× C),
fork (exl ◦ h, exr ◦ h) = h

To prove this, assume an arbitrary a, and suppose that h a = (b, c) for some
particular b and c; then

fork (exl ◦ h, exr ◦ h) a
=

{
fork, composition

}

(exl (h a), exr (h a))
=

{
h

}

(exl (b, c), exr (b, c))
=

{
exl, exr

}

(b, c)
=

{
h

}

h a

as required.

5. Calculating Functional Programs 151

1.3.5 Identity function is a fork

We claim that

fork (exl, exr) = id

The proof:

fork (exl, exr) (a, b)

=
{
fork

}

(exl (a, b), exr (a, b))

=
{
exl, exr

}

(a, b)

=
{
identity

}

id (a, b)

1.3.6 Solution using implicit approach

The implicit approach to constructing the function fork consists of observing
that fork (f , g) is uniquely determined by the fact that it returns the pair with
components given by f and g . That is, fork (f , g) is the unique solution of the
equations

exl ◦ h = f
exr ◦ h = g

in the unknown h. Equivalently, we have the universal property of fork

h = fork (f , g)⇔ exl ◦ h = f ∧ exr ◦ h = g

It is perhaps not immediately obvious that the system of two equations above has
a unique solution (we address this problem later). But, once we can justify the
universal property, calculations with forks become much more straightforward,
as we illustrate below.

1.3.7 Projections eliminate fork

For the claim

exl ◦ fork (f , g) = f
exr ◦ fork (f , g) = g

we have the proof

exl ◦ fork (f , g) = f ∧ exr ◦ fork (f , g) = g

⇔ {
universal property, letting h = fork (f , g)

}

fork (f , g) = fork (f , g)

152 Jeremy Gibbons

1.3.8 Any pair-forming function is a fork

For the claim that, for pair-forming h,
fork (exl ◦ h, exr ◦ h) = h

we have the proof
h = fork (exl ◦ h, exr ◦ h)

⇔ {
universal property, letting f = exl ◦ h and g = exr ◦ h

}

exl ◦ h = exl ◦ h ∧ exr ◦ h = exr ◦ h

1.3.9 Identity function is a fork

For the claim that
fork (exl, exr) = id

we have the proof
id = fork (exl, exr)

⇔ {
universal property, letting f = exl and g = exr

}

exl ◦ id = exl ∧ exr ◦ id = exr

The gain is even more impressive for recursive functions, where the explicit
approach requires inductive proofs that the implicit approach avoids. We will
see many examples of such gains throughout these lectures.

1.4 The categorical approach to datatypes

In these lectures we will be using category theory as an organizing principle. For
our purposes, the use of category theory can be summarized in three slogans:

• A model of computation is represented by a category.
• Types and programs in the model are represented by the objects and arrows
of that category.

• A type constructor in the model is represented by a functor on that category.
We will not rely on any deep results of category theory; we will only be using
the theory to obtain a streamlined notation.

1.4.1 Definition of a category

A category C consists of a collection Obj(C) of objects and a collection Arr(C) of
arrows, such that

• each arrow f in Arr(C) has a source src(f) and a target tgt(f), both objects
in Obj(C) (we write ‘f : src(f)→ tgt(f)’);

• for every object A in Obj(C) there is an identity arrow idA : A→ A;
• arrows g : A→ B and f : B→ C compose to form an arrow f ◦ g : A→ C;
• composition is associative: f ◦ (g ◦ h) = (f ◦ g) ◦ h;
• the appropriate identity arrows are units: for arrow f : A → B, we have
f ◦ idA = f = idB ◦ f .

5. Calculating Functional Programs 153

1.4.2 An example category: Set
The category Set of sets and total functions is defined as follows.
• The objects Obj(Set) are sets of values, or types.
• The arrows f : A→B in Arr(Set) are total functions equipped with domain A
and range B.

• The identity arrows are the identity functions idA a = a.
• Composition of arrows is functional composition: (f ◦ g) a = f (g a).

For example, addition is an arrow from the object Int × Int (the set of pairs of
integers) to the object Int (the set of integers).

1.4.3 Definition of a functor

An (endo)-functor F is an operation on the objects and arrows of a category:

• F A is an object of C when A is an object of C;
• F f is an arrow of C when f is an arrow of C.
which respects source and target:

F f : F (src(f))→ F(tgt(f))

respects composition:

F (f ◦ g) = F f ◦ F g

and respects identities:

F idA = idF A

1.4.4 An example functor in Set : Pair

The Set functor Pair is defined as follows.
• On objects, Pair A = {(a1, a2) | a1 ∈ A, a2 ∈ A}.
• On arrows, (Pair f) (a1, a2) = (f a1, f a2).
We should check that the properties are satisfied (Exercise 1.7.1):

• source and target: Pair f : Pair A→ Pair B when f : A→ B;
• composition: Pair (f ◦ g) = Pair f ◦ Pair g ;
• identities: Pair idA = idPair A.

1.4.5 More functors

See Exercise 1.7.2 for the proofs that the following are functors.

Identity functor: The simplest functor Id is defined by

Id A = A
Id f = f

154 Jeremy Gibbons

Constant functor: The next most simple is the constant functor B for object
B, defined by

B A = B
B f = idB

List functor: On an object A, this functor yields List A, the type of finite se-
quences of values all of type A; on arrows, Listf : ListA→ListB when f : A→B
‘maps’ f over a sequence.

Composition of functors: For functors F and G, functor F ◦ G is defined by

(F ◦ G) A = F (G A)
(F ◦ G) f = F (G f)

1.4.6 Binary functors

The notion of a functor may be generalized to functors of more than one argu-
ment. A bifunctor F is a binary operation on the objects and arrows of a category
which respects source and target:

F (f , g) : F(src(f), src(g))→ F(tgt(f), tgt(g))

respects composition:

F (f ◦ g , h ◦ k) = F (f , h) ◦ F (g , k)

and respects identities:

F (idA, idB) = idF(A,B)

1.4.7 Examples of bifunctors

See Exercise 1.7.3 for the proofs that the following are bifunctors.

Product: (a generalization of Pair)

A× B = {(a, b) | a ∈ A, b ∈ B}
(f × g) (a, b) = (f a, g b)

Projection functors:

A� B = A
f � g = f

1.4.8 Making monofunctors out of bifunctors

Here are two ways of constructing a monofunctor (that is, a functor of a single
argument) from a bifunctor.

Sectioning: for bifunctor ⊕ and object A, functor (A⊕) is defined by
(A⊕) B = A⊕ B
(A⊕) f = idA ⊕ f

(so (A�) = A, for example), and similarly in the other argument.

5. Calculating Functional Programs 155

Lifting: for bifunctor ⊕ and monofunctors F and G, functor F ⊕̂G is defined by

(F ⊕̂ G) A = F A⊕ G A
(F ⊕̂ G) f = F f ⊕ G f

See Exercise 1.7.4 for the proofs that these do indeed define functors.

1.5 The pair calculus

The pair calculus is an elegant theory of operators on pairs. We have already seen
the product bifunctor, one of the two main ingredients of the calculus. The other
main ingredient is the coproduct bifunctor, the dual of the product, obtained by
‘turning all the arrows around’ in the definition of product. Along with universal
properties, duality is another central theme of these lectures.

1.5.1 Product bifunctor

As we saw above, product × forms a bifunctor; in Set , for types A and B, the
type A × B consists of pairs (a, b) where a :: A and b :: B. We saw earlier the
product destructors exl ::A×B→A and exr ::A×B→B. We also saw the product
morphisms (‘forks’) f � g :: A→ B × C when f :: A→ B and g :: A→ C, defined
by the universal property

h = f � g ⇔ exl ◦ h = f ∧ exr ◦ h = g

(Some would write ‘〈f , g〉’ where we now write ‘f �g ’.) Now we can define product
map (that is, the action of the product bifunctor on arrows) using fork:

f × g = (f ◦ exl) � (g ◦ exr)

Here are some properties of fork and product:

exl ◦ (f � g) = f
exr ◦ (f � g) = g
(exl ◦ h) � (exr ◦ h) = h
exl � exr = id
(f × g) ◦ (h � k) = (f ◦ h) � (g ◦ k)
id× id = id
(f × g) ◦ (h × k) = (f ◦ h)× (g ◦ k)
(f � g) ◦ h = (f ◦ h) � (g ◦ h)

The proofs are simple consequences of the universal property. We have seen some
proofs already; see also Exercise 1.7.5.

1.5.2 Coproduct bifunctor

We define the Set bifunctor + on objects by
A+ B = {inl a | a ∈ A} ∪ {inr b | b ∈ B}

156 Jeremy Gibbons

The intention here is that inl and inr are injections such that inl a and inr b are
distinct, even when a = b; thus, coproduct gives a disjoint union. (For example,
one might define inl and inr by

inl a = (0, a)
inr b = (1, b)

but we will not assume any particular definition.) The coproduct constructors
are the functions inl :: A→ A+ B and inr :: B→ A+ B. We define the coproduct
morphisms (‘joins’) f � g :: A + B→ C when f :: A→ C and g :: B→ C, by the
universal property

h = f � g ⇔ h ◦ inl = f ∧ h ◦ inr = g

(Some would write ‘[f , g]’ where we write ‘f � g ’.) We can now define coproduct
map using a join:

f + g = (inl ◦ f) � (inr ◦ g)

Here are some properties of join and coproduct:

(f � g) ◦ inl = f
(f � g) ◦ inr = g
(h ◦ inl) � (h ◦ inr) = h
inl � inr = id
(f � g) ◦ (h + k) = (f ◦ h) � (g ◦ k)
id+ id = id
(f + g) ◦ (h + k) = (f ◦ h) + (g ◦ k)
h ◦ (f � g) = (h ◦ f) � (h ◦ g)

See Exercise 1.7.5 for the proofs.

1.5.3 Duality

Notice that each of the above properties of join and coproduct is the dual of
a property of fork and product, obtained by reversing the order of composition
and by exchanging products, forks, and destructors for coproducts, joins and
constructors. Duality gives a ‘looking-glass world’, in which everything is the
mirror image of something in the ‘everyday’ world.

1.5.4 Exchange law

Here is a law relating products and coproducts, a bridge between the everyday
world and the looking-glass world:

(f � g) � (h � j) = (f � h) � (g � j)

⇔ {
universal property of �

}

exl ◦ ((f � g) � (h � j)) = f � h ∧
exr ◦ ((f � g) � (h � j)) = g � j

5. Calculating Functional Programs 157

⇔ {
composition distributes over join

}

(exl ◦ (f � g)) � (exl ◦ (h � j)) = f � h ∧
(exr ◦ (f � g)) � (exr ◦ (h � j)) = g � j

⇔ {
projections eliminate forks

}

true

In fact, there is also a dual proof, using the universal property of joins (Exer-
cise 1.7.6); one might think of it as a proof from the other side of the looking-
glass.

1.5.5 Distributivity

In Set , the objects A × (B + C) and (A × B) + (A × C) are isomorphic. We say
that Set is a distributive category. The isomorphism in one direction,

undistl :: (A× B) + (A× C)→ A× (B+ C)

is easy to write, in two different ways (Exercise 1.7.7):

undistl = (exl � exl) � (exr + exr)
= (id× inl) � (id× inr)

We could also have defined it in a pointwise style:

undistl (inl (a, b)) = (a, inl b)
undistl (inr (a, c)) = (a, inr c)

The inverse operation

distl :: A× (B+ C)→ (A× B) + (A× C)

is straightforward to define in a pointwise style:

distl (a, inl b) = inl (a, b)
distl (a, inr c) = inr (a, c)

Moreover, these two functions are indeed inverses, as is easy to verify.
However, this inverse cannot be defined in a pointfree style in terms of the

product and coproduct operations alone. (Indeed, some categories have products
and coproducts, and hence a function undistl as defined above, but no inverse
function distl, and so are not distributive categories. Typically, such categories
do not support definitions in a pointwise style. The category Rel of sets and
binary relations is an example.)

1.5.6 Booleans and conditionals

In a distributive category, we can model the datatype of booleans by

Bool = 1+ 1
true = inl ()
false = inr ()

158 Jeremy Gibbons

where () is the unique element of the unit type 1. For predicate p :: A→ Bool,
we define the guard

p? :: A→ (A+ A)
p? = (exl+ exl) ◦ distl ◦ (id � p)

or, in an equivalent pointwise form,

p? x = inl x , if p x
= inr x , otherwise

We can then define the conditional
if p then f else g = (f � g) ◦ p?

1.6 Bibliographic notes

The program calculation field is a flourishing branch of programming methodol-
ogy. One recent textbook (based on a theory of relations rather than functions,
but similar in spirit to the material presented in these lectures) is [4]. Also rel-
evant are the proceedings of the Mathematics of Program Construction confer-
ences [39, 2, 30, 21]. There are many good books on functional programming ; we
recommend [5] in particular. The classic reference for category theory is [23], but
this is rather heavy going for non-mathematicians; for a computing perspective,
we recommend [8, 9, 31, 45].
The observation that universal properties are very convenient for calculating

programs was made originally by Backhouse [1]. The categorical approach to
datatypes dates back to the ADJ group [13, 14] in the 1970’s, but was brought
back into fashion by Hagino [16, 17] and Malcolm [24, 25]. The pair calculus is
probably folklore, but our presentation of it was inspired by Malcolm’s thesis.
The claim that distributive categories are the appropriate venue for discussing
datatypes is championed mainly by Walters [44–46].

1.7 Exercises

1. Check that Pair (as defined in §1.4.4) does indeed satisfy the properties
required of a functor.

2. Check that operations claimed in §1.4.5 to be functors (identity, constant,
list, composition) satisfy the necessary properties.

3. Check that operations claimed in §1.4.7 to be bifunctors (×, �) satisfy the
necessary properties.

4. Check that sectioning and lifting operations claimed in §1.4.8 to construct
monofunctors from bifunctors satisfy the necessary properties.

5. Prove the properties of product (from §1.5.1) and of coproduct (from §1.5.2)
using the corresponding universal properties.

6. Prove the exchange law from §1.5.4
(f � g) � (h � j) = (f � h) � (g � j)

using the universal property of joins (instead of the universal property of
forks).

5. Calculating Functional Programs 159

7. Prove the equivalence of the two characterizations of undistl from §1.5.5:
(exl � exl) � (exr + exr) = (id× inl) � (id× inr)

In fact, there are two different proofs, one for each universal property.
8. Prove the following properties of conditionals:

h ◦ if p then f else g = if p then h ◦ f else h ◦ g
(if p then f else g) ◦ h = if p ◦ h then f ◦ h else g ◦ h
if p then f else f = f
if not ◦ p then f else g = if p then g else f
if const true then f else g = f
if p then (if q then f else g)

else (if q then h else j)
= if q then (if p then f else h)

else (if p then g else j)

(Here, not is negation of booleans, and const is the function such that
const a b = a for any b.)

2 Recursive datatypes in the category Set

The pair calculus is elegant, but not very powerful; descriptive power comes with
recursive datatypes. In this section we will discuss a simple first approximation
to what we really want, namely recursive datatypes in the category Set . We will
construct monomorphic and polymorphic datatypes, and their duals. However,
there are inherent limitations in working within the category Set , which we will
remedy in Section 3.

2.1 Overview

The Haskell-style recursive datatype definitions

data IntList = Nil | Cons Int IntList
data List a = Nil | Cons a (List a)

(one monomorphic, one polymorphic) give for free:

• a ‘map’ operator;
• a ‘fold’ (like join for coproducts), to consume a data structure;
• an ‘unfold’ (like fork for products), to generate a data structure;
• universal properties for fold and unfold;
• a number of theorems about fold and unfold.

Actually, we will discover that we cannot simultaneously achieve all of these goals
in Set , which will motivate the move to another category, Cpo, in Section 3.

160 Jeremy Gibbons

2.2 Monomorphic datatypes

We consider first the case of monomorphic datatypes. The first problem is to
identify a common form, encompassing all the datatype declarations in which
we are interested. Consider the Haskell-style datatype definition

data IntList = Nil | Cons Int IntList

This defines two constructors

Nil :: IntList
Cons :: Int→ (IntList→ IntList)

Different datatype definitions, of course, will introduce different constructors.
This raises some problems for a general theory:

• there may be arbitrarily many constructors;
• the constructors may be constants or functions;
• the constructor functions may be of arbitrary arities.

How can we circumvent these problems, and unify all datatype definitions into
a common form?

2.2.1 Unifying constructors

The third problem identified above, constructors of arbitrary arities, can be
resolved by ‘uncurrying’ the constructor functions; that is, by tupling the argu-
ments together using products. For example, the binary Cons constructor for
lists introduced above is equivalent to the unary constructor

Cons :: Int× IntList→ IntList

The second problem, that some constructors may be constants rather than func-
tions, can be resolved by treating a constant constructor such as Nil as a function
from the unit type 1:

Nil :: 1→ IntList

Now the first problem, of an arbitrary number of constructors, may be resolved
by taking the join of the existing collection of unary constructor functions (be-
cause they all share a common target, the defined type):

Nil � Cons :: 1+ (Int× IntList)→ IntList

This yields a single constructor Nil � Cons. Being a constructor for the defined
type IntList, its target type is that type. Its source type 1+(Int× IntList) is some
type expression involving the target type IntList— in fact, some functor applied
to IntList.

5. Calculating Functional Programs 161

2.2.2 Datatype definitions

Therefore, it suffices to consider datatypes T with a single unified constructor
inT :: F T→ T for some functor F. We write

T = data F

For example, for IntList, the functor is FIntList, where

FIntList X = 1+ (Int× X)

That is,

FIntList = 1 +̂ (Int ×̂ Id)

so we could define
IntList = data (1 +̂ (Int ×̂ Id))

2.3 Folds

We have identified a common form for all monomorphic datatype definitions.
However, datatypes are not much use without functions over them. It is now
widely accepted that program structure should, where possible, reflect data
structure [18]. Accordingly, we should identify a program structure that reflects
the data structure of monomorphic datatypes. It turns out that the right kind of
structure is one of homomorphisms between algebras, which we explore in this
section.

2.3.1 Fixpoints

The definition ‘T = data F’ defines T to be a fixpoint of the functor F; that is, T
is isomorphic to FT. In one direction, the isomorphism is given by inT ::FT→T.
In the other direction, we suppose an inverse outT :: T → F T. (In fact, we see
how to define outT shortly.)
However, to say that the datatype definition ‘T = data F’ defines T to be

a fixpoint of the functor F does not completely determine T, as a functor may
have more than one fixpoint. For example, the types ‘finite sequences of integers’
and ‘finite and infinite sequences of integers’ are both fixpoints of the functor
FIntList (Exercise 2.9.3). Informally, what we want is the ‘least fixpoint’, that
is, the ‘smallest such type’ — finite rather than finite-and-infinite sequences of
integers. How can we formalize this idea?

2.3.2 Algebras

We define an F-algebra to be a pair (A, f) such that f :: F A → A. Thus, the
datatype definition T = data F defines (T, inT) to be an F-algebra. For example,
(IntList,Nil � Cons) is an FIntList-algebra. However, F-algebras are not unique
either. For example, (Int, zero � plus) is another FIntList-algebra (Exercise 2.9.4),
where zero ::1→Int and plus ::Int×Int→Int; that is, zero�plus ::1+(Int×Int)→Int.

162 Jeremy Gibbons

2.3.3 Homomorphisms

A homomorphism between F-algebras (A, f) and (B, g) is a function h :: A→ B
such that

h ◦ f = g ◦ F h

Pictorially,

F A
f ✲ A

F B

F h

❄

g
✲ B

h

❄

For example, the function sum :: IntList→ Int, which sums an IntList,

sum (Nil ()) = 0
sum (Cons (a, x)) = a + sum x

is a homomorphism from (IntList,Nil � Cons) to (Int, zero � plus), because

sum ◦ (Nil � Cons) = (zero � plus) ◦ FIntList sum

(see Exercise 2.9.5).

2.3.4 Initial algebras

We say that an F-algebra (A, f) is initial if, for any F-algebra (B, g), there is
a unique homomorphism from (A, f) to (B, g). Then the datatype definition
‘T = data F’ defines (T, inT) to be ‘the’ initial F-algebra. There may be more
than one initial algebra, but all initial algebras are equivalent (Exercise 2.9.6);
thus, it does not really matter which one we pick.

2.3.5 Existence of initial algebras

It is well-known that for polynomial F (built out of identity and constant functors
using product and coproduct) on many categories including Set and Rel , initial
algebras always exist. Malcolm [24] shows existence also for regular F (adding
fixpoints), allowing us to define mutually recursive datatypes such as

data IntTree = Node Int IntForest
data IntForest = Empty | ConsF IntTree IntForest

2.3.6 Definition of folds

Suppose that (T, inT) is the initial F-algebra. Then there is a unique homomor-
phism to any F-algebra (B, f) — that is, for any such f , there exists a unique
h such that h ◦ inT = f ◦ F h. We would like a notation for ‘the unique solution

5. Calculating Functional Programs 163

h of this equation involving f ’; we write ‘foldT f ’ for this unique solution. Thus,
foldT f has type T→ B when f :: F B→ B. Pictorially,

F T
in ✲ T

F B

F (foldT f)

❄

f
✲ B

foldT f

❄

Uniqueness provides the universal property

h = foldT f ⇔ h ◦ inT = f ◦ F h

2.4 Polymorphic datatypes

The type IntList has the ‘base type’ Int built in: it cannot be used for lists
of booleans, lists of strings, and so on. We would like polymorphic datatypes,
parameterized by an arbitrary base type A: lists of As, trees of As, and so on.
For example, the Haskell-style type definition

data List a = Nil | Cons a (List a)

defines a type List A for each type A; now List is a type constructor, whereas
IntList is just a type.

2.4.1 Using bifunctors

The essential idea in constructing polymorphic datatypes is to use a bifunctor ⊕.
A polymorphic type T is then defined by sectioning ⊕ with the type parameter
as one argument, and then taking the fixpoint:

T A = data (A⊕)
Now the constructor has type

inT A :: A⊕ T A→ T A

though usually we will write just ‘inT’ as a polymorphic function, omitting the
A. For example, we can define a polymorphic list type by

List A = data (A⊕)
where

A⊕ B = 1+ (A× B)

Equivalently, we could write

List A = data (1 +̂ (A ×̂ Id))

without naming the bifunctor.

164 Jeremy Gibbons

2.4.2 Polymorphic folds

Folds over monomorphic datatypes generalize in a straightforward fashion to
polymorphic datatypes. The datatype definition

T A = data (A⊕)
defines (T A, inT) to be the initial (A⊕)-algebra; therefore there exists a unique
homomorphism foldT A f to any other (A⊕)-algebra (B, f). (Again, we will usually
write just ‘foldT f ’, leaving the fold operator polymorphic in A.) The fold foldT f
has type T A→ B when f :: A⊕ B→ B; pictorially,

A⊕ T A
inT ✲ T A

A⊕ B

id⊕ foldT f

❄

f
✲ B

foldT f

❄

Uniqueness gives the universal property
h = foldT f ⇔ h ◦ inT = f ◦ (id⊕ h)

2.4.3 Making it a functor: map

The datatype definition T A = data (A⊕) makes T a type constructor, an
operation on types. This suggests that perhaps we can make T a functor: all we
need is a corresponding operation on functions T f with type T A→ T B when
f ::A→B (satisfying the functor laws). We define T f = foldT A (inT B ◦ (f ⊕ id)).
Pictorially,

A⊕ T A
inT A ✲ T A

A⊕ T B

id⊕ T f

❄

f ⊕ id
✲ B⊕ T B

inT B

✲ T B

T f

❄

(We should check that this does indeed satisfy the requirements for being a
functor; see Exercise 2.9.7.) For historical reasons, we will write ‘mapT f ’ rather
than ‘T f ’.

2.5 Properties of folds

There are a number of general theorems about folds that arise as simple con-
sequences of the universal property. These include: an evaluation rule, which
shows ‘one step of evaluation’ of a fold; an exact fusion law, which states when
a function can be fused with a fold; a weak fusion law, a simpler but weaker
corollary of the exact fusion law; the identity law, which states that the identity
function is a fold; and a definition of the destructor of a datatype as a fold.

5. Calculating Functional Programs 165

2.5.1 Evaluation rule

The evaluation rule describes the composition of a fold and the constructors of
its type; informally, it gives ‘one step of evaluation’ of the fold.

foldT f ◦ inT

=
{
universal property, letting h = fold f

}

f ◦ F (foldT f)

2.5.2 Fusion (exact version)

Fusion laws for folds are of the form

h ◦ foldT f = foldT g ⇔ . . .

(or sometimes with the composition the other way around). They give condi-
tions under which one can fuse two computations, one a fold, to yield a single
monolithic computation. In this case, we have

h ◦ foldT f = foldT g

⇔ {
universal property

}

h ◦ foldT f ◦ inT = g ◦ F (h ◦ foldT f)

⇔ {
functors

}

h ◦ foldT f ◦ inT = g ◦ F h ◦ F (foldT f)

⇔ {
evaluation rule

}

h ◦ f ◦ F (foldT f) = g ◦ F h ◦ F (foldT f)

2.5.3 Fusion (weaker version)

The above fusion law is an equivalence, so it is as strong as possible. However, it
is a little unwieldy, because the premise (the last line in the calculation above)
is rather long. Here is a fusion law with a simpler but stronger premise (which
therefore is a weaker law).

h ◦ foldT f = foldT g

⇔ {
exact fusion

}

h ◦ f ◦ F (foldT f) = g ◦ F h ◦ F (foldT f)

⇐ {
Leibniz

}

h ◦ f = g ◦ F h

166 Jeremy Gibbons

2.5.4 Identity

The identity function id is a fold:

id = foldT f
⇔ {

universal property
}

id ◦ inT = f ◦ F id

⇔ {
identity

}

f = inT

That is, foldT inT = id.

2.5.5 Destructors

Also, the destructor outT of a datatype, the inverse of the constructor inT, can
be written as a fold; this is known as Lambek’s Lemma.

inT ◦ foldT f = id

⇔ {
identity as a fold

}

inT ◦ foldT f = foldT inT

⇐ {
weak fusion

}

inT ◦ f = inT ◦ F inT

⇐ {
Leibniz

}

f = F inT

Therefore we can define
outT = foldT (F inT)

We should check that this also makes out the inverse of in when the composition
is reversed:

outT ◦ inT

=
{
above

}

foldT (F inT) ◦ inT

=
{
evaluation rule

}

F inT ◦ F outT
=

{
functors

}

F (inT ◦ outT)
=

{
in ◦ out = id

}

id

Lambek’s Lemma is a corollary of the more general theorem that an injective
function (that is, a function with a post-inverse) on a recursive datatype is a
fold (Exercise 2.9.8). Since the destructor is by assumption the inverse of the
constructors, it is injective.

5. Calculating Functional Programs 167

2.6 Co-datatypes and unfolds

All of this theory of datatypes dualizes, to give a theory of co-datatypes and
unfolds. The dualization is quite straightforward; nevertheless, we present the
facts here for completeness.

2.6.1 Co-algebras and homomorphisms

An F-co-algebra is a pair (A, f) such that f ::A→FA. A homomorphism between
F-co-algebras (A, f) and (B, g) is a function h :: A→ B such that

F h ◦ f = g ◦ h

Pictorially,

A
f ✲ F A

B

h

❄

g
✲ F B

F h

❄

An F-co-algebra (A, f) is final if, for any F-co-algebra (B, g), there is a unique
homomorphism from (B, g) to (A, f). The datatype definition T = codata F
defines (T, outT) to be ‘the’ final F-co-algebra.

2.6.2 Unfolds

Suppose that (T, outT) is the final F-co-algebra. Then there is a unique homomor-
phism to (T, outT) from any F-co-algebra (B, f) — that is, there exists a unique
h such that outT ◦ h = F h ◦ f . We write ‘unfoldT f ’ for this homomorphism. The
unfold unfoldT f has type B→ T when f :: B→ F B:

B
f ✲ F B

T

unfoldT f

❄

outT
✲ F T

F (unfoldT f)

❄

Uniqueness provides the universal property

h = unfoldT f ⇔ outT ◦ h = F h ◦ f

168 Jeremy Gibbons

2.6.3 Polymorphic co-datatypes

In the same way,

T A = codata (A⊕)
defines a polymorphic co-datatype, with destructor

outT A :: T A→ A⊕ T A

This induces a polymorphic unfold with universal property

h = unfoldT A f ⇔ outT ◦ h = (id⊕h) ◦ f
The typing is unfoldT f :: B→ T A when f :: B→ A⊕ B; pictorially,

B
f ✲ A⊕ B

T A

unfoldT f

❄

outT
✲ A⊕ T A

id⊕ unfoldT f

❄

Co-datatypes too form functors; the map for f :: A→ B is given by

mapT A f = unfoldT B ((f⊕id) ◦ outT A)

2.6.4 An example: streams

The polymorphic datatype of streams (infinite lists) is defined

Stream A = codata (A×)
Thus, the destructor for this type is outStream :: Stream A→ A × Stream A. The
unfold unfoldStream f has type A→ Stream B for f :: A→ B× A. For example,

from = unfoldStream Int (id � (1+))

yields increasing streams of naturals: from n = n,n + 1,n + 2, For another
example,

fibs = (unfoldStream Int (exl � (exr � plus))) (0, 1)

defines the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8,

2.6.5 Properties of unfolds

The theorems dualize too, of course. See Exercise 2.9.10 for the proofs.

Evaluation rule:

outT ◦ unfoldT f = F (unfoldT f) ◦ f

5. Calculating Functional Programs 169

Exact and weak fusion:
unfoldT f ◦ h = unfoldT g

⇔ F (unfoldT f) ◦ f ◦ h = F (unfoldT f) ◦ F h ◦ g
⇐ f ◦ h = F h ◦ g

Identity:

unfoldT outT = id

Constructors: (the dual of the ‘destructor’ law for folds)

inT = unfoldT (F outT)

Again, this dual is a corollary of a more general law (Exercise 2.9.11), that
any surjective function (one with a pre-inverse) to a recursive datatype is an
unfold.

2.6.6 Example: insertion sort

Given the datatype List A = data (1 +̂ (A ×̂ Id)), suppose we have an insertion
operation

ins :: 1+ (A× List A)→ List A

that gives an empty list, or inserts an element into a sorted list. Then insertion
sort is defined by

insertsort = foldList ins

2.6.7 Example: selection sort

Given the codatatype CList A = codata (1 +̂ (A ×̂ Id)), suppose we have an
operation

del :: CList A→ 1+ (A× CList A)

that finds and removes the minimum element of a non-empty list. Then selection
sort is defined by

selectsort = unfoldCList del

2.7 . . . and never the twain shall meet

Unfortunately, this elegant theory is severely limited when it comes to actual
programming. Datatypes and co-datatypes are different things, so one cannot
combine them. For example, one cannot write programs of the form ‘unfold then
fold’; one instance of this scheme is quicksort, which builds a binary search tree
(an unfold) then flattens it to a list (a fold), and another is mergesort, which re-
peatedly halves a list (unfolding to a tree) then repeatedly merges the fragments
(folding the tree). This pattern of computation is known as a hylomorphism, and
is very common in programming.

170 Jeremy Gibbons

Moreover, Set is not a good model of programs. As it contains only total
functions, it necessarily suffers from some lack of power, and corresponds only
vaguely to most programming languages. (Indeed, the selection sort given in
§2.6.7 does not really work: the function del is necessarily partial, as it makes
no sense on an infinite list, and so neither del nor selectsort are arrows in Set .)
The solution to both problems is to move to the category Cpo, imposing more

structure on the objects and arrows of the category than there is in Set .

2.8 Bibliographic notes

As mentioned in the bibliographic notes for the previous section, the categori-
cal approach to datatypes is due originally to the ADJ group [13, 14] and later
to Hagino [16, 17]. However, the presentation in these notes owes more to Mal-
colm [24, 25]. The proof that, for the kinds of functor that interest us, initial
algebras and final coalgebras always exist, is (a corollary of a more general
theorem) due to Smyth and Plotkin [34]. The term ‘hylomorphism’ is due to
Meijer [27].

2.9 Exercises

1. Translate the following Haskell-style definition of binary trees with boolean
external labels into the categorical style:

data BoolTree = Tip Bool | Bin BoolTree BoolTree

2. Translate the following categorical-style datatype definition

StringTree = data (1 +̂ (Id ×̂ String ×̂ Id))

into your favourite programming languages (for example, Haskell, Modula 2,
Java).

3. Show that the types ‘finite sequences of integers’ and ‘finite and infinite
sequences of integers’ are both fixpoints of the functor 1 +̂ (Int ×̂ Id).

4. Check that (IntList,Nil � Cons) and (Int, zero � plus) are FIntList-algebras,
where

zero () = 0
plus (m,n) = m + n

5. Check that sum, the function which sums an IntList,

sum (Nil ()) = 0
sum (Cons (a, x)) = a + sum x

is an FIntList-homomorphism from (IntList,Nil � Cons) to (Int, zero � plus).
6. Show that any two initial F-algebras are isomorphic. (Hint: the identity func-
tion is a homomorphism from an F-algebra to itself; use uniqueness.) So,
given the existence of an initial algebra, we are justified in talking about
‘the’ initial algebra.

5. Calculating Functional Programs 171

7. Check that defining

T f = foldT A (inT B ◦ (f ⊕ id))

does indeed make T a functor.
8. Show that if g ◦ h = idT for recursive datatype T, then h is a fold. Thus, any
injective function on a recursive datatype is a fold.

9. In fact, one can say something stronger. Show that h is a fold for recursive
datatype data F if and only if ker (F h) ⊆ ker (h ◦ in), where the kernel
ker f of a function f ::A→B is the set of pairs { (a, a ′) ∈ A×A | f a = f a ′ }.
Use this to solve Exercise 2.9.8.

10. Prove the properties of unfolds from §2.6.5, using the universal property.
11. Dually to Exercise 2.9.8, show that any surjective function to a recursive
datatype is an unfold.

12. Dually to Exercise 2.9.9, show that h is a unfold for recursive codatatype
codata F if and only if img (F h) ⊇ img (out ◦ h), where the image img f of
a function f :: A→ B is the set { b ∈ B | ∃a ∈ A. f a = b }. Use this to solve
Exercise 2.9.11.

13. Prove that the fork of two folds is a fold:
foldT f � foldT g = foldT ((f ◦ F exl) � (g ◦ F exr))

(This is known fondly as the ‘banana split theorem’, by those who know the
fork operation as ‘split’ and write folds using ‘banana brackets’.)

14. Prove the special cases fold-map fusion

foldT f ◦ mapT g = foldT (f ◦ (g ⊕ id))

of the fusion law for folds, and map-unfold fusion

mapT g ◦ unfoldT f = unfoldT ((g ⊕ id) ◦ f)

of the fusion law for unfolds.
15. For datatype T = data F, Meertens [26] defines the notion of a paramor-

phism paraT f :: T→ C when f :: F (C× T)→ C as follows:

paraT f = exl ◦ foldT (f � (inT ◦ F exr))

It enjoys the universal property

h = paraT f ⇔ h ◦ inT = f ◦ F (h � id)

Informally, a paramorphism is a generalization of a fold: the result on a larger
structure may depend on results on substructures, but also on the substruc-
tures themselves. For example, the factorial function is a paramorphism over
the naturals:

fact = paraNat (const 1 � (mult ◦ (id× succ)))
where constab = a and mult multiplies a pair of numbers. That is, fact0 = 1,
and fact (succ n) = mult (fact n, succ n).
(a) Show that the second component of the above fold is merely the identity
function:
exr ◦ foldT (f � (inT ◦ F exr)) = id

Hence foldT (f � (inT ◦ F exr)) = paraT f � id.

172 Jeremy Gibbons

(b) Show that the identity function is a paramorphism:

id = para (in ◦ F exl)

(c) Prove the (weak) fusion law for paramorphisms:

h ◦ para f = para g ⇐ h ◦ f = g ◦ F (h × id)

(d) Show that any fold is a paramorphism:

fold f = para (f ◦ F exl)

(This is a generalization of Exercise 2.9.15b.)
(e) Show that any function on a recursive datatype can be written as a
paramorphism:

h = para (h ◦ in ◦ F exr)

Thus, paramorphisms are extremely general.
16. On the codatatype of lists from §2.6.7, define as an unfold the function

interval , such that

interval (1, 5) = [1, 2, 3, 4, 5]
interval (5, 5) = [5]
interval (6, 5) = []

17. On the codatatype StreamA = codata (A×), the function iterate is defined
by

iterate f = unfoldStream (id � f)

Using unfold fusion, prove that

map f ◦ iterate f = iterate f ◦ f

18. For codatatype T = codata F, Uustalu and Vene [40, 38] dualize paramor-
phisms to get apomorphisms apoT f :: C → T when f :: C → F (C + T) as
follows:

apoT f = unfoldT (f � (F inr ◦ outT)) ◦ inl

They enjoy the universal property

h = apoT f ⇔ outT ◦ h = F (h � id) ◦ f

Informally, an apomorphism is a generalization of an unfold: a larger struc-
ture may be generated recursively from new seeds, but may also be generated
‘all at once’ without recursion. For example, on the codatatype CList A =
codata (1 +̂ (A ×̂ Id)) of lists, the append function is an apomorphism:

append = apoClist f

where
f (x , y) = inl (), if null x ∧ null y

= inr (head y , inr (tail y)), if null x ∧ not (null y)
= inr (head x , inl (tail x , y)), if not (null x)

That is, append(x , y) is the empty list if both are empty, cons (head y , tail y)
(which is just y) if only x is empty, and cons (head x , append (tail x , y)) if

5. Calculating Functional Programs 173

neither x nor y is empty. This definition copies just the first list; in contrast,
the simple unfold characterization of append

append = unfoldCList g

where
g (x , y) = inl (), if null x ∧ null y

= inr (head y , (x , tail y)), if null x ∧ not (null y),
= inr (head x , (tail x , y)), if not (null x)

copies both lists.
(a) Show that on the second summand the above unfold acts merely as the
identity function:

unfoldT (f � (F inr ◦ outT)) ◦ inr = id

Hence unfoldT (f � (F inr ◦ outT)) = apoT f � id.
(b) Show that the identity function is an apomorphism:

id = apo (F inl ◦ out)

(c) Prove the (weak) fusion law for apomorphisms:

apo f ◦ h = apo g ⇐ f ◦ h = F (h + id) ◦ g

(d) Show that any unfold is an apomorphism:

unfold f = apo (F inl ◦ f)

(This is a generalization of Exercise 2.9.18b.)
(e) Show that any function yielding a recursive datatype can be written as
an apomorphism:

h = apo (F inr ◦ out ◦ h)

(f) Write ins ::A×CListA→CListA, which inserts a value into a sorted list,
as an apomorphism.

19. Datatypes and codatatypes for the same functor are different structures, but
they are not unrelated. Suppose we have the datatype definitions

T = data F
U = codata F

Lambek’s Lemma shows how to write outT ::T→ F T, giving an F-coalgebra
(T, outT) and hence a function unfoldU outT ::T→U. This function ‘coerces’
an element of T to the type U. Give the dual construction, expressing this
coercion as a fold. Prove (in two different ways) that these two coercions are
equal. Thus, we have two ways of writing the coercion from the datatype
T to the codatatype U, and no way of going back again. This is what one
might expect: embedding finite lists into finite-or-infinite lists is easy, but
the opposite embedding is more difficult. In the following section we move
to a setting in which the two types coincide, and so the coercions become
the identity function.

174 Jeremy Gibbons

3 Recursive datatypes in the category Cpo
As we observed above, the simple and elegant model of datatypes and the cor-
responding characterization of the ‘natural patterns’ of recursion over them in
the category Set has a number of problems. We solve these problems by moving
to the category Cpo. This category is a refinement of the category Set . Some
structure is imposed on the objects of the category, so that they are no longer
merely sets of unrelated elements, and correspondingly some structure is induced
on the arrows. Some things become neater (for example, we will be able to com-
pose unfolds and folds) but some things become messier (specifically, strictness
conditions have to be attached to some of the laws).

3.1 The category Cpo

The category Cpo has as objects pointed complete partial orders: sets equipped
with a partial order on the elements, with a least element and closed under limits
of ascending chains. The arrows are continuous functions on these structured
sets: functions which distribute over limits of ascending chains. (We will explain
these notions below.)
Intuitively, we will use the partial order to represent ‘approximations’ in a

‘definedness’ or ‘information’ ordering: x � y will mean that element x is an
approximation to (or less well defined than, or provides less information than)
element y . Closure under limits means that we can consider complex, perhaps
infinite, structures as the limit of their finite approximations, and be assured that
such limits always exist. Continuity means that computations (that is, arrows)
respect these limits: the behaviour of a computation on the limit of a chain of
approximations can be understood purely in terms of its behaviour on each of
the approximations.

3.1.1 Posets

A poset is a pair (A,�), where A is a set and � is a partial order on A. That is,
the following properties hold of �:

reflexivity: a � a
transitivity: a � b and b � c imply a � c
antisymmetry: a � b and b � a imply a = b

The least element of a poset (A,�) is the a ∈ A such that a � a ′ for all
a ′ ∈ A, if this element exists. By antisymmetry, a poset has at most one least
element. The upper bounds in A of the poset (B,�) where B ⊆ A are the elements
{a ∈ A | b � a for all b ∈ B}; note that they are elements of A, and not
necessarily of B. The least upper bound (lub)

⊔
B in A of the poset (B,�) where

B ⊆ A is the least element of the upper bounds in A of (B,�), if this least
element exists.

5. Calculating Functional Programs 175

3.1.2 Cpos and pcpos

A chain 〈ai〉 in a poset (A,�) is a sequence a0, a1, a2 . . . of elements in A such
that a0 � a1 � a2 � · · ·. The lub of the chain 〈ai〉, if it exists, is denoted

⊔
i〈ai〉.

A poset (A,�) is a complete partial order (cpo) if every chain of elements in A
has a lub in A. A cpo is a pointed cpo (pcpo) if it has a least element (which is
denoted ⊥A). From now on, we will often write just ‘A’ instead of ‘(A,�)’ for a
pcpo.

3.1.3 Strictness, monotonicity and continuity

A function f :: A→ B between pcpos A and B is strict if

f ⊥A = ⊥B

A function f :: A→ B between pcpos (A,�A) and (B,�B) is monotonic if

a �A a ′ ⇒ f a �B f a ′

A monotonic function between pcpos A and B is continuous if

f (
⊔

i〈ai〉) =
⊔

i(〈f ai〉)

3.1.4 Examples of pcpos

The following are all pcpos:

• for set A such that ⊥ �∈ A, the lifted discrete set {⊥} ∪ A with ordering

a � b ⇔ a = ⊥ ∨ a = b

• for pcpos A and B, the cartesian product {(a, b) | a ∈ A ∧ b ∈ B} with
ordering

(a, b) � (a ′, b′)⇔ a �A a ′ ∧ b �B b′

(so the least element is (⊥A,⊥B));
• for pcpos A and B, the separated sum {⊥}∪{(0, a) | a ∈ A}∪{(1, b) | b ∈ B}
with ordering

x � y ⇔ (x = ⊥) ∨
(x = (0, a) ∧ y = (0, a ′) ∧ a �A a ′) ∨
(x = (1, b) ∧ y = (1, b′) ∧ b �B b′)

• for pcpos A and B, the set of continuous functions from A to B, with ordering

f � g ⇔ (f a �B g a for all a ∈ A)

(so the least element is the function f such that f a = ⊥B for any a).

176 Jeremy Gibbons

3.1.5 Modelling datatypes in Cpo
As suggested above, the idea is that we will use pcpos to model datatypes. The
elements of a pcpo model (possibly partially defined) values of that type. The
ordering � models ‘is no more defined than’ or ‘approximates’. For example,
(⊥,⊥) � (1,⊥) � (1, 2) and (⊥,⊥) � (⊥, 2) � (1, 2), but (1,⊥) and (⊥, 2)
are unrelated. ‘Completely defined’ values are the lubs of chains of approxima-
tions. All ‘reasonable’ functions are continuous, so we are justified in restricting
attention just to continuous functions.

3.1.6 The category

We move from the category Set to the category Cpo. The objects Obj(Cpo) are
pcpos; the arrows Arr(Cpo) are continuous functions between pcpos. Later, we
will also use the category Cpo⊥, which has the same objects, but only the strict
continuous functions as arrows.

3.2 Continuous algebras

Fokkinga and Meijer [11] have generalized the Set-based definitions of datatypes
and their morphisms to Cpo. This provides a number of advantages over Set :
• we can now model partial functions, because all types have a least-defined
element that can be used as the ‘meaning’ of an undefined computation;

• unfolds generate and folds consume the same kind of entity, so they can be
composed to form hylomorphisms;

• we can give a meaning to arbitrary recursive definitions, not just to folds
and unfolds.

(However, these advantages come at the cost of a more complex theory.) In these
lectures we will only use the middle benefit of the three.

3.2.1 The main theorem

A functor F is locally continuous if, for all objects A and B, the action of F on
functions of type A → B is continuous. All functors that we will be using are
locally continuous.
Suppose F is a locally continuous functor on Cpo. Suppose also that F pre-

serves strictness, that is, F f is strict when f is strict; so F is also a functor
on Cpo⊥. Then there exists an object T, and strict functions inT :: F T→ T and
outT ::T→ F T, each the inverse of the other; hence T is isomorphic to F T. The
functor F determines T up to isomorphism, and T uniquely determines inT and
outT. We write

T = fix F

The pair (T, inT) is the initial F-algebra in Cpo⊥; that is, for any type A and
strict function f :: F A→ A, there is a unique strict h satisfying the equation

5. Calculating Functional Programs 177

h ◦ inT = f ◦ F h

We write foldT f for this unique solution. It has the universal property that

h = foldT f ⇔ h ◦ inT = f ◦ F h for strict f and h

(The strictness condition on f is necessary; see Exercise 3.6.1.)
Also, the pair (T, outT) is the final F-co-algebra in Cpo; that is, for any type

A and (not necessarily strict) function f ::A→FA, there is a unique h satisfying

outT ◦ h = F h ◦ f

We write unfoldTf for this unique solution. It has the universal property (without
any strictness conditions)

h = unfoldT f ⇔ outT ◦ h = F h ◦ f

(Apparently the strictness requirements of folds and unfolds are asymmetric.
Exercise 3.6.2 shows that this apparent asymmetry is illusory.)

3.3 The pair calculus again

The cool, clear waters of the pair calculus are muddied slightly by the presence
of ⊥ and the possibility of non-strict functions. The cartesian product works
fine, as before; all the same properties hold. Unfortunately, the separated sum is
no longer a proper coproduct, because the injections inl and inr are non-strict,
and so the equations

h ◦ inl = f ∧ h ◦ inr = g

no longer have a unique solution (because they do not specify h ⊥). However,
there is a unique strict solution, which is the one we take for join:

h = f � g ⇔ h ◦ inl = f ∧ h ◦ inr = g ∧ h strict

Such strictness conditions are the price we pay for the extra power and flexibility
of Cpo. In view of this, we use the term ‘sum’ instead of ‘coproduct’ from now
on.

3.3.1 Distributivity

Even worse than the extra strictness conditions, we no longer have a distributive
category: product no longer distributes over sum. Because the function distl takes
(a,⊥) to ⊥, there is no way of inverting it to retrieve the a. There is more
information in A× (B+C) than in (A×B) + (A×C); now distl ◦ undistl = id but
undistl ◦ distl � id. Nevertheless, we continue to use the guard p?, but with care:
for example, the equation

if p then f else f = f

now holds only for total p (more precisely, when p x = ⊥ implies f x = ⊥).

178 Jeremy Gibbons

3.4 Hylomorphisms

So much for the disadvantages. To compensate, we can now express the common
pattern of computation of an unfold followed by a fold, because now unfolds
produce and folds consume the same kind of datatype. We present two examples
here: quicksort and mergesort.

3.4.1 Lists

We use the datatype

List A = fix (1 +̂ (A ×̂ Id))

of possibly-empty lists. For brevity, we define separate constructors

nil = in (inl ())
cons (a, x) = in (inr (a, x))

and destructors

isNil = (const true � const false) ◦ out
head = (⊥ � exl) ◦ out
tail = (⊥ � exr) ◦ out

We introduce the following syntactic sugar for folds on this type:

foldL :: (B× (A× B→ B))→ List A→ B
foldL (e, f) = foldList (const e � f)

unfoldL :: ((B→ Bool)× (B→ A× B))→ B→ List A
unfoldL (p, f) = unfoldList ((const () + f) ◦ p?)

For example, concatenation on these lists is given by

cat (x , y) = foldL (y , cons) x

3.4.2 Flatten

We also use the datatype

Tree A = fix (1 +̂ (A ×̂ (Id ×̂ Id)))

of internally-labelled binary trees, for which the fold may be sweetened to

foldT :: (B× (A× (B× B)→ B))→ Tree A→ B
foldT (e, f) = foldTree (const e � f)

The function flatten turns one of these trees into a possibly-empty list:

flatten :: Tree A→ List A
flatten = foldT (nil , glue)
glue (a, (x , y)) = cat (x , cons (a, y))

5. Calculating Functional Programs 179

3.4.3 Partition

The function filter takes a predicate p and a list x , and returns a pair of lists:
those elements of x that satisfy p, and those elements of x that do not.

filter :: (A→ Bool)→ List A→ List A× List A
filter p = foldL ((nil ,nil), step)
step (a, (x , y)) = (cons (a, x), y), if p a

= (x , cons (a, y)), otherwise

An alternative, point-free but perhaps less clear, definition of step is

step = if p then (cons ◦ (id× exl)) � (exr ◦ exr)
else (exl ◦ exr) � (cons ◦ (id× exr))

For example, we can partition a non-empty list into those elements of the tail
that are less than the head, and those elements of the tail that are not:

partition :: List A→ List A× List A
partition x = filter (< head x) (tail x)

3.4.4 Quicksort

The unfold on our type of trees is equivalent to

unfoldT :: ((B→ Bool)× (B→ A)× (B→ B× B))→ B→ Tree A
unfoldT (p, f , g) = unfoldTree ((const () + (f � g)) ◦ p?)

Now we can build a binary search tree from a list:

buildBST :: List A→ Tree A
buildBST = unfoldT (isNil , head , partition)

(Note that partition is applied only to non-empty lists.) Then we can sort by
building then flattening a tree:

quicksort :: List A→ List A
quicksort = flatten ◦ buildBST

This is a fold after an unfold.

3.4.5 Merge

For this example, we define the datatype

PList A = fix (A +̂ (A ×̂ Id))

of non-empty lists. Again, for brevity, we define separate destructors

isSing = (const true � const false) ◦ out
hd = (id � exl) ◦ out
tl = (⊥ � exr) ◦ out

We also specialize the unfold to

unfoldPL :: ((B→ Bool)×(B→ A)×(B→ B))→ B→ PList A

180 Jeremy Gibbons

unfoldPL (p, f , g) = unfoldPList ((f + (f � g)) ◦ p?)

Then the function merge, which merges a pair of sorted lists into a single sorted
list, is

merge :: PList A× PList A→ PList A
merge = unfoldPL (p, f , g) ◦ inl

where
p = const false � isSing
f = (min ◦ (hd × hd)) � hd
g (inl (x , y)) = inr y , if hd x ≤ hd y ∧ isSing x

= inl (tl x , y), if hd x ≤ hd y ∧ not (isSing x)
= inr x , if hd x > hd y ∧ isSing y
= inl (x , tl y), if hd x > hd y ∧ not (isSing y)

g (inr x) = inr (tl x)

and min is the binary minimum operator. Note that the ‘state’ for the unfold is
either a pair of lists (which are to be merged) or a single list (which is simply to
be copied). Exercise 3.6.9 concerns the characterization of merge as an apomor-
phism, whereby the single list is copied to the result ‘all in one go’ rather than
element by element.

3.4.6 Split

Similarly, we define separate constructors

wrap a = in (inl a)
cons (a, x) = in (inr (a, x))

and specialize the fold to

foldPL :: ((A→ B)× (A× B→ B))→ PList A→ B
foldPL (f , g) = foldPList (f � g)

Then non-singleton lists can be split into two roughly equal halves:

split :: PList A→ PList A× PList A
split x = foldPL (step, start (hd x)) (tl x) where

start a b = (wrap a,wrap b)
step (a, (y , z)) = (cons (a, z), y)

3.4.7 Mergesort

We also define the datatype

PTree A = fix (A +̂ (Id ×̂ Id))

of non-empty externally-labelled binary trees. We use the specializations

foldPT :: ((A→ B)× (B× B→ B))→ PTree A→ B
foldPT (f , g) = foldPTree (f � g)

of fold, and

5. Calculating Functional Programs 181

unfoldPT :: ((B→ Bool)× (B→ A)× (B→ B× B))→ B→ PList A
unfoldPT (p, f , g) = unfoldPTree ((f + g) ◦ p?)

of unfold. Then mergesort is

foldPT (wrap,merge) ◦ unfoldPT (isSing , hd , split)

(Note that split is applied only to non-singleton lists.)

3.5 Bibliographic notes

Complete partial orders are standard material from denotational semantics; see
for example [10] for a straightforward algebraic point of view, and [33, 35] for
the specifics of the applications to denotational semantics. Meijer, Fokkinga and
Paterson [27] argue for the move from Set to Cpo. The Main Theorem above is
from [11], where it is in turn acknowledged to be another corollary of the results
of Smyth and Plotkin [34] and Reynolds [32] mentioned earlier.

3.6 Exercises

1. Show that, even for strict f , the equation

h ◦ inT = f ◦ F h

may have non-strict solutions for h as well as the unique strict solution.
Thus, the strictness condition on the universal property of fold in §3.2.1 is
necessary.

2. Show that the categorical dual of the notion of ‘strictness’ vacuously holds of
any function. Therefore there really is no asymmetry between the universal
properties of fold and unfold in §3.2.1.

3. Show that the definitions of map as a fold (§2.4.3) and as an unfold (§2.6.3)
are equal in Cpo.

4. Suppose T = fix F. Let functor G be defined by G X = F (X × T), and let
U = fix G. Show that any paramorphism (Exercise 2.9.15) on T can be
written as a hylomorphism, in the form of a fold (on U) after predsT, where

predsT = unfoldU (F (id � id) ◦ outT)

5. The datatype of natural numbers is Nat = fix (1+). (Actually, this type
necessarily includes also ‘partial numbers’ and one ‘infinite number’ as well
as all the finite ones.) We can define the following syntactic sugar for the
folds and unfolds:

foldN :: (A× (A→ A))→ Nat→ A
foldN (e, f) = foldNat (const e � f)

unfoldN :: ((A→ Bool)× (A→ A))→ A→ Nat
unfoldN (p, f) = unfoldNat ((const () + f) ◦ p?)

Informally, foldN (e, f)n computes f n e, by n-fold application of f to e, and
unfoldN (p, f)x returns the least n such that f n x satisfies p. Write addition,

182 Jeremy Gibbons

subtraction, multiplication, division, exponentiation and logarithms on nat-
urals, using folds and unfolds as the only form of recursion. (Hint: define a
‘predecessor’ function using the destructor outNat, but make it total, taking
zero to zero. You may find it easier to make division and logarithms round
up rather than down.)

6. Using the datatype of lists from §3.4.1, write the insertion function
ins :: 1+ (A× List A)→ List A

as an unfold. Hence write insertsort using folds and unfolds as the only form
of recursion.

7. Using the same datatype as in Exercise 3.6.6, write the deletion function

del :: List A→ 1+ (A× List A)

as a fold. Hence write selectsort using folds and unfolds as the only form of
recursion.

8. Eratosthenes’ Sieve is a method for generating primes. It maintains a col-
lection of ‘candidates’ as a stream, initially containing [2, 3, . . .]. The first
element of the collection is a prime; a new collection is obtained by deleting
all multiples of that prime. Write this program using folds and unfolds on
streams as the only form of recursion. (You can use mod on natural num-
bers.)

9. Write merge from §3.4.5 as an apomorphism rather than an unfold.
10. Show that if

h = foldT g ◦ unfoldT f

then
h = g ◦ F h ◦ f

(Indeed, this is an equivalence, not just an implication; but the proof in the
opposite direction requires some machinery that we have not covered.) This
is a fusion law for hylomorphisms, sometimes known as deforestation: instead
of separate unfold and fold phases, the two can be combined into a single
monolithic recursion, which does not explicitly construct the intermediate
data structure. The now absent datatype T is sometimes known as a virtual
data structure [36].

11. On Stream A = fix (A×), define as an unfold a function
do :: (A→ A)→ A→ Stream A

such that dosa returns the infinite stream a, sa, s (sa) and so on. Also define
as a fold a function while :: (A→ Bool)→ Stream A→ A such that while p x
yields the first element of stream x that satisfies p. Now while p ◦do s models
a while loop in an imperative language. Use deforestation (Exercise 3.6.10)
to calculate a function whiledo such that whiledo (p, s) = while p ◦ do s, but
which does not generate the intermediate stream.

12. Write the function whiledo from Exercise 3.6.11 using the folds and unfolds
on naturals (Exercise 3.6.5) instead of on streams. (Hint: whiledo (p, s) x
applies s a certain number n of times; the number n is the least such that
sn x fails to satisfy p.)

5. Calculating Functional Programs 183

13. Folds and unfolds on the datatype of streams are sufficient to compute arbi-
trary fixpoints, so give the complete power of recursive programming. The
fixpoint-finding function fix is defined using explicit recursion by

fix :: (A→ A)→ A
fix f = f (fix f)

Equivalently, given the function apply :: (A→B)×A→B, it may be defined

fix f = apply (f ,fix f)

Show that fix may also be defined as the composition of a stream fold (using
apply) and a stream unfold (generating infinitely many copies of a value).
Use deforestation (Exercise 3.6.10) to remove the intermediate stream, and
show that this yields the explicitly recursive characterization of fix . (This
exercise is due to Graham Hutton [20].)

14. Under certain circumstances, the post-inverse of a fold is an unfold, and the
pre-inverse of an unfold is a fold:

unfoldT f ◦ foldT g = id ⇐ f ◦ g = id

Prove this law.
15. The function cross takes two infinite streams of values, and returns an infinite
stream containing every possible pair of values, the first component drawn
from the first list and the second component drawn from the second list.
The difficulty is in enumerating this two-dimensional collection in a suitable
order; the standard approach is diagonalization. Define

cross = concat ◦ diagonals

where

diagonals :: Stream A× Stream B→ Stream (List (A× B))
concat :: Stream (List (A× B))→ Stream (A× B)

Express cross as a hylomorphism (that is, express diagonals as an unfold,
and concat as a fold). (Hint: first construct the obvious stream of streams
incorporating all possible pairs. Then the ‘state’ of the iteration for diagonals
consists of a pair, a finite list of those streams seen so far and a stream
of streams not yet seen. At each step, strip another diagonal off from the
streams seen so far, and include another stream from those not yet seen.)
This example is due to Richard Bird [3].

4 Applications

We conclude these lecture notes with three more substantial examples of the
concepts we have described: a simple compiler for arithmetic expressions; laws
for monads and comonads; and efficient programs for breadth-first traversal of
trees.

184 Jeremy Gibbons

4.1 A simple compiler

In this example, we define a datatype of simple (arithmetic) expressions. We
present the obvious recursive algorithm for evaluating such expressions; it turns
out to be a fold. We also develop a compiler to translate such expressions into
code for a stack machine; this too turns out to be a fold. Clearly, running the
compiled code should be equivalent to evaluating the original expression. The
proof of this fact turns out to be a straightforward application of the universal
properties concerned.

4.1.1 Expressions and evaluation

We assume a datatype Op of operators. The arities of the operators are given
by a function arity ::Op→Nat. We also assume a datatype Val of values, and a
function apply ::Op×ListVal→Val (where List is as in §3.4.1) to characterize the
operators. Operator application is partial: apply (op, args) is defined only when
arity op = length args, where length computes the length of a list. Now we can
define a datatype of expressions

Expr = fix (Op ×̂ List)

on which evaluation, which provides the ‘denotational semantics’ of an expres-
sion, is simply a fold:

eval = foldExpr apply :: Expr→ Val

4.1.2 Compilation

For the ‘operational semantics’, we assume a datatype Instr of instructions, and
an encoding code :: Op→ Instr of operators as instructions. Then compilation is
also a fold:

compile :: Expr→ List Instr
compile = fold (cons ◦ (code × concat))

Here, concat :: List (List A)→ List A, and cons :: A× List A→ List A.

4.1.3 An example

For example, we might want to manipulate expressions like

2✍✌
✎�

3✍✌
✎�

4✍✌
✎�

5✍✌
✎�

+✍✌
✎�

+✍✌
✎�

×✍✌
✎�

We could define in Haskell

5. Calculating Functional Programs 185

> data Op = Sum | Product | Num Int
> type Val = Int

> arity Sum = 2
> arity Product = 2
> arity (Num x) = 0

> apply (Sum, [x,y]) = x+y
> apply (Product, [x,y]) = x*y
> apply (Num x, []) = x

> data Instr = Bop ((Val,Val)->Val) | Push Val

> code Sum = Bop (uncurry (+))
> code Product = Bop (uncurry (*))
> code (Num x) = Push x

and so the compiled code of the example expression will be

[Bop mul, Bop add, Push 2, Push 3, Bop add, Push 4, Push 5]
where add = uncurry (+)

mul = uncurry (*)

4.1.4 Execution steps

We assume also a single-step execution function

exec :: Instr→ List Val→ List Val

such that
exec (code op) (cat args vals) = cons (apply (op, args), vals)

when arity op = length args. Continuing the example, we might have

> exec (Bop f) (x:y:xs) = f (x,y) : xs
> exec (Push x) xs = x : xs

4.1.5 Complete execution

Now, running the program may be defined as follows:

run :: List Instr→ List Val→ List Val
run nil vals = vals
run (cons (instr , prog)) vals = exec instr (run prog vals)

Equivalently, discarding the last variable:

186 Jeremy Gibbons

run nil = id
run (cons (instr , prog)) = exec instr ◦ run prog

Define comp (f , g) = f ◦ g , and its curried version comp′ f g = comp (f , g); then

run = foldL′ (id, comp′ ◦ exec)

(where foldL′ :: (B× (A→B→B))→ List A→B, using a curried function as one
of its arguments). Equivalently again

run = compose ◦ map exec

where

compose :: List (A→ A)→ (A→ A)
compose = foldL′ (id, comp′)

4.1.6 The correctness criterion

We assume that expressions are well-formed, each operator having exactly the
right number of arguments. Then compiling an expression and running the re-
sulting code on a given starting stack should have the effect of prefixing the
value of that expression onto the stack:

run (compile expr) vals = cons (eval expr , vals)

Equivalently, discarding the last two variables,

run ◦ compile = cons ′ ◦ eval

where cons ′ is the curried version of cons.

4.1.7 Strategy

The universal property of fold on expressions is

h = fold f
⇔
h ◦ in = f ◦ (id×map h)

We will use this universal property to show that both operational semantics
run ◦ compile and denotational semantics cons ′ ◦ eval above are folds. We want
to find an f such that

run ◦ compile ◦ in = f ◦ (id×map (run ◦ compile))

so that run ◦ compile = fold f . Then to complete the proof, we need only show
that, for the same f ,

cons ′ ◦ eval ◦ in = f ◦ (id×map (cons ′ ◦ eval))

5. Calculating Functional Programs 187

4.1.8 Operational semantics as a fold

Now,
run ◦ compile ◦ in

=
{
compile = fold (cons ◦ (code × concat))}

run ◦ cons ◦ (code × concat) ◦ (id×map compile)
=

{
run ◦ cons = comp ◦ (exec × run)}

comp ◦ (exec × run) ◦ (code × concat) ◦ (id×map compile)
=

{
pairs

}

comp ◦ ((exec ◦ code)× (run ◦ concat ◦ map compile))
=

{
run ◦ concat = compose ◦ map run

}

comp ◦ ((exec ◦ code)× (compose ◦ map run ◦ map compile))

and so
run ◦ compile = fold (comp ◦ ((exec ◦ code)× compose))

4.1.9 Denotational semantics as a fold

We have
(cons ′ ◦ eval ◦ in) (op, exprs)

=
{
eval = fold apply

}

cons ′ (apply (op,map eval exprs))
=

{
arity op = length exprs; requirement of exec

}

exec (code op) ◦ cat (map eval exprs)
=

{
cat = compose ◦ map cons ′

}

exec (code op) ◦ compose (map (cons ′ ◦ eval) exprs)
=

{
pairs

}

(comp ◦ ((exec ◦ code)× (compose ◦ map (cons ′ ◦ eval)))) (op, exprs)

and so
cons ′ ◦ eval = fold (comp ◦ ((exec ◦ code)× compose))

too, completing the proof.

4.2 Monads and comonads

Monads and comonads are categorical concepts; each consists of a type functor
and a couple of operations that satisfy certain laws. They turn out to have
useful applications in the semantics of programming languages. A monad can
be used to model a notion of computation; in a sense, monads correspond to
operational semantics. Dually, comonads correspond to denotational semantics
of programming languages. But we will not get into that here. Rather, we simply
observe that many constructions in functional programming are either monads
or comonads, and that the proofs of the monad and comonad laws are often
simple applications of the universal properties of the functors concerned. We
present two simple examples, one a monad and the other a comonad.

188 Jeremy Gibbons

4.2.1 Monads

A monad is a functor M together with two operations
unit :: A→MA
mult :: M (MA)→MA

The two operations should be natural transformations, which is to say that the
laws

unit ◦ f = M f ◦ unit
mult ◦ M (M f) = M f ◦ mult

should be satisfied. Moreover, the following ‘coherence laws’ relating the two
operations should hold:

mult ◦ unit = id
mult ◦ M unit = id
mult ◦ mult = mult ◦ Mmult

4.2.2 The list monad

Ordinary lists are one example of a monad. The datatype is defined in §3.4.1.
We define the two functions

wrap a = cons (a,nil)
concat = foldL (nil , cat)

We claim that List is a monad, with unit wrap and multiplication concat .

4.2.3 Laws

We must verify the following five laws:
wrap ◦ f = map f ◦ wrap
concat ◦ map (map f) = map f ◦ concat
concat ◦ wrap = id
concat ◦ map wrap = id
concat ◦ concat = concat ◦ map concat

We address them one by one.

4.2.4 Naturality of unit

(map f ◦ wrap) a
=

{
wrap

}

map f (cons (a,nil))
=

{
map

}

cons (f a,nil)
=

{
wrap

}

(wrap ◦ f) a

5. Calculating Functional Programs 189

4.2.5 Naturality of mult

map f ◦ concat

=
{
concat

}

map f ◦ foldL (nil , cat)

=
{
fusion: map f ◦ cat = cat ◦ (map f ×map f)

}

foldL (nil , cat ◦ (map f × id))

=
{
fold-map fusion (Exercise 2.9.14)

}

foldL (nil , cat) ◦ map (map f)

=
{
concat

}

concat ◦ map (map f)

4.2.6 Mult-unit

(concat ◦ wrap) x

=
{
wrap

}

concat (cons (x ,nil))

=
{
concat

}

x

=
{
identity

}

id x

4.2.7 Mult-map-unit

concat ◦ map wrap

=
{
fold-map fusion

}

foldL (nil , cat ◦ (wrap × id))

=
{
cat ◦ (wrap × id) = cons

}

foldL (nil , cons)

=
{
identity as a fold

}

id

190 Jeremy Gibbons

4.2.8 Mult-mult

concat ◦ concat

=
{
concat

}

concat ◦ foldL (nil , cat)

=
{
fold fusion: concat ◦ cat = cat ◦ (concat × concat)}

foldL (nil , cat ◦ (concat × id))

=
{
fold-map fusion

}

concat ◦ map concat

4.2.9 Comonads

Dually, a comonad is a functor M together with two operations

extr :: MA→ A
dupl :: MA→M (MA)

Again, the two operations should be natural transformations:

f ◦ extr = extr ◦ M f
M (M f) ◦ dupl = dupl ◦ M f

Moreover, the following coherence laws should hold:

extr ◦ dupl = id
M extr ◦ dupl = id
dupl ◦ dupl = M dupl ◦ dupl

4.2.10 The stream comonad

One example of a comonad is the datatype of streams:

Stream A = fix (A×̂)
We introduce the separate destructors

head = exl ◦ out
tail = exr ◦ out

Thus, the function tails, which turns a stream into the stream of streams of all
of its infinite suffices, is an unfold:

tails = unfoldStream (id � tail)

We claim that Stream is a comonad, with extraction head and duplication tails.

5. Calculating Functional Programs 191

4.2.11 Laws

To say that the datatype of streams is a comonad with the above operations is
to claim the following five laws:

f ◦ head = head ◦ map f
map (map f) ◦ tails = tails ◦ map f
head ◦ tails = id
map head ◦ tails = id
tails ◦ tails = map tails ◦ tails

We verify them one by one, below.

4.2.12 Naturality of extract

head ◦ map f

=
{
head

}

exl ◦ out ◦ map f

=
{
map

}

exl ◦ (f ×map f) ◦ out

=
{
pairs

}

f ◦ exl ◦ out

=
{
head

}

f ◦ head

4.2.13 Naturality of duplicate

map (map f) ◦ tails

=
{
tails

}

map (map f) ◦ unfold (id � tail)

=
{
map-unfold fusion (Exercise 2.9.14)

}

unfold (map f � tail)

=
{
unfold fusion: map f ◦ tail = tail ◦ map f

}

unfold (id � tail) ◦ map f

=
{
tails

}

tails ◦ map f

192 Jeremy Gibbons

4.2.14 Extract-duplicate

head ◦ tails
=

{
head , tails

}

exl ◦ out ◦ unfold (id � tail)
=

{
unfolds

}

exl ◦ (id× tails) ◦ (id � tail)
=

{
pairs

}

id

4.2.15 Map-extract-duplicate

map head ◦ tails
=

{
tails

}

map head ◦ unfold (id � tail)
=

{
map-unfold fusion

}

unfold (head � tail)
=

{
identity as unfold

}

id

4.2.16 Duplicate-duplicate

tails ◦ tails
=

{
tails

}

unfold (id � tail) ◦ tails
=

{
unfold fusion: tail ◦ tails = tails ◦ tail

}

unfold (tails � tail)
=

{
map-unfold fusion

}

map tails ◦ unfold (id � tail)
=

{
tails

}

map tails ◦ tails

4.3 Breadth-first traversal

As a final example, we discuss breadth-first traversal of a tree. Depth-first traver-
sal is an obvious program to write recursively, but breadth-first traversal takes
a little more thought; one might say that it ‘goes against the grain’. We present
a number of algorithms, and demonstrate their equivalence.

5. Calculating Functional Programs 193

4.3.1 Lists

Once again, we use the datatype of lists from §3.4.1. We will use the function
concat , which concatenates a list of lists:

concat = foldL (nil , cat)

4.3.2 Trees

Of course, we will also require a datatype of trees:
Tree A = fix (A ×̂ List)

for which we introduce the separate destructors
root = exl ◦ out
kids = exr ◦ out

Now, depth-first traversal is easy to write:
df = fold (cons ◦ (id× concat))

but breadth-first traversal is a little more difficult.

4.3.3 Levels

The most profitable approach to solving the problem is to split the task into two
stages. The first stage computes the levels of tree — a list of lists, organized by
level:

levels :: Tree A→ List (List A)
The second stage is to concatenate the levels. Thus,

bf = concat ◦ levels

4.3.4 Long zip

The crucial component for constructing the levels of a tree is a function lzw (for
‘long zip with’), which glues together two lists using a given binary operator:

lzw :: (A× A→ A)→ List A× List A→ List A

Corresponding elements are combined using the binary operator; the remaining
elements are merely ‘copied’ to the result. The length of the result is the greater
of the lengths of the arguments. We have

lzw op = unfoldL (p, f)
where

p (x , y) = isNil x ∧ isNil y
f (x , y) = (head x , (tail x , y)), if isNil y

= (head y , (x , tail y)), if isNil x
= (op (head x , head y), (tail x , tail y)), otherwise

(This definition is rather inefficient, as the ‘remaining elements’ are copied one by
one. It would be better to use an apomorphism, which would allow the remainder
to be copied all in one go; see Exercise 4.5.8.)

194 Jeremy Gibbons

4.3.5 Levels as a fold

Now we can define level-order traversal by

levels = fold (cons ◦ (wrap × glue))
where wrapa = cons (a,nil). Here, the function glue glues together the traversals
of the children:

glue = foldL (nil , lzw cat)

4.3.6 Levels as a fold, efficiently

The characterization of levels above is inefficient, because the traversals of chil-
dren are re-traversed in building the traversal of the parent. We can use an
accumulating parameter to avoid this problem. We define

levels ′ (t , xss) = lzw cat (levels t , xss)

and so levels t = levels ′ (t ,nil). We can now calculate (Exercise 4.5.9) that

levels ′ (in (a, ts), xss) = cons (cons (a, ys), foldL (yss, levels ′) ts)
where (ys, yss) = split xss

where
split xss = (nil ,nil), if isNil xss

= (head xss, tail xss), otherwise

With the efficient apomorphic definition of lzw from Exercise 4.5.8, taking time
proportional to the length of the shorter argument, this program for level-order
traversal takes linear time. However, it is no longer written as a fold.

4.3.7 Levels as an unfold

A better solution is to use an unfold. We generalize to the level-order traversal
of a forest :

levelsf :: List (Tree A)→ List (List A)

Again, we can calculate (using the universal property) that levelsf is an unfold:

unfoldL (isNil ,map root � (concat ◦ map kids))

See Exercise 4.5.11 for the details.

4.4 Bibliographic notes

The compiler example was inspired by Hutton [19]. The application of mon-
ads to semantics is due to Moggi [28], and of comonads to Brookes [6, 7] and
Turi [37]; Wadler [43, 41, 42] brought monads to the attention of functional pro-
grammers. The programs for breadth-first tree traversal are joint work with
Geraint Jones [12].

5. Calculating Functional Programs 195

4.5 Exercises

1. An alternative definition of compilation is as an unfold, from a list of ex-
pressions to a list of instructions. Define compile in this way, and repeat the
proof of correctness of the compiler.

2. Use fold-map fusion (Exercise 2.9.14) on lists to show that

foldL′ (id, comp′ ◦ exec) = foldL′ (id, comp) ◦ map exec

(so the two definitions of run in §4.1.5 are indeed equivalent).
3. Show that

foldL′ (id, f) ◦ concat = foldL′ (id, f) ◦ map (foldL′ (id, f))

when f is associative. (Hence run ◦ concat = compose ◦ map run).
4. The compiler example would be more realistic and more general if the code
for each operation were a list of instructions instead of a single instruction.
Repeat the proof for this scenario.

5. The datatype of externally-labelled binary trees from §3.4.7 forms a monad,
with unit operation

leaf = in ◦ inl

and multiplication operation

collapse = fold (id � (in ◦ inr))

Prove that the monad laws are satisfied.
6. The datatype TreeA = fix (A +̂ (A ×̂ (Id ×̂ Id))) of homogeneous binary trees
forms a comonad, with extraction operation

root = (id � exl) ◦ out

and duplication operation

subs = unfold ((leaf + (node � exr)) ◦ out)

where leaf and node are the separate constructors:

leaf = in ◦ inl
node = in ◦ inr

Prove that the comonad laws are satisfied.
7. On the datatype of lists in §3.4.1 we defined concatenation of two lists as a
fold

cat (x , y) = fold (const y � (in ◦ inr)) x

Calculate a definition as an unfold, using the universal property. Also calcu-
late a definition as an apomorphism.

8. Calculate a definition of lzw f (§4.3.4) as an apomorphism.
9. Calculate the accumulating-parameter optimization of level-order traversal,
from §4.3.6.

10. The program in Exercise 4.5.9 is not a fold. However, if we define instead
the curried version levels ′′ t xss = levels ′ (t , xss), then levels ′′ is a fold. Use
the universal property to calculate the f such that levels ′′ = fold f .

11. Calculate the version of level-order traversal from §4.3.7 as an unfold.

196 Jeremy Gibbons

12. The final program for breadth-first traversal of a forest was of the form

bff = concat ◦ levelsf

where concat is a list fold and levelsf a list unfold. Use hylomorphism de-
forestation (Exercise 3.6.10) to write this as a single recursion, avoiding the
intermediate generation of the list of lists. (This program was shown to us
by Bernhard Möller [29]; it is interesting that it arises as a ‘mere compiler
optimization’ from the more abstract program developed here.)

13. To most people, breadth-first traversal is related to queues, but there are no
queues in the programs presented here. Show that in fact

bff = unfoldL (null , step)

where null holds precisely of empty forests, and step is defined by

step (cons (t , ts)) = (root t , cat (ts, kids ts))

(Hint: the crucial observation is that, for associative operator ⊕ with unit
e, the equation

foldL (e,⊕) (lzw (⊕) (cons (x , xs), ys))
= x ⊕ foldL (e,⊕) (lzw (⊕) (ys, xs))

holds.)

5 Bibliography

1. Roland Backhouse. An exploration of the Bird-Meertens formalism. In Inter-
national Summer School on Constructive Algorithmics, Hollum, Ameland. STOP
project, 1989. Also available as Technical Report CS 8810, Department of Com-
puter Science, Groningen University, 1988.

2. R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors. LNCS 669: Mathematics
of Program Construction. Springer-Verlag, 1993.

3. Richard Bird. Personal communication, 1999.
4. Richard Bird and Oege de Moor. The Algebra of Programming. Prentice-Hall,
1996.

5. Richard S. Bird. Introduction to Functional Programming Using Haskell. Prentice-
Hall, 1998.

6. Stephen Brookes and Shai Geva. Computational comonads and intensional seman-
tics. In M. P. Fourman, P. T. Johnstone, and A. M. Pitts, editors, Categories in
Computer Science, London Mathematical Society Lecture Notes, pages 1–44. Cam-
bridge University Press, 1992. Also Technical Report CMU-CS-91-190, School of
Computer Science, Carnegie Mellon University.

7. Stephen Brookes and Kathryn Van Stone. Monads and comonads in intensional
semantics. Technical Report CMU-CS-93-140, CMU, 1993.

8. Rod Burstall and David Rydeheard. Computational Category Theory. Prentice-
Hall, 1988.

9. Roy L. Crole. Categories for Types. Cambridge University Press, 1994.
10. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Mathematical

Textbooks Series. Cambridge University Press, 1990.
11. Maarten M. Fokkinga and Erik Meijer. Program calculation properties of contin-

uous algebras. Technical Report CS-R9104, CWI, Amsterdam, January 1991.

5. Calculating Functional Programs 197

12. Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In Proceedings
of the Third ACM SIGPLAN International Conference on Functional Program-
ming, pages 273–279, Baltimore, Maryland, September 1998.

13. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. An introduction
to categories, algebraic theories and algebras. Technical report, IBM Thomas J.
Watson Research Centre, Yorktown Heights, April 1975.

14. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. Journal of the ACM, 24(1):68–95, January
1977.

15. Jeremy Gunawardena. Towards an applied mathematics for computer science. In
M. S. Alber, B. Hu, and J. J. Rosenthal, editors, Current and Future Directions in
Applied Mathematics. Birkhäuser, Boston, 1997.

16. Tatsuya Hagino. A Categorical Programming Language. PhD thesis, Department
of Computer Science, University of Edinburgh, September 1987.

17. Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In
D. H. Pitt, A. Poigné, and D. E. Rydeheard, editors, LNCS 283: Category Theory
and Computer Science, pages 140–157. Springer-Verlag, September 1987.

18. C. A. R. Hoare. Notes on data structuring. In Ole-Johan Dahl, Edsger W. Dijk-
stra, and C. A. R. Hoare, editors, Structured Programming, APIC studies in data
processing, pages 83–174. Academic Press, 1972.

19. Graham Hutton. Fold and unfold for program semantics. In Proceedings of the
Third ACM SIGPLAN International Conference on Functional Programming, Bal-
timore, Maryland, September 1998.

20. Graham Hutton. Personal communication, 1999.
21. Johan Jeuring, editor. LNCS 1422: Proceedings of Mathematics of Program Con-

struction, Marstrand, Sweden, June 1998. Springer-Verlag.
22. Johan Jeuring and Erik Meijer, editors. LNCS 925: Advanced Functional Program-

ming. Springer-Verlag, 1995. Lecture notes from the First International Spring
School on Advanced Functional Programming Techniques, B̊astad, Sweden.

23. Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
1971.

24. Grant Malcolm. Algebraic Data Types and Program Transformation. PhD thesis,
Rijksuniversiteit Groningen, September 1990.

25. Grant Malcolm. Data structures and program transformation. Science of Computer
Programming, 14:255–279, 1990.

26. Lambert Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–424,
1992.

27. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In John Hughes, editor, LNCS 523:
Functional Programming Languages and Computer Architecture, pages 124–144.
Springer-Verlag, 1991.

28. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93(1), 1991.

29. Bernhard Möller. Personal communication, 1995.
30. Bernhard Möller, editor. LNCS 947: Mathematics of Program Construction.

Springer-Verlag, 1995.
31. Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press,

1991.
32. John C. Reynolds. Semantics of the domain of flow diagrams. Journal of the ACM,

24(3):484–503, 1977.

198 Jeremy Gibbons

33. David A. Schmidt. Denotational Semantics: A Methodology for Language Devel-
opment. Allyn and Bacon, 1986.

34. M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM Journal on Computing, 11(4):761–783, November 1982.

35. Joseph Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, 1977.

36. Doaitse Swierstra and Oege de Moor. Virtual data structures. In Bernhard Möller,
Helmut Partsch, and Steve Schumann, editors, LNCS 755: IFIP TC2/WG2.1
State-of-the-Art Report on Formal Program Development, pages 355–371. Springer-
Verlag, 1993.

37. Daniele Turi. Functorial Operational Semantics and its Denotational Dual. PhD
thesis, Vrije Universiteit Amsterdam, June 1996.

38. Tarmo Uustalu and Varmo Vene. Primitive (co)recursion and course-of-value
(co)iteration. Research Report TRITA-IT R 98:02, Dept of Teleinformatics, Royal
Institute of Technology, Stockholm, January 1998.

39. J. L. A. van de Snepscheut, editor. LNCS 375: Mathematics of Program Construc-
tion. Springer-Verlag, 1989.

40. Varmo Vene and Tarmo Uustalu. Functional programming with apomorphisms
(corecursion). Proceedings of the Estonian Academy of Sciences: Physics, Mathe-
matics, 47(3):147–161, 1998. 9th Nordic Workshop on Programming Theory.

41. Philip Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2(4):461–493, 1992. Earlier version appeared in ACM Conference on Lisp
and Functional Programming, 1990.

42. Philip Wadler. The essence of functional programming. In 19th Annual Symposium
on Principles of Programming Languages, 1992.

43. Philip Wadler. Monads for functional programming. In M. Broy, editor, Program
Design Calculi: Proceedings of the Marktoberdorf Summer School, 1992. Also in
[22].

44. R. F. C. Walters. Datatypes in distributive categories. Bulletin of the Australian
Mathematical Society, 40:79–82, 1989.

45. R. F. C. Walters. Categories and Computer Science. Computer Science Texts
Series. Cambridge University Press, 1991.

46. R. F. C. Walters. An imperative language based on distributive categories. Math-
ematical Structures in Computer Science, 2:249–256, 1992.

6 Appendix: Implementation in Haskell

The programs we derive in these lectures are easily translated into a lazy func-
tional programming language such as Haskell. We present one example, the
quicksort program from §3.4, to illustrate.

6.1 Products

We start by encoding the pair calculus. Here are products:

> data Prod a b = Prod a b
> exl (Prod a b) = a

5. Calculating Functional Programs 199

> exr (Prod a b) = b

> fork :: (a -> b) -> (a -> c) -> a -> Prod b c
> fork f g a = Prod (f a) (g a)

> prod :: (a->c) -> (b->d) -> (Prod a b) -> (Prod c d)
> prod f g = fork (f . exl) (g . exr)

6.2 Sums

Here are the definitions for sums:

> data Sum a b = Inl a | Inr b

> join :: (a -> c) -> (b -> c) -> Sum a b -> c
> join l r (Inl x) = l x
> join l r (Inr y) = r y

> dsum :: (a->c) -> (b->d) -> Sum a b -> Sum c d
> dsum f g = join (Inl . f) (Inr . g)

> query :: (a -> Bool) -> a -> Sum a a
> query p a | p a = Inl a
> | otherwise = Inr a

We include a function query p to model p? (we cannot use the names sum or
guard, because they are already used in the standard Haskell prelude).

6.3 Functors

Haskell’s type classes allow us to encode the property of being a functor. This
allows us to use the same name mapf for the ‘map’ operation of any type functor.
(The standard prelude defines the class Functor and the function fmap for this
purpose; we simply repeat the definition with different names here.)

> class TypeFunctor f where
> mapf :: (a -> b) -> (f a -> f b)

Actually, all we can encode is the type of the corresponding map operations; we
cannot express the laws that should hold.

200 Jeremy Gibbons

6.4 Datatypes

A type functor f induces a datatype Fix f; the constructor is In and the de-
structor out. (The difference in capitalization is an artifact of Haskell’s rules for
identifiers.)

> data TypeFunctor f => Fix f = In (f (Fix f))

> out :: TypeFunctor f => Fix f -> f (Fix f)
> out (In x) = x

6.5 Folds and unfolds

These are now straightforward translations:

> fold :: TypeFunctor f => (f a -> a) -> (Fix f -> a)
> fold f = f . mapf (fold f) . out

> unfold :: TypeFunctor f => (a -> f a) -> (a -> Fix f)
> unfold f = In . mapf (unfold f) . f

6.6 Lists

The encoding of a datatype is almost straightforward. The only wrinkle is that
Haskell requires a type constructor identifier (ListF below) in order to make
something an instance of a type class, so we need to introduce a function to
remove this constructor too:

> data ListF a b = ListF (Sum () (Prod a b))
> unListF (ListF x) = x

> instance TypeFunctor (ListF a)
> where
> mapf f (ListF x) = ListF (dsum id (prod id f) x)

Now the datatype itself can be given as a mere synonym:

> type List a = Fix (ListF a)

We introduce some syntactic sugar for functions on lists:

5. Calculating Functional Programs 201

> nil :: List a
> nil = In (ListF (Inl ()))
> cons :: Prod a (List a) -> List a
> cons (Prod a x) = In (ListF (Inr (Prod a x)))

> isNil :: List a -> Bool
> isNil = join (const True) (const False) . unListF . out

> hd :: List a -> a
> hd = join (error "Head of empty list") exl . unListF . out

> tl :: List a -> List a
> tl = join (error "Tail of empty list") exr . unListF . out

> foldL :: Prod b (Prod a b -> b) -> List a -> b
> foldL (Prod e f) = fold (join (const e) f . unListF)

> cat :: Prod (List a) (List a) -> List a
> cat (Prod x y) = foldL (Prod y cons) x

(The names head and tail are already taken in the Haskell standard prelude,
for the corresponding operations on the built-in lists.)

6.7 Trees

Trees can be defined in the same way as lists:

> data TreeF a b = TreeF (Sum () (Prod a (Prod b b)))
> unTreeF (TreeF x) = x

> instance TypeFunctor (TreeF a)
> where
> mapf f (TreeF x) = TreeF (dsum id (prod id (prod f f)) x)
> type Tree a = Fix (TreeF a)

> empty :: Tree a
> empty = In (TreeF (Inl ()))
> bin :: Tree a -> a -> Tree a -> Tree a
> bin t a u = In (TreeF (Inr (Prod a (Prod t u))))

> foldT :: Prod b (Prod a (Prod b b) -> b) -> Tree a -> b
> foldT (Prod e f) = fold (join (const e) f . unTreeF)

202 Jeremy Gibbons

> unfoldT :: Prod (b -> Bool) (Prod (b -> a) (b -> Prod b b))
> -> b -> Tree a
> unfoldT (Prod p (Prod f g))
> = unfold (TreeF . dsum (const ()) (fork f g) . query p)

6.8 Quicksort

The flattening stage of Quicksort encodes simply:

> flatten :: Tree a -> List a
> flatten = foldT (Prod nil glue)
> where glue (Prod a (Prod x y)) = cat (Prod x (cons (Prod a y)))

We define filtering as follows (the name filter is already taken):

> filt :: (a -> Bool) -> List a -> Prod (List a) (List a)
> filt p = foldL (Prod (Prod nil nil) step)
> where step = join (fork (cons . prod id exl) (exr . exr))
> (fork (exl . exr) (cons . prod id exr))
> . query (p . exl)

The definition of step here is a point-free presentation of the more perspicuous
definition using variable names and pattern guards:

where step (Prod a (Prod x y))
| p a = Prod (cons (Prod a x)) y
| otherwise = Prod x (cons (Prod a y))

Now partitioning a non-empty list is an application of filter:

> partition :: Ord a => List a -> Prod (List a) (List a)
> partition x = filt (< hd x) (tl x)

(The context ‘Ord a =>’ states that this definition is only applicable to ordered
types, namely those supporting the operation <.)
Then the remainder of the Quicksort algorithm translates naturally:

> build :: Ord a => List a -> Tree a
> build = unfoldT (Prod isNil (Prod hd partition))

5. Calculating Functional Programs 203

> quicksort :: Ord a => List a -> List a
> quicksort = flatten . build

