
Chapter 8
Algebraic Methods for
Optimization Problems

Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

Abstract. We argue for the benefits of relations over functions for mod-
elling programs, and even more so for modelling specifications. To sup-
port this argument, we present an extended case study for a class of
optimization problems, deriving efficient functional programs from con-
cise relational specifications.

1 Introduction

It is very natural to model computer programs as functions from input to output;
hence our interest in functional programming, and the approaches to program
calculation described in Chapter 5.

However, sometimes the functional view is too concrete, too implementation-
oriented. Although functions may be a good model of programs, they are not a
particularly good model of specifications. It is often more natural to specify a
problem using features beyond the power of functional programming. Here are
some examples.

• It is easy to write the squaring problem sqr as a function. A natural spec-
ification of the square root problem sqrt is as its converse: the result of
sqrt x should be a y such that sqr y = x (subject to considerations of sign
and rounding). A more elaborate application is to specify a parser as the
converse of a pretty printer.

• Many problems involve computing a minimal — smallest, cheapest, best —
element of a set under some ordering — size, cost, badness. (We will see
some examples of such optimization problems later in this chapter.) Often
the ordering is a preorder rather than a partial order: two different elements
may be equivalent under the ordering. Then the problem minimal r , which
computes a minimal element under ordering r , is non-deterministic.

• The problem minimal r cannot return any result on an empty set. Even on a
non-empty set, for there always to be a minimal element the ordering must
be connected (any two elements must be comparable, one way or the other);
for an unconnected ordering there may again be no returnable result. So
minimal r will in general also be partial.

• Many problems involve simultaneously satisfying two requirements P and Q ;
for example, sorting a sequence x under an ordering r involves constructing
a permutation (requirement P) of x that is ordered according to r (require-
ment Q). One can specify such a problem by sequentially composing two

282 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

subproblems: first find all elements satisfying requirement P , then discard
those that do not satisfy requirement Q . However, doing so inevitably breaks
the symmetry in the problem description, thereby introducing a bias towards
one kind of solution. A more neutral specification retains the symmetry by
simply forming the conjunction of the two subproblems.

• Dually, some problems involve satisfying one of two alternative require-
ments — perhaps two different ways of giving an answer, or perhaps a ‘nor-
mal’ case and an ‘exceptional’ or ‘error’ case. Each subproblem is partial, but
the two together may be total. Modelling the problem as a function entails
entangling the two aspects; a better separation of concerns is obtained by
modelling each aspect independently and forming the disjunction of the two
subproblems.

In summary, many problems are most naturally specified using features (con-
verse, non-determinism, partiality, conjunction, disjunction) that are to varying
degrees inappropriate for a programming language.

The obvious way of resolving this dilemma is to use two languages, one for
specification and one for programming. In fact, it is most convenient if the pro-
gramming language is a sublanguage of the specification language. Then program
construction is a matter of reasoning within a single language, namely the wider
specification language, and restricting the features used to obtain an acceptable
expression in the implementable subset. Moreover, it is then straightforward to
have intermediate expressions that are a mixture of program and specification;
this is rather harder to achieve if the two are completely separate languages.

What could we choose as a language that encompasses functions and func-
tional programming, but that also provides the expressive power of converse,
non-determinism, conjunction, and so on? It is well-known that relations have
exactly these properties. This chapter, therefore, looks at lifting the results of
Chapter 5 from functions to relations. We will carry out an extended case study,
illustrating the gain in expressivity provided by the extra features. Our pro-
gramming methodology will be to refine a relational specification to a func-
tional implementation, reducing non-determinism while maintaining the domain
of definition. So we will take this case study all the way to code, as a functional
program.

There is an added bonus from studying relations as well as functions. Even
when a specification and its implementation are both functional, one sometimes
can gain greater insight and simpler reasoning by carrying out the calculation of
the latter from the former in more general theory of relations. (We see an exam-
ple in Exercise 2.6.7.) This is analogous to complex numbers and trigonometry
in high school mathematics: although trigonometric functions are completely
‘real’ concepts, it is enlightening to investigate them from the point of view of
complex numbers. For example, sin θ and cos θ are the imaginary and real parts
of eθi , the complex number with ‘angle’ θ radians and unit ‘radius’; so of course
sin2 θ + cos2 θ = 1, by Pythagoras’ Theorem, and the ‘most beautiful theorem
of mathematics’ eπi = −1 is easy to visualize.

8. Algebraic Methods for Optimization Problems 283

It turns out that the relational algebra is particularly powerful for specify-
ing and reasoning about optimization problems — informally, problems of the
form ‘the best data structure constructed in this way, satisfying that condition’.
This chapter is structured to lead to exactly this point: Section 2 introduces
the algebra of relations, Section 3 develops some general-purpose theory for op-
timization problems, and Section 4 applies the theory in a case study, which
we take all the way to runnable code. There are many interesting diversions en
route, some of which are signposted in the exercises; more sources are provided
in the bibliographic notes.

1.1 Bibliographic notes

The relational algebra has been proposed as a basis for program construction
by many people; some representative strands of work are by de Roever [10],
Hoare [17], Berghammer [3], Möller [24], Backhouse [1, 2], Hehner [16], Mili and
Desharnais [23], and Bird and de Moor [5]. Indeed, one could argue that relations
underlie the entire field of logic programming [22, 29].

For more information about the use of relations for program calculation,
particularly in the solution of optimization problems, the interested reader is
directed towards [5], on which this chapter is based.

2 The algebra of relations

2.1 Relations

Like a function, a relation is a mapping between a source type and a target
type; unlike a function, a relation may be partial (mapping a source value to
no target value) and/or non-deterministic (mapping a source value to multiple
target values). We write ‘f ::A ✿-✮ B’ to denote that relation f is a mapping from
source type A to target type B.

2.1.1 Example

For example, consider the datatype PList A of non-empty lists with elements
drawn from A. In general, lists xs of this type can be split into a prefix ys and
a suffix zs such that ys ++ zs = xs (here, ‘++’ denotes list concatenation):

split :: PList A ✿-✮ PList A × PList A

Most lists can be split in many ways, corresponding to the choice of where to
place the division, so split is non-deterministic; for example, both ([1, 2], [3]) and
([1], [2, 3]) are possible results of split [1, 2, 3]. Singleton lists can not be split in
any way at all, so split is partial too.

284 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

2.1.2 Pointwise relational programming

Non-deterministic languages discourage reasoning with variables, because of the
care that needs to be taken to retain referential transparency. Basically, one
cannot assign to a variable ‘the result of running program p on input x ’, because
there may be no or many results. The usual approach, then, is to eschew pointwise
reasoning with variables representing values, in favour of pointfree reasoning with
the programs themselves.

Nevertheless, there are times when it is much more convenient to name and
reason about particular values. This is especially the case when working on
applications rather than general-purpose theory, because one wants to name
and capitalize on specific dataflow patterns. The right approach to take to this
problem is still not clear; the approach we will follow in this chapter is just one
of several, and the details are not yet completely worked out. To be on the safe
side, we will not use these ‘pointwise relational programming’ notations for any
formal purpose; rather, we will resort to them only to provide informal but more
perspicuous characterizations of sometimes opaque relational expressions.

When we want to refer to the result of ‘applying’ a relational program, we
will avoid using ‘=’, and write instead ‘y ✭-✿ f x ’ to mean that y is a possible
value of f x . For example, both

([1, 2], [3]) ✭-✿ split [1, 2, 3]

and
([1], [2, 3]) ✭-✿ split [1, 2, 3]

In functional programming, we find that it is often convenient to specify a
function by pattern matching. The function is defined by one or more equations,
but the arguments to the function on the left-hand side of the equations are
patterns rather than simply variables. For example, we might define the factorial
function on natural numbers by

fact 0 = 1
fact (n + 1) = (n + 1)× fact n

This works for functions because patterns are by definition injective (and usually
non-overlapping), and not arbitrary expressions: for any natural argument, ex-
actly one of these two equations applies, and moreover if it is the second equation,
the value of n is uniquely determined. Definition by pattern matching is often
just as convenient for relations, but with relations we can be more lenient: we can
allow non-exhaustive equations (which will lead to partiality) and overlapping
equations with non-injective patterns (which will lead to non-determinism). For
example, we could define the function split above by

split (ys ++ zs) =̂ (ys, zs)

This pattern is not injective; nevertheless, this equation — together with the
type — completely determines the relation split . (We decorate the equals sign
to emphasize that this is the definition of a relation, rather than a true identity
of values; in particular, = is transitive whereas =̂ is not.)

8. Algebraic Methods for Optimization Problems 285

Non-injective patterns introduce non-determinism implicitly. Explicit non-
determinism can be expressed using the choice operator ✷. For example, here is
a more constructive characterization of split :

split (consp (x , xs)) = ([x], xs) ✷ (consp (x , ys), zs)
where (ys, zs) ✭-✿ split xs

Here, ‘consp’ denotes the prefixing of a single element onto a non-empty list.
The pattern is injective — it matches in at most one way for any given list —
but still the result is non-deterministic because of the explicit choice.

2.1.3 Composition

Relations of appropriate types may be composed; if f :: A ✿-✮ B and g :: B ✿-✮ C,
then their composition g · f :: A ✿-✮ C is defined by

z ✭-✿ (g · f) x ⇔ ∃y . y ✭-✿ f x ∧ z ✭-✿ g y

For every type A, there is an identity relation idA ::A✿-✮A mapping each element
of A to itself. Identities are the units of composition: for f :: A ✿-✮ B,

f · idA = f = idB · f
We will usually omit the subscript, allowing it to be deduced from the context.

2.1.4 Inclusion

One can think of a relation f :: A ✿-✮ B as a set of pairs, a subset of A × B (so
y ✭-✿ f x precisely when (x , y) ∈ f). Unlike functions, different relations of the
same type may be comparable under inclusion: f ⊆ g precisely when y ✭-✿ f x
implies y ✭-✿ g x for all x and y .

Composition is monotonic under inclusion:

f1 ⊆ f2 ∧ g1 ⊆ g2 ⇒ f1 · g1 ⊆ f2 · g2

Moreover, pre- and post-composition have adjoints, called right division (‘over’)
and left division (‘under’) respectively:

(f ⊆ h / g) ⇔ (f · g ⊆ h) ⇔ (g ⊆ f \ h)

With points,

a ✭-✿ (h / g) b ⇔ ∀c. (a ✭-✿ h c ⇐ b ✭-✿ g c)
a ✭-✿ (f \ h) c ⇔ ∀b. (b ✭-✿ f a ⇒ b ✭-✿ h c)

Inclusion of relations is the foundation of our programming method, as
equality is for functional programming: we will start with a (presumably non-
deterministic) specification g , and manipulate it to construct a (presumably
more efficient, or otherwise easier to implement) refinement f ⊆ g . Provided
that f is still defined everywhere that g was, it is ‘at least as good’ as g .

286 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

2.1.5 Meet and join

Any two relations f , g ::A✿-✮B have a meet f ∩g ::A✿-✮B, defined by the universal
property that for all h :: A ✿-✮ B,

h ⊆ f ∩ g ⇔ h ⊆ f ∧ h ⊆ g

That is, f ∩g is the greatest lower bound of f and g ; it corresponds to intersection
of the sets of pairs in the relations. It follows (Exercise 2.6.1) that ∩ is associative,
commutative and idempotent, and that monotonicity of composition can be re-
expressed in terms of ∩.

Dually, the join f ∪ g of two relations f , g of the same type is defined by the
universal property

h ⊇ f ∪ g ⇔ h ⊇ f ∧ h ⊇ g

2.1.6 Converse

Again unlike functions, relations can easily be reversed: if f :: A ✿-✮ B, then f ◦ ::
B ✿-✮ A, and satisfies

y ✭-✿ f x ⇔ x ✭-✿ f ◦ y

Converse is:

• its own inverse: (f ◦)◦ = f ;
• order-preserving: f ⊆ g ⇔ f ◦ ⊆ g◦;
• contravariant: (f · g)◦ = g◦ · f ◦;
• distributive over meet: (f ∩ g)◦ = f ◦ ∩ g◦.

Any coreflexive f , that is, one satisfying f ⊆ id, is invariant under converse:
f ◦ = f . One can think of a coreflexive of type A ✿-✮ A as a subset of A, or
equivalently as a predicate on A.

2.2 Special kinds of relation

Let f :: A ✿-✮ B; then

• f is entire if id ⊆ f ◦ · f , or equivalently if for all x ∈ A there is at least one
y ∈ B with y ✭-✿ f x ;

• f is simple if f · f ◦ ⊆ id, or equivalently if for all x ∈ A there is at most one
y ∈ B with y ✭-✿ f x ;

• f is surjective if id ⊆ f · f ◦, or equivalently if for all y ∈ B there is at least
one x ∈ A with y ✭-✿ f x ;

• f is injective if f ◦ · f ⊆ id, or equivalently if for all y ∈ B there is at most
one x ∈ A with y ✭-✿ f x .

A simple relation is also known as a partial function, and a simple and entire
relation as a total function. We write ‘f :: A → B’ to indicate that f is a total
function. Functions enjoy special shunting rules:

8. Algebraic Methods for Optimization Problems 287

Lemma 1. If f is a function, then

f · g ⊆ h ⇔ g ⊆ f ◦ · h
g · f ◦ ⊆ h ⇔ g ⊆ h · f

Note that f ⊆ g ⇒ f = g if f , g are total functions. For function p :: A → Bool,
we define the corresponding coreflexive p? :: A ✿-✮ A by

p? = exr · fsttrue · (p � id)

where the coreflexive fsttrue holds of pairs whose first component is true.

2.3 Breadth

There is a one-to-one correspondence between relations A ✿-✮ B and set-valued
functions A → Set B, where Set is the powerset functor (Set B is the set of all
subsets of B). The operator Λ is a witness to this isomorphism, yielding the
breadth of a relation, that is, the corresponding set-valued function:

(Λf) x = {y | y ✭-✿ f x}
For example, Λsplit is the function that returns the set of all possible splits of a
given list.

Note that Λf is an entire and simple relation (a function) for any f . If f itself
is a function, then Λf returns singleton sets.

2.4 Folds

Functional folds were discussed in depth in Chapter 5. To summarize, an F-
algebra (A, f) for a functor F consists of a type A and a function f :: F A → A.
An F-algebra (T, inT) is initial if, for every F-algebra (A, f), there is a unique
homomorphism h :: T → A such that

h · inT = f · F h

We write foldT f for this h, giving the universal property

h = foldT f ⇔ h · inT = f · F h

Thus, foldT has type (F A → A) → (T → A).
The datatype definition

T = data F

introduces the initial F-algebra (T, inT) and the fold operator foldT. This was
generalized to polymorphic datatypes, using bifunctors rather than functors:
the datatype definition

T A = data (A⊕)

introduces the initial (A⊕)-algebra (TA, inT A) and the fold operator foldT A, from
which we usually omit the type subscript A, if not the whole of the subscript.

288 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

2.4.1 Example: lists

We define the datatype of lists by

List A = data (1 +̂ (A ×̂ Id))

where × is product, + is coproduct, 1 is the unit type, Id is the identity functor,
underlining denotes constant functors and a superscript hat denotes lifting of a
bifunctor. This induces a constructor

inList :: 1 + A × List A → A

and a fold operator

foldList :: (1 + B × List A → B) → (List A → B)

We introduce the syntactic sugar

const [] � cons = inList

foldr f e = foldList (const e � f)

where

const a b = a

This corresponds to the curried Haskell equivalents

[] :: [a]
(:) :: a -> [a] -> [a]

for the constructors, and

foldr :: (a -> b -> b) -> b -> ([a] -> b)
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

for the fold.

2.4.2 Example: non-empty lists

In our case study at the end of this chapter, we will also require a datatype of
non-empty lists

PList A = data (A +̂ (A ×̂ Id))

We introduce the syntactic sugar

wrap � consp = inPList

foldrp f g = foldPList (g � f)

The Haskell standard prelude has no equivalent, but encourages the reuse of
ordinary lists instead, trading notational convenience for lost structure.

8. Algebraic Methods for Optimization Problems 289

2.4.3 Relational folds

The theory from Chapter 5 summarized above is fine in the categories Set and
Cpo, but turns out not to be appropriate in the category Rel of sets and relations,
because too much of the structure collapses there. In particular (Exercise 2.6.4),
converses make products and coproducts coincide.

However, any functor in Set can be extended in a canonical way to a mono-
tonic functor (or relator) on Rel . In particular, the monotonic extension of carte-
sian product can be used in place of the true categorical product of Rel (which
coincides with disjoint sum).

As a result, folds can be generalized to relations. For monotonically extended
functor F, the initial (in Set) F-algebra (T, in) is also initial in Rel : we still have
the all-important universal property

h = foldT f ⇔ h · inT = f · F h

only now the fold acts on and yields relations: foldT :: (F A ✿-✮ A) → (T ✿-✮ A).
Some examples of relational folds on lists that will be used later (Exer-

cises 3.8.5 and 3.8.9) are as follows. Recall Lambek’s Lemma (§2.5.5 of Chap-
ter 5), which states that folding with the constructors is the identity function;
on lists this becomes foldr cons [] = id. Folding with any subrelation of the con-
structors gives a coreflexive; for example, the coreflexive ordered that holds of
ascending lists is given by

ordered = foldr (cons · ok) [] where ok (x , xs) = map ((x ≤)?) xs

Using the power of relations in the other direction, namely non-determinism,
we can obtain simple characterizations of many combinatorial operations. For
example, the relation prefix returns an arbitrary prefix of a list:

prefix = fold (cons ∪ const []) []

and the relation subseq returns an arbitrary subsequence:

subseq = foldr (cons ∪ exr) []

2.4.4 Unfolds

One might expect now to dualize the relational generalization of folds to get
relational unfolds. However, this is not necessary, because converse gives us ev-
erything we need: for functor F, the datatype T = data F is also a codatatype,
and for algebra f ::FA✿-✮A, the converse f ◦ ::A✿-✮FA is a coalgebra, and (fold(f ◦))◦

works as an unfold (Exercise 2.6.6).

2.4.5 Fusion

Perhaps the fundamental property of folds, as illustrated at length in Chapter 5,
is the fusion theorem: for T = data F,

h · foldT f = foldT g ⇐ h · f = g · F h

290 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

There are two variants of this fusion theorem for relational folds:

h · foldT f ⊆ foldT g ⇐ h · f ⊆ g · F h
h · foldT f ⊇ foldT g ⇐ h · f ⊇ g · F h

Of course, fusion as an equality follows from these two.

2.5 Bibliographic notes

The relational algebra has a very elegant axiomatic characterization, dating back
to Tarski [30], and this is how it is often presented and used [1, 2]. Our presen-
tation follows the axiomatization as a (unitary tabular) allegory in [5], and owes
more to Freyd and Ščedrov [14] than to Tarski. (In an allegorical setting, the
join ∪ is actually not the dual of the meet ∩ in general; in fact, only locally
complete allegories have joins, and only in boolean locally complete allegories
are they dual to meets. We gloss over these details, because we are not directly
concerned with the axiomatization here.)

Using either axiomatization leads to pointfree reasoning, which is certainly
concise, but is often difficult to follow, especially when applied to specific pro-
gramming problems as opposed to general theory. This is because ‘plumbing
combinators’ must be used to pass values around. In computer programming,
we have long realized that variables are important, and that their names clarify
programs; the same observation applies to the relational algebra. However, vari-
ables interact awkwardly with non-determinism, and finding the right approach
is still a matter of ongoing research. The approach taken here is based on [11];
other approaches include [7, 13, 31, 25, 26, 28].

2.6 Exercises

1. Using the universal property of ∩ (§2.1.5), show that it is associative, com-
mutative and idempotent:

f ∩ (g ∩ h) = (f ∩ g) ∩ h
f ∩ g = g ∩ f
f ∩ f = f

and that monotonicity of composition can be reexpressed as follows:

f · (g ∩ h) ⊆ (f · g) ∩ (f · h)
(f ∩ g) · h ⊆ (f · h) ∩ (g · h)

(that is, derive these properties from the original characterization, and vice
versa).

2. Prove the shunting rules in Lemma 1.
3. The Λ operation is an isomorphism; there is a one-to-one correspondence

between relations A ✿-✮ B and set-valued functions A → Set B. What is the
inverse operation? That is, given a set-valued function f of type A → Set B,
what is the corresponding relation of type A✿-✮B? (Hint: look ahead to §3.1.)

8. Algebraic Methods for Optimization Problems 291

4. A straightforward interpretation in Rel of the standard theory of datatypes
from Chapter 5 is inappropriate: products and coproducts coincide, whereas
we intend them to be different constructions. Technically, this is because Rel
is its own dual, whereas Set and Cpo are not self-dual.
Categorically speaking, bifunctor ⊗ is a product if arrows f :: A ✿-✮ B and
g :: A ✿-✮ C uniquely determine a morphism h :: A ✿-✮ B ⊗ C with exl · h = f
and exr · h = g . Dually, bifunctor ⊕ is a coproduct if arrows f :: A ✿-✮ C and
g ::B ✿-✮ C uniquely determine a morphism h ::A⊕B ✿-✮ C with h · inl = f and
h · inr = g .
(a) Show that cartesian product is not a categorical product in Rel .
(b) Show that disjoint sum is a categorical coproduct in Rel .
(c) Show that disjoint sum is in fact also a categorical product in Rel .
(d) Show, using converses, that any categorical product in Rel is necessarily

a coproduct, and vice versa.
5. A tabulation of relation h ::A ✿-✮ B is a pair of functions f ::C ✿-✮ A, g ::C ✿-✮ B

such that h = g · f ◦ and (f ◦ · f)∩ (g◦ · g) = id. Assuming that every relation
has a tabulation, show that for relator F:
(a) when h is a function, so is F h, and (F h)◦ = F (h◦);
(b) a functor is a relator iff (Fh)◦ = F(h◦) for any (not necessarily functional)

h;
(c) if two relators F,G agree on functions, then they agree on all relations.
Thus, functors in Set can be extended in a canonical way to relators in Rel .

6. Show that datatype T = data F is also a codatatype, with final coalgebra
(T, in◦). That is, for algebra f ::FA✿-✮A, show that (foldT (f ◦))◦ is an unfold:

h = (foldT (f ◦))◦ ⇔ in◦ · h = F h · f
This is another consequence of Rel ’s self-duality.

7. Using relations, we can give very nice equational proofs of two theorems
presented in Exercises 2.9.9 and 2.9.12 of Chapter 5. Despite these being
properties of total functions, it seems that their simplest proofs are in terms
of relations. For datatype T = data F, show that function h ::T → A is a fold
iff h · in · F h◦ is simple, and function g ::A → T is an unfold iff F g◦ · in◦ · g is
entire. Explain why these conditions are equivalent to those from Chapter 5.

8. Prove the two inclusion fusion theorems
h · foldT f ⊆ foldT g ⇐ h · f ⊆ g · F h
h · foldT f ⊇ foldT g ⇐ h · f ⊇ g · F h

3 Optimization problems

Optimization problems are typically of the form ‘select the best construct gener-
ated by this means, which satisfies that test’. Such a specification is executable,
provided that only finitely many constructs are generated, but it is in general
too expensive to compute because there still many constructs to consider. The
algorithm can be improved by promoting the test and the selection inside the

292 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

generation, thereby avoiding having to generate and eliminate constructs that
cannot possibly contribute to the optimal solution.

Sometimes the improved algorithm has exactly the same extensional be-
haviour as the original specification, but is faster to execute. More often, however,
the specification is non-deterministic (there may be several optimal solutions),
and the improved algorithm is a refinement of the specification, yielding only
a subset of the optimal solutions. The missing solutions are pruned to permit
a more efficient algorithm; correctness is maintained by ensuring that for every
solution pruned, an equally good one is retained. This refinement characteristic
is a strong motivation for the move from functional to relational programming:
refinement makes little sense with total functions.

In this chapter we will consider a restricted, but still large, class of optimiza-
tion problems, of the form

min r · Λ(fold f)

The ‘test’ phase is omitted, and the feasible constructs are generated directly by
a (relational) fold. We take the breadth of this fold to get the set of all feasible
constructs, and select from this set a minimal element under the preorder r .

We will develop two kinds of improved algorithm for such problems, depend-
ing on characteristics of the ingredients f and r . The first embodies a greedy
approach, building a single optimal solution step by step. The second embodies
a thinning approach, building up a (hopefully small) collection of representative
solutions, some unforeseeable one of which will lead to the optimal solution. The
second approach assumes weaker conditions on the ingredients, but yields a less
efficient algorithm.

3.1 The Eilenberg-Wright Lemma

Let choose :: Set A ✿-✮ A denote the membership relation for sets, so that

x ✭-✿ choose xs ⇔ x ∈ xs

Then we have the following lemma:

Lemma 2 (Eilenberg-Wright). For T = data F,

Λ(foldT f) = foldT (Λ(f · F choose))

Informally, the set of results returned by a relational fold can be obtained as a
functional fold that at each stage returns the set of all possible partial results.

In particular, we have that

min r · Λ(foldT f) = min r · foldT (Λ(f · F choose))

That is, rather than computing a single complete construct in all possible ways
and taking the best of the results, we can explore all choices at each step, building
up all constructs ‘in parallel’.

8. Algebraic Methods for Optimization Problems 293

3.2 Preorders

A preorder r :: A ✿-✮ A is a relation that is

• reflexive, that is, id ⊆ r , and
• transitive, that is, r · r ⊆ r .

In addition, preorder r :: A ✿-✮ A may or may not be

• connected, that is, r ∪ r◦ = A × A.

When we come to translate our results into Haskell, it will be convenient to
represent a preorder r by its characteristic function χ(r) of type A × A → Bool
(or perhaps its curried version A → A → Bool) such that x ✭-✿ r y ⇔ χ(r) (x , y).
With this representation, the properties become more long-winded but perhaps
more familiar:

• a preorder r is reflexive, that is, χ(r) (x , x) for every x ∈ A;
• a preorder r is transitive, that is, χ(r) (x , y) ∧ χ(r) (y , z) ⇒ χ(r) (x , z) for

every x , y , z ∈ A;
• a preorder r may or may not be connected, that is, χ(r) (x , y) ∨ χ(r) (y , x)

for every x , y ∈ A.

3.3 Monotonicity

We say that that an F-algebra f :: F A ✿-✮ A is monotonic under a preorder r if

f · F r ⊆ r · f
Equivalently, in terms of characteristic functions, we have that f is monotonic
under r if χ(Fr)(x , y) and u ✭-✿f x together imply that there exists a v ✭-✿f y such
that χ(r)(u, v). (Note that Fr is a relation of type FA✿-✮FA, so its characteristic
function χ(F r) has type F A × F A → Bool.)

For example, addition of naturals plus :: Pair Nat → Nat is monotonic under
leq , the normal linear ordering, because plus · Pair leq ⊆ leq · plus, or in terms of
points, a ✭-✿ leq c and b ✭-✿ leq d imply that plus (a, b) ✭-✿ leq (plus (c, d)).

3.4 Minimum

The function min :: (A ✿-✮ A) → (Set A ✿-✮ A) is defined by

min r = choose ∩ (r / choose◦)

Informally, min r takes a set xs and returns a value x that both is an element of
xs and satisfies x ✭-✿ r y for every y ✭-✿ choose xs; in points,

x ✭-✿ min r xs ⇔ (x ∈ xs) ∧ (∀y ∈ xs. χ(r) (x , y))

Of course, this definition is perfectly symmetric: to obtain the maximum under
a preorder r , simply compute the minimum under r◦.

294 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

If every non-empty set has a minimum under a preorder r , then r is neces-
sarily connected. In general, therefore, we will only be interested in uses of min r
for connected preorders r .

When it comes to implementing this operator in Haskell, we first must decide
how to represent sets. We choose the simplest representation, as an unordered
list, but because we will be computing minimum elements of sets, we will stick
to non-empty lists; so we define the function minlist as follows:

minlist :: (A × A → Bool) → (PList A → A)
minlist r = foldrp m id where m (x , y) = if r (x , y) then x else y

This implementation breaks ties in favour of the leftmost of two equivalent ele-
ments. If r is connected, then

minlist (χ(r)) ⊆ min r · setify
where setify ::PListA → SetA converts a non-empty list to the set of its elements.

3.5 The Greedy Theorem

Greedy algorithms for our class of optimization problems are captured by the
following theorem.

Theorem 3 (Greedy Theorem). Suppose T = data F, and F-algebra f ::
F A ✿-✮ A is monotonic under the preorder r◦. Then

foldT (min r · Λf) ⊆ min r · Λ(foldT f)

In fact, we have a stronger theorem, of which the above is a simple corollary.

Theorem 4 (Refining Greedy Theorem). Suppose T = data F, and F-
algebra f :: F A ✿-✮ A is monotonic under the preorder q◦, where q ⊆ r. Then

foldT (min q · Λf) ⊆ min r · Λ(foldT f)

Proof (Sketch). Using the Eilenberg-Wright Lemma, it suffices to show

foldT (min q · Λf) ⊆ min r · foldT (Λ(f · F choose))

This in turn follows, by fusion, from

min q · Λf · F (min r) ⊆ min r · Λ(f · F choose)

Discharging this final proof obligation is left as an exercise for the reader (Ex-
ercise 3.8.4).

Informally, to say that f is monotonic under r◦ is to say that for any ‘input’
x :: F A, any ‘worse input’ y ✭-✿ F r◦ x , and any result b ✭-✿ f y of f on this worse
input, there corresponds a result a ✭-✿f x of f on the original input that is ‘better’
than b, that is, b ✭-✿ r◦ a. Thus, degrading the inputs to f will always degrade
the output, or conversely, it is never beneficial to pick suboptimal intermediate
results, as they will only lead to suboptimal final results. Overall, the Greedy
Theorem states that a minimal result can be computed by maintaining a single

8. Algebraic Methods for Optimization Problems 295

minimal partial result at each stage of the folding process, and so it lies at
the other extreme to the Eilenberg-Wright Lemma, which embodies a kind of
exhaustive search.

The Refining Greedy Theorem is a little more flexible. It is sometimes the
case that f fails to be monotonic under r◦, but enjoys monotonicity under a
refined ordering q◦ where q ⊆ r . We will see an example in §4.5. Provided that
q remains connected, the relation min q is entire (except for empty sets). The
greedy algorithm itself will also be entire (except for empty sets), refining the
plain greedy algorithm from Theorem 3: it computes an optimal solution under
q , and any optimal solution under q will also be optimal under r — but the
converse does not hold. If q is not connected, the theorem still holds, but the
resulting algorithm will not be entire (that is, will not always yield a result).

In order to implement the method as a functional program, we have to find
some function step ::FA → A such that step ⊆ minq ·Λf . We will give an example
application of the Greedy Theorem in §4.

3.6 Thinning

Monotonicity under a connected preorder is a strong condition that is satisfied
in very few optimization problems; and indeed, few such problems admit greedy
solutions. More useful would be something between the two extremes of the
Eilenberg-Wright Lemma and the Greedy Theorems, involving maintaining some
but not all partial solutions.

For a not necessarily connected preorder q on A, the relation thin q ::SetA✿-✮
Set A takes a set xs and returns some subset ys of xs with the property that all
elements of xs have a lower bound under q in ys. More precisely,

thin q = (choose \ choose) ∩ ((choose◦ · q) / choose◦)

If ys ✭-✿ thin q xs, then the first conjunct here says that ys is a subset of xs,
and the second says that for every x ✭-✿ choose xs, there is a y ✭-✿ choose ys with
y ✭-✿ q x ; in points,

ys ✭-✿ thin q xs ⇔ (ys ⊆ xs) ∧ (∀x ∈ xs. ∃y ∈ ys. χ(q) (x , y))

The following lemma allows us to introduce applications of thin.

Lemma 5 (Thin introduction). Provided that q and r are both preorders and
q ⊆ r, we have

min r = min r · thin q

That is, any required minimum can be obtained by selecting that minimum from
a suitably thinned set. For the proof, see Exercise 3.8.6.

This leads us towards the following Thinning Theorem, which entails main-
taining a representative collection of partial solutions at each stage of the folding
process.

Theorem 6 (Thinning). Suppose T = data F, and F-algebra f :: F A ✿-✮ A is
monotonic under a (not necessarily connected) preorder q◦, where q ⊆ r. Then

296 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

min r · foldT (thin q · Λ(f · F choose)) ⊆ min r · Λ(foldT f)

Proof (Sketch). We have min r = min r · thin q , so it suffices to show that

foldT (thin q · Λ(f · F choose)) ⊆ thin q · Λ(foldT f)

Just like the Greedy Theorem, this latter inclusion can be proved (Exercise 3.8.7)
by making use of the Eilenberg-Wright Lemma and fusion.

3.6.1 Implementation

In order to implement the thinning method as a functional program, we have to
implement

thin q · Λ(f · F choose) :: F (Set A) ✿-✮ Set A

It seems reasonable to represent these sets as lists, sorted by some connected
preorder (but not necessarily by q itself); we can capitalize on the list ordering
to implement the thinning step efficiently. Therefore, we will actually construct
a function

step :: F (PList A) → PList A

such that
setify · step ⊆ thin q · Λ(f · F choose) · F setify

To do this, we will need a number of ingredients:

• a function
sort :: (A × A → Bool) → (Set A → PList A)

that sorts a finite set under a given connected preorder;
• a function

mergelists :: (A × A → Bool) → (PList (PList A) → PList A)

that merges a list of sorted lists into a single sorted list;
• a function

thinlist :: (A × A → Bool) → (PList A → PList A)

that implements thin:

setify · thinlist (χ(q)) ⊆ thin q · setify
on a suitably sorted list in a reasonably efficient manner, that is, quickly (in
linear time) and effectively (yielding a short result), and does so stablely:

thinlist (χ(q)) ⊆ subseq

• a function
cpF :: F (PList A) → PList (F A)

that converts an F-structure of lists (possibly of differing lengths) into a list
of F-structures (all of the same shape);

8. Algebraic Methods for Optimization Problems 297

• a function combine :: F A → PList A satisfying

combine ⊆ sort (χ(p)) · thin q · Λf

for some connected preorder p.

Given these ingredients, we define

step = thinlist (χ(q)) · mergelists (χ(p)) · map combine · cpF

and claim (Exercise 3.8.8) that

minlist (χ(r)) · fold step ⊆ min r · fold (thin q · Λ(f · F choose))

There is no constraint on p for correctness, but for efficiency a suitable choice will
bring related elements together to allow effective thinning with thinlist (χ(q)).

3.7 Bibliographic notes

The Eilenberg-Wright Lemma, and indeed relational folds themselves, were first
employed to reason about the equivalence of deterministic and non-deterministic
automata [12].

Greedy algorithms are well-known in the algorithm design community; an
in-depth study of their properties is in [21], and a more pragmatic description
with numerous examples in [8]. Thinning algorithms as an abstraction in their
own right are due to Bird and de Moor [4, 5]. More results on greedy, thinning
and dynamic programming algorithms for optimization problems are given in
Curtis’ thesis [9]; there the emphasis is on algorithms in which the generation
phase is less structured, a simple loop rather than a fold or an unfold.

Cross products (§3.6.1) and the related zips are investigated in great depth
in Hoogendijk’s thesis [19].

3.8 Exercises

1. Prove the Eilenberg-Wright Lemma (§3.1), using the universal property of
folds.

2. Find an F-algebra f :: F A ✿-✮ A and a preorder r on A such that f is mono-
tonic under r but not under r◦. Prove that when f is a total function, f is
monotonic under r iff it is monotonic under r◦.

3. Why is connectedness of r necessary for the function minlist from §3.4 to be
an implementation of min?

4. Complete the proof of the Refining Greedy Theorem (Theorem 4) from §3.5,
by showing that

min q · Λf · F (min r) ⊆ min r · Λ(f · F choose)

where f is monotonic under q◦ with q ⊆ r .
5. The function takewhile :: (A✿-✮A) → (ListA✿-✮ListA) yields the longest prefix

of its second argument, all of whose elements ‘satisfy’ the coreflexive first
argument:

takewhile p = longest · Λ(map p · prefix)

298 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

where prefix is defined in §2.4.3, and
longest = min (length◦ · geq · length)

and where length returns the length of a list, and geq is the usual linear
ordering on naturals. For example, takewhile prime [2, 3, 4, 5] = [2, 3]. Use
fusion to write map p · prefix as a fold, and hence use the Greedy Theorem
to derive the standard implementation of takewhile p as a fold.

6. Prove that
min r ⊇ min r · thin q

provided that q , r are preorders, and q ⊆ r . Because thin q ⊇ id too, this
proves Lemma 5.

7. Complete the proof of the Thinning Theorem from §3.6, by showing that
foldT (thin q · Λ(f · F choose)) ⊆ thin q · Λ(foldT f)

where T = data F and f is monotonic under q◦.
8. Justify the claim (§3.6.1) that the thinning algorithm

minlist (χ(r)) · fold (thinlist (χ(q)) · mergelists (χ(p)) · map combine · cpF)
is indeed a refinement of the optimization problem.

9. The longest upsequence problem [15] is to compute the longest ascending
subsequence of a list; for example, the longest upsequence of [1, 6, 5, 2, 4, 3, 3]
is [1, 2, 3, 3]. Formally, the problem is to compute

longest · Λ(ordered · subseq)
where longest is as in Exercise 3.8.5, and ordered and subseq as in §2.4.3.
Derive a thinning algorithm to solve this problem.

10. In a sense, the Thinning Theorem always applies: one can always choose
q = id. Prove that this choice satisfies the conditions of Theorem 6, and that
the algorithm obtained by applying the theorem is the same as the problem
specification min r · Λ(fold f).

11. At the other extreme, the Greedy Theorem is an instance of the Thinning
Theorem: choosing q = r in the Thinning Theorem gives ‘essentially’ the
greedy algorithm. More precisely, the thinning algorithm so obtained will still
return a set of elements, but all will be optimal; taking the breadth gives
the corresponding greedy algorithm. Justify this claim. (Thus, ‘thinning’
encompasses the whole spectrum from maintaining all partial solutions to
maintaining just one.)

4 Optimal bracketing

To illustrate the foregoing theory, consider the (A,≤,⊕) bracketing problem,
defined as follows. Given a linearly ordered set (A,≤), an operator ⊕::A×A → A,
and a non-empty list a1, a2, . . . an of values of type A, it is required to bracket
the expression

a1 ⊕ a2 ⊕ · · · ⊕ an

in such a way that the result is as small as possible under the ordering ≤. Of
course, if ⊕ is associative then all bracketings give equally small results.

8. Algebraic Methods for Optimization Problems 299

Example 7. With a ⊕ b = max (a, b) + 1, the (Nat,≤,⊕) bracketing problem
corresponds to the task of combining a list of trees (with given heights a1, . . . an)
into a single tree of minimum height. For example, given subtrees with heights
[4, 2, 3, 5, 2, 4, 6], one optimal tree is

4 2
3

5
2

4 6

Example 8. Similarly, one interpretation of the (Nat × Nat,≤,⊕) bracketing
problem, where ≤ is the lexical ordering on pairs and

(c1, l1)⊕ (c2, l2) = (c1 + c2 + l1 × l2, l1 + l2)

corresponds to the task of multiplying a list of decimals in the shortest possible
time (without exploiting the commutativity of multiplication), where multiplying
decimals of lengths l1 and l2 costs l1 × l2, and yields a decimal of length l1 + l2.

Example 9. The (Nat × (Nat × Nat),≤,⊕) bracketing problem, where ≤ is the
lexical ordering and

(c1, (p, q))⊕ (c2, (q , r)) = (c1 + c2 + p × q × r , (p, r))

corresponds to the problem of multiplying a sequence of conformant matrices
with minimal cost, where multiplying a p × q matrix by a q × r matrix costs
p × q × r , and yields a p × r matrix.

4.1 Representation

We will represent a single bracketing as a binary tree of type

Tree A = data (A +̂ (Id ×̂ Id))

for which we introduce the syntactic sugar

tip a = in (inl a)
fork (t , u) = in (inr (t , u))

for the constructors, and

foldT :: (B × B ✿-✮ B) → (A ✿-✮ B) → (Tree A ✿-✮ B)
foldT f g = foldTree (g � f)

for the fold.
In particular, the function flatten :: Tree A → PList A is defined by

flatten = foldT (++) wrap

The (A,≤,⊕) bracketing problem can now be formalized as one of computing

300 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

min r · Λ(flatten◦)

where cost = foldT (⊕) id, and r = cost◦ · leq · cost , or in points, χ(r) (x , y) =
cost x ≤ cost y (so r is connected). Note that flatten◦ is partial, giving a result
only on non-empty lists.

4.2 The Converse-of-a-Function Theorem

One could start by formulating methods for computing

min r · Λ((fold f)◦)

We will not take this approach (but see [5]); instead, we will make use of the
following theorem to express flatten◦ as a fold:

Theorem 10 (Converse of a function). Suppose f :: A → T (in particular,
f is a total function), where T = data F. Furthermore, suppose g :: F A ✿-✮ A is
surjective and satisfies f · g ⊆ in · F f . Then f ◦ = foldT g.

Use of this theorem is a definite design step in solving an optimization problem:
it prescribes the structure of the resulting program, and thereby rules out some
potential solutions. It is therefore not always the right step to take; however, it
turns out to be a productive one for some instances of the bracketing problem.

4.3 Spines

To express flatten◦ as a fold, we will represent trees by their left spines. The left
spine of a tree is a pair consisting of the leftmost tip value and the sequence of
right subtrees along the path from the leftmost tip to the root. Thus we define
Spine A = A× List (Tree A). For example, the optimal tree in Example 7 has the
left spine

(
4,

[
2

3
,

5
2

4 6

])

The bijection roll takes a spine (a, [t1, t2, . . . , tn]) and returns the tree

fork (· · · fork (fork (tip a, t1), t2) · · · , tn)
Formally, we have

roll (a, ts) = foldl fork (tip a) ts

where foldl is the natural fold function for snoc lists, that is, lists built by adding
elements to the end rather than the beginning. On ordinary lists we can simulate
foldl by

8. Algebraic Methods for Optimization Problems 301

foldl f e [] = e
foldl f e (cons (x , xs)) = foldl f (f (e, x)) xs

Using the Converse-of-a-Function Theorem, we can now obtain (Exercise 4.10.1)

(flatten · roll)◦ = foldrp add one

where one a = (a, []) and add :: A × Spine A ✿-✮ Spine A is defined (using a non-
injective pattern) by

add (a, (b, xs ++ ys)) =̂ (a, cons (roll (b, xs), ys))

For example,

foldrp add one [1, 2, 3]
= add (1, add (2, one 3))
= add (1, add (2, (3, [])))
= add (1, (2, [tip 3]))
= (1, [tip 2, tip 3]) ✷ (1, [fork (tip 2, tip 3)])

That is, both

(1, [tip 2, tip 3]) ✭-✿ foldrp add one [1, 2, 3]

and
(1, [fork (tip 2, tip 3)]) ✭-✿ foldrp add one [1, 2, 3]

and nothing else is a possible result.
Now we reason, for any r ,

min r · Λ(flatten◦)
=

{
roll is a surjective function, so roll · roll◦ = id

}
min r · Λ(roll · roll◦ · flatten◦)

=
{
claim, with χ(rr) (x , y) = χ(r) (roll x , roll y)

}
roll · min rr · Λ(roll◦ · flatten◦)

=
{
converse of a function

}
roll · min rr · Λ(foldrp add one)

The claim above is that computing a minimal tree under r is equivalent to
computing a minimal spine under rr , because roll is a bijection between the two
types.

So our problem now is to compute min rr ·Λ(foldrp add one), where preorder
rr on Spine A is defined by

χ(rr) (x , y) = cost (roll x) ≤ cost (roll y)

4.4 An application of thinning

For most instances of the bracketing problem, the algebra one�add is not mono-
tonic under rr◦. For Example 7, for instance, the two trees fork(tip1, fork(tip1, tip1))
and fork (fork (tip 1, tip 1), tip 1) that can be built from the list of heights [1, 1, 1]
are equally good under r (and so their spines are equally good under rr), but

302 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

only the former can be extended by add to make the unique optimal tree for
cons (1, [1, 1, 1]). So the Greedy Theorem does not apply to Example 7.

However, some instances of the bracketing problem succumb to a thinning
algorithm based on the ‘pairwise ordering’ of the left spines of the trees, defined
as follows. Let

lspinecosts (a, ts) = map (cost ′ a) (prefixes ts)
cost ′ a us = cost (roll (a, us))

where prefixes returns the prefixes of a list in order of decreasing length — for
example,

prefixes [1, 2, 3] = [[1, 2, 3], [1, 2], [1], []]

Then we choose the preorder q such that

χ(q) (x , y) = lspinecosts x � lspinecosts y

where � is pairwise ordering of sequences: [a1, . . . , am] � [b1, . . . , bn] if and only
if m ≤ n and ai ≤ bi for 1 ≤ i ≤ m. Informally, as � bs when as is no longer
than bs, and each element of as is at most the corresponding element of bs.
Note that this q is not connected. Note also that q ⊆ rr : because cost (roll x) =
head (lspinecosts x), if x ✭-✿ q y then certainly cost (roll x) ≤ cost (roll y).

Now we claim that, for Examples 7 and 9, the algebra one � add is mono-
tonic under this q◦. We will leave the proof of monotonicity as Exercise 4.10.5
for the energetic reader. We will merely observe here that for the minimum
height tree problem, the spines of the two trees fork (tip 1, fork (tip 1, tip 1)) and
fork (fork (tip 1, tip 1), tip 1) introduced above are definitely not equally good
under q : the costs of the reverse prefixes of the two spines are [3, 1] and [3, 2, 1],
and the former is pairwise strictly less than the latter.

Therefore we conclude that, at least for these two examples,

min r · Λ(flatten◦)
=

{
Converse of a Function

}
roll · min rr · Λ(foldrn add one)

⊇ {
thinning

}
roll · min rr · fold (thin q · Λ((one � add) · F choose))

Unfortunately, although the resulting algorithm appears to perform well in prac-
tice, its worst-case running time is exponential, and knowing this it is not too
difficult to construct pathological inputs. The problem is that too few partial
solutions are thinned out in the worst case.

4.5 An application of greediness

In fact, for Example 7 we can do a lot better. We have already observed that
Theorem 3 does not apply; however, there is a connected preorder q which
satisfies the conditions of Theorem 4. We choose the preorder q characterized by

χ(q) (x , y) = lspinecosts x ✂ lspinecosts y

8. Algebraic Methods for Optimization Problems 303

where ✂ is the lexicographic (as opposed to pairwise) ordering on sequences: for
sequences as = [a1, . . . , am] and bs = [b1, . . . , bn], the ordering as ✂ bs holds if
and only if there exists an i with 0 ≤ i ≤ m, n such that aj = bj for 1 ≤ j ≤ i
and either i = m (in which case as is a prefix of bs) or i < m, n and ai+1 < bi+1

(in which case as and bs differ first at position i + 1).
Again, q ⊆ rr , for the same reason that the q of §4.4 is included in rr .

We leave the proof of monotonicity to Exercise 4.10.6, pausing only to observe
as before that the costs of the reverse prefixes of the two spines of the trees
constructed from [1, 1, 1] are [3, 1] and [3, 2, 1], and the former is lexicographically
(as well as pairwise) strictly less than the latter.

Now, however, q is connected, and so a greedy algorithm works — it suffices
to keep a single partial solution at each stage. We have

min r · Λ(fold f)

⊇ {
min r ⊇ min q

}
min q · Λ(fold f)

⊇ {
Refining Greedy Theorem, assuming f monotonic under q◦ }

fold (min q · Λf)

4.6 Refinement of the greedy algorithm to a program

Returning to bracketing problems in general, provided that we can find a con-
nected preorder q under whose converse one �add is monotonic (as we have seen
we can do for the minimum height tree problem, for instance), we have

min r · Λ(flatten◦)

=
{
Converse of a Function

}
roll · min rr · Λ(foldrn add one)

⊇ {
strengthened preorder

}
roll · min q · Λ(foldrn add one)

⊇ {
Greedy Theorem

}
roll · foldrn (min q · Λadd) (min q · Λone)

To obtain a deterministic program, we still have to refine min q · Λone and
minq · Λadd to functions. Since one is a function, min q · Λone = one. One can
also show (Exercise 4.10.7) that min q · Λadd ⊇ minadd , where

minadd (a, (b, ts)) = (a, cons (roll (cons (b, us)), vs))

where us ++ vs = ts, and us is the shortest proper prefix of ts satisfying

max (a, cost (roll (cons (b, us)))) < cost (head vs)

If no such us exists, then us = ts and vs = [].

304 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

4.7 Summary

To summarize, the problem of building a tree of minimum height can be solved
by computing

roll · foldrp minadd one
Moreover, this algorithm takes linear time. The time taken to compute minadd
is proportional to the length of the us chosen, but the length of the resulting
spine is reduced by this amount; a standard amortization argument then shows
that the total time taken for the algorithm is linear in the length of the given
list.

4.8 The Haskell program

The program in Figure 1 is an implementation in Haskell [20] of the algorithm
derived above for the minimum height tree instance of the bracketing problem.
To avoid repeated computations, we label trees with their costs.

4.9 Bibliographic notes

The minimum height tree problem comes from [6], where a different greedy
solution is presented. This chapter could be thought of as an abstract of Mu’s
forthcoming DPhil thesis [27], which expands on the approaches discussed here,
in particular looking at other thinning algorithms, and exploring the relationship
with dynamic programming as well as greedy algorithms.

4.10 Exercises

1. Prove the Converse-of-a-Function Theorem from §4.2.
2. Theorem 10 applies only to total functions f . If f is a partial function (that is,

simple buyt not necessarily entire), the corresponding ‘Converse of a Partial
Function’ theorem states, when T = data F, that f ◦ = foldT g provided that
f · g ⊆ in · F f and dom f = ran g . Prove this generalization.

3. Verify the application of the Converse-of-a-Function Theorem in §4.3.
4. Show that the Greedy Theorem is not applicable to (that is, one �add is not

monotonic under r◦ for) Example 9. What can you say about Example 8?
5. Show that for a bracketing problem (A,⊕,≤) such that ⊕ is commutative

(a ⊕ b = b ⊕ a), strict (a ⊕ b > a) and monotonic in its left argument
(a ≤ a ′ ⇒ a ⊕ b ≤ a ′ ⊕ b), the algebra one � add is monotonic under
q◦, where q is as introduced in §4.4. Verify that these conditions apply for
Examples 7 and 9.

6. Show that one � add for the minimum height tree problem is monotonic
under q◦, where q is as introduced in §4.5.

7. Show that min q · Λadd ⊇ minadd for the minimum height tree problem,
where minadd is as defined in §4.6.

8. Express as an instance of the bracketing problem the problem of concate-
nating a list of lists into a single list in the cheapest possible way, when the
cost of concatenating two lists is proportional to the length of the lefthand
list. Derive a suitable algorithm for solving the problem.

8. Algebraic Methods for Optimization Problems 305

data Tree = Tip Int | Fork Int Tree Tree

type Spine = (Int, [Tree])

cost :: Tree -> Int

cost (Tip a) = a

cost (Fork a t u) = a

fork :: Tree -> Tree -> Tree

fork t u = Fork (max (cost t) (cost u) + 1) t u

roll :: Spine -> Tree

roll (a, ts) = foldl fork (Tip a) ts

greedy :: [Int] -> Tree

greedy = roll . foldrp minadd one

one :: Int -> Spine

one a = (a, [])

minadd :: Int -> Spine -> Spine

minadd a (b,ts) = (a, split (Tip b : ts))

where

split [t] = [t]

split (t:u:ts) = if max a (cost t) < cost u

then t:u:ts

else split (fork t u : ts)

foldrp :: (a -> b -> b) -> (a -> b) -> ([a] -> b)

foldrp f g [x] = g x

foldrp f g (x:xs) = f x (foldrp f g xs)

Fig. 1. Haskell implementation of minimum height tree algorithm

306 Richard Bird, Jeremy Gibbons and Shin-Cheng Mu

5 Bibliography

1. Roland Backhouse, Peter de Bruin, Grant Malcolm, Ed Voermans, and Jaap
van der Woude. A relational theory of datatypes. In STOP 1992 Summerschool
on Constructive Algorithmics. STOP project, 1992.

2. Roland Backhouse and Paul Hoogendijk. Elements of a relational theory of
datatypes. In Bernhard Möller, Helmut Partsch, and Steve Schumann, editors,
LNCS 755: IFIP TC2/WG2.1 State-of-the-Art Report on Formal Program Devel-
opment, pages 7–42. Springer-Verlag, 1993.

3. R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic
and non-deterministic programs. Theoretical Computer Science, 43(2–3):123–147,
1986.

4. Richard Bird and Oege de Moor. Hybrid dynamic programming. Programming
Research Group, Oxford, 1994.

5. Richard Bird and Oege de Moor. The Algebra of Programming. Prentice-Hall,
1996.

6. Richard S. Bird. On building trees with minimum height. Journal of Functional
Programming, 7(4):441–445, 1997.

7. A. Bunkenburg. Expression Refinement. PhD thesis, Computing Science Depart-
ment, University of Glasgow, 1997.

8. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 1990.

9. Sharon Curtis. A Relational Approach to Optimization Problems. PhD thesis,
University of Oxford, 1996. Technical Monograph PRG-122.

10. J. W. de Bakker and W. P. de Roever. A calculus for recursive program schemes. In
M. Nivat, editor, Automata, Languages and Programming, pages 167–196. North-
Holland, 1973.

11. Oege de Moor and Jeremy Gibbons. Pointwise relational programming. In
LNCS 1816: Algebraic Methodology and Software Technology, pages 371–390, May
2000.

12. S. Eilenberg and J. B. Wright. Automata in general algebras. Information and
Control, 11(4):452–470, 1967.

13. Sharon Flynn. A Refinement Calculus for Expressions. PhD thesis, University of
Glasgow, 1997.

14. P. J. Freyd and A. Ščedrov. Categories, Allegories. North-Holland, 1990.
15. David Gries. The Science of Programming. Texts and Monographs in Computer

Science. Springer-Verlag, 1981.
16. Eric C. R. Hehner. A Practical Theory of Programming. Texts and Monographs

in Computer Science. Springer-Verlag, 1993.
17. C. A. R. Hoare. Programs are predicates. In C. A. R. Hoare and J. C. Shepherdson,

editors, Mathematical Logic and Programming Languages. Prentice-Hall, 1985. Also
Chapter 20 of [18].

18. C. A. R. Hoare. Essays in Computing Science. Prentice Hall, 1989.
19. Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Technische Univer-

siteit Eindhoven, 1997.
20. Simon Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton, Brian Bou-

tel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hudak,
Thomas Johnsson, Mark Jones, John Launchbury, Erik Meijer, John Peterson,
Alastair Reid, Colin Runciman, and Philip Wadler. Haskell 98: A non-strict, purely
functional language. www.haskell.org/onlinereport, February 1999.

8. Algebraic Methods for Optimization Problems 307

21. Bernhard Korte, Laszlo Lovasz, and Rainer Schrader. Greedoids. Springer-Verlag,
1991.

22. Robert A. Kowalski. Predicate logic as a programming language. In IFIP Congress,
1974.

23. Ali Mili, Jules Desharnais, and Fatma Mili. Computer Program Construction.
Oxford University Press, 1994.

24. Bernhard Möller. Relations as a program development language. In B. Möller,
editor, IFIP TC2/WG2.1 Working Conference on Constructing Programs from
Specifications, pages 373–397. North-Holland, 1991.

25. Joseph M. Morris. Programming by expression refinement: The KMP algorithm.
In W. H. J. Feijen, A. J. M. van Gasteren, D. Gries, and J. Misra, editors, Beauty
is our Business, chapter 37. Springer-Verlag, 1990.

26. Joseph M. Morris. Non-deterministic expressions and predicate transformers. In-
formation Processing Letters, 61:241–246, 1997.

27. Shin-Cheng Mu. Inverting Programs by Calculation. DPhil thesis, University of
Oxford, in preparation.

28. Theo Norvell and Eric Hehner. Logical specifications for functional programs. In
R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, LNCS 669: Mathematics
of Program Construction, pages 269–290. Springer-Verlag, 1993.

29. Richard A. O’Keefe. The Craft of Prolog. MIT Press, 1990.
30. Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73–89,

1941.
31. Nigel Thomas Edgar Ward. A Refinement Calculus for Nondeterministiuc Expres-

sions. PhD thesis, University of Queensland, February 1994.

