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Abstract

A bidirectional transformation is a pair of mappings betwee
sourceandviewdata objects, one in each direction. When the view
is modified, the source is updated accordingly. The key tallirag
large data objects that are subject to relatively small fications

is to process the updates incrementally. Incrementaliy been
explored in the semi-structured settings of relationahblases and
graph transformations; this flexibility in structure makiesela-
tively easy to divide the data into separate parts that canais-
formed and updated independently. The same is not true date
is to be encoded with more general-purpose algebraic getsty
with transformations defined as functions: dividing data ivell-
typed separate parts is tricky, and recursions typicakyater inter-
dependencies. In this paper, we study transformationssthpdort
incremental updates, and devise a constructive processhieva
this incrementality.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guage¥ Language Classifications—Applicative (functional) 1an
guages, Specialized application languages; D.Brddramming

Languagelk Language Constructs and Features—Data types and

structures, Polymorphism
General Terms Languages, Design, Performance, Theory

Keywords Functional Programming, Bidirectional Programming,
Incremental Computing, Program Transformation, Viewatpd
Problem

1. Introduction

From a programming perspective, bidirectional prograngnisman
exercise in writing programs that execute both forwards lzauk-
wards. This goal is not always achievable: non-injectivecfions
obscure the route back, while non-surjective functionsdethe
‘backward’ execution partial. Nevertheless, the need t@rina
computation does arise in many contexts in which pairs of pro
grams naturally interact with one another; parser/prirgerbed-
ding/projection, marshalling/unmarshalling, and corspien/de-
compression are typical examples. For decades, the nedidi-of
rectionality have been fulfilled by individually craftedipaof pro-
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grams. This is a significant duplication of work, becausetihe
programs in a pair are closely related. Furthermore, miainig
the relationship between these progams becomes a sourge of e

rors, where changes to only one of the programs may lead to an

inconsistency within the pair.

A more promising solution to the challenge of bidirectioped-
gramming is to design languages that execute bidirectional
such languages, any user-defined program, mapping a sauiece i
a view, is coupled with an automatically generated ‘backivaer-
sion, whose correctness with regards to certain bidireatiprop-
erties is guaranteed. An obvious bidirectional propertysrtibil-
ity. For a given progranfwd, its inversebwdsatisfieswdobwd=id
andbwdo fwd = id. While this invertibility is elegant, it restricts the
expressiveness of the approach, sifvee must be bijective. Mod-
ulo information encoded ifwd itself, the source and view neces-
sarily contain exactly the same information, probably wiifferent
presentations. This is an unrealistically strong asswnptnd has
driven research into more widely applicable frameworks:

“More generally, bijective transformations are the exmapt
rather than the rule: the fact that one model contains infor-
mation not represented in the other is part of the reason for
having separate models.” [28]

1.1 Semi-Invertibility

To circumvent the bijectivity restriction, other languadeve been
designed with particular applications in mind, where lesdnd-
ing constraints such as one-sided invertibility are implodeft-
invertibility (fwdo bwd= id) in [24], and right-invertibility pwdo
fwd = id) in [32]. A more dramatic diversion from the invertibility
framework is thdensapproach [10, 4, 12, 11, 3, 18], which orig-
inated from the study of theiew-update problemf databases [7,
2, 14]. In the setting of lenses, (all or part of) the origisalirce
is copied and is used in the ‘backward’ computation: a ‘getick
tion has types — v from source to view, while a ‘put’ function has
type (v,s) — s. We make the following notational convention: for
a ‘get’ functionf, the counterpart ‘put’ function is written d4s-.
The task of a ‘put’ function is to discover the connectionimEsn a
view update and an appropriate corresponding source uptate
‘appropriateness’ is defined by tdefinitional propertie$6, 28J:

Consistencyf (f< (v,s)) =V
Acceptability =< (f s;s)=s

Here consistency(also known as the PutGet law) roughly corre-
sponds to right-invertibility, basically ensuring that apdates on

a view are captured by the updated source, aocwbptability(also
known as the GetPut law) roughly corresponds to left-irloity,
prohibiting changes to the source if no update has been nratieo
view. Bidirectional transformations satisfying the abdwe laws



are sometimes calledell-behaved10]. In addition to these laws,
an optionalundoabilityproperty is sometimes introduced:

Undoability f< (f s,f< (V,s))=s

This property states that the result of an update can be endon
through the view. For the sake of this paper, we will presemt o
proposal within the lenses framework, with the understagdnat

the same technique applies to invertible languages as well.

1.2 State-Based and Operation-Based Approaches

The word ‘update’ is commonly found in the bidirectionalrtséor-
mation literature, and used to describe changes both irsvéed in
sources. In the sequel, we restrict the use of the term ‘eptiathe
transformed effect on a source, as a result afditto the view. De-
spite being fundamental to bidirectional transformatibere is no
universal agreement on what constitutes an edit. Rougteplsp
ing, opinions are divided as to whether one should look iht t
mechanism of an edit or simply its result. Translated intmleage
design, one can either take an operation-based approagsideo
ering an editing function that changes a view, or a statedap-
proach, which only sees the unedited and edited views. kdrap
that the majority of existing bidirectional frameworks ¢athe lat-
ter approach, due to its mathematical simplicity and goodpat-
ibility. The bidirectional laws discussed above are spedifrom a
state-based perspective. Since only the edited view idregtjfor
the ‘put’ function, it is easier to design a bidirectionarimtework
independently of any editing system. On the other hand, te-sta
based approach necessarily discards information abowdigraed
must reverse-engineer it later by performing some kind fiédi
ence analysis on the two view values. Consequently, theimm-
performance of a state-based ‘put’ function is bound by tifie d
ference analysis that is required: even a small change toi¢he
implies a complete re-traversal.

Meertens [23] observed that to maintain constraints betwee
two structures, it is useful to know how a view is edited. Gdes
the scenario where two lists are connected by a mappingaelat
(i.e. each is the result @hagping some function over the other); an
edit to one list, say deletion at a particular position, cartrans-
lated to a deletion at the same position in the other listhis $et-
ting, a lot more information about the edit is made availdblthe
bidirectional framework, including where (the locatiomjdawhat
(a deletion) has changed. As a result, the updating procasd c
be more straightforward compared to a state-based appreiach
the latter, all that is known is that one list is changed intother
list that is one element shorter, which is fairly ambigudnsad-
dition, having an operation for source update potentiatlyieves
better-than-linear runtime performance.

If run-time performance is the only concern, the ‘where’t dr
the knowledge of an edit is the key. For a given edit-affecied
fragment, once the corresponding source fragment is piokeca
state-based approach could perform the changes as effic@sran
operation-based counterpart, without the undesired doatfdns
that the latter brings. This idea is not new. As a matter of, flac
bidirectional systems in the neighbouring fields of datebaand
software engineering, incrementality of source updatéssisiorm
rather than the exception [5, 8, 15]. With the more recentirges
in (mostly functional) programming language approachesido
rectional transformation [19, 10, 21, 29, 25, 30], freshllenges
emerge: structured data cannot easily be divided into aepparts
to be transformed and updated independently; and recsrsjpa
ically create interdependencies. As a result, in contashé sit-
uation with databases and model transformations, noneeoéxh
isting bidirectional languages supports any kind of inczatal be-
haviour.

1.3 A Change-Based Approach

In this paper, we propose a novethange-basedramework for
bidirectional transformation. Instead of inventing fromsfiprin-
ciples to add to the already burgeoning population of badiomal
languages, we focus on the preservation and propagatiosesf u
provided editing information. In a sense, our proposal casden
as a generic optimiser of certain given state-based biibred
frameworks: we exploit any locality in the editing of viewand
try to translate it into incrementality in the updating ofusces.
Obviously, such preservation of locality does not hold fidmitaary
transformations. Identifying the semantic propertieg@rditions
required forms one of the major technical contributionshig pa-
per. The ultimate goal of our framework is to reduce an updage
(large) structure into one of a (small) delta, and then autsothe
hopefully much smaller problem of actually translating tipelate
to an existing state-based frameworks. This step posjtivgbacts
the run-time behaviour of ‘put’, due to the newly gained émen-
tality.

Our proposal aims at modularity: there is a clearly defined
interface that decouples any editing system from our fraonkw
and different state-based bidirectional approaches caiugged
in as black boxes, whatever their manifestation as purpage-
bidirectional languages or syntactic/semantic transétions of
unidirectional programs. As a result, a change-basedduiianal
framework arises automatically from a given state-basedwhile
preserving the bidirectional properties of the latter.

We choose Haskell [26] as the language of discourse, but no
specific language feature other than algebraic datatypesjisred
for our technique to apply.

1.4 A Small Example
As a motivating example, consider the structure of a binay:t

data Tree a= Empty
| Fork a(Tree g (Tree g

One possible ‘get’ function from this source is an inordavérsal,
which produces a list, and can be defined as follows:

inorder:: Tree a— [a]
inorder Empty
inorder (Fork a t u) = inorder t++ [a] ++ inorder u

For instance, a traversal of the source

Fork 5 (Fork 6 (Fork 7 Empty EmptyEmpty)
(Fork 8 (Fork 4 Empty Empty (Fork 9 Empty Empty)

from this view. A state-based ‘put’ function will take theited

view and try to construct a tree without the deleted elemamtt
hopefully the new source remains similar to the original, goghat
unnecessary changes are kept to a minimum. (Note that we have
deliberately kept all the functions abstract, because oypgsal is

not dependent on any particular implementation.)

The method described above takes effort proportional to the
size of the data, not to the size of the change. Assuming a func
tional cons-list, the deletion of 4 involves traversing thiew
list to the location of the deletion, and changing only thé-su
list [4,8,9] rooted at that location; a more efficient approach is
to update only the source subtréeork 8 (Fork 4 Empty Empty
(Fork 9 Empty Empty) that is responsible for generating the view
fragment[4,8,9]. That is to say, the bidirectional updating should
be incremental. Better still, in the case of lists, where ktamn
is local and does not induce subsequent changes to a substruc
ture, a more refined analysis may discover that only the sabtr
(Fork 4 Empty Empty is really affected by the edit, and updating
this is sufficient.



We were able to conclude above that the view sulpis8, 9]
corresponds to the source subtrg®rk 8 (Fork 4 Empty Empty
(Fork 9 Empty Empty), because all elements in the former can be
found in the latter, and the ‘get’ function (inorder traajshap-
pens to have certain properties that allow structure cpomgences
to be derived from element correspondences. In the seqaejilv
discuss in detail how ‘get’ functions that support incretaénp-
dates can be identified; and present a constructive methqukfo
forming the said update in a change-based framework. Asgumi
a fairly balanced source tree, the complexity of our al@onitis
O (mx log n+f m) wheren is the size of the source trem,is the
size of the affected source part, ahds the complexity function
of a state-based ‘put’ function. The update itself take tpropor-
tional tom; but it takesm x log n time to locate the target source
location.

The rest of the paper is structured as follows. Section Zgive
overall setting of change-based bidirectional framewdBlextion 3
discusses the propagation of locality of view editing tolthe| of
source updating, and Section 4 presents a constructiveoch&n
deriving change-based ‘put’ functions. We then refine thrigue
for list views (Section 5), and discuss related issues {@&6), be-
fore surveying related work (Section 7) and concluding {i5ad).

2. The Overall Setting

We restrict our attention to polymorphically typed tremsstured
data, and polymorphic ‘get’ functions. To be explicit abautr
assumptions, we express our requirements in terms of a tgps ¢
TypeFunctor

classTypeFunctor svhere
bimap::(a—b) — (c—d) —-sac—sbd
arity ::sab—Int
select:sab— Int—b
lab::s(Label a) Labels— Labels

dataDeltas:* — x — %
close:Deltasab—b—sab

The remainder of Section 2 elaborates on these requirements

2.1 Algebraic Datatypes

We restrict attention to regular datatypes—that is, definddrms
of sums, products, and least fixed points. We assume thayjplee t
functor is (as the name suggests) a bifunctor, satisfyiaduhctor
laws

bimap id id =id
bimap(f og) (hok) = bimap f ho bimap g k
The type functor determines the shape of the tree; polyniorph

tree terms are then formed by taking the fixpoint (in the sdcon
argument) of this bifunctor.

data TypeFunctor s= Term s a= InT{outT::sa(Terms g}

For example, the binary tree type from Section 1.4 is reptese
by the following definitions:

data TreeF a b= EmptyF| ForkF ab b
type Tree a= Term TreeF a

with the obvious definition obimap

In the interests of brevity, we will usually write binary ®p
constructorsin the type clas3ypeFunctoras single bold capitals
S; and in an abuse of notation, we will often omit the elemepéety
writing justuS for Term s a

As usual, the type functor induces a fold operator for corisgm
tree terms:

fold:: TypeFunctor s= (sab—b) — Termsa— b
fold f t="f (bimap id(fold f) (outT 1))

The idea is that ‘get’ functions should be written as polypiic
instances offold. For example, with an appropriate type functor
definition for lists:

dataListF a b= NilF | ConsF ab
typelLista = Term ListF a

we could implement thanorder transformation as follows:

inorder:: Tree a— Lista

inorder t= fold step t(InT NilF) where
step EmptyF =id
step(ForkF af g) =f oInToConsF & g

2.2 Tree Navigation
We use functions

arity ::TypeFunctor s sab— Int
select: TypeFunctor s==sab—Int—b

to capture the number of recursive components irSatructure,
and to select one of those components. For example, forybinar
trees we have

arity EmptyF =0
arity (ForkF _ __) =2
select(ForkF _t _) 0=t
select(ForkF _ _u) 1=u

Note thatselectis a partial function, andelect x iis defined iff
0 <i<arity x. As a shorthand, we writg for select xj andx; .t
to denote the substitution ofor x; in x. We define a functiochild
to select an immediate subterm of a term:

child:: TypeFunctor s= Term s a— Int — Term s a
child ti= (outT 1

and a functiorzoomto select an arbitrarily deep subterm, following
a path represented as a list of positions:

type Path= [Int]

zoom: TypeFunctor s Term s a— Path— Term s a
zoom= foldl child

2.3 Labelling

We assume that all tree elements are associated with urabaks)
for this purpose we assume an abstract tipbel and a corre-
sponding typé_abelsof sets of labels. (For example, the unique la-
bel associated with an element at a particular node migturedd
out of the path from the root of the tree to that node, togethigr

a disambiguating index in case there are multiple elemenisea
same node.)

type Label = ...
type Labels= Set Label

Generally speaking, the labels should be thought of as Haéag
hind the scenes, inaccessible to normal functions; thathis we
insist that ‘get’ functions should be polymorphic. In peuiar, we
assume that the ‘get’ function cannot invent labels: all lt#izels
that turn up in a view subterm originated from the correspund
source term. But for the purposes of discussing labels daldats
themselves, we require the type functor to provide a meshani
for combining the labelsets from subterms to make the lebébs
aterm itself:

lab:: TypeFunctor s=- s (Label a) Labels— Labels



context

focus

Figure 1. The context-focus representation.

For example, for binary trees we have

lab EmptyF =0
lab (ForkF (I,a) x y) = singleton lUxUy

This forms anS-algebra, which can be exploited by a partly poly-
morphic fold to compute the labelset of a labelled term:

type LTerm s a= Term s(Label a)

labels:: TypeFunctor s=- LTerm s a— Labels
labels= fold lab

We will often use the shorthand) to denotelabels t we extend
this notation toS-structures ofuS' treesx:: SuS' by writing ‘(x)’
for ‘labs (Slabelgg x)’, and, as a shorthand, writgX.;)" for
‘labs (Slabelgg X)i—0)-

Splitting anS-structure into one component and the remainder
yields an exhaustive and (at least fstructures arising directly
from apS-structure) disjoint partition of the label sets: far S uS’
and for any valid,

(Xzi) U (xi) = (X)
and fors:: pSand any valid,

((outT g.) #{(outT §i)

where # denotes disjointness, thatigy = (xNy = 0). Note that
(xCy) A (y#2z) = (x#2z) by monotonicity of intersection, so we
allow ourselves to write derivations of the form € x#y D Z, with

a chain of inclusions, a disjointness, and a chain of contaits,
and conclude from it thaw#z.

2.4 Tree Contexts

As implemented by functiozoom a subtree of interest can be
accessed by navigating from the root of a tree and followigiyen
path. Such a path need not represent a traversal from thaltoot
the way to a leaf: paths may point to internal nodes in a trée. T
traversal of a tree following a path ‘opens’ that tree into tlisjoint
structures: one represents the subtree below the nodeedtagh
the path, known as the currefttcus the other represents the rest
of the tree and is known as tlwentextof the focus (see Figure 1).
On typing grounds, we only consider as valid those paths¢aal
to recursive components; for example, the focus of the bitrae
datatype above can descend to the left or the right subtutedd
to the element stored in a node.

Then a one-hole context for a tree consists of a list of orle-ho
contexts for nodes; we have chosen to represent that listroost
context first, so that ‘closing’ is foldr.

type Context s a= [Deltas a(Term s 3|

(<) :: TypeFunctor s= Contexts a» Termsa— Terms a
cs<t=foldr (\d u— InT (close d Q) tcs

For example, for binary trees, there are two ways of making a
TreeF a bthat is missing a singlé, one for each side of &ork
node—but there is no way for &mptynode to have a hole:

data Delta TreeF a b= LForkF a b| RForkF a b

close(LForkF au) t = ForkF atu
close(RForkF af u=ForkF atu

In fact, the context typBelta sfollows directly from the structurs
of the tree; contexts are a type-indexed data type [17], ancdbe
defined generically [16, 22].

2.5 Subterms

We prohibit trees with ‘junk’ structures that are not lakéll be-
cause such structures break the one-to-one corresponlemesen
subtrees of a given tree and their labelsets, a propertyreshfor
tracing structure transformations using labels.

REQUIREMENT1 (No Junk).Given a tree t(child ti) C (t), for
any valid index i. O

The no-junk condition enforces that the labelset of anyreeitree
must be a proper subset of that of its parent. For many dasatyp
similar to the representation of binary trees above, thigun&
condition is enforced by the constructors. But for otheatiates
such as leaf-labelled trees

dataLTree a= EmptyL
| Leaf a
| Bin(LTree g (LTree g

one can construct invalid values such B EmptyL(Leaf1),
whereLeaf 1 is a strict subterm oBin EmptyL(Leaf 1), but has
the same labelset. In this paper, we rule out datatypesHikeHhat
do not enforce the no-junk requirement.

Tree navigation induces a subterm ordering on trees.

DEFINITION 2 (Subterm Ordering)Given trees r and t, we say r
is a subterm of t, written K t, if r = zoom t p for some p. We say
that a subterm r is trivial if(r) = 0. O

Throughout this paper, we assume non-trivial subtermsssrdéh-
erwise stated.

COROLLARY 3 (Distinct Subterms)Because tree elements are
uniquely labelled, when ¥t (and r is non-trivial), then r is in
fact at the end of a unique path; that is, there is a (partiahdtion

locate:: uS — pS — Path satisfying
locatetr=p < r=zoomtp

We say that ‘r is at depth n in t’ when=alength(locate tr). O

We represent a context as a tree with a hole in it, denoting the DerINITION 4 (Orderedness)\Ve say r and t are ordered, written

location of the subtree given by the focus. This can be cagtimr
terms of a type functioelta, such thatDelta s a bis the type of
one-hole contexts fos ah That is, a value of typ®elta s a bis
equivalent to one of type a bthat is missing one value of tyge

so the type functor should be equipped with the correspgndin
operation to ‘close’ @elta s a baround the missing to make an
sah

dataDelta s:: « — % — %
close: TypeFunctor s= Deltasab—b—sab

asr~t,ifrgtvi<r. O

A consequence of the no-junk requirement is a close coivalat
between the subterm relation and inclusion among labelsets

COROLLARY 5 (Labels of Subterms)The subterm relationship is
a refinement of inclusion of labelsetsxrt = (r) C (t). And for
ordered trees rt, the converse holds too=t < (r) C (t). O

Another consequence is that the labelsets of two orderexs tre
intersect.



COROLLARY 6. We have r~t = ({r) N (t) # 0) for non-trivial
treesr,t. O

The operato( <) that closes a context around a tree has a partial
inverse(/), in the sense that

t/r=c

whenr <t; in particular,(t/r)<r=tand(c<r)/r =c. One
might think oft /r as the result of subtracting subtreiom treet.
The two operatoré<) and(/) associate to the right, arfd) has a
higher precedence thgr:); we can therefore nest them:

c<r=t <«

PropPosITION7 (Nesting).Given that r< s<t, then

t/s<s/r<q=t/r<aq. O
Subtraction is related to substition:

PrROPOSITIONS. For trees r and t and position i,

InT (outT r)j—t=r/(outT r)j <t. O

Closing extends the input tree, as captured by the followiogo-
tonicity condition.

PROPOSITION9 (Monotonicity).t< (c<t) O
Lastly, all holes are equal.

REQUIREMENT10 (Hole Equality).s/s=1t/t. O

COROLLARY 11 (Left Unit). s/s<t=t. O

2.6 Local Editing

An editing functionis an endofunctioredit:: v — v; we will con-
sider editing functions only on views. We require all editiiunc-
tions to be total, so that they can always be applied to a sulié
a view. We treat editing functions as being in some senseitoca
independent: they can be applied to any superterm encldseg
subterm that is actually affected by the edit.

DEFINITION 12 (Locality). We say an editing function e is local
to a subterm g of a view v if

Yu. upsusv=ev=v/u<eu
O

In the above definition, applying the local editing functierio
any subtermu of v enclosing the affected subtermg has the
same effect as applying the function vo For example, as we
have seen in the binary tree example, deleting 4 from thassubl
[4,8,9] and combining the result with the context 6,5] is the
equality of holes, we can conclude that the trivial locakitways
holds.

COROLLARY 13. Given a view v, any editing function is local to
subterm v of v. O

Beyond the trivial one, there is certainly an ordering amdifigr-
ent levels of locality, based on the subterm ordering, wfadh out
from the above definition. In this sense, a context-sers{jpath-
based) editing function, always requiring traversing friova root,
fixes up to bev, which implies very poor locality characteristics.
We will discuss an option for remedying this in Section 6.1.

In our proposal, the subteroy to which an editing function is
local is user-provided; our approach is based on the assomtptat
Up is significantly smaller tham. We pair the editing function with
an additional function that returns the affected subterm.

data Edit a= E{edit::a— a,affect:a— a}

(The above declaration creates a polymorphic record Bgyewith
named fielddit andaffect each of which is a function. The field
extractors are named after the fields; so given a vailgdit a the

two functions encapsulated in it can be retrievectdise::a — a
andaffect e:a — a. We require thaedit eis local toaffect e)

2.7 Change-Based Bidirectional Frameworks

A change-based bidirectional framework consists of twafiams:
a ‘get’ functionf :: s— v from source to view, and a change-based
‘put’ function fc<h:: Edit v— s— s. We only consider ‘get’ functions
that are regular structural recursions, because they are likely
to benefit from our proposed improvement. We will discuss thi
choice in detail in Section 3.2. We also rule out ‘get’ funas
involving duplication of labels, so that uniqueness of iifears
is preserved. The functiofgj, is higher-order, in contrast i ::
(v,s) — sin a state-based setting. Thifs no longer constructs an
updated source from an edited view, but from the originarssu
any information in the edited view can be derived from theiedi
function and the original source. In contrast to an openaliased
approachfg, is not dependent on the actual editing functions.
Bidirectional laws semantically equivalent to those deped
for state-based bidirectional frameworks can be specifiits new
setting.

Consistencyf (f5 e s = edite(f s)
Acceptability {5, (E{edit=id}) =id
Undoability f3, (efedit= (edite°})ofs e=id.

The relationships between different view values are eses
through explicit editing functions. For acceptability, senstruct a
record with the identity edit (and leave thffectfield unspecified).
For undoability, a record is updated with the left-inverg(t €°)
of its editing function to cancel its effect on the source.

Moving from a state-based framework to a change-based frame
work potentially improves run-time performance, as we eitphe
locality of updating. We look into the details in the next tse.

3. Locality Preservation

Incremental updates can be achieved if the locality of atiredi
function is propagated to the source level. Figure 2 shows &0
‘get’ function may relate subterms in the source to subtémtlse
view. The idea is that the subternmof the view depends only on
the subterns of the source. Furthermore, the sequences of source
contextssc,...,S¢, and view contexts/cy,...,VGn maintain this
relationship, so thatc; < vdepends only osg < s, and so on, until

VCm < ... < V€1 < vdepends only 0BG < ... <S¢ < S. Note that we

can always arrange the two columns in a way that both have the
same length (i.em = n); when one subterm on one side matches
with multiple ones on the other side, we only need to insegva f
empty contexts (sincg <t =t) to realign the two sides. This kind

of locality preservation is determined by the ‘get’ functiavhich
defines the connection between a view and its source.

3.1 Alignment

DEFINITION 14 (Alignment).We say ‘get’ function f aligns at
subterm r of s if for all t we have

f(s/r<t)y=fs/fr<ft

We call r an alignment position in s with respect to f. O

When a ‘get’ functiorf and a source are unambiguous, the term

r may be referred to as an alignment position, wHerg said to
align atr. The above definition not only characterizes the matching
of source subtermisto corresponding view subterms, but also a
kind of isolation between them. An alignment position carséen

as a ‘resistive barrier’ between the construction of a subend its



Figure 2. Source-view alignment.

context, through which information does not flow. At an aligant
position,f r is independent o /r andf s/f r is independent of.

The significance of alignment positions is that they capthee
mapping between the locality fa in the view and the locality to
in the source. As a result, ifr can be locally edited, thencan be
locally updated:

fq (fs/frav.s)=s/r<fg (V.r)

The above defines an optimization of an existing ‘put’ fuoicti

Basically, to process an edited vidvs /f r <V, we only need to

process/ (the edited r), providedf aligns atr. To show that the

above transformation is correct, we prove the consisteﬁlg,o
f(fs (fs/fr<V,s))

— (definition off }
f(s/r<fg (V.r))

= {falignsatr}
fs/fr<f(fg (V,r))

= {consistency ofg
fs/frev

Other bidirectional properties hold as well; we postponeirth
proofs until Section 4, where the complete solution is pries:

Not all view subterms match exactly with a source subterm;

sometimes we need to resort to a looser fit.

DEeFINITION 15. Given a ‘get’ function f, we say an alignment
position s covers v if % f s.

We now show some example ‘get’ functions that preserve dif-

ferent degrees of alignment. Consider a function that nettine
mirror image of a tree.

mirror :: Tree a— Tree a
mirror Empty = Empty
mirror (Fork alr) = Fork a(mirror r) (mirror I)

Every subtree in the source is an alignment position, becthes
constructions of the view and of the source coincide.

Another such function igorder, defined in Section 1.4. In this
case, only the right subtrees are alignment positions,usecthe
left subtrees do not correspond to subterms in the view.

Yet another example is the functi@pinethat extracts the ele-
ments on the spine of a tree:

spine: Tree a— [a]
spineEmpty =[]
spine(Fork alr) =a:spiner
In this case, all subterms of the source are alignment pasiti

though the left subtrees, which always correspond to theyehsp
in the view, are not very interesting.

3.2 Exploiting Regularity

Change-based ‘put’ functions are only interesting whemettage
plenty of alignment positions to choose from, so that vieltetms
can be covered ‘tightly’. As alignment positions represeatches
between source and view constructions, for a recursivé fget-
tion, this matching of constructions suggests a kind ofcstmal
recursion pattern. Though not a sufficient condition, ragty of
the recursion pattern is likely to positively impact the itafail-
ity of alignment positions. Thus, we focus on regular suiait
recursions—functions that can be implemented as foldsa Fegu-
lar structural recursion, a source is deconstructed inf@aumiway,
which leaves the fold body to determine whether the constmic
of a view matches up.

To explain the intuition behind how ‘get’ functions detenai
alignment positions, let us revisit the functiepine A fold de-
constructs a non-empty input tree into two source subtéramsl
r and a single elemer; for the spinecomputation, the fold body
discardd and adds the elemeatto spine . The recursive calls al-
ways produce a view recursive component (suckpé@se 1) from a
source subternr); whether the view recursive component so pro-
duced is made into a view subterm by the fold body determimes t
possibility of alignment. For example, recursive compdrsgine r
is a subterm o&: spine r, which makes an alignment position. In
this case, any edit local t&pine rcan be addressed by updating
In contrast, if we defingpineas

spineReyFork al r) = spineRev r+ [a]

then the view construction is the ‘opposite’ of the sourcestaic-
tion, with the parena at the bottom (tail end) of the list. This mis-
alignment manifests itself by causisgineRev not to form a sub-
term in the view. Any edit to the view affects a sublist indhgla,
which implies an update to the complete source tree.

In the case ofpine a view subterm not only has a recursive
component as its origin, but also as its exclusive origipine r
is copied to the view without modification. This exclusivity
necessary for producing alignment positions. Consideriamaof
spinethat breaks this rule:

spineRo{Fork al r) = a: reverse(spineRot §

The recursive componerspineRot ris changed byreverse and
its manifestation in the view depends on its context, whieh d
cides how many timeseverseis applied to it. Though at each
individual recursive stepeverse(spineRot j is a subterm ofa:
reverse(spineRot i, a subsequent step does not preserve this prop-
erty: reverse(spineRot j ceases to be a subtermiwf(reverse(a:
reverse(spineRot i)). In this case, only three alignment positions
(the complete source and the root's two immediate childesist,
which is not very interesting.

3.2.1 The Well-Aligning Condition

We formalize the above observation into a condition on thdidm
of ‘get’ functions defined as folds that guarantees the aldity
of alignment positions.

DEeFINITION 16 (Well-aligning).We say a fold body b is well-
aligning if for all x such that arity x# 0, and for all non-trivial
subterms u of b x, we have

Ji.u~xg AVYW. b Xmw =bX/X <w
Further, we say that £ fold b is well-aligning if its body b is. [
We do not worry about the case when there are no recursive com-
ponents irx (i.e.,arity x = 0), as they are terminals in construction,
and will not affect alignment. There are two parts to the ¢ond

tion: the first part ( ~ x;) enforces that each non-trivial view sub-
term u has a recursive component as its origin; the second part



(WYw. b x—w = b/ X < w) guarantees the exclusivity of the origins
(with no influence by external factors)—the recursive cong
in question is copied unchanged to the view. It is importantlie
expressiveness of ‘get’ functions that this copying regjuient only
applies to selected recursive components; some, thatppéar as

subterms ob x, are taken as opaque blocks, leaving the rest to be

broken up for gluing the blocks together.
For example, consider the following functions:

vir (v,Is,rs) = [v] +Is ++rs
Ivr (v,Is,rs) =Is +[v]+rs
Irv (v,Is,rs) =Is ++rs -+ [V]

The functionsvir, Ivr, andlrv (standing for ‘visit, left, right’, etc)
correspond to individual cases of the fold bodies for traivey
binary trees in pre-, in-, and post-order, respectivelgrétare two
inputs to the functions that are recursive view componeras)ely
Is andrs. Functionsvir andlvr are well-aligning, ass is ordered
with respect to all the view subterms that are visited, waglre is
not.

Generalizing the definition to the semantics of transforomat
we say that a ‘get’ function is well-aligning if all cases d$ i
body are well-aligning. By that definitiopreorder, inorder, unzip
mirror, spine filter, mapare examples of well-aligning ‘get’ func-
tions, whilepostorderis not. (However, we will discuss how this
function can be made well-aligning in Section 5.)

3.2.2 Availability of Alignment Positions

The well-aligning property guarantees the availabilitabfnment
positions; and we can state a declarative result about heywritay
be found.

THEOREM17. Given a well-aligning ‘get’ function f such that

f s=v, we have that f aligns at subterm r of s if there exists a

non-trivial subterm u of v such thatuf r. O

The well-aligning condition tells us clearly that some stde re-

cursive components become subterms in the view; and theeour

subterms producing the selected subcomponents are aligmoe
sitions. The key to proving Theorem 17 is to establish thetfaat

recursive componerftr is among those selected due to the premise

u=<f r; this can be achieved by connecting the unique labels in
with those inf r.

As preparation for formally proving Theorem 17, we state som
properties regarding labels of trees under transformafisrmen-
tioned at the beginning of Section 2, one important requémenof
‘get’ functions is that they do not invent labels.

REQUIREMENT18 (Conservation of Labels§ziven a ‘get’ func-
tion f = fold b, we have that b does not invent labels:

vx. (b x) C lab x
and hence, neither does fold b invent labels:
vs. (f s) C (s)
U

An important consequence of the fact that ‘get’ functions do

not invent labels is that labels cannot reappear after thgg heen
dropped during the construction of a view. Conversely, &tzel set
(v) has been generated after processing subtesfit by the ‘get’
functionf (thatis,r xtand(v) C (f r)), and(v) is still present after
processing itself (that is,(v) C (f t)), then(v) is present at every
intermediate stage tod\W) C (f s) for everys such that < s<t).
This is a kind of ‘convexity’ property of label sets.

More importantly in what follows, a similar result holds for
subterms, rather than their projections to label sets; duttis,

we need the additional assumption that the ‘get’ funcfiggwell-
aligning. The primary result (Corollary 20) is a convexitpperty
for terms: given sourcest with r 5t such thav< f r andv<f t,
then alsov< f s for any s such thatr x s<t. (In fact, v ft

is not strictly required;(v) C (f t) suffices.) The essential step
(Lemma 19) is the one from the outermost terrto one of its
immediate children: if view subterm shows up after processing
a subternT within theith child (outT t); of t, andv is still present
after processing, thenv must have come from thieh child: v <

f (outT v);. Note that, for both of these results, we make use of our
implicit assumption that is non-trivial.

LEMMA 19 (Maintaining terms)Suppose a well-aligning ‘get’
function f=fold b. For source termst with r < (outT t);, if v<fr
and vx f t, then also & f (outT t);.

PROOF Letx = Sf (outT 1), so thatf t = b xandf (outT t); = x;.
Sinceb is well-aligning, ands is a non-trivial subterm db x, there
exists g such thav~x; = f (outT v);. In fact, thisj must bei:

v)

C {labels of subterms (Corollary 5y f r, by assumptioh
(fr)

C {f does not invent labels
r)

C  {r<(outT v;; Corollary 5 again
{(outT b))

# {disjointness of labels
<(OUtT t)?éi>

D {f does not invent labels; monotonicity of intersectjon
(ST (outT 9))

= {definition ofx}

(Xzi)
and so(v) #(x.), and hencgv) C (x) by disjointness of labels.
Finally, v~ x; and(v) C (x;) imply v< x;, by Corollary 5. O

COROLLARY 20 (Term convexity).Suppose a well-aligning ‘get’
function f = fold b. For source terms,t with r <t, if v<f r and
v<ft, then also W f s for every s such thatf s<t.

PrROOF The proof is by induction over the lengthlotcate t . The
base case is when the path is empty,rse t; then the lemma
is trivially true. For the inductive case, assume the statenis
valid for paths of lengtm. Suppose that < t, and thatr is at
depthn+1 in t (so thatr < (outT t); for some unique index,
andlocate(outT t); r has lengtm), and thatv< f r andv<f t. By
Lemma 19, we get< f (outT t);; then by induction we get<f s
for everyswith r < s< (outT 1); too; and the final case=t trivially
holds. O

Theorem 17 follows directly from the following result: give
a well-aligning ‘get’ functionf, and sources,s such that <'s, if
there exists any view subtermsuch thav < f r andv<f s, thenf
aligns at subterm of s. (Again, we assume thatis non-trivial.)

LEMMA 21 (Get alignment)Given a well-aligning ‘get’ function
f, sources rt with r <t, and view v such that ¥ f r and v<f t,
then f aligns at subterm r of t.

PROOF Again, by induction over the length &dcate tr. The base
case is when the path is empty; thers- r and the theorem is
trivially true (sincef necessarily aligns at the robof sourcet).
For the inductive case, we assume that the statement is fealid
paths of lengtm; we are given terms,t with r <t andr at depth
n+1int, and aternvwith v<f r andv=f t, and we have to show
thatf aligns at subterm of t.



Suppose thatis within thei’th child of t, that isr < swheres=
(outT t);. Then by Corollary 20, we hawex f s, and by induction,
f aligns at subterm of s. Letx = Sf (outT 1), so thatf t =b xand
f (outT 1); = x. Becausd is well-aligning andv< b x, there exists
aj such that/~x andb X, = b x/ ¥ < w for anyw. In fact, that
j must bei, by the same argument as in the proof of Lemma 19. In
particular,f s=x < b x, a fact that we shall use below. Finally, we
show thaff aligns at subterm of t. For an arbitrary source term
we have:

f(t/r<p)
{'sincer x st}
f(t/s<(s/r<p))
{ Proposition 8—s= (outT 1); }
f (InT (OUtT t)i»—>(s/r<p))
{'evaluation rule fof = fold b}
b (Sf (OUtT t)i»—>(s/r<p))
{ naturality ofselect;
b (ST (outT )it (s/r<p))
{ bis well-aligning; discussion aboye
b (Sf (outT 1)) /f (outT t)j <f (s/r<p)
{ evaluation rule fof again;s= (outT t); }
ft/fs<f(s/r<p)
{induction}
ft/fs<(fs/fr<fp)
{ nesting
ft/fr<fp

O

So far, we have established well-alignment as a sufficient co
dition for the availability of alignment positions (Defiidh 16),
and proved a declarative result about how alignment positcan
be found (Theorem 17). Next, we move on to devise a construc-
tive method of finding alignment positions, and deriving arupe-
based ‘put’ function based on this method.

4. Change-Based ‘Put’ Functions

The derivation of a ‘put’ function is divided into three step
(i) finding an alignment position covering the edited vievtsum;

(i) using a state-based ‘put’ function to map the view suftéo a
source subterm; and (iii) merging the original source cdantéth
the updated source subterm. The key part of this processggist
the other two follow on quite naturally. Taking the previgesult,
we know that a source subterm is an alignment position ifether
is a corresponding subterm in the view. A standard way ofbesta
lishing the source/view correspondence semantically tisate the
uniquely identifying labels.

4.1 Labelling and Reflecting

Unique identifiers are created using paths in the source) fhe
root to the node constructors of the elements. As a resulbdea n
is at the root position of the subterm identified by the path. A
far as ‘get’ functions are concerned, an element and itd fabm
an atomic unit; an element in the view originates from an eleim
in the source associated with the same label. (It is wortingot
that the labels only represent paths in the source, not tinobe
view.) Given an edit-affected view subterma sensible alignment
position should include all the labels {u); the path leading to such
a source subterm is the maximum common prefop(v) of all the
paths to nodes with these labels.

Consider a simple example withirror as the ‘get’ function (see
Figure 3). Note that the labels in the source—the list corepbof
each pair in the diagram—are copied over to the view. Suppose
we insert a new node at the location labell@d in the view, af-

100 ]

mirror

100 ]

les[y| |7a2| |7a2| |e8y]

3411 |92 l91.2| |34

Figure 3. Usingmirror as a ‘get’ function.

fecting the element 68 at locatidd] and the locations below it
[11,1],[1,2]]. (Note that we don't require a concrete label for the
newly inserted node since it will not contribute to the idcdtion
of the affected source.) The maximum common prefix of the af-
fected labeld[1],[1,1],[1,2]] is [1]. Now tracing the pedigree of
the path[1] back to the source, we conclude that it is the subtree
with root element 68 that needs to be changed.

The key to demonstrating the correctness of the above moces
is to show that the subset relation between label sets qamels to
the subterm relation between trees.

LEMMA 22. Given a well-aligning ‘get’ function £ fold b, and
source terms,$ with s t, and view term v, if ¥ f t and (v) C (s)
then v f s.

PROOF Again, by induction over the length tfcate t s The base
case is when the path is empty; thea: t, and the result trivially
holds. For the inductive case, assume that the result hotgsaths
of lengthn, and thats is at depthn+1 in t. Leti be such that
s=< (outT t);, so thatlocate(outT t); s has lengttn. We will show
thatv<f (outT t);; then we can concludex f s by appeal to the
inductive hypothesis.

Letx = Sf (outT t), sof t = b xandf (outT t); = x;. Sincev is
a non-trivial subterm ob x, andb is well-aligning, there exists p
such that ~ x. By the usual argument, thamust bei:

V)
C  {assumption
(s)
C {hypothesis, and Corollary}5
((outT b;)
# {disjointness of labels
<(OUtT t)?éi>
{f does not invent labels
((Sf (outT 9))
{ definition}
(Xzi)
Sov~x;. Moreover,(v) C (x), by disjointness of labels, since by
assumption we havex f t and hencev) C (f t) = (b x) C (x), and
we have just shown thav) #(x;). Therefore, by Corollary 5 we
concludev=x =f (outT t). O

)

As a side remark, so far we have been oblivious to the fact that
the source and view nodes are now labelled, and have assumed
that the ‘get’ and ‘put’ functions work uniformly on them. iBhis
certainly correct given parametrically polymorphic dgpets and
functions; free theorems [31] provide the guarantee we .nked
is straightforward to relax this fully-parametric type trégion to
constrained polymorphic types. For example, we can useliggua
in the transformation by introducing the following:

f “Ega=sa—va
fgiEqa= (vasa —sa

and a generic instance to bypass the labels:



instanceEq a=- Eq(Label a) where
(=) (~a) (..b)=a=b

This kind of generic definition is all that is required to mduce
constrained polymorphism. For example, consider a fundfiat
filters the labels of a tree and returns them as a list.

filterT::Eqa=- (a,Tree § — ]

filterT (X, Empty =]

filterT (x,Fork alr) = if a= xthenlr elsea:|Ir
wherelr = filterT |-+ filterT r

FunctionfilterT is well-aligning, and our technique is applicable

without modification.

Itis worth mentioning that labelling tree elements unigueshd
exploiting parametricity to establish connections betwseurce
and view is not limited to finding subterm correspondencg2®j,
‘get’ functions are applied to source values with elemeeajsaced
by labels, which allows one to conduct a kind of forensic eixam
tion of the transformation, determining its effect withexamining
its implementation; with such information a ‘put’ functi@an be
constructed. We will discuss in more detail the connectietwizen
the approach in [29] and our technique in Section 7.

4.2 The Change-Based ‘Put’ Function

We are now ready to present the change-based ‘put’ fundtion.

anyfg, a generid g, function can be defined as follows:

f5Editv—s—s
fhes=s/r<(fgo((editecf)aid))r
wherer =zoomis
i = mcp(affect e(f s))

The functionf §, maps an edit operation on vieves,into an update
operation on sources. The evaluatiorﬁcﬁﬁs illustrated in Figure 4,
which shows how an updated source is obtained by an indirect
route. A source is firstly mapped into a view V¥iawith the affected
view subterm of the edit extracted \aéfect e After that, the labels

in the affected view subterm are collected and are used tuifgde

an alignment positiont, covering the affected view subterm. A

view of the alignment position is then constructed by apyfi,
and is edited before the state-based ‘put’ funcfigrmaps it into
an updated source subterm. Finally, the standard spliatmen,

with type (a— b) — (a— ¢) — (a— (b,c)), is used to produce a

pair containing the result of applying two functions to analHere

it combines the newly created source subterm with the algin

context that remains unchanged. (The straightforwaraleting

of the newly generated source subterm witds the root label is

omitted.)

As shown in Figure 4, there are several passes across the

source/view boundary, and apart from the initial ‘get’ ftioo
application, all of them concern only the edit-affected teufs.

Assuming the editing and ‘get’ functions have no worse run-

time performance than the ‘put’ function, the complexity fgf

is O (mx log n+c m) wheren andm are the sizes of the sourse

and the change, andc is the complexity function fofg;. Note

thataffect e(f s) will have been executed prior to the ‘put’ function

execution, and is not included in the performance analydie
cost of computings/r is not considered because the context

can be computed together with the foausvhen the zooming is
performed. Tham x log n part of the above complexity function

comes from the computation aficp wherem labels of sizdog n
need to be processed.

The functionf 3, is expected to preserve the bidirectional prop-
erties offg;. This is established whefi, operates at alignment po-

sitions.

THEOREM23. Given a well-aligning ‘get’ function f such that

f s=v, then for all source subterms r of s and view subterms u
of v, zoommcp(u)) s is the smallest alignment position covering
u.

PROOF By definition, we haveéu) C (zoom(mcp(u)) s).

(u) C (zoom(mep(u)) s) AuxfsA
(zoom(mcp(u)) s) <'s

= {lemma22
uxf (zoom(mep(u))s) AuxfsA
(zoom(mcp(u)) s) X s

= {theorem 1%
f aligns at subterrmoom(mcp(u)) sof s

Also from the definition ofmcp there exists nar such that
r <zoom(mep(uy) sand(u) C (r). Thus,zoom(mcp(u)) sis the
smallest alignment position covering O

We can state the bidirectional properties pf

THEOREM24 (Consistency)f (f5,e 9 =edite(f s)

PROOF

f(f5e9
= {definition offg,}
f(s/r<(fs o((editeof)aid))r))
= {risan alignment positioh
fs/fr<(fofgo((editeof)aid))r)
= {consistency ofg }
fs/fr<(editeof)r
= {r coversaffect e(f s), and locality ofedit}
edite(fs/fr<fr)
= {risan alignment positioh
edite(f (s/r<r)))
= {cancellatior}
edite(f s)

O

For acceptability, we need an ‘identity’ edit that does ratrige
the view.

THEOREM25 (Acceptability).fj, (E{edit=id}) =id.
PROOF
f5 (E{edit=id})s
= { definition off,
s/r<(fso((idof)aid))r
{ acceptability offg
s/r<r
= {cancellatior}
s

Undoability involves inverting an edit as a function.
THEOREM26 (Undoability).f3, (ef edit= (editg°})of g, e=id.
PROOF.

(fg (e{edit= (edite°})of5 e) s
= { definition offj, and constanaffectin e}
s/r < (fs o((edite®of aid)) ((fs; o (edit eof Aid))r)
= {definition of A }
s/r<fg (((edite°of ofg) ((editeof) r,r),
fs ((editeof)r,r))
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Figure 4. Change-based ‘put’ execution, showing relationship betwsource (top) and associated view (bottom) during tramefton.

= {consistency ofg
s/r<fg (((edite®oediteof) r fg ((editeof)r,r))
= {(edite°ocedite=id}
s/r<fg (fr.fg ((editeof)r,r))
= {undoability offg
s/r<r
= {cancellatior}
s

5. More Refined Locality

version ag(l,13) <l =11 +I2++13. (In a sense, this is treating
lists as semi-structured data, similar to traditional titeants of
relational databases and graphs, and not as an algebratyma)
All the other definitions developed for general trees remvaiid.

Now instead of always picking out a complete suffix or prefix,
we can mark an interior list segment as affected by editing, a
the same definition dfj, directly applies. For example, deleting 4
from [7,6,5,4,8,9] only affects the interior segmef], leaving
both context§7,6,5] and [8,9] unaffected. Correspondingly, the
alignment positions now match subterms in the source wigh se
ments (rather than with tails) in the view.

6. Discussion

As we have seen, the performance of our proposal dependon th g1 Context-Sensitive Editing

height of the source tree and the size of the affected regien (
the degree of locality of the edit). The former is clearly teg
the control of any bidirectional framework, and the lattelargely
decided by the structure of the view. For fairly balanceégrehe
majority of nodes are deep in the structure, so it is reagenab
to suppose that the majority of edits will be too; given stuue
alignment, this implies a good degree of locality. A problarises
when the view tree is skewed, such as in a list, since thatitet

that a node appears at any depth is the same. If a node high in

the structure is affected by an edit, such as a deletion,ffeeted
subtree could be rather large.

This problem has already manifested itself in our binaegtr
traversal example (see Section 1.4, where it is excessiveatt
the whole sublis{4,8,9] as affected). A better alternative is to
recognize the subligB, 9] as unaffected context too.

Another example is post-order tree traversal, where any non
empty sublist of the view contains the head of the sourcechwhi
results in very poor locality preservation. As a matter of f@ost-
order traversal is excluded through the well-aligning dbod.

Nevertheless, being a special kind of tree, lists enjoy abamm
of unique properties. We notice that unlike general tredsere a
separate datatype is needed for contexts, the context typists
is isomorphic to the list type itself, and so we can simply lists
as both contexts and foci, and use the append functieh 4s the
close function €). Given the symmetry ofy), either the context
or the focus can be edited, and all the definitions and reduéiize.
For example, consider threversefunction. Editing the front of the
list view can be localized to a prefix of the view and mappedbac
to a suffix of the source.

As a result, it makes sense to try to capture a lower (right)
bound of an edit-affected sublist, in addition to the upgeft)
bound. Instead of splitting a list view into a prefix (conjeand
a suffix (focus), we can now see it s+ 1, +-I3. To reflect this
specialization, we overload the infix operatorand define its list

The editing system we have looked at so far is context-inaepet;
this is particularly convenient for local editing, since ttame edit
can be applied both to a structure and to its subterms. Fer tre
structured views, it is sometimes useful to provide a fullgartial)
path to the intended editing location, to narrow down thecedn
this case, the editing becomes context sensitive, bechesedrting
point of the path matters. Consider a path-based editingisys

type EditP t= { edit:: Path— t — t, affect: Path— t — Path}

An edit operation now finds its target in a structure follogvapath,
and produces the edited structure together with the patlingao
the affected subterm. Note that these paths in the view dhautl
be confused with labels of nodes that represent paths irothees.

The definition off 5, can be adapted for the new editing system.
We separate all interesting steps intbere clauses to facilitate
explanation.

fc<h :Editv— Path— s—s
fheps=(s/r)<fg (editegu,r) where
v=fs
p1 = affectepv

u=zoomp v -- affected subterm

i =mcp(u)
r=zoomis
u=fr

/

-- path tou/
-- relative editing path

p2 = travelUntil (py,v) u
Just g = stripPrefix p p1

Note that we keep the path information of the edit expli@titsat
it can be modified along with the shifting of focus. Comparethw
the context-independent version, there are a few addltisteas.
As the editing function returns a path locating the affectaiokerm,
we need to open the view to get to itif the third clause above).
A bigger challenge posed by this context-sensitivity is talfa



relative editing path when the starting point is moved tortiae of
subtermu’. We denote the path from the root of a structate its
subtermy asx ~ y. Since we know the subterm relatiomg U’ < v
among the affected subterm, the view of the alignment mosand
the complete view, the pafix = U ~~ uis the difference between
p1 =V~ uandp, =V ~ U. We already knowp,; traversing
p1 until the root ofu’ gives usp,, before we can perform path
arithmetic to recover the correspondence between the path a
structure inputs oédit e FunctiontravelUntil follows a path down
a tree until it reaches a given subtree; the part of the patelied
is returned as the output. FunctistripPrefixis a standard Haskell
function of typeEq a=- [a] — [a] — Maybe][a] that strips the first
input from the second one; since we know tpatis a prefix of
p1, the execution oftripPrefix p p; is always going to succeed.
A concern here is that the additional computation does im@os
performance overhead: travelling the path takes time fiireéhe
height of the view tree. Clearly, the multiple traversal¢ha above

establishindineageshetween a database and its view through trac-
ing identifiers of data [5]. Databases are typically large,tsis
never practical to process them completely for an update;ras
sult, identifying exclusive data sources is not conside®édn opti-
mization, but the core part of the update. Despite the olsvidun-
ilarity of these ideas, techniques developed for databasesiot
applicable in our setting, due to the very different repnéstons

of data and transformations.

Despite being in a unidirectional setting, the concepaddp-
tive programmingd1] is closely related to incremental updates. The
basic idea of adaptive programming is to build up a complgtat-
output dependency graph for a given input, from some syiotant
notations to the program. Based on the dependency, a congésp
ing output change can be derived from an input change, which
hopefully has a much better run-time performance comparee-t
executing the program with the new input. However, it is niot o
vious how the technique can be applied to a bidirectionainggt

code can be combined; we have presented them in separase stepwhere we need to derive an input change from an output change.

for clarity.

6.2 Totality of ‘Put’ Functions

The proofs of bidirectional properties in Section 4.2 areeln
a total setting, where the state-based transformationass@med
to execute successfully when given well-defined terms. &Sthe
‘get’ functions are regular structural recursions, it iagenable to
expect that if the execution over a complete source is saftdes
then the evaluation over subterms will also succeed. Hskhabg
a similar safety property for ‘put’ functions is much hardgut’
functions are often partial due to the conflicts between thieeé
view and the original source (though advanced type systeays m
help to specify their domains [10]), and usually do not expibeir
semantics other than through the bidirectional laws.

Since our approach employs state-based bidirectionalefram
works as black-boxes, it is impossible to conclude that the a
proach is universally safe. Nevertheless, there are patterfol-
low: most bidirectional frameworks create ‘put’ functiotist try
to trace the original ‘get’ execution backwards, and reigahg de-
construct their view and source inputs in parallel, untiliscoep-
ancy is encountered, which is the point where the ‘put’ fiomchas
to either resolve the conflict or fail. Our change-based @gogit re-
duces the scope of a ‘put’ function by removing a context that
known to be unaffected by the edit. Consequently, we exedt t
failures, if there are any, happen within the processingpefign-
ment position, and so moving from a state-based approadteto t
change-based approach preserves the safety property.

7. Related Work

Incremental updates have been studied in the context of Imode

transformation, for improving speed [13], and for achigvinore
refined semantics [8]. Similar to our design, both of these ap
proaches also require additional specification of the effidc
an edit. In contrast to tree-like datatypes, models areelges
connected untyped graphs, which are more easily dividea int
independent fragments to be updated separately; whereastu
aligning property of typed and overlapping subtrees is nharier
to establish. Hidaka et al. [15] use a simplified assumptiaat t
different parts of the graph are always independent in theik
on graph transformations via structural recursion. As altethe
structural recursion is effectively reduced t@@ncatMapopera-
tion. However, this assumption is not valid in general; asdaa
result, the acceptability property does not hold in theinfework.
The concept of an alignment position is also known aexatu-
sive data sourcen the database literature [9], and is used to prevent
‘side effects’ on the view that is edited (similar to our cistency
requirement). Exclusive data sources are commonly cordpute

Nevertheless, this would be an interesting future directm ex-
plore.

Explicit caching of intermediate computation is anotherywa
of achieving incremental execution. If an input change cané-
scribed as a loop increment, an incremental version of thgram
under the change can be constructed and benefit from prévious
computed results [20]. In a sense, the contexts in our approan
be seen as cached values, and the focuses can be seen as incre-
ments. Since in our case the closing operatiaf that combines
the cached result and the newly computed increment is n&rdep
dent on the transformations, we do not need to ‘improve’ thest-
formations to achieve incrementality.

Indexed elements in source structures and parametricgiyngr
from polymorphic ‘get’ functions are the key componentssef
mantic bidirectionalizatiorj29] — deriving a ‘put’ function without
inspecting the syntactic definition of the ‘get’ functiorimfiar to
our approach, the indices in [29] are unique and cannot lateute
by ‘get’ transformations, so that individual elements ie tfiew can
be mapped back to their source origins, and so does the gditin
them. Nevertheless, there has not been any attempt to drive
ture correspondences from the element correspondences, ée
in this paper. Consequently, editing view structures igpeomitted
in semantic bidirectionalization, while our approach onpimizes
a given ‘put’ function instead of creating one.

Maintaining proper alignment between ordered source aa vi
is itself an important semantic issue of bidirectional pesgming,
as view editing may cause mismatchings between view/salatee
Matching lenseq3] aims at addressing this issue without hard-
wiring alignment strategies into bidirectional systemisoligh our
use of alignment in this paper is purely for the purpose ahogt-
tion, it is noted that a change-based ‘put’ function is expeédo
preserve the alignment semantics of its employed statedbaise,
because the unaffected context that is not processed wilinpact
alignment.

The connection between alignment and incrementality is-spe
ulated in [18]. However, as far as we are aware, there hasaest b
any concrete proposal before.

8. Conclusions

We have developed a change-based bidirectional transfioma
framework that focuses on changes rather than data. Theitgeh
we have presented is very general, and most existing séaedb
frameworks may draw benefits from its adoption, so long as the
‘get’ function is well-aligning. This condition is semacttithere is
no restriction on the language that is used for implemeorati

In the future, we plan to look at ways of dealing with monomor-
phic functions, which are widely used in XML transformatsomn



contrast to the polymorphic case presented in this paperlath
belling of tree nodes does require some adjustment of alstested
bidirectional framework. It will be interesting to see whet such
adjustments can be made in a systematic way.
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