
Incremental Updates for Efficient Bidirectional Transform ations

Meng Wang
Computer Science and Engineering
Chalmers University of Technology

412 96 Göteborg, Sweden
wmeng@chalmers.se

Jeremy Gibbons
Department of Computer Science

University of Oxford
Wolfson Building, Parks Road

Oxford OX1 3QD, UK
jeremy.gibbons@cs.ox.ac.uk

Nicolas Wu
Well-Typed LLP

Oxford, UK
nick@well-typed.com

Abstract
A bidirectional transformation is a pair of mappings between
sourceandviewdata objects, one in each direction. When the view
is modified, the source is updated accordingly. The key to handling
large data objects that are subject to relatively small modifications
is to process the updates incrementally. Incrementality has been
explored in the semi-structured settings of relational databases and
graph transformations; this flexibility in structure makesit rela-
tively easy to divide the data into separate parts that can betrans-
formed and updated independently. The same is not true if thedata
is to be encoded with more general-purpose algebraic datatypes,
with transformations defined as functions: dividing data into well-
typed separate parts is tricky, and recursions typically create inter-
dependencies. In this paper, we study transformations thatsupport
incremental updates, and devise a constructive process to achieve
this incrementality.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages, Specialized application languages; D.3.3 [Programming
Languages]: Language Constructs and Features—Data types and
structures, Polymorphism

General Terms Languages, Design, Performance, Theory

Keywords Functional Programming, Bidirectional Programming,
Incremental Computing, Program Transformation, View-update
Problem

1. Introduction
From a programming perspective, bidirectional programming is an
exercise in writing programs that execute both forwards andback-
wards. This goal is not always achievable: non-injective functions
obscure the route back, while non-surjective functions leave the
‘backward’ execution partial. Nevertheless, the need to invert a
computation does arise in many contexts in which pairs of pro-
grams naturally interact with one another; parser/printer, embed-
ding/projection, marshalling/unmarshalling, and compression/de-
compression are typical examples. For decades, the needs ofbidi-
rectionality have been fulfilled by individually crafted pairs of pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $5.00

grams. This is a significant duplication of work, because thetwo
programs in a pair are closely related. Furthermore, maintaining
the relationship between these progams becomes a source of er-
rors, where changes to only one of the programs may lead to an
inconsistency within the pair.

A more promising solution to the challenge of bidirectionalpro-
gramming is to design languages that execute bidirectionally. In
such languages, any user-defined program, mapping a source into
a view, is coupled with an automatically generated ‘backward’ ver-
sion, whose correctness with regards to certain bidirectional prop-
erties is guaranteed. An obvious bidirectional property isinvertibil-
ity. For a given programfwd, its inversebwdsatisfiesfwd◦bwd= id
andbwd◦ fwd= id. While this invertibility is elegant, it restricts the
expressiveness of the approach, sincefwd must be bijective. Mod-
ulo information encoded infwd itself, the source and view neces-
sarily contain exactly the same information, probably withdifferent
presentations. This is an unrealistically strong assumption, and has
driven research into more widely applicable frameworks:

“More generally, bijective transformations are the exception
rather than the rule: the fact that one model contains infor-
mation not represented in the other is part of the reason for
having separate models.” [28]

1.1 Semi-Invertibility

To circumvent the bijectivity restriction, other languages have been
designed with particular applications in mind, where less demand-
ing constraints such as one-sided invertibility are imposed: left-
invertibility (fwd◦bwd= id) in [24], and right-invertibility (bwd◦
fwd= id) in [32]. A more dramatic diversion from the invertibility
framework is thelensapproach [10, 4, 12, 11, 3, 18], which orig-
inated from the study of theview-update problemof databases [7,
2, 14]. In the setting of lenses, (all or part of) the originalsource
is copied and is used in the ‘backward’ computation: a ‘get’ func-
tion has types→ v from source to view, while a ‘put’ function has
type (v,s) → s. We make the following notational convention: for
a ‘get’ function f , the counterpart ‘put’ function is written asf <.
The task of a ‘put’ function is to discover the connection between a
view update and an appropriate corresponding source update. This
‘appropriateness’ is defined by thedefinitional properties[6, 28]:

Consistencyf (f < (v,s)) = v

Acceptability f < (f s,s) = s

Here consistency(also known as the PutGet law) roughly corre-
sponds to right-invertibility, basically ensuring that all updates on
a view are captured by the updated source, andacceptability(also
known as the GetPut law) roughly corresponds to left-invertibility,
prohibiting changes to the source if no update has been made on the
view. Bidirectional transformations satisfying the abovetwo laws

are sometimes calledwell-behaved[10]. In addition to these laws,
an optionalundoabilityproperty is sometimes introduced:

Undoability f < (f s, f < (v′,s)) = s

This property states that the result of an update can be undone
through the view. For the sake of this paper, we will present our
proposal within the lenses framework, with the understanding that
the same technique applies to invertible languages as well.

1.2 State-Based and Operation-Based Approaches

The word ‘update’ is commonly found in the bidirectional transfor-
mation literature, and used to describe changes both in views and in
sources. In the sequel, we restrict the use of the term ‘update’ to the
transformed effect on a source, as a result of anedit to the view. De-
spite being fundamental to bidirectional transformation,there is no
universal agreement on what constitutes an edit. Roughly speak-
ing, opinions are divided as to whether one should look into the
mechanism of an edit or simply its result. Translated into language
design, one can either take an operation-based approach, consid-
ering an editing function that changes a view, or a state-based ap-
proach, which only sees the unedited and edited views. It happens
that the majority of existing bidirectional frameworks take the lat-
ter approach, due to its mathematical simplicity and good compat-
ibility. The bidirectional laws discussed above are specified from a
state-based perspective. Since only the edited view is required for
the ‘put’ function, it is easier to design a bidirectional framework
independently of any editing system. On the other hand, a state-
based approach necessarily discards information about an edit, and
must reverse-engineer it later by performing some kind of differ-
ence analysis on the two view values. Consequently, the run-time
performance of a state-based ‘put’ function is bound by the dif-
ference analysis that is required: even a small change to theview
implies a complete re-traversal.

Meertens [23] observed that to maintain constraints between
two structures, it is useful to know how a view is edited. Consider
the scenario where two lists are connected by a mapping relation
(i.e. each is the result ofmapping some function over the other); an
edit to one list, say deletion at a particular position, can be trans-
lated to a deletion at the same position in the other list. In this set-
ting, a lot more information about the edit is made availableto the
bidirectional framework, including where (the location) and what
(a deletion) has changed. As a result, the updating process could
be more straightforward compared to a state-based approach—in
the latter, all that is known is that one list is changed into another
list that is one element shorter, which is fairly ambiguous.In ad-
dition, having an operation for source update potentially achieves
better-than-linear runtime performance.

If run-time performance is the only concern, the ‘where’ part of
the knowledge of an edit is the key. For a given edit-affectedview
fragment, once the corresponding source fragment is pickedout, a
state-based approach could perform the changes as efficiently as an
operation-based counterpart, without the undesired complications
that the latter brings. This idea is not new. As a matter of fact, for
bidirectional systems in the neighbouring fields of databases and
software engineering, incrementality of source updates isthe norm
rather than the exception [5, 8, 15]. With the more recent upsurge
in (mostly functional) programming language approaches tobidi-
rectional transformation [19, 10, 21, 29, 25, 30], fresh challenges
emerge: structured data cannot easily be divided into separate parts
to be transformed and updated independently; and recursions typ-
ically create interdependencies. As a result, in contrast to the sit-
uation with databases and model transformations, none of the ex-
isting bidirectional languages supports any kind of incremental be-
haviour.

1.3 A Change-Based Approach

In this paper, we propose a novelchange-basedframework for
bidirectional transformation. Instead of inventing from first prin-
ciples to add to the already burgeoning population of bidirectional
languages, we focus on the preservation and propagation of user-
provided editing information. In a sense, our proposal can be seen
as a generic optimiser of certain given state-based bidirectional
frameworks: we exploit any locality in the editing of views,and
try to translate it into incrementality in the updating of sources.
Obviously, such preservation of locality does not hold for arbitrary
transformations. Identifying the semantic properties, orconditions,
required forms one of the major technical contributions of this pa-
per. The ultimate goal of our framework is to reduce an updateof a
(large) structure into one of a (small) delta, and then outsource the
hopefully much smaller problem of actually translating theupdate
to an existing state-based frameworks. This step positively impacts
the run-time behaviour of ‘put’, due to the newly gained incremen-
tality.

Our proposal aims at modularity: there is a clearly defined
interface that decouples any editing system from our framework;
and different state-based bidirectional approaches can beplugged
in as black boxes, whatever their manifestation as purpose-built
bidirectional languages or syntactic/semantic transformations of
unidirectional programs. As a result, a change-based bidirectional
framework arises automatically from a given state-based one, while
preserving the bidirectional properties of the latter.

We choose Haskell [26] as the language of discourse, but no
specific language feature other than algebraic datatypes isrequired
for our technique to apply.

1.4 A Small Example

As a motivating example, consider the structure of a binary tree:

data Tree a= Empty
| Fork a(Tree a) (Tree a)

One possible ‘get’ function from this source is an inorder traversal,
which produces a list, and can be defined as follows:

inorder::Tree a→ [a]
inorder Empty = []
inorder (Fork a t u) = inorder t++[a]++ inorder u

For instance, a traversal of the source

Fork 5 (Fork 6 (Fork 7 Empty Empty) Empty)
(Fork 8 (Fork 4 Empty Empty) (Fork 9 Empty Empty))

yields the list[7,6,5,4,8,9]. Now, suppose the number 4 is deleted
from this view. A state-based ‘put’ function will take the edited
view and try to construct a tree without the deleted element;and
hopefully the new source remains similar to the original one, so that
unnecessary changes are kept to a minimum. (Note that we have
deliberately kept all the functions abstract, because our proposal is
not dependent on any particular implementation.)

The method described above takes effort proportional to the
size of the data, not to the size of the change. Assuming a func-
tional cons-list, the deletion of 4 involves traversing theview
list to the location of the deletion, and changing only the sub-
list [4,8,9] rooted at that location; a more efficient approach is
to update only the source subtree(Fork 8 (Fork 4 Empty Empty)
(Fork 9 Empty Empty)) that is responsible for generating the view
fragment[4,8,9]. That is to say, the bidirectional updating should
be incremental. Better still, in the case of lists, where a deletion
is local and does not induce subsequent changes to a substruc-
ture, a more refined analysis may discover that only the subtree
(Fork 4 Empty Empty) is really affected by the edit, and updating
this is sufficient.

We were able to conclude above that the view sublist[4,8,9]
corresponds to the source subtree(Fork 8 (Fork 4 Empty Empty)
(Fork 9 Empty Empty)), because all elements in the former can be
found in the latter, and the ‘get’ function (inorder traversal) hap-
pens to have certain properties that allow structure correspondences
to be derived from element correspondences. In the sequel, we will
discuss in detail how ‘get’ functions that support incremental up-
dates can be identified; and present a constructive method for per-
forming the said update in a change-based framework. Assuming
a fairly balanced source tree, the complexity of our algorithm is
O (m× log n+ f m) wheren is the size of the source tree,m is the
size of the affected source part, andf is the complexity function
of a state-based ‘put’ function. The update itself takes time propor-
tional to m; but it takesm× log n time to locate the target source
location.

The rest of the paper is structured as follows. Section 2 gives the
overall setting of change-based bidirectional frameworks. Section 3
discusses the propagation of locality of view editing to thelevel of
source updating, and Section 4 presents a constructive method for
deriving change-based ‘put’ functions. We then refine the technique
for list views (Section 5), and discuss related issues (Section 6), be-
fore surveying related work (Section 7) and concluding (Section 8).

2. The Overall Setting
We restrict our attention to polymorphically typed tree-structured
data, and polymorphic ‘get’ functions. To be explicit aboutour
assumptions, we express our requirements in terms of a type class
TypeFunctor:

classTypeFunctor swhere
bimap:: (a→ b) → (c→ d) → s a c→ s b d

arity ::s a b→ Int
select::s a b→ Int → b

lab ::s(Label,a) Labels→ Labels

data Delta s::∗→ ∗→ ∗
close::Delta s a b→ b→ s a b

The remainder of Section 2 elaborates on these requirements.

2.1 Algebraic Datatypes

We restrict attention to regular datatypes—that is, definedin terms
of sums, products, and least fixed points. We assume that the type
functor is (as the name suggests) a bifunctor, satisfying the functor
laws

bimap id id = id
bimap(f ◦g) (h◦ k) = bimap f h◦bimap g k

The type functor determines the shape of the tree; polymorphic
tree terms are then formed by taking the fixpoint (in the second
argument) of this bifunctor.

data TypeFunctor s⇒ Term s a= InT{outT::s a(Term s a)}

For example, the binary tree type from Section 1.4 is represented
by the following definitions:

data TreeF a b= EmptyF| ForkF a b b
type Tree a= Term TreeF a

with the obvious definition ofbimap.
In the interests of brevity, we will usually write binary type

constructorss in the type classTypeFunctoras single bold capitals
S; and in an abuse of notation, we will often omit the element type,
writing justµS for Term s a.

As usual, the type functor induces a fold operator for consuming
tree terms:

fold ::TypeFunctor s⇒ (s a b→ b) → Term s a→ b
fold f t = f (bimap id(fold f) (outT t))

The idea is that ‘get’ functions should be written as polymorphic
instances offold. For example, with an appropriate type functor
definition for lists:

data ListF a b= NilF | ConsF a b
type List a = Term ListF a

we could implement theinorder transformation as follows:

inorder::Tree a→ List a
inorder t= fold step t(InT NilF) where

step EmptyF = id
step(ForkF a f g) = f ◦ InT ◦ConsF a◦g

2.2 Tree Navigation

We use functions

arity ::TypeFunctor s⇒ s a b→ Int
select::TypeFunctor s⇒ s a b→ Int → b

to capture the number of recursive components in anS-structure,
and to select one of those components. For example, for binary
trees we have

arity EmptyF = 0
arity (ForkF) = 2
select(ForkF t) 0 = t
select(ForkF u) 1 = u

Note thatselect is a partial function, andselect x iis defined iff
06 i <arity x. As a shorthand, we writexi for select x i, andxi 7→ t
to denote the substitution oft for xi in x. We define a functionchild
to select an immediate subterm of a term:

child ::TypeFunctor s⇒ Term s a→ Int → Term s a
child t i = (outT t)i

and a functionzoomto select an arbitrarily deep subterm, following
a path represented as a list of positions:

type Path= [Int]

zoom::TypeFunctor s⇒ Term s a→ Path→ Term s a
zoom= foldl child

2.3 Labelling

We assume that all tree elements are associated with unique labels;
for this purpose we assume an abstract typeLabel, and a corre-
sponding typeLabelsof sets of labels. (For example, the unique la-
bel associated with an element at a particular node might be formed
out of the path from the root of the tree to that node, togetherwith
a disambiguating index in case there are multiple elements at the
same node.)

type Label = ...
type Labels= Set Label

Generally speaking, the labels should be thought of as beingbe-
hind the scenes, inaccessible to normal functions; that is why we
insist that ‘get’ functions should be polymorphic. In particular, we
assume that the ‘get’ function cannot invent labels: all thelabels
that turn up in a view subterm originated from the corresponding
source term. But for the purposes of discussing labels and labelsets
themselves, we require the type functor to provide a mechanism
for combining the labelsets from subterms to make the labelset for
a term itself:

lab ::TypeFunctor s⇒ s(Label,a) Labels→ Labels

open

close

tree context

focus

Figure 1. The context-focus representation.

For example, for binary trees we have

lab EmptyF = /0
lab (ForkF (l,a) x y) = singleton l∪x∪y

This forms anS-algebra, which can be exploited by a partly poly-
morphic fold to compute the labelset of a labelled term:

type LTerm s a= Term s(Label,a)

labels::TypeFunctor s⇒ LTerm s a→ Labels
labels= fold lab

We will often use the shorthand〈t〉 to denotelabels t; we extend
this notation toS-structures ofµS′ treesx :: SµS′ by writing ‘〈x〉’
for ‘ labS (S labelsµS′ x)’, and, as a shorthand, write ‘〈x6=i〉’ for
‘ labS (S labelsµS′ x)i 7→ /0 ’).

Splitting anS-structure into one component and the remainder
yields an exhaustive and (at least forS-structures arising directly
from aµS-structure) disjoint partition of the label sets: forx::SµS′

and for any validi,

〈x6=i〉∪〈xi〉 = 〈x〉

and fors:: µSand any validi,

〈(outT s)6=i〉#〈(outT s)i〉

where # denotes disjointness, that is,x#y = (x∩y = /0). Note that
(x ⊆ y) ∧ (y#z) ⇒ (x#z) by monotonicity of intersection, so we
allow ourselves to write derivations of the form ‘w⊆ x#y⊇ z’, with
a chain of inclusions, a disjointness, and a chain of containments,
and conclude from it thatw#z.

2.4 Tree Contexts

As implemented by functionzoom, a subtree of interest can be
accessed by navigating from the root of a tree and following agiven
path. Such a path need not represent a traversal from the rootall
the way to a leaf: paths may point to internal nodes in a tree. The
traversal of a tree following a path ‘opens’ that tree into two disjoint
structures: one represents the subtree below the node reached by
the path, known as the currentfocus; the other represents the rest
of the tree and is known as thecontextof the focus (see Figure 1).
On typing grounds, we only consider as valid those paths thatlead
to recursive components; for example, the focus of the binary tree
datatype above can descend to the left or the right subtree, but not
to the element stored in a node.

We represent a context as a tree with a hole in it, denoting the
location of the subtree given by the focus. This can be captured in
terms of a type functionDelta, such thatDelta s a bis the type of
one-hole contexts fors a b. That is, a value of typeDelta s a bis
equivalent to one of types a bthat is missing one value of typeb;
so the type functor should be equipped with the corresponding
operation to ‘close’ aDelta s a baround the missingb to make an
s a b.

data Delta s:: ∗→ ∗→ ∗
close::TypeFunctor s⇒ Delta s a b→ b→ s a b

Then a one-hole context for a tree consists of a list of one-hole
contexts for nodes; we have chosen to represent that list outermost
context first, so that ‘closing’ is afoldr.

type Context s a= [Delta s a(Term s a)]

(⋖) ::TypeFunctor s⇒ Context s a→ Term s a→ Term s a
cs⋖ t = foldr (λd u→ InT (close d u)) t cs

For example, for binary trees, there are two ways of making a
TreeF a bthat is missing a singleb, one for each side of aFork
node—but there is no way for anEmptynode to have a hole:

data Delta TreeF a b= LForkF a b| RForkF a b

close(LForkF a u) t = ForkF a t u
close(RForkF a t) u = ForkF a t u

In fact, the context typeDelta sfollows directly from the structures
of the tree; contexts are a type-indexed data type [17], and can be
defined generically [16, 22].

2.5 Subterms

We prohibit trees with ‘junk’ structures that are not labelled, be-
cause such structures break the one-to-one correspondencebetween
subtrees of a given tree and their labelsets, a property required for
tracing structure transformations using labels.

REQUIREMENT1 (No Junk).Given a tree t,〈child t i〉 ⊂ 〈t〉, for
any valid index i. �

The no-junk condition enforces that the labelset of any subtree tree
must be a proper subset of that of its parent. For many datatypes,
similar to the representation of binary trees above, this no-junk
condition is enforced by the constructors. But for other datatypes
such as leaf-labelled trees

data LTree a= EmptyL
| Leaf a
| Bin (LTree a) (LTree a)

one can construct invalid values such asBin EmptyL(Leaf 1),
whereLeaf 1 is a strict subterm ofBin EmptyL(Leaf 1), but has
the same labelset. In this paper, we rule out datatypes like this that
do not enforce the no-junk requirement.

Tree navigation induces a subterm ordering on trees.

DEFINITION 2 (Subterm Ordering).Given trees r and t, we say r
is a subterm of t, written r4 t, if r = zoom t p for some p. We say
that a subterm r is trivial if〈r〉 = /0. �

Throughout this paper, we assume non-trivial subterms unless oth-
erwise stated.

COROLLARY 3 (Distinct Subterms).Because tree elements are
uniquely labelled, when r4 t (and r is non-trivial), then r is in
fact at the end of a unique path; that is, there is a (partial) function
locate::µS→ µS→ Path satisfying

locate t r= p ⇔ r = zoom t p

We say that ‘r is at depth n in t’ when n= length(locate t r). �

DEFINITION 4 (Orderedness).We say r and t are ordered, written
as r∼ t, if r 4 t ∨ t4 r. �

A consequence of the no-junk requirement is a close correlation
between the subterm relation and inclusion among labelsets.

COROLLARY 5 (Labels of Subterms).The subterm relationship is
a refinement of inclusion of labelsets: r4 t ⇒ 〈r〉 ⊆ 〈t〉. And for
ordered trees r∼ t, the converse holds too: r4 t ⇐ 〈r〉 ⊆ 〈t〉. �

Another consequence is that the labelsets of two ordered trees
intersect.

COROLLARY 6. We have r∼ t ⇒ (〈r〉 ∩ 〈t〉 6= /0) for non-trivial
trees r,t. �

The operator(⋖) that closes a context around a tree has a partial
inverse(/), in the sense that

c⋖ r = t ⇔ t / r = c

when r 4 t; in particular,(t / r) ⋖ r = t and (c⋖ r) / r = c. One
might think oft / r as the result of subtracting subtreer from treet.
The two operators(⋖) and(/) associate to the right, and(/) has a
higher precedence than(⋖); we can therefore nest them:

PROPOSITION7 (Nesting).Given that r4 s4 t, then
t /s⋖ s/ r ⋖ q = t / r ⋖ q. �

Subtraction is related to substition:

PROPOSITION8. For trees r and t and position i,
InT (outT r)i 7→ t = r / (outT r)i ⋖ t. �

Closing extends the input tree, as captured by the followingmono-
tonicity condition.

PROPOSITION9 (Monotonicity). t4 (c⋖ t) �

Lastly, all holes are equal.

REQUIREMENT10 (Hole Equality).s/s= t / t. �

COROLLARY 11 (Left Unit). s/s⋖ t = t. �

2.6 Local Editing

An editing functionis an endofunctionedit:: v → v; we will con-
sider editing functions only on views. We require all editing func-
tions to be total, so that they can always be applied to a subterm of
a view. We treat editing functions as being in some sense location-
independent: they can be applied to any superterm enclosingthe
subterm that is actually affected by the edit.

DEFINITION 12 (Locality). We say an editing function e is local
to a subterm u0 of a view v if

∀u. u04u4 v⇒ e v= v/u⋖ e u

�

In the above definition, applying the local editing functione to
any subtermu of v enclosing the affected subtermu0 has the
same effect as applying the function tov. For example, as we
have seen in the binary tree example, deleting 4 from the sublist
[4,8,9] and combining the result with the context[7,6,5] is the
same as deleting 4 from the complete view[7,6,5,4,8,9]. From the
equality of holes, we can conclude that the trivial localityalways
holds.

COROLLARY 13. Given a view v, any editing function is local to
subterm v of v. �

Beyond the trivial one, there is certainly an ordering amongdiffer-
ent levels of locality, based on the subterm ordering, whichfalls out
from the above definition. In this sense, a context-sensitive (path-
based) editing function, always requiring traversing fromthe root,
fixes u0 to bev, which implies very poor locality characteristics.
We will discuss an option for remedying this in Section 6.1.

In our proposal, the subtermu0 to which an editing function is
local is user-provided; our approach is based on the assumption that
u0 is significantly smaller thanv. We pair the editing function with
an additional function that returns the affected subterm.

data Edit a= E{edit::a→ a,affect::a→ a}

(The above declaration creates a polymorphic record typeEdit with
named fieldsedit andaffect, each of which is a function. The field
extractors are named after the fields; so given a valuee::Edit a, the

two functions encapsulated in it can be retrieved asedit e:: a→ a
andaffect e::a→ a. We require thatedit eis local toaffect e.)

2.7 Change-Based Bidirectional Frameworks

A change-based bidirectional framework consists of two functions:
a ‘get’ functionf :: s→ v from source to view, and a change-based
‘put’ function f <

ch ::Edit v→ s→ s. We only consider ‘get’ functions
that are regular structural recursions, because they are more likely
to benefit from our proposed improvement. We will discuss this
choice in detail in Section 3.2. We also rule out ‘get’ functions
involving duplication of labels, so that uniqueness of identifiers
is preserved. The functionf <

ch is higher-order, in contrast tof <
st ::

(v,s) → s in a state-based setting. Thusf <
ch no longer constructs an

updated source from an edited view, but from the original source;
any information in the edited view can be derived from the editing
function and the original source. In contrast to an operation-based
approach,f <

ch is not dependent on the actual editing functions.
Bidirectional laws semantically equivalent to those developed

for state-based bidirectional frameworks can be specified in the new
setting.

Consistencyf (f <
ch e s) = edit e(f s)

Acceptability f <
ch (E{edit= id}) = id

Undoability f <
ch (e{edit= (edit e)◦})◦ f <

ch e= id.

The relationships between different view values are expressed
through explicit editing functions. For acceptability, weconstruct a
record with the identity edit (and leave theaffectfield unspecified).
For undoability, a record is updated with the left-inverse ((edit e)◦)
of its editing function to cancel its effect on the source.

Moving from a state-based framework to a change-based frame-
work potentially improves run-time performance, as we exploit the
locality of updating. We look into the details in the next section.

3. Locality Preservation
Incremental updates can be achieved if the locality of an editing
function is propagated to the source level. Figure 2 shows how a
‘get’ function may relate subterms in the source to subtermsin the
view. The idea is that the subtermv of the view depends only on
the subterms of the source. Furthermore, the sequences of source
contextssc1, ...,scn and view contextsvc1, ...,vcm maintain this
relationship, so thatvc1⋖vdepends only onsc1⋖s, and so on, until
vcm⋖ ...⋖ vc1 ⋖ v depends only onscn ⋖ ...⋖sc1 ⋖s. Note that we
can always arrange the two columns in a way that both have the
same length (i.e.,m= n); when one subterm on one side matches
with multiple ones on the other side, we only need to insert a few
empty contexts (since[]⋖ t = t) to realign the two sides. This kind
of locality preservation is determined by the ‘get’ function, which
defines the connection between a view and its source.

3.1 Alignment

DEFINITION 14 (Alignment).We say ‘get’ function f aligns at
subterm r of s if for all t we have

f (s/ r ⋖ t) = f s/ f r ⋖ f t

We call r an alignment position in s with respect to f . �

When a ‘get’ functionf and a sources are unambiguous, the term
r may be referred to as an alignment position, wheref is said to
align atr. The above definition not only characterizes the matching
of source subtermsr to corresponding view subtermsf r, but also a
kind of isolation between them. An alignment position can beseen
as a ‘resistive barrier’ between the construction of a subterm and its

scn

sc1

s

vcm

vc1

v

get

get

get

Figure 2. Source-view alignment.

context, through which information does not flow. At an alignment
position,f r is independent ofs/ r andf s/ f r is independent ofr.

The significance of alignment positions is that they capturethe
mapping between the locality tof r in the view and the locality tor
in the source. As a result, iff r can be locally edited, thenr can be
locally updated:

f <
st′ (f s/ f r ⋖ v′,s) = s/ r ⋖ f <

st (v′, r)

The above defines an optimization of an existing ‘put’ function.
Basically, to process an edited viewf s/ f r ⋖ v′, we only need to
processv′ (the editedf r), providedf aligns atr. To show that the
above transformation is correct, we prove the consistency of f <

st′ .

f (f <
st′ (f s/ f r ⋖ v′,s))

= { definition of f <
st′ }

f (s/ r ⋖ f <
st (v′, r))

= { f aligns atr }
f s/ f r ⋖ f (f <

st (v′, r))
= { consistency off <

st }
f s/ f r ⋖ v′

Other bidirectional properties hold as well; we postpone their
proofs until Section 4, where the complete solution is presented.

Not all view subterms match exactly with a source subterm;
sometimes we need to resort to a looser fit.

DEFINITION 15. Given a ‘get’ function f , we say an alignment
position s covers v if v4 f s.

We now show some example ‘get’ functions that preserve dif-
ferent degrees of alignment. Consider a function that returns the
mirror image of a tree.

mirror ::Tree a→ Tree a
mirror Empty = Empty
mirror (Fork a l r) = Fork a(mirror r) (mirror l)

Every subtree in the source is an alignment position, because the
constructions of the view and of the source coincide.

Another such function isinorder, defined in Section 1.4. In this
case, only the right subtrees are alignment positions, because the
left subtrees do not correspond to subterms in the view.

Yet another example is the functionspinethat extracts the ele-
ments on the spine of a tree:

spine::Tree a→ [a]
spine Empty = []
spine(Fork a l r) = a: spine r

In this case, all subterms of the source are alignment positions,
though the left subtrees, which always correspond to the empty list
in the view, are not very interesting.

3.2 Exploiting Regularity

Change-based ‘put’ functions are only interesting when there are
plenty of alignment positions to choose from, so that view subterms
can be covered ‘tightly’. As alignment positions representmatches
between source and view constructions, for a recursive ‘get’ func-
tion, this matching of constructions suggests a kind of structural
recursion pattern. Though not a sufficient condition, regularity of
the recursion pattern is likely to positively impact the availabil-
ity of alignment positions. Thus, we focus on regular structural
recursions—functions that can be implemented as folds. Fora regu-
lar structural recursion, a source is deconstructed in a uniform way,
which leaves the fold body to determine whether the construction
of a view matches up.

To explain the intuition behind how ‘get’ functions determine
alignment positions, let us revisit the functionspine. A fold de-
constructs a non-empty input tree into two source subtermsl and
r and a single elementa; for thespinecomputation, the fold body
discardsl and adds the elementa to spine r. The recursive calls al-
ways produce a view recursive component (such asspine r) from a
source subterm (r); whether the view recursive component so pro-
duced is made into a view subterm by the fold body determines the
possibility of alignment. For example, recursive component spine r
is a subterm ofa: spine r, which makesr an alignment position. In
this case, any edit local tospine rcan be addressed by updatingr.
In contrast, if we definespineas

spineRev(Fork a l r) = spineRev r++[a]

then the view construction is the ‘opposite’ of the source construc-
tion, with the parenta at the bottom (tail end) of the list. This mis-
alignment manifests itself by causingspineRev rnot to form a sub-
term in the view. Any edit to the view affects a sublist including a,
which implies an update to the complete source tree.

In the case ofspine, a view subterm not only has a recursive
component as its origin, but also as its exclusive origin:spine r
is copied to the view without modification. This exclusivityis
necessary for producing alignment positions. Consider a variant of
spinethat breaks this rule:

spineRot(Fork a l r) = a: reverse(spineRot r)

The recursive componentspineRot ris changed byreverse; and
its manifestation in the view depends on its context, which de-
cides how many timesreverseis applied to it. Though at each
individual recursive stepreverse(spineRot r) is a subterm ofa :
reverse(spineRot r), a subsequent step does not preserve this prop-
erty: reverse(spineRot r) ceases to be a subterm ofb : (reverse(a :
reverse(spineRot r))). In this case, only three alignment positions
(the complete source and the root’s two immediate children)exist,
which is not very interesting.

3.2.1 The Well-Aligning Condition

We formalize the above observation into a condition on the bodies
of ‘get’ functions defined as folds that guarantees the availability
of alignment positions.

DEFINITION 16 (Well-aligning).We say a fold body b is well-
aligning if for all x such that arity x6= 0, and for all non-trivial
subterms u of b x, we have

∃i. u∼xi ∧ ∀w. b xi 7→w = b x/xi ⋖ w

Further, we say that f= fold b is well-aligning if its body b is. �

We do not worry about the case when there are no recursive com-
ponents inx (i.e.,arity x= 0), as they are terminals in construction,
and will not affect alignment. There are two parts to the condi-
tion: the first part (u∼ xi) enforces that each non-trivial view sub-
term u has a recursive component as its origin; the second part

(∀w. b xi 7→w = b/xi ⋖ w) guarantees the exclusivity of the origins
(with no influence by external factors)—the recursive component
in question is copied unchanged to the view. It is important for the
expressiveness of ‘get’ functions that this copying requirement only
applies to selected recursive components; some, that will appear as
subterms ofb x, are taken as opaque blocks, leaving the rest to be
broken up for gluing the blocks together.

For example, consider the following functions:

vlr (v, ls, rs) = [v]++ ls ++ rs
lvr (v, ls, rs) = ls ++[v]++ rs
lrv (v, ls, rs) = ls ++ rs ++[v]

The functionsvlr, lvr, andlrv (standing for ‘visit, left, right’, etc)
correspond to individual cases of the fold bodies for traversing
binary trees in pre-, in-, and post-order, respectively. There are two
inputs to the functions that are recursive view components,namely
ls andrs. Functionsvlr and lvr are well-aligning, asrs is ordered
with respect to all the view subterms that are visited, whereaslrv is
not.

Generalizing the definition to the semantics of transformations,
we say that a ‘get’ function is well-aligning if all cases of its
body are well-aligning. By that definition,preorder, inorder, unzip,
mirror, spine, filter, mapare examples of well-aligning ‘get’ func-
tions, whilepostorderis not. (However, we will discuss how this
function can be made well-aligning in Section 5.)

3.2.2 Availability of Alignment Positions

The well-aligning property guarantees the availability ofalignment
positions; and we can state a declarative result about how they may
be found.

THEOREM 17. Given a well-aligning ‘get’ function f such that
f s = v, we have that f aligns at subterm r of s if there exists a
non-trivial subterm u of v such that u4 f r. �

The well-aligning condition tells us clearly that some selected re-
cursive components become subterms in the view; and the source
subterms producing the selected subcomponents are alignment po-
sitions. The key to proving Theorem 17 is to establish the fact that
recursive componentf r is among those selected due to the premise
u4 f r; this can be achieved by connecting the unique labels inu
with those inf r.

As preparation for formally proving Theorem 17, we state some
properties regarding labels of trees under transformation. As men-
tioned at the beginning of Section 2, one important requirement of
‘get’ functions is that they do not invent labels.

REQUIREMENT18 (Conservation of Labels).Given a ‘get’ func-
tion f = fold b, we have that b does not invent labels:

∀x. 〈b x〉 ⊆ lab x

and hence, neither does f= fold b invent labels:

∀s. 〈f s〉 ⊆ 〈s〉

�

An important consequence of the fact that ‘get’ functions do
not invent labels is that labels cannot reappear after they have been
dropped during the construction of a view. Conversely, if a label set
〈v〉 has been generated after processing subtermr of t by the ‘get’
functionf (that is,r4 t and〈v〉 ⊆ 〈f r〉), and〈v〉 is still present after
processingt itself (that is,〈v〉 ⊆ 〈f t〉), then〈v〉 is present at every
intermediate stage too (〈v〉 ⊆ 〈f s〉 for everys such thatr 4 s4 t).
This is a kind of ‘convexity’ property of label sets.

More importantly in what follows, a similar result holds for
subterms, rather than their projections to label sets; but for this,

we need the additional assumption that the ‘get’ functionf is well-
aligning. The primary result (Corollary 20) is a convexity property
for terms: given sourcesr, t with r4 t such thatv4 f r andv4 f t,
then alsov4 f s for any s such thatr 4 s4 t. (In fact, v4 f t
is not strictly required;〈v〉 ⊆ 〈f t〉 suffices.) The essential step
(Lemma 19) is the one from the outermost termt to one of its
immediate children: if view subtermv shows up after processing
a subtermr within the ith child (outT t)i of t, andv is still present
after processingt, thenv must have come from theith child: v4
f (outT t)i . Note that, for both of these results, we make use of our
implicit assumption thatv is non-trivial.

LEMMA 19 (Maintaining terms).Suppose a well-aligning ‘get’
function f= fold b. For source terms r, t with r4 (outT t)i , if v4 f r
and v4 f t, then also v4 f (outT t)i .

PROOF. Let x = S f (outT t), so thatf t = b x andf (outT t)i = xi .
Sinceb is well-aligning, andv is a non-trivial subterm ofb x, there
exists aj such thatv∼xj = f (outT t)j . In fact, thisj must bei:

〈v〉
⊆ { labels of subterms (Corollary 5);v4 f r, by assumption}

〈f r〉
⊆ { f does not invent labels}

〈r〉
⊆ { r4 (outT t)i ; Corollary 5 again}

〈(outT t)i〉
{ disjointness of labels}
〈(outT t)6=i〉

⊇ { f does not invent labels; monotonicity of intersection}
〈(S f (outT t))6=i〉

= { definition ofx}
〈x6=i〉

and so〈v〉 #〈x6=i〉, and hence〈v〉 ⊆ 〈xi〉 by disjointness of labels.
Finally, v∼xi and〈v〉 ⊆ 〈xi〉 imply v4 xi , by Corollary 5. �

COROLLARY 20 (Term convexity).Suppose a well-aligning ‘get’
function f = fold b. For source terms r, t with r4 t, if v4 f r and
v4 f t, then also v4 f s for every s such that r4 s4 t.

PROOF. The proof is by induction over the length oflocate t r. The
base case is when the path is empty, sor = t; then the lemma
is trivially true. For the inductive case, assume the statement is
valid for paths of lengthn. Suppose thatr 4 t, and thatr is at
depth n + 1 in t (so thatr 4 (outT t)i for some unique indexi,
andlocate(outT t)i r has lengthn), and thatv4 f r andv4 f t. By
Lemma 19, we getv4 f (outT t)i ; then by induction we getv4 f s
for everyswith r4s4 (outT t)i too; and the final cases= t trivially
holds. �

Theorem 17 follows directly from the following result: given
a well-aligning ‘get’ functionf , and sourcesr,s such thatr 4 s, if
there exists any view subtermv such thatv4 f r andv4 f s, thenf
aligns at subtermr of s. (Again, we assume thatv is non-trivial.)

LEMMA 21 (Get alignment).Given a well-aligning ‘get’ function
f , sources r, t with r4 t, and view v such that v4 f r and v4 f t,
then f aligns at subterm r of t.

PROOF. Again, by induction over the length oflocate t r. The base
case is when the path is empty; thent = r and the theorem is
trivially true (sincef necessarily aligns at the roott of sourcet).
For the inductive case, we assume that the statement is validfor
paths of lengthn; we are given termsr, t with r4 t andr at depth
n+1 in t, and a termv with v4 f r andv4 f t, and we have to show
that f aligns at subtermr of t.

Suppose thatr is within thei’th child of t, that is,r4swheres=
(outT t)i . Then by Corollary 20, we havev4 f s, and by induction,
f aligns at subtermr of s. Let x = S f (outT t), so thatf t = b x and
f (outT t)i = xi . Becauseb is well-aligning andv4b x, there exists
a j such thatv∼xj andb xj 7→w = b x/xj ⋖ w for anyw. In fact, that
j must bei, by the same argument as in the proof of Lemma 19. In
particular,f s= xi 4b x, a fact that we shall use below. Finally, we
show thatf aligns at subtermr of t. For an arbitrary source termp,
we have:

f (t / r ⋖ p)
= { sincer4 s4 t}

f (t /s⋖ (s/ r ⋖ p))
= {Proposition 8—s= (outT t)i }

f (InT (outT t)i 7→(s/r⋖p))

= { evaluation rule forf = fold b}
b (S f (outT t)i 7→(s/r⋖p))

= { naturality ofselect}
b (S f (outT t))i 7→(f (s/r⋖p))

= { b is well-aligning; discussion above}
b (S f (outT t))/ f (outT t)i ⋖ f (s/ r ⋖ p)

= { evaluation rule forf again;s= (outT t)i }
f t / f s⋖ f (s/ r ⋖ p)

= { induction}
f t / f s⋖ (f s/ f r ⋖ f p)

= { nesting}
f t / f r ⋖ f p

�

So far, we have established well-alignment as a sufficient con-
dition for the availability of alignment positions (Definition 16),
and proved a declarative result about how alignment positions can
be found (Theorem 17). Next, we move on to devise a construc-
tive method of finding alignment positions, and deriving a change-
based ‘put’ function based on this method.

4. Change-Based ‘Put’ Functions
The derivation of a ‘put’ function is divided into three steps:
(i) finding an alignment position covering the edited view subterm;
(ii) using a state-based ‘put’ function to map the view subterm to a
source subterm; and (iii) merging the original source context with
the updated source subterm. The key part of this process is step (i);
the other two follow on quite naturally. Taking the previousresult,
we know that a source subterm is an alignment position if there
is a corresponding subterm in the view. A standard way of estab-
lishing the source/view correspondence semantically is totrace the
uniquely identifying labels.

4.1 Labelling and Reflecting

Unique identifiers are created using paths in the source, from the
root to the node constructors of the elements. As a result, a node
is at the root position of the subterm identified by the path. As
far as ‘get’ functions are concerned, an element and its label form
an atomic unit; an element in the view originates from an element
in the source associated with the same label. (It is worth noting
that the labels only represent paths in the source, not thosein the
view.) Given an edit-affected view subtermv, a sensible alignment
position should include all the labels in〈v〉; the path leading to such
a source subterm is the maximum common prefixmcp〈v〉 of all the
paths to nodes with these labels.

Consider a simple example withmirror as the ‘get’ function (see
Figure 3). Note that the labels in the source—the list component of
each pair in the diagram—are copied over to the view. Suppose
we insert a new node at the location labelled[1] in the view, af-

100, []

68, [1] 79, [2]

34, [1,1] 9, [1,2]

100, []

79, [2] 68, [1]

9, [1,2] 34, [1,1]

mirror

Figure 3. Usingmirror as a ‘get’ function.

fecting the element 68 at location[1] and the locations below it
[[1,1], [1,2]]. (Note that we don’t require a concrete label for the
newly inserted node since it will not contribute to the identification
of the affected source.) The maximum common prefix of the af-
fected labels[[1], [1,1], [1,2]] is [1]. Now tracing the pedigree of
the path[1] back to the source, we conclude that it is the subtree
with root element 68 that needs to be changed.

The key to demonstrating the correctness of the above process
is to show that the subset relation between label sets corresponds to
the subterm relation between trees.

LEMMA 22. Given a well-aligning ‘get’ function f= fold b, and
source terms s, t with s4 t, and view term v, if v4 f t and〈v〉 ⊆ 〈s〉
then v4 f s.

PROOF. Again, by induction over the length oflocate t s. The base
case is when the path is empty; thens= t, and the result trivially
holds. For the inductive case, assume that the result holds for paths
of length n, and thats is at depthn+ 1 in t. Let i be such that
s4 (outT t)i , so thatlocate(outT t)i s has lengthn. We will show
that v4 f (outT t)i ; then we can concludev4 f s by appeal to the
inductive hypothesis.

Let x = S f (outT t), sof t = b x andf (outT t)i = xi . Sincev is
a non-trivial subterm ofb x, andb is well-aligning, there exists aj
such thatv∼xj . By the usual argument, thatj must bei:

〈v〉
⊆ { assumption}

〈s〉
⊆ { hypothesis, and Corollary 5}

〈(outT t)i〉
{ disjointness of labels}
〈(outT t)6=i〉

⊇ { f does not invent labels}
〈(S f (outT t))6=i〉

= { definition}
〈x6=i〉

Sov∼ xi . Moreover,〈v〉 ⊆ 〈xi〉, by disjointness of labels, since by
assumption we havev4 f t and hence〈v〉 ⊆ 〈f t〉= 〈b x〉 ⊆ 〈x〉, and
we have just shown that〈v〉#〈x6=i〉. Therefore, by Corollary 5 we
concludev4 xi = f (outT t)i . �

As a side remark, so far we have been oblivious to the fact that
the source and view nodes are now labelled, and have assumed
that the ‘get’ and ‘put’ functions work uniformly on them. This is
certainly correct given parametrically polymorphic datatypes and
functions; free theorems [31] provide the guarantee we need. It
is straightforward to relax this fully-parametric type restriction to
constrained polymorphic types. For example, we can use equality
in the transformation by introducing the following:

f ::Eq a⇒ s a→ v a
f <
st ::Eq a⇒ (v a,s a) → s a

and a generic instance to bypass the labels:

instanceEq a⇒ Eq(Label,a) where
(≡) (,a) (,b) = a≡ b

This kind of generic definition is all that is required to introduce
constrained polymorphism. For example, consider a function that
filters the labels of a tree and returns them as a list.

filterT ::Eq a⇒ (a,Tree a) → [a]
filterT (x,Empty) = []
filterT (x,Fork a l r) = if a≡ x then lr elsea: lr

where lr = filterT l++filterT r

FunctionfilterT is well-aligning, and our technique is applicable
without modification.

It is worth mentioning that labelling tree elements uniquely and
exploiting parametricity to establish connections between source
and view is not limited to finding subterm correspondence. In[29],
‘get’ functions are applied to source values with elements replaced
by labels, which allows one to conduct a kind of forensic examina-
tion of the transformation, determining its effect withoutexamining
its implementation; with such information a ‘put’ functioncan be
constructed. We will discuss in more detail the connection between
the approach in [29] and our technique in Section 7.

4.2 The Change-Based ‘Put’ Function

We are now ready to present the change-based ‘put’ function.For
anyf <

st , a genericf <
ch function can be defined as follows:

f <
ch ::Edit v→ s→ s

f <
ch e s= s/ r ⋖ (f <

st ◦ ((edit e◦ f)△ id)) r
wherer = zoom i s

i = mcp〈affect e(f s)〉

The functionf <
ch maps an edit operation on views,e, into an update

operation on sources. The evaluation off <
ch is illustrated in Figure 4,

which shows how an updated source is obtained by an indirect
route. A source is firstly mapped into a view viaf , with the affected
view subterm of the edit extracted viaaffect e. After that, the labels
in the affected view subterm are collected and are used to identify
an alignment position,r, covering the affected view subterm. A
view of the alignment position is then constructed by applying f ,
and is edited before the state-based ‘put’ functionf <

st maps it into
an updated source subterm. Finally, the standard split operator,△,
with type(a→ b) → (a→ c) → (a→ (b,c)), is used to produce a
pair containing the result of applying two functions to a value. Here
it combines the newly created source subterm with the original
context that remains unchanged. (The straightforward re-labelling
of the newly generated source subterm withi as the root label is
omitted.)

As shown in Figure 4, there are several passes across the
source/view boundary, and apart from the initial ‘get’ function
application, all of them concern only the edit-affected subterms.
Assuming the editing and ‘get’ functions have no worse run-
time performance than the ‘put’ function, the complexity off <

ch
is O (m× log n+ c m) wheren andm are the sizes of the sources
and the changer, andc is the complexity function forf <

st . Note
thataffect e(f s) will have been executed prior to the ‘put’ function
execution, and is not included in the performance analysis.The
cost of computings/ r is not considered because the contexts/ r
can be computed together with the focusr when the zooming is
performed. Them× log n part of the above complexity function
comes from the computation ofmcp, wherem labels of sizelog n
need to be processed.

The functionf <
ch is expected to preserve the bidirectional prop-

erties off <
st . This is established whenf <

ch operates at alignment po-
sitions.

THEOREM23. Given a well-aligning ‘get’ function f such that
f s = v, then for all source subterms r of s and view subterms u
of v, zoom(mcp〈u〉) s is the smallest alignment position covering
u.

PROOF. By definition, we have〈u〉 ⊆ 〈zoom(mcp〈u〉) s〉.

〈u〉 ⊆ 〈zoom(mcp〈u〉) s〉 ∧ u4 f s∧
(zoom(mcp〈u〉) s)4 s

⇒ { lemma 22}
u4 f (zoom(mcp〈u〉) s) ∧ u4 f s∧
〈zoom(mcp〈u〉) s〉4 s

⇒ { theorem 17}
f aligns at subtermzoom(mcp〈u〉) sof s

Also from the definition ofmcp, there exists nor such that
r ≺ zoom(mcp〈u〉) s and〈u〉 ⊆ 〈r〉. Thus,zoom(mcp〈u〉) s is the
smallest alignment position coveringu. �

We can state the bidirectional properties off <
ch.

THEOREM24 (Consistency).f (f <
ch e s) = edit e(f s)

PROOF.

f (f <
ch e s)

= { definition of f <
ch}

f (s/ r ⋖ (f <
st ◦ ((edit e◦ f)△ id)) r))

= { r is an alignment position}
f s/ f r ⋖ (f ◦ f <

st ◦ ((edit e◦ f)△ id)) r)
= { consistency off <

st }
f s/ f r ⋖ (edit e◦ f) r

= { r coversaffect e(f s), and locality ofedit}
edit e(f s/ f r ⋖ f r)

= { r is an alignment position}
edit e(f (s/ r ⋖ r)))

= { cancellation}
edit e(f s)

�

For acceptability, we need an ‘identity’ edit that does not change
the view.

THEOREM25 (Acceptability).f <
ch (E{edit= id}) = id.

PROOF.

f <
ch (E{edit= id}) s

= { definition of f <
ch}

s/ r ⋖ (f <
st ◦ ((id ◦ f)△ id)) r

= { acceptability off <
st }

s/ r ⋖ r
= { cancellation}

s

�

Undoability involves inverting an edit as a function.

THEOREM26 (Undoability).f <
ch (e{edit= (edit e)◦})◦ f <

ch e= id.

PROOF.

(f <
ch (e{edit= (edit e)◦})◦ f <

ch e) s
= { definition of f <

ch, and constantaffectin e}
s/ r ⋖ (f <

st ◦ ((edit e)◦ ◦ f △ id)) ((f <
st ◦ (edit e◦ f △ id)) r)

= { definition of△}
s/ r ⋖ f <

st (((edit e)◦ ◦ f ◦ f <
st) ((edit e◦ f) r, r),

f <
st ((edit e◦ f) r, r))

i
s/r s/rss s′

f s

f

m
c

p

f f
<st

affect edit

⋖zoom

r

f r

Figure 4. Change-based ‘put’ execution, showing relationship between source (top) and associated view (bottom) during transformation.

= { consistency off <
st }

s/ r ⋖ f <
st (((edit e)◦ ◦edit e◦ f) r, f <

st ((edit e◦ f) r, r))
= { (edit e)◦ ◦edit e= id}

s/ r ⋖ f <
st (f r, f <

st ((edit e◦ f) r, r))
= { undoability off <

st }
s/ r ⋖ r

= { cancellation}
s

�

5. More Refined Locality
As we have seen, the performance of our proposal depends on the
height of the source tree and the size of the affected region (i.e.,
the degree of locality of the edit). The former is clearly beyond
the control of any bidirectional framework, and the latter is largely
decided by the structure of the view. For fairly balanced trees, the
majority of nodes are deep in the structure, so it is reasonable
to suppose that the majority of edits will be too; given structure
alignment, this implies a good degree of locality. A problemarises
when the view tree is skewed, such as in a list, since the likelihood
that a node appears at any depth is the same. If a node high in
the structure is affected by an edit, such as a deletion, the affected
subtree could be rather large.

This problem has already manifested itself in our binary-tree
traversal example (see Section 1.4, where it is excessive tomark
the whole sublist[4,8,9] as affected). A better alternative is to
recognize the sublist[8,9] as unaffected context too.

Another example is post-order tree traversal, where any non-
empty sublist of the view contains the head of the source, which
results in very poor locality preservation. As a matter of fact, post-
order traversal is excluded through the well-aligning condition.

Nevertheless, being a special kind of tree, lists enjoy a number
of unique properties. We notice that unlike general trees, where a
separate datatype is needed for contexts, the context type for lists
is isomorphic to the list type itself, and so we can simply uselists
as both contexts and foci, and use the append function (++) as the
close function (⋖). Given the symmetry of (++), either the context
or the focus can be edited, and all the definitions and resultsdualize.
For example, consider thereversefunction. Editing the front of the
list view can be localized to a prefix of the view and mapped back
to a suffix of the source.

As a result, it makes sense to try to capture a lower (right)
bound of an edit-affected sublist, in addition to the upper (left)
bound. Instead of splitting a list view into a prefix (context) and
a suffix (focus), we can now see it asl1 ++ l2 ++ l3. To reflect this
specialization, we overload the infix operator⋖ and define its list

version as(l1, l3) ⋖ l2 = l1 ++ l2 ++ l3. (In a sense, this is treating
lists as semi-structured data, similar to traditional treatments of
relational databases and graphs, and not as an algebraic datatype.)
All the other definitions developed for general trees remainvalid.

Now instead of always picking out a complete suffix or prefix,
we can mark an interior list segment as affected by editing, and
the same definition off <

ch directly applies. For example, deleting 4
from [7,6,5,4,8,9] only affects the interior segment[4], leaving
both contexts[7,6,5] and [8,9] unaffected. Correspondingly, the
alignment positions now match subterms in the source with seg-
ments (rather than with tails) in the view.

6. Discussion
6.1 Context-Sensitive Editing

The editing system we have looked at so far is context-independent;
this is particularly convenient for local editing, since the same edit
can be applied both to a structure and to its subterms. For tree-
structured views, it is sometimes useful to provide a full (or partial)
path to the intended editing location, to narrow down the search. In
this case, the editing becomes context sensitive, because the starting
point of the path matters. Consider a path-based editing system.

type EditP t= {edit::Path→ t → t,affect::Path→ t → Path}

An edit operation now finds its target in a structure following a path,
and produces the edited structure together with the path leading to
the affected subterm. Note that these paths in the view should not
be confused with labels of nodes that represent paths in the source.

The definition off <
ch can be adapted for the new editing system.

We separate all interesting steps intowhere clauses to facilitate
explanation.

f <
ch ::Edit v→ Path→ s→ s

f <
ch e p s= (s/ r)⋖ f <

st (edit e p3 u′, r) where
v = f s
p1 = affect e p v
u = zoom p1 v -- affected subterm
i = mcp〈u〉
r = zoom i s
u′ = f r
p2 = travelUntil (p1,v) u′ -- path tou′

Just p3 = stripPrefix p2 p1 -- relative editing path

Note that we keep the path information of the edit explicit, so that
it can be modified along with the shifting of focus. Compared with
the context-independent version, there are a few additional steps.
As the editing function returns a path locating the affectedsubterm,
we need to open the view to get to it (u in the third clause above).
A bigger challenge posed by this context-sensitivity is to find a

relative editing path when the starting point is moved to theroot of
subtermu′. We denote the path from the root of a structurex to its
subtermy asx y. Since we know the subterm relationsu4u′4v
among the affected subterm, the view of the alignment position and
the complete view, the pathp3 = u′ u is the difference between
p1 = v u and p2 = v u′. We already knowp1; traversing
p1 until the root ofu′ gives usp2, before we can perform path
arithmetic to recover the correspondence between the path and
structure inputs ofedit e. FunctiontravelUntil follows a path down
a tree until it reaches a given subtree; the part of the path travelled
is returned as the output. FunctionstripPrefixis a standard Haskell
function of typeEq a⇒ [a] → [a]→ Maybe[a] that strips the first
input from the second one; since we know thatp2 is a prefix of
p1, the execution ofstripPrefix p2 p1 is always going to succeed.
A concern here is that the additional computation does impose a
performance overhead: travelling the path takes time linear in the
height of the view tree. Clearly, the multiple traversals inthe above
code can be combined; we have presented them in separate steps
for clarity.

6.2 Totality of ‘Put’ Functions

The proofs of bidirectional properties in Section 4.2 are done in
a total setting, where the state-based transformations areassumed
to execute successfully when given well-defined terms. Since the
‘get’ functions are regular structural recursions, it is reasonable to
expect that if the execution over a complete source is successful,
then the evaluation over subterms will also succeed. Establishing
a similar safety property for ‘put’ functions is much harder; ‘put’
functions are often partial due to the conflicts between the edited
view and the original source (though advanced type systems may
help to specify their domains [10]), and usually do not expose their
semantics other than through the bidirectional laws.

Since our approach employs state-based bidirectional frame-
works as black-boxes, it is impossible to conclude that the ap-
proach is universally safe. Nevertheless, there are patterns to fol-
low: most bidirectional frameworks create ‘put’ functionsthat try
to trace the original ‘get’ execution backwards, and recursively de-
construct their view and source inputs in parallel, until a discrep-
ancy is encountered, which is the point where the ‘put’ function has
to either resolve the conflict or fail. Our change-based approach re-
duces the scope of a ‘put’ function by removing a context thatis
known to be unaffected by the edit. Consequently, we expect that
failures, if there are any, happen within the processing of the align-
ment position, and so moving from a state-based approach to the
change-based approach preserves the safety property.

7. Related Work
Incremental updates have been studied in the context of model
transformation, for improving speed [13], and for achieving more
refined semantics [8]. Similar to our design, both of these ap-
proaches also require additional specification of the effect of
an edit. In contrast to tree-like datatypes, models are loosely-
connected untyped graphs, which are more easily divided into
independent fragments to be updated separately; whereas our well-
aligning property of typed and overlapping subtrees is muchharder
to establish. Hidaka et al. [15] use a simplified assumption that
different parts of the graph are always independent in theirwork
on graph transformations via structural recursion. As a result, the
structural recursion is effectively reduced to aconcatMapopera-
tion. However, this assumption is not valid in general; and as a
result, the acceptability property does not hold in their framework.

The concept of an alignment position is also known as anexclu-
sive data sourcein the database literature [9], and is used to prevent
‘side effects’ on the view that is edited (similar to our consistency
requirement). Exclusive data sources are commonly computed by

establishinglineagesbetween a database and its view through trac-
ing identifiers of data [5]. Databases are typically large, so it is
never practical to process them completely for an update; asa re-
sult, identifying exclusive data sources is not consideredas an opti-
mization, but the core part of the update. Despite the obvious sim-
ilarity of these ideas, techniques developed for databasesare not
applicable in our setting, due to the very different representations
of data and transformations.

Despite being in a unidirectional setting, the concept ofadap-
tive programming[1] is closely related to incremental updates. The
basic idea of adaptive programming is to build up a complete input-
output dependency graph for a given input, from some syntactic an-
notations to the program. Based on the dependency, a correspond-
ing output change can be derived from an input change, which
hopefully has a much better run-time performance compared to re-
executing the program with the new input. However, it is not ob-
vious how the technique can be applied to a bidirectional setting,
where we need to derive an input change from an output change.
Nevertheless, this would be an interesting future direction to ex-
plore.

Explicit caching of intermediate computation is another way
of achieving incremental execution. If an input change can be de-
scribed as a loop increment, an incremental version of the program
under the change can be constructed and benefit from previously
computed results [20]. In a sense, the contexts in our approach can
be seen as cached values, and the focuses can be seen as incre-
ments. Since in our case the closing operation (⋖) that combines
the cached result and the newly computed increment is not depen-
dent on the transformations, we do not need to ‘improve’ the trans-
formations to achieve incrementality.

Indexed elements in source structures and parametricity arising
from polymorphic ‘get’ functions are the key components ofse-
mantic bidirectionalization[29] – deriving a ‘put’ function without
inspecting the syntactic definition of the ‘get’ function. Similar to
our approach, the indices in [29] are unique and cannot be created
by ‘get’ transformations, so that individual elements in the view can
be mapped back to their source origins, and so does the editing of
them. Nevertheless, there has not been any attempt to derivestruc-
ture correspondences from the element correspondences, aswe do
in this paper. Consequently, editing view structures is notpermitted
in semantic bidirectionalization, while our approach onlyoptimizes
a given ‘put’ function instead of creating one.

Maintaining proper alignment between ordered source and view
is itself an important semantic issue of bidirectional programming,
as view editing may cause mismatchings between view/sourcedata.
Matching lenses[3] aims at addressing this issue without hard-
wiring alignment strategies into bidirectional systems. Though our
use of alignment in this paper is purely for the purpose of optimiza-
tion, it is noted that a change-based ‘put’ function is expected to
preserve the alignment semantics of its employed state-based one,
because the unaffected context that is not processed will not impact
alignment.

The connection between alignment and incrementality is spec-
ulated in [18]. However, as far as we are aware, there has not been
any concrete proposal before.

8. Conclusions
We have developed a change-based bidirectional transformation
framework that focuses on changes rather than data. The technique
we have presented is very general, and most existing state-based
frameworks may draw benefits from its adoption, so long as the
‘get’ function is well-aligning. This condition is semantic; there is
no restriction on the language that is used for implementation.

In the future, we plan to look at ways of dealing with monomor-
phic functions, which are widely used in XML transformations. In

contrast to the polymorphic case presented in this paper, the la-
belling of tree nodes does require some adjustment of a state-based
bidirectional framework. It will be interesting to see whether such
adjustments can be made in a systematic way.

Acknowledgements
We are grateful to Ralf Hinze for his valuable comments on an
early draft of the paper; and the ICFP reviewers for their detailed
and insightful reviews. The work was partly conducted when the
first author was at the University of Oxford supported by the UK
EPSRC grantGeneric and Indexed Programming(EP/E02128X).

References
[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional

programming.ACM Transactions on Programming Languages and
Systems, 28:990–1034, November 2006.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM Transactions on Database Systems, 6(4):557–575, 1981.

[3] D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg, and B. C. Pierce.
Matching lenses: alignment and view update. InInternational
Conference on Functional Programming (ICFP), pages 193–204,
New York, NY, USA, 2010. ACM.

[4] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and
A. Schmitt. Boomerang: Resourceful lenses for string data.In
Principles of Programming Languages, pages 407–419, New York,
NY, USA, Jan. 2008. ACM.

[5] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view
data in a warehousing environment.ACM Transactions on Database
Systems, 25:179–227, June 2000.

[6] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr,and
J. F. Terwilliger. Bidirectional transformations: A cross-discipline
perspective. InTheory and Practice of Model Transformations, pages
260–283, Berlin, Heidelberg, 2009. Springer-Verlag.

[7] U. Dayal and P. A. Bernstein. On the correct translation of update
operations on relational views.ACM Transactions on Database
Systems, 7(3):381–416, 1982.

[8] Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based
bidirectional model transformations. InTheory and Practice of Model
Transformations, ICMT’10, pages 61–76, Berlin, Heidelberg, 2010.
Springer-Verlag.

[9] L. Fegaras. Propagating updates through XML views usinglineage
tracing. In International Conference on Data Engineering, pages
309–320, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[10] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A
linguistic approach to the view update problem.ACM Transactions on
Programming Languages and Systems, 29(3), May 2007. Preliminary
version in POPL ’05.

[11] J. N. Foster, B. C. Pierce, and S. Zdancewic. Updatable security
views. InComputer Security Foundations, pages 60–74, Washington,
DC, USA, 2009. IEEE Computer Society.

[12] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In
International Conference on Functional Programming (ICFP), pages
383–396, New York, NY, USA, 2008. ACM.

[13] H. Giese and R. Wagner. From model transformation to incremental
bidirectional model synchronization.Software and Systems Modeling,
8:21–43, 2009. 10.1007/s10270-008-0089-9.

[14] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics
of consistent views. ACM Transactions on Database Systems,
13(4):486–524, 1988.

[15] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano.
Bidirectionalizing graph transformations. InInternational Confer-
ence on Functional Programming (ICFP), ICFP ’10, pages 205–216,
New York, NY, USA, 2010. ACM.

[16] R. Hinze and J. Jeuring. Functional Pearl: Weaving a web. Journal
of Functional Programming, 11(6):681–689, nov 2001.

[17] R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. Science
of Computer Programming, 51(1-2):117–151, 2004.

[18] M. Hofmann, B. Pierce, and D. Wagner. Symmetric lenses.In
Principles of Programming Languages (POPL), POPL ’11, pages
371–384, New York, NY, USA, 2011. ACM.

[19] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for
developing structured documents based on bidirectional transforma-
tions. InWorkshop on Partial Evaluation and Program Manipulation
(PEPM), pages 178–189, New York, NY, USA, 2004. ACM.

[20] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for
incremental computation.ACM Transactions on Programming
Languages and Systems, 20:546–585, May 1998.

[21] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic derivation
of view complement functions. InInternational Conference on
Functional Programming (ICFP), pages 47–58, New York, NY,
USA, 2007. ACM.

[22] C. McBride. The derivative of a regular type is its type of one-hole
contexts (extended abstract).http://strictlypositive.org/
diff.pdf, University of Durham, 2001.

[23] L. Meertens. Designing constraint maintainers for user interaction.
ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps,
CWI, Amsterdam, 1998.

[24] S.-C. Mu, Z. Hu, and M. Takeichi. An injective language for
reversible computation. InMathematics of Program Construction,
volume 3125 ofLecture Notes in Computer Science, pages 289–313.
Springer, 2004.

[25] H. Pacheco and A. Cunha. Generic point-free lenses. In C. Bolduc,
J. Desharnais, and B. Ktari, editors,Mathematics of Program
Construction, volume 6120 ofLecture Notes in Computer Science,
pages 331–352. Springer Berlin / Heidelberg, 2010.

[26] S. Peyton Jones, editor.Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

[27] P. Stevens. Bidirectional model transformations in QVT: Semantic
issues and open questions.Model Driven Engineering Languages
and Systems, pages 1–15, 2007.

[28] P. Stevens. Bidirectional model transformations in QVT: semantic
issues and open questions.Software and Systems Modeling, 9:7–20,
2010.

[29] J. Voigtländer. Bidirectionalization for free! (Pearl). In Principles of
Programming Languages (POPL), pages 165–176, New York, NY,
USA, 2009. ACM.

[30] J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic
and semantic bidirectionalization. InInternational Conference on
Functional Programming (ICFP), pages 181–192, New York, NY,
USA, 2010. ACM.

[31] P. Wadler. Theorems for free! InFunctional Programming Languages
and Computer Architecture, pages 347–359, New York, NY, USA,
1989. ACM.

[32] M. Wang, J. Gibbons, K. Matsuda, and Z. Hu. Gradual refinement:
Blending pattern matching with data abstraction. In C. Bolduc,
J. Desharnais, and B. Ktari, editors,Mathematics of Program
Construction, volume 6120 ofLecture Notes in Computer Science,
pages 397–426. Springer Berlin / Heidelberg, 2010.

