
Coding with Asymmetric Numeral Systems

(long version)

Jeremy Gibbons

University of Oxford

Abstract. Asymmetric Numeral Systems (ANS) are an entropy-based
encoding method introduced by Jarek Duda, combining the Shannon-
optimal compression effectiveness of arithmetic coding with the execu-
tion efficiency of Huffman coding. Existing presentations of the ANS
encoding and decoding algorithms are somewhat obscured by the lack of
suitable presentation techniques; we present here an equational deriva-
tion, calculational where it can be, and highlighting the creative leaps
where it cannot.

1 Introduction

Entropy encoding techniques compress symbols according to a model of their
expected frequencies, with common symbols being represented by fewer bits than
rare ones. The best known entropy encoding technique is Huffman coding (HC)
[20], taught in every undergraduate course on algorithms and data structures:
a classic greedy algorithm uses the symbol frequencies to construct a trie, from
which an optimal prefix-free binary code can be read off. For example, suppose an
alphabet of n = 3 symbols s0 = ’a’, s1 = ’b’, s2 = ’c’ with respective expected
relative frequencies c0 = 2, c1 = 3, c2 = 5 (that is, ’a’ is expected 2/2+3+5 = 20%
of the time, and so on); then HC might construct the trie and prefix-free code
shown in Figure 1. A text is then encoded as the concatenation of its symbol
codes; thus, the text "cbcacbcacb" encodes to 1 01 1 00 1 01 1 00 1 01. This is
optimal, in the sense that no prefix-free binary code yields a shorter encoding of
any text that matches the expected symbol frequencies.

But HC is only ‘optimal’ among encodings that use a whole number of bits per
symbol; if that constraint is relaxed, more effective encoding becomes possible.
Note that the two symbols ’a’ and ’b’ were given equal-length codes 00 and 01

a b

c

0 1

0 1

’a’ 7→ 00
’b’ 7→ 01
’c’ 7→ 1

Fig. 1. A Huffman trie and the corresponding prefix-free code

2 J. Gibbons

by HC, despite having unequal frequencies—indeed, any expected frequencies
in the same order c0 < c1 < c2 will give the same code. More starkly, if the
alphabet has only two symbols, HC can do no better than to code each symbol
as a single bit, whatever their expected frequencies; that might be acceptable
when the frequencies are similar, but is unacceptable when they are not.

Arithmetic coding (AC) [25, 29] is an entropy encoding technique that allows
for a fractional number of bits per symbol. In a nutshell, a text is encoded as a
half-open subinterval of the unit interval; the model assigns disjoint subintervals
of the unit interval to each symbol, in proportion to their expected frequencies
(as illustrated on the left of Figure 2); encoding starts with the unit interval,
and narrows this interval by the model subinterval for each symbol in turn (the
narrowing operation is illustrated on the right of Figure 2). The encoding is the
shortest binary fraction in the final interval, without its final ‘1’. For example,
with the model illustrated in Figure 2, the text "abc" gets encoded via the
narrowing sequence of intervals

[0, 1)
’a’−→ [0, 1/5)

’b’−→ [1/25,
1/10)

’c’−→ [7/100,
1/10)

from which we pick the binary fraction 3/32 (since 7/100 6 3/32<
1/10) and output

the bit sequence 0001. We formalize this sketched algorithm in Section 3.
This doesn’t look like much saving: this particular example is only one

bit shorter than with HC; and similarly, the arithmetic coding of the text
"cbcacbcacb" is 14 bits, where HC uses 15 bits. But AC can do much better;
for example, it encodes the permutation "cabbacbccc" of that text in 7 bits,
whereas of course HC uses the same 15 bits as before.

In fact, AC is Shannon-optimal : the number of bits used tends asymptotically
to the Shannon entropy of the message—the sum

∑
i −log2 pi of the negative

logarithms of the symbol probabilities. Moreover, AC can be readily made adap-
tive, whereby the model evolves as the text is read, whereas HC entails separate
modelling and encoding phases.

However, AC does have some problems. One problem is a historical accident:
specific applications of the technique became mired in software patents in the

’a’ 7→ [0, 1/5)
’b’ 7→ [1/5,

1/2)
’c’ 7→ [1/2, 1)

0
l

r

1

0

p

q

1

Fig. 2. A text model in interval form. Narrowing interval [l , r) by interval [p, q) yields
the interval marked in bold on the left, which stands in relation to [l , r) as [p, q) does
to [0, 1).

Coding with Asymmetric Numeral Systems 3

1980s, and although those patents have now mostly expired, the consequences
are still being felt (for example, Seward’s bzip compressor [26] switched in 1996
from AC to HC because of patents, and has not switched back since). A more fun-
damental problem is that AC involves a lot of arithmetic, and even after slightly
degrading coding effectiveness in order to use only single-word fixed-precision
rather than arbitrary-precision arithmetic, state-of-the-art implementations are
still complicated and relatively slow.

A recent development that addresses both of these problems has been Jarek
Duda’s introduction of asymmetric numeral systems (ANS) [11, 12, 14]. This is
another entropy encoding technique; in a nutshell, rather than encoding longer
and longer messages as narrower and narrower subintervals of the unit interval,
they are simply encoded as larger and larger integers. Concretely, with the same
frequency counts c0 = 2, c1 = 3, c2 = 5 as before, and cumulative totals t0 =
0, t1 = t0 + c0 = 2, t2 = t1 + c1 = 5, t = t2 + c2 = 10, encoding starts with
an accumulator at 0, and for each symbol si (traditionally from right to left in
the text) maps the current accumulator x to (x div ci) × t + ti + (x mod ci),
as illustrated in Figure 3. Thus, the text "abc" gets encoded via the increasing
(read from right to left) sequence of integers:

70
’a’←− 14

’b’←− 5
’c’←− 0

It is evident even from this brief sketch that the encoding process is quite
simple, with just a single division and multiplication per symbol; it turns out
that decoding is just as simple. The encoding seems quite mysterious, but it is
very cleverly constructed, and again achieves Shannon-optimal encoding; ANS
combines the effectiveness of AC with the efficiency of Huffman coding, ad-
dressing the more fundamental concern with AC. The purpose of this paper is
to motivate and justify the development, using calculational techniques where
possible.

As it happens, Duda is also fighting to keep ANS in the public domain,
despite corporate opposition [22], thereby addressing the more accidental concern
too. These benefits have seen ANS recently adopted by large companies for

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · ·
’a’ • • • • • •
’b’ • • • • • •
’c’ • • • • • • • • • •

Fig. 3. The start of the coding table for alphabet ’a’, ’b’, ’c’ with counts 2, 3, 5.
The indices 0 . . are distributed across the alphabet, in proportion to the counts: two
for ’a’, three for ’b’, and so on. Encoding symbol s with current accumulator x
yields the index of the x th blob in row s as the new accumulator. For example, with
x = 4 and next symbol s = ’b’ = si with i = 1, we have ci = 3, ti = 2, t = 10 so
x ′ = (x div ci)× t + ti + (x mod ci) = 13, and indeed the 4th blob in row ’b’ (counting
from zero) is in column 13.

4 J. Gibbons

products such as Facebook Zstd [9], Apple LZFSE [10], Google Draco [7], and
Dropbox DivANS [24], and ANS is expected [1] to be featured in the forthcoming
JPEG XL standard [21].

One disadvantage of ANS is that, whereas AC acts in a first-in first-out man-
ner, ANS acts last-in first-out, in the sense that the decoded text comes out in
the reverse order to which it went in. Our development will make clear where this
happens. This reversal makes ANS unsuitable for encoding a communications
channel, and also makes it difficult to employ adaptive text models. (DivANS
[24] processes the input forwards for statistical modelling, and then uses this
information backwards to encode the text; one could alternatively batch process
the text in fixed-size blocks. In some contexts, such as encoding the video stream
of a movie for distribution to set-top boxes, it is worth expending more effort in
offline encoding in order to benefit online decoding.)

The remainder of this paper is structured as follows. Section 2 recaps various
well-known properties of folds and unfolds on lists. Section 3 presents the rele-
vant basics of AC, and Section 4 a proof of correctness of this basic algorithm.
Section 5 presents the key step from AC to ANS, namely the switch from ac-
cumulating fractions to accumulating integers. Section 6 shows how to modify
this naive ANS algorithm to work in bounded precision, and Section 7 shows
how to make the resulting program ‘stream’ (to start generating output before
consuming all the input). Section 8 discusses related work and concludes.

We use Haskell [23] as an algorithmic notation. Note that function application
binds tightest of all binary operators, so that for example f x +y means (f x)+y ;
apart from that, we trust that the notation is self-explanatory. We give definitions
of functions from the Haskell standard library as we encounter them. The code
from the paper is available online [16], as is a longer version [17] of the paper
including proofs and other supporting material.

This longer version of the paper gives proofs and other additional material,
for completeness. The differences from the published paper are all highlighted
in red, like this paragraph.

2 Origami programming

In this section, we recap some well-studied laws of folds

foldr :: (a → b → b)→ b → [a]→ b
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

foldl :: (b → a → b)→ b → [a]→ b
foldl f e [] = e
foldl f e (x : xs) = foldl f (f e x) xs

and unfolds

Coding with Asymmetric Numeral Systems 5

unfoldr :: (b → Maybe (a, b))→ b → [a]
unfoldr f y = case f y of Nothing → []

Just (x , y ′)→ x : unfoldr f y ′

on lists.

Folds. The First Duality Theorem of foldl and foldr [5, §3.5.1] states that

foldr f e = foldl f e

when f and e form a monoid. The Third Duality Theorem, from the same source,
says:

foldr f e · reverse = foldl (flip f) e

where flip f a b = f b a swaps the arguments of a binary function. (The published
version [5, §3.5.1] has the reverse on the other side, and holds only for finite lists.)

We will also use the Fusion Law for foldr [4, §4.6.2]:

h · foldr f e = foldr f ′ e ′ ⇐ h e = e ′ ∧ h (f x y) = f ′ x (h y)

(for strict h, or on finite lists), and its corollaries the Map Fusion laws:

foldr f e ·map g = foldr (λx y → f (g x) y) e
foldl f e ·map g = foldl (λx y → f x (g y)) e

Unfolds. There is a fusion law for unfolds [18] too:

unfoldr f · g = unfoldr f ′ ⇐ f · g = fmapList g · f ′

Here, the fmap instance is for the base functor for lists; that is,

fmapList :: (b → c)→ Maybe (a, b)→ Maybe (a, c)
fmapList h (Just (a, b)) = Just (a, h b)
fmapList g Nothing = Nothing

As it happens, the Haskell 98 standard does not mention unfoldr fusion; the sole
law of unfoldr it does mention [23, §17.4] gives conditions under which it inverts
a foldr : if

g (f x z) = Just (x , z)
g e = Nothing

for all x and z , then

unfoldr g (foldr f e xs) = xs

for all finite lists xs. The proof is a straightforward induction on xs. The base
case is xs = [], for which we have

unfoldr g (foldr f e [])
= { foldr }

unfoldr g e

6 J. Gibbons

= { assumption: g e = Nothing ; unfoldr }
[]

For the inductive step, assume that the theorem holds for xs. Then:

unfoldr g (foldr f e (x : xs))
= { foldr }

unfoldr g (f x (foldr f e xs)
= { assumption: g (f x z) = Just (x , z) }

x : unfoldr g (foldr f e xs)
= { inductive hypothesis }

x : xs

We call this the Unfoldr–Foldr Theorem.

We make two generalisations to this theorem. The first, the Unfoldr–Foldr
Theorem with Junk, allows the unfold to continue after reconstructing the orig-
inal list: if only

g (f x z) = Just (x , z)

holds, for all x and z , then

∃ys . unfoldr g (foldr f e xs) = xs ++ ys

for all finite lists xs—that is, the unfoldr inverts the foldr except for appending
some (possibly infinite) junk ys to the output. (The proof is again by induction
on xs: the base case vacuously holds, and the inductive step is essentially the
same as without junk.)

The second generalisation is the Unfoldr–Foldr Theorem with Invariant. We
say that predicate p is an invariant of foldr f e and unfoldr g if

p (f x z) ⇐ p z
p z ′ ⇐ p z ∧ g z = Just (x , z ′)

for all x , z , z ′. The theorem states that if p is such an invariant, and the conditions

g (f x z) = Just (x , z) ⇐ p z
g e = Nothing ⇐ p e

hold for all x and z , then

unfoldr g (foldr f e xs) = xs ⇐ p e

for all finite lists xs.

Again, the proof is by induction on xs. Note the auxilliary lemma that p e
implies p (foldr f e xs) for any finite xs. Now assume that p e holds. Then for
xs = [], we have

unfoldr g (foldr f e [])
= { foldr }

unfoldr g e

Coding with Asymmetric Numeral Systems 7

= { by assumption, g e = Nothing }
[]

and for the inductive step, assume that the result holds for xs, and then we have:

unfoldr g (foldr f e (x : xs))
= { foldr }

unfoldr g (f x (foldr f e xs))
= { p (foldr f e xs) holds, so g (f x (foldr f e xs)) = Just (x , foldr f e xs) }

x : unfoldr g (foldr f e xs)
= { inductive hypothesis }

x : xs

And of course, there is an Unfoldr–Foldr Theorem with Junk and Invariant,
incorporating both generalisations; this is the version we will actually use.

Metamorphisms. A metamorphism [15] consists of an unfoldr after a foldl :

unfoldr g · foldl f e

In this plain form, it consumes one list and produces another. Because the foldl
is tail-recursive, it consumes the whole input before producing any output. How-
ever, sometimes an initial segment of the input is sufficient to determine a cor-
responding initial segment of the output; then that part of the output may be
produced early, before consuming the rest of the input. The condition under
which this can be done is called the streaming condition for g and f :

g b = Just (c, b′) ⇒ ∀a . g (f b a) = Just (c, f b′ a)

Informally, the streaming condition states that for any productive state b, from
which the producer g produces an output c and moves to a new state b′, the
consumption of any input a preserves productivity of the state f b a, and more-
over, the same output c will be produced, and the new state f b′ a will be the
same as would have resulted from producing c before consuming a. That is, the
operations ‘produce c’ and ‘consume a’ commute:

b f b a

b′ f b′ a

produce c produce c

consume a

consume a

If the streaming condition holds for g and f , then

unfold g (foldl f e x) = stream g f e x

for all finite lists x , where

8 J. Gibbons

stream :: (b → Maybe (c, b))→ (b → a → b)→ b → [a]→ [c]
stream g f b x = case g b of

Just (c, b′)→ c : stream g f b′ x
Nothing → case x of

a : x ′ → stream g f (f b a) x ′

[] → []

Thus, stream g f produces an element if it can, consumes one if it cannot produce,
and terminates if there is nothing left to consume. Significantly, stream g f e can
operate on infinite lists, even though the two-phase process unfoldr g · foldl f e
cannot.

Sometimes streaming almost works, but needs to be divided into a ‘cautious
phase’ in which input still remains, followed by a ‘reckless phase’ once all the
input has been consumed:

fstream :: (b → Maybe (c, b))→ (b → [c])→ (b → a → b)→ b → [a]→ [c]
fstream g h f b x = case g b of

Just (c, b′)→ c : fstream g h f b′ x
Nothing → case x of

a : x ′ → fstream g h f (f b a) x ′

[] → h b

Compared to plain stream, this takes an additional argument h, which is applied
to the final state b in order to ‘flush the buffer’ once the input is exhausted. The
corresponding theorem states that, provided that the streaming condition holds
for g and f , then

apo g h · foldl f e = fstream g h f e

where apo captures list apomorphisms [28]:

apo :: (b → Maybe (c, b))→ (b → [c])→ b → [c]
apo g h b = case g b of

Just (c, b′)→ apo g h b′

Nothing → h b

(that is, like an unfold, but switching to a flushing phase using h at the end).

Of course, any unfold is trivially an apomorphism, with the trivial flusher
that always yields the empty list. More interestingly, any unfold can be factored
into a cautious phase (delivering elements only while a given predicate p holds)
followed by a reckless phase (ignoring p, and delivering the elements anyway):

unfoldr g = apo (guard p g) (unfoldr g)

where

guard :: (b → Bool)→ (b → Maybe (c, b))→ (b → Maybe (c, b))
guard p g x = if p x then g x else Nothing

Coding with Asymmetric Numeral Systems 9

In particular, the streaming condition may hold for the cautious coalgebra guard p g
when it doesn’t hold for the reckless coalgebra g itself. We will make use of this
construction later.

3 Arithmetic coding

We start from a simplified version of arithmetic coding: we use a fixed rather
than adaptive model, and rather than picking the shortest binary fraction within
the final interval, we simply pick the lower bound of the interval.

Intervals and symbols. We represent intervals as pairs of rationals,

type Interval = (Rational ,Rational)

so the unit interval is unit = (0, 1) and the lower bound is obtained by fst . We
suppose a symbol table

counts :: Integral n ⇒ [(Symbol ,n)]

that records a positive count for every symbol in the alphabet (note the Integral
class constraint: we allow the counts to be both arbitrary-precision Integers here,
and fixed-precision Ints later). From this we obtain the following functions:

symbols :: [Symbol]
symbols = map fst counts

t :: Integral n ⇒ n
t = sum (map snd counts)

freqs :: [(Symbol ,Rational)]
freqs = [(s, c % t) | (s, c)← counts]

freq :: Symbol → Rational
freq = justLookup freqs

fcumuls :: [(Symbol ,Rational)]
fcumuls = zip symbols (scanl (+) 0 (map snd freqs))

fcumul :: Symbol → Rational
fcumul = justLookup fcumuls

encodeSym :: Symbol → Interval
encodeSym s = (l , l + freq s) where l = fcumul s

decodeSym :: Rational → Symbol
decodeSym x = last [s | (s, y)← fcumuls, y 6 x]

where

justLookup :: Eq a ⇒ [(a, b)]→ a → b
justLookup abs a = fromJust (lookup a abs)

retrieves a present item from an association list. In particular, decodeSym and
encodeSym satisfy the central property: for x ∈ unit ,

10 J. Gibbons

decodeSym x = s ⇔ x ∈ encodeSym s

For example, with the same alphabet of three symbols ’a’, ’b’, ’c’ and counts
2, 3, and 5 as before, we have encodeSym ’b’ = (1/5,

1/2) and decodeSym (1/3) =
’b’.

We have operations on intervals:

weight , scale :: Interval → Rational → Rational
weight (l , r) x = l + (r − l)× x
scale (l , r) y = (y − l) / (r − l)

narrow :: Interval → Interval → Interval
narrow i (p, q) = (weight i p,weight i q)

that satisfy

weight i x ∈ i ⇔ x ∈ unit
weight i x = y ⇔ scale i y = x

Informally, weight (l , r) x is ‘fraction x of the way between l and r ’, and con-
versely scale (l , r) y is ‘the fraction of the way y is between l and r ’; and narrow
is illustrated in Figure 2.

Encoding and decoding. Now we can specify arithmetic encoding and decod-
ing by:

encode1 :: [Symbol]→ Rational
encode1 = fst · foldl estep1 unit

estep1 :: Interval → Symbol → Interval
estep1 i s = narrow i (encodeSym s)

decode1 :: Rational → [Symbol]
decode1 = unfoldr dstep1

dstep1 :: Rational → Maybe (Symbol ,Rational)
dstep1 x = let s = decodeSym x in Just (s, scale (encodeSym s) x)

For example, with the same alphabet and counts, the input text "abc" gets
encoded symbol by symbol, from left to right (because of the foldl), starting
with the unit interval (0, 1), via the narrowing sequence of intervals

estep1 (0, 1) ’a’ = (0, 1/5)
estep1 (0, 1/5) ’b’ = (1/25,

1/10)
estep1 (1/25,

1/10) ’c’ = (7/100,
1/10)

from which we select the lower bound 7/100 of the final interval. Conversely,
decoding starts with 7/100, and proceeds as follows:

dstep1 (7/100) = Just (’a’, 7/20)
dstep1 (7/20) = Just (’b’, 1/2)
dstep1 (1/2) = Just (’c’, 0)

Coding with Asymmetric Numeral Systems 11

dstep1 0 = Just (’a’, 0)
...

Note that decoding runs forever; but the finite encoded text is a prefix of the
decoded output—for any input text xs, there is an infinite sequence of junk ys
such that

decode1 (encode1 xs) = xs ++ ys

(indeed, ys = repeat ’a’ when we pick the fst of an interval).

4 Correctness of arithmetic coding

Using the laws of folds, we can ‘fission’ the symbol encoding out of encode1, turn
the foldl into a foldr (because narrow and unit form a monoid), fuse the fst with
the foldr , and then re-fuse the symbol encoding with the fold:

encode1

= { definition }
fst · foldl estep1 unit

= { map fusion for foldl , backwards }
fst · foldl narrow unit ·map encodeSym

= { duality: narrow and unit form a monoid }
fst · foldr narrow unit ·map encodeSym

= { fusion for foldr (see below) }
foldr weight 0 ·map encodeSym

= { map fusion; let estep2 s x = weight (encodeSym s) x }
foldr estep2 0

For the fusion step, we have fst unit = 0, and

fst (narrow i (p, q))
= { narrow }

fst (weight i p,weight i q)
= { fst }

weight i p
= { fst }

weight i (fst (p, q))

as required. So we have calculated encode1 = encode2, where

encode2 :: [Symbol]→ Rational
encode2 = foldr estep2 0

estep2 :: Symbol → Rational → Rational
estep2 s x = weight (encodeSym s) x

Now encoding is a simple foldr , which means that it is easier to manipulate.

12 J. Gibbons

Inverting encoding. Let us turn now to decoding, and specifically the question
of whether it faithfully decodes the encoded text. We use the Unfoldr–Foldr The-
orem. Of course, we have to accept junk, because our decoder runs indefinitely.
We check the inductive condition:

dstep1 (estep2 s x)
= { estep2; let x ′ = weight (encodeSym s) x }

dstep1 x ′

= { dstep1; let s ′ = decodeSym x ′ }
Just (s ′, scale (encodeSym s ′) x ′)

Now, we hope to recover the first symbol; that is, we require s ′ = s:

s ′ = s
⇔ { s ′ = decodeSym x ′; central property }

x ′ ∈ encodeSym s
⇔ { definition of x ′ }

weight (encodeSym s) x ∈ encodeSym s
⇔ { property of weight }

x ∈ unit

Fortunately, it is an invariant of the computation that the state x is in the unit
interval: of course 0 ∈ unit , and we have:

estep2 s x ∈ unit
⇔ { estep2 }

weight (encodeSym s) x ∈ unit
⇐ { transitivity , since encodeSym s ⊆ unit }

weight (encodeSym s) x ∈ encodeSym s
⇔ { weight }

x ∈ unit

and when x ∈ unit and dstep1 x = Just (s, x ′) we have:

x ′ ∈ unit
⇔ { dstep1; let s = decodeSym x }

scale (encodeSym s) x ∈ unit
⇔ { property of weight }

weight (encodeSym s) (scale (encodeSym s) x) ∈ encodeSym s
⇔ { weight i · scale i = id }

x ∈ encodeSym s
⇔ { decodeSym x = s; central property of model }

True

So indeed s ′ = s. Continuing:

dstep1 (estep2 s x)
= { above }

Just (s, scale (encodeSym s) (weight (encodeSym s) x))

Coding with Asymmetric Numeral Systems 13

= { scale i · weight i = id }
Just (s, x)

as required. Therefore, by the Unfoldr–Foldr Theorem with Junk and Invariant,
decoding inverts encoding, up to junk: for all finite xs,

∃ys . decode1 (encode2 xs) = xs ++ ys

But we can discard the junk, by pruning to the desired length:

take (length xs) (decode1 (encode2 xs)) = xs

for all finite xs. Alternatively, we can use an ‘end of text’ marker ω that is
distinct from all proper symbols:

takeWhile (6= ω) (decode1 (encode2 (xs ++ [ω]))) = xs ⇐ ω /∈ xs

for all finite xs. Either way, arithmetic decoding does indeed faithfully invert
arithmetic coding.

5 From fractions to integers

We now make the key step from AC to ANS. Whereas AC encodes longer and
longer messages as more and more precise fractions, ANS encodes them as larger
and larger integers. Given the symbol table counts and sum of counts t as before,
we obtain the following functions:

count :: Integral n ⇒ Symbol → n
count = justLookup counts

cumul :: Integral n ⇒ Symbol → n
cumul = justLookup cumuls

cumuls :: Integral n ⇒ [(Symbol ,n)]
cumuls = zip symbols (scanl (+) 0 (map snd counts))

find :: Integral n ⇒ n → Symbol
find x = last [s | (s, y)← cumuls, y 6 x] -- assuming x < t

such that count s gives the count of symbol s, cumul s gives the cumulative
counts of all symbols preceding s in the symbol table, and find x looks up an
integer 0 6 x < t :

find x = s ⇔ cumul s 6 x < cumul s + count s

The integer encoding step. We encode a text as an integer x , contain-
ing log2 x bits of information. The next symbol s to encode has probability
p = count s / t , and so requires an additional log2 (1/p) bits; in total, that makes
log2 x + log2 (1/p) = log2 (x/p) = log2 (x × t / count s) bits. So entropy consid-
erations tell us that, roughly speaking, to incorporate symbol s into state x we
want to map x to x ′ ' x × t / count s. Of course, in order to decode, we need to

14 J. Gibbons

be able to invert this transformation, to extract s and x from x ′; this suggests
that we should do the division by count s first:

x ′ = (x div count s)× t -- not final

so that the multiplication by the known value t can be undone first:

x div count s = x ′ div t

(we will refine this definition shortly). How do we reconstruct s? Well, there is
enough headroom in x ′ to add any value u with 0 6 u < t without affecting the
division; in particular, we can add cumul s to x ′, and then we can use find on
the remainder:

x ′ = (x div count s)× t + cumul s -- still not final

so that

x div count s = x ′ div t
cumul s = x ′ mod t
s = find (cumul s) = find (x ′ mod t)

(this version still needs to be refined further). We are still missing some infor-
mation from the lower end of x through the division, namely x mod count s; so
we can’t yet reconstruct x . Happily,

find (cumul s) = find (cumul s + r)

for any r with 0 6 r < count s; of course, x mod count s is in this range, so there
is still precisely enough headroom in x ′ to add this lost information too, without
affecting the find , allowing us also to reconstruct x :

x ′ = (x div count s)× t + cumul s + x mod count s -- final

so that

x div count s = x ′ div t
s = find (cumul s + x mod count s)

= find (x ′ mod t)
x = count s × (x div count s) + x mod count s

= count s × (x ′ div t) + x ′ mod t − cumul s

This is finally the transformation we will use for encoding one more symbol.

Integer ANS. We define

encode3 :: [Symbol]→ Integer
encode3 = foldr estep3 0

estep3 :: Integral n ⇒ Symbol → n → n
estep3 s x = let (q , r) = x divMod count s in q × t + cumul s + r

decode3 :: Integer → [Symbol]
decode3 = unfoldr dstep3

Coding with Asymmetric Numeral Systems 15

dstep3 :: Integral n ⇒ n → Maybe (Symbol ,n)
dstep3 x = let (q , r) = x divMod t

s = find r
in Just (s, count s × q + r − cumul s)

(Note again that we allow estep3 and dstep3 to work with both arbitrary-
precision Integers here and fixed-precision Ints later.)

Correctness of integer ANS. Using similar reasoning as for AC, we can show
that a decoding step inverts an encoding step:

dstep3 (estep3 s x)
= { estep3; let (q , r) = x divMod count s, x ′ = q × t + cumul s + r }

dstep3 x ′

= { dstep3; let (q ′, r ′) = x ′ divMod t , s ′ = find r ′ }
Just (s ′, count s ′ × q ′ + r ′ − cumul s ′)

= { r ′ = cumul s + r , 0 6 r < count s, so s ′ = find r ′ = s }
Just (s, count s × q ′ + r ′ − cumul s)

= { r ′ − cumul s = r , q ′ = x ′ div t = q }
Just (s, count s × q + r)

= { (q , r) = x divMod count s }
Just (s, x)

Therefore decoding inverts encoding, modulo pruning, by the Unfoldr–Foldr The-
orem with Junk:

take (length xs) (decode3 (encode3 xs)) = xs

for all finite xs. For example, with the same alphabet and symbol counts as
before, encoding the text "abc" proceeds (now from right to left, because of the
foldr in encode3) as follows:

estep3 ’c’ 0 = 5
estep3 ’b’ 5 = 14
estep3 ’a’ 14 = 70

and the result is 70. Decoding inverts this:

dstep3 70 = Just (’a’, 14)
dstep3 14 = Just (’b’, 5)
dstep3 5 = Just (’c’, 0)
dstep3 0 = Just (’a’, 0)
...

Huffman as an instance of ANS. Incidentally, we can see here that ANS
is in fact a generalisation of HC. If the symbol counts and their sum are all
powers of two, then the arithmetic in estep3 amounts to simple manipulation
of bit vectors by shifting and insertion. For example, with an alphabet of four

16 J. Gibbons

symbols ’a’, ’b’, ’c’, ’d’ with counts 4, 2, 1, 1, encoding operates on a state x
with binary expansion · · · x3 x2 x1 x0 (written most significant bit first) as follows:

estep3 ’a’ (· · · x3 x2 x1 x0) = · · · x3 x2 0 x1 x0
estep3 ’b’ (· · · x3 x2 x1 x0) = · · · x3 x2 x1 1 0 x0
estep3 ’c’ (· · · x3 x2 x1 x0) = · · · x3 x2 x1 x0 1 1 0
estep3 ’d’ (· · · x3 x2 x1 x0) = · · · x3 x2 x1 x0 1 1 1

That is, the symbol codes 0, 10, 110, 111 are inserted into rather than appended
onto the state so far; the binary expansion of the ANS encoding of a text yields
some permutation of the HC encoding of that text. (Clearly, every Huffman
tree gives rise to a collection of frequencies that are inverse powers of two, and
which sum to one; for example, the Huffman tree in Figure 1 yields frequencies
2−2, 2−2, 2−1. And the converse holds: every bag of values, each of which is of
the form 2−k and which together sum to one, corresponds to a Huffman tree
[2].)

A different starting point. As it happens, the inversion property of encode3

and decode3 holds, whatever value we use to start encoding with (since this value
is not used in the proof); in Section 6, we start encoding with a certain lower
bound l rather than 0. Moreover, estep3 is strictly increasing on states strictly
greater than zero, and dstep3 strictly decreasing; which means that the decoding
process can stop when it returns to the lower bound. That is, if we pick some
l > 0 and define

encode4 :: [Symbol]→ Integer
encode4 = foldr estep3 l

decode4 :: Integer → [Symbol]
decode4 = unfoldr dstep4

dstep4 :: Integer → Maybe (Symbol , Integer)
dstep4 x = if x == l then Nothing else dstep3 x

then the stronger version of the Unfoldr–Foldr Theorem (without junk) holds,
and we have

decode4 (encode4 xs) = xs

for all finite xs.

6 Bounded precision

The previous versions all used arbitrary-precision arithmetic, which is expen-
sive. We now change the approach slightly to use only bounded-precision arith-
metic. As usual, there is a trade-off between effectiveness (a bigger bound on the
numbers involved means more accurate approximations to ideal entropies) and
efficiency (a smaller bound generally means faster operations). Fortunately, the
reasoning does not depend much on the actual bounds. We will pick a base b

Coding with Asymmetric Numeral Systems 17

and a lower bound l , and represent the integer accumulator x as a pair (w , ys)
which we call a Number :

type Number = (Int , [Int])

such that ys is a list of digits in base b, and w is an integer in the range l 6 w<u
(where we define u = l × b for the upper bound), under the abstraction relation
x = abstract (w , ys) induced by

abstract :: Number → Integer
abstract (w , ys) = foldl inject (fromIntegral w) (map fromIntegral ys)

where

inject w y = w × b + y

We call w the ‘window’ and ys the ‘remainder’. For example, with b = 10 and
l = 100, the pair (123, [4, 5, 6]) represents the value 123456.

Properties of the window. Specifying a range of the form l 6 w < l × b
induces nice properties. If we introduce an operation

extract w = w divMod b

as an inverse to inject , then we have

inject w y < u ⇔ w < l
l 6 fst (extract w) ⇔ u 6 w

For the proofs of these properties, we make use of the universal property of
integer division:

u < v × w ⇔ u div w < v

and its contrapositive:

u > v × w ⇔ u div w > v

Then:

inject w y < u
⇔ { inject }

w × b + y < u
⇔ { u }

w × b + y < l × b
⇔ { universal property of div }

(w × b + y) div b < l
⇔ { assuming 0 6 y < b }

w < l

and

l 6 fst (extract w)
⇔ { extract }

18 J. Gibbons

l 6 w div b
⇔ { universal property of div }

l × b 6 w
⇔ { u }

u 6 w

That is, given an in-range window value w , injecting another digit will take
it outside (above) the range; but if w is initially below the range, injecting
another digit will keep it below the upper bound. So starting below the range
and repeatedly injecting digits will eventually land within the range (it cannot
hop right over), and injecting another digit would take it outside the range
again. Conversely, given an in-range window value w , extracting a digit will take
it outside (below) the range; but if w is initially above the range, extracting
a digit will keep it at least the lower bound. So starting above the range and
repeatedly extracting digits will also eventually land within the range (it cannot
hop right over), and extracting another digit would take it outside the range
again. This is illustrated in Figure 4. In particular, for any x > l there is a
unique representation of x under abstract that has an in-range window.

For fast execution, b should be a power of two, so that multiplication and
division by b can be performed by bit shifts; and arithmetic on values up to u
should fit within a single machine word. It is also beneficial for t to divide evenly
into l , as we shall see shortly.

Encoding with bounded arithmetic. The encoding step acts on the window
in the accumulator using estep3, which risks making it overflow the range; we
therefore renormalize with enorm5 by shifting digits from the window to the
remainder until this overflow would no longer happen, before consuming the
symbol.

econsume5 :: [Symbol]→ Number
econsume5 = foldr estep5 (l , [])

estep5 :: Symbol → Number → Number

l u

inject inject

extractextract

Fig. 4. ‘Can’t miss it’ properties of the range: injecting an extra digit can only land
within the range [l , u) when starting below it, and will land above the range when
starting within it; and conversely, extracting a digit can only land within the range
when starting above it, and will land below the range when starting within it.

Coding with Asymmetric Numeral Systems 19

estep5 s (w , ys) = let (w ′, ys ′) = enorm5 s (w , ys) in (estep3 s w ′, ys ′)

enorm5 :: Symbol → Number → Number
enorm5 s (w , ys) = if estep3 s w < u

then (w , ys)
else let (q , r) = extract w in enorm5 s (q , r : ys)

That is, enorm5 preserves the abstract value of a Number :

abstract · enorm5 = abstract

and leaves the window safe for estep3 to incorporate the next symbol.

Note that if t divides l , then we can rearrange the guard in enorm5:

estep3 s w < u
⇔ { estep3; let (q , r) = w divMod count s }

q × t + cumul s + r < u
⇔ { t divides l , so u = (u div t)× t }

q × t + cumul s + r < (u div t)× t
⇔ { universal property of division: u < v × w ⇔ u div w < v }

(q × t + cumul s + r) div t < u div t
⇔ { 0 6 r < count s, so 0 6 cumul s + r < t }

q < u div t
⇔ { q = w div count s }

w div count s < u div t
⇔ { universal property of div again }

w < (u div t)× count s
⇔ { u = l × b, t divides l }

w < b × (l div t)× count s

This is worthwhile because b × (l div t) is a constant, independent of s, so the
comparison can be done with a single multiplication, whereas the definition of
estep3 involves a division by count s.

For example, consider again encoding the text "abc", with b = 10 and
l = 100. The process is again from right to left, with the accumulator start-
ing at (100, []). Consuming the ’c’ then the ’b’ proceeds as before, because the
window does not overflow u:

estep5 ’c’ (100, []) = (205, [])
estep5 ’b’ (205, []) = (683, [])

Now directly consuming the ’a’ would make the window overflow, because
estep3 ’a’ 683 = 3411 > u; so we must renormalize to (68, [3]) before consuming
the ’a’, leading to the final state (340, [3]):

enorm5 ’a’ (683, []) = (68, [3])
estep5 ’a’ (683, []) = (estep3 ’a’ 68, [3]) = (340, [3])

Note that the move from arbitrary to fixed precision is not just a data refinement—
it is not the case that econsume5 xs computes some representation of encode4 xs.

20 J. Gibbons

For example, encode4 "abc" = 3411, whereas econsume5 "abc" = (340, [3]),
which is not a representation of 3411. We have really sacrificed some effectiveness
in encoding in return for the increased efficiency of fixed precision arithmetic.

Decoding with bounded arithmetic. Decoding is an unfold using the ac-
cumulator as state. We repeatedly output a symbol from the window; this may
make the window underflow the range, in which case we renormalize if possible
by injecting digits from the remainder (and if this is not possible, because there
are no more digits to inject, it means that we have decoded the entire text).

dproduce5 :: Number → [Symbol]
dproduce5 = unfoldr dstep5

dstep5 :: Number → Maybe (Symbol ,Number)
dstep5 (w , ys) = let Just (s,w ′) = dstep3 w

(w ′′, ys ′′) = dnorm5 (w ′, ys)
in if w ′′ > l then Just (s, (w ′′, ys ′′)) else Nothing

dnorm5 :: Number → Number
dnorm5 (w , y : ys) = if w < l then dnorm5 (inject w y , ys) else (w , y : ys)
dnorm5 (w , []) = (w , [])

Note that decoding is of course symmetric to encoding; in particular, when
encoding we renormalize before consuming a symbol; therefore when decoding
we renormalize after emitting a symbol. For example, decoding the final encoding
(340, [3]) starts by computing dstep3 340 = Just (’a’, 68); the window value 68
has underflowed, so renormalization consumes the remaining digit 3, restoring
the accumulator to (683, []); then decoding proceeds to extract the ’b’ and ’c’

in turn, returning the accumulator to (100, []) via precisely the same states as
for encoding, only in reverse order.

dstep5 (340, [3]) = Just (’a’, (683, []))
dstep5 (683, []) = Just (’b’, (205, []))
dstep5 (205, []) = Just (’c’, (100, []))
dstep5 (100, []) = Nothing

Correctness of decoding. We can prove that decoding inverts encoding, again
using the Unfoldr–Foldr Theorem with Invariant. Here, the invariant p is that
the window w is in range (l 6 w < u), which is indeed maintained by the
consumer estep5 and producer dstep5. We show this in two steps. For estep5,
we start from a state (w , ys) with l 6 w < u. Let (w ′, ys ′) = enorm5 s (w , ys).
By construction of enorm5, we have estep3 s w ′ < u, so we need only check the
lower bound. If enorm5 succeeds immediately, we have w ′ = w > l as required.
Otherwise, consider the last iteration, which proceeds from a penultimate state
(w ′′, ys ′′) with window w ′′ such that estep3 s w ′′ > u to the final state with
window w ′ = w ′′ div b such that estep3 s w ′ < u; then we have

l 6 estep3 s w ′

⇔ { estep3 }

Coding with Asymmetric Numeral Systems 21

l 6 (w ′ div count s)× t + cumul s + (w ′ mod count s)
⇔ { t divides l , so l = (l div t)× t ; division }

l div t 6 ((w ′ div count s)× t + cumul s + (w ′ mod count s)) div t
⇔ { 0 6 cumul s + (w ′ mod count s)< t }

l div t 6 w ′ div count s
⇔ { w ′ = w ′′ div b; division, twice }

((l div t)× count s)× b 6 w ′′

⇔ { t divides l ; multiplication is associative }
((l × b) div t)× count s 6 w ′′

⇔ { division; u = l × b }
u div t 6 w ′′ div count s
⇔ { 0 6 cumul s + (w ′′ mod count s)< t }

u div t 6 ((w ′′ div count s)× t + cumul s + (w ′′ mod count s)) div t
⇔ { t divides u; division }

u 6 (w ′′ div count s)× t + cumul s + (w ′′ mod count s)
⇔ { estep3 }

u 6 estep3 s w ′′

⇔ { assumption }
True

Therefore estep5 does indeed maintain the window in range. As for dstep5, note
that by construction it can only return a window value w ′′ > l , so we need only
check the upper bound. We start in a state (w , ys) such that l 6 w < u, then
compute w ′<w by dstep3 and tidy up with dnorm5. If this succeeds immediately,
we have w ′′ = w ′ < w < u as required. Otherwise, consider the last iteration,
which proceeds from a penultimate state w such that w < l to a final state with
window w ′′ = w × b + y (for some y with 0 6 y < b) such that l 6 w ′′; then we
have

w ′′ < u
⇔ { w ′′ }

w × b + y < u
⇔ { unique representation property of range }

w < l
⇔ { assumption }

True

Therefore dstep5 also maintains the window in range, so this indeed an invariant.

As for the conditions of the Unfoldr–Foldr Theorem: in the base case, dstep3 l =
Just (s,w ′) with w ′ < l , and dnorm5 (w ′, []) = (w ′, []), so indeed

dstep5 (l , []) = Nothing

For the inductive step, suppose that l 6 w < u; then we have:

dstep5 (estep5 s (w , ys))
= { estep5; let (w ′, ys ′) = enorm5 s (w , ys) }

22 J. Gibbons

dstep5 (estep3 s w ′, ys ′)
= { dstep5, dstep3; let (w ′′, ys ′′) = dnorm5 (w ′, ys ′) }

if w ′′ > l then Just (s, (w ′′, ys ′′)) else Nothing
= { see below: dnorm5 inverts enorm5 s, so (w ′′, ys ′′) = (w , ys) }

if w > l then Just (s, (w , ys)) else Nothing
= { invariant holds, so in particular w > l }

Just (s, (w , ys))

The remaining proof obligation is to show that

dnorm5 (enorm5 s (w , ys)) = (w , ys)

when l 6 w < u. We prove this in several steps. First, note that dnorm5 is
idempotent:

dnorm5 · dnorm5 = dnorm5

Second, when l 6 w holds,

dnorm5 (w , ys) = (w , ys)

Finally, the key lemma is that, for w < u (but not necessarily w > l), dnorm5 is
invariant under enorm5:

dnorm5 (enorm5 s (w , ys)) = dnorm5 (w , ys)

When additionally w > l , the second property allows us to conclude that dnorm5

inverts enorm5:

dnorm5 (enorm5 s (w , ys)) = (w , ys)

The ‘key lemma’ is proved by induction on w . For w = 0, we clearly have

dnorm5 (enorm5 s (w , ys))
= { estep3 s 0 = cumul s 6 t 6 l , so enorm5 s (w , ys) = (w , ys) }

dnorm5 (w , ys)

For the inductive step, we suppose that the result holds for all q<w , and consider
two cases for w itself. In case estep3 s w < u, we have:

dnorm5 (enorm5 s (w , ys))
= { assumption; enorm5 }

dnorm5 (w , ys)

as required. And in case estep3 s w > u, we have:

dnorm5 (enorm5 s (w , ys))
= { assumption; enorm5; let (q , r) = extract w }

dnorm5 (enorm5 s (q , r : ys))
= { q < w ; induction }

dnorm5 (q , r : ys)
= { w < u, so q = w div b < l ; dnorm5 }

dnorm5 (inject q r , ys)

Coding with Asymmetric Numeral Systems 23

= { q , r }
dnorm5 (w , ys)

Note that we made essential use of the limits of the range: w < u ⇒ w div b < l .
Therefore decoding inverts encoding:

dproduce5 (econsume5 xs) = xs

for all finite xs.

7 Streaming

The version of encoding in the previous section yields a Number , that is, a pair
consisting of an integer window and a digit-sequence remainder. It would be
more conventional for encoding to take a sequence of symbols to a sequence of
digits alone, and decoding to take the sequence of digits back to a sequence of
symbols. For encoding, we have to flush the remaining digits out of the window
at the end of the process, reducing the window to zero:

eflush5 :: Number → [Int]
eflush5 (0, ys) = ys
eflush5 (w , ys) = let (w ′, y) = extract w in eflush5 (w ′, y : ys)

For example, eflush5 (340, [3]) = [3, 4, 0, 3]. Then we can define

encode5 :: [Symbol]→ [Int]
encode5 = eflush5 · econsume5

Correspondingly, decoding should start by populating an initially-zero window
from the sequence of digits:

dstart5 :: [Int]→ Number
dstart5 ys = dnorm5 (0, ys)

For example, dstart5 [3, 4, 0, 3] = (340, [3]). Then we can define

decode5 :: [Int]→ [Symbol]
decode5 = dproduce5 · dstart5

Now, dstart5 inverts eflush5 on in-range values:

dstart5 (eflush5 (w , ys)) = (w , ys) ⇐ l 6 w < u

To prove this, since we have already shown in Section 6 that dnorm5 is idempo-
tent, and has no effect on an in-range window, it suffices to show that dnorm5

is invariant under shifting a digit from the window to the remainder. That is,
with (q , r) = extract w , we have:

dnorm5 (q , r : ys)
= { l 6 w < u, so q = w div b < l }

dnorm5 (inject q r , ys)

24 J. Gibbons

= { q , r }
dnorm5 (w , ys)

Therefore again decoding inverts encoding:

decode5 (encode5 xs)
= { decode5, encode5 }

dproduce5 (dstart5 (eflush5 (econsume5 xs)))
= { econsume5 yields in-range, on which dstart5 inverts eflush5 }

dproduce5 (econsume5 xs)
= { dproduce5 inverts econsume5 }

xs

for all finite xs.

7a Encoding as a metamorphism

We would now like to stream encoding and decoding as metamorphisms: en-
coding should start delivering digits before consuming all the symbols, and con-
versely decoding should start delivering symbols before consuming all the digits.

For encoding, we have

encode5 :: [Symbol]→ [Int]
encode5 = eflush5 · econsume5

with econsume5 a fold; can we turn eflush5 into an unfold? Yes, we can! The
remainder in the accumulator should act as a queue: digits get enqueued at the
most significant end, so we need to dequeue them from the least significant end.
So we define

edeal6 :: [α]→ [α]
edeal6 = unfoldr unsnoc where

unsnoc [] = Nothing
unsnoc ys = let (ys ′, y) = (init ys, last ys) in Just (y , ys ′)

to “deal out” the elements of a list one by one, starting with the last. Of course,
this reverses the list; so we have the slightly awkward

eflush5 = reverse · edeal6 · eflush5

Flushing as an unfold. Now we can use unfold fusion to fuse edeal6 and
eflush5 into a single unfold, deriving a coalgebra

efstep6 :: Number → Maybe (Int ,Number)

such that

unsnoc (eflush5 (w , ys)) = fmapList eflush5 (efstep6 (w , ys))

Coding with Asymmetric Numeral Systems 25

In case w = 0 and ys = [], we have:

unsnoc (eflush5 (0, []))
= { eflush5 }

unsnoc []
= { unsnoc }

Nothing
= { fmapList }

fmapList eflush5 Nothing

so we define

efstep6 (0, []) = Nothing

In case w > 0 and ys = [], we have:

unsnoc (eflush5 (w , []))
= { eflush5; let (q , r) = extract w }

unsnoc (eflush5 (q , [r]))
= { lemma: eflush5 (w , ys ++ zs) = eflush5 (w , ys) ++ zs }

unsnoc (eflush5 (q , []) ++ [r])
= { unsnoc }

Just (r , eflush5 (q , []))
= { fmapList }

fmapList eflush5 (Just (r , (q , [])))

so we define

efstep6 (w , []) = let (q , r) = extract w in Just (r , (q , []))

An output queue. The lemma in the hint above states that already-enqueued
digits zs in the remainder do not influence the computation of eflush5 and simply
pass straight through. It is discharged by induction on w : for the base case w = 0
we have

eflush5 (0, ys ++ zs) = ys ++ zs = eflush5 (0, ys) ++ zs

simply by definition, and for w > 0 we assume the inductive hypothesis for all
w ′ < w and proceed:

eflush5 (w , ys ++ zs)
= { eflush5; let (w ′, y) = extract w }

eflush5 (w ′, y : ys ++ zs)
= { inductive hypothesis, since w ′ < w }

eflush5 (w ′, y : ys) ++ zs
= { eflush5 }

eflush5 (w , ys) ++ zs

Finally, when ys 6= [],

26 J. Gibbons

unsnoc (eflush5 (w , ys))
= { lemma again }

unsnoc (eflush5 (w , []) ++ ys)
= { unsnoc; let (ys ′, y) = (init ys, last ys) }

Just (y , eflush5 (w , []) ++ ys ′)
= { lemma again }

Just (y , eflush5 (w , ys ′))
= { fmapList }

fmapList eflush5 (Just (y , (w , ys ′)))

so we define (for non-null ys)

efstep6 (w , ys) = let (ys ′, y) = (init ys, last ys) in Just (y , (w , ys ′))

We have derived the coalgebra

efstep6 :: Number → Maybe (Int ,Number)
efstep6 (0, []) = Nothing
efstep6 (w , []) = let (q , r) = extract w in Just (r , (q , []))
efstep6 (w , ys) = let (ys ′, y) = (init ys, last ys) in Just (y , (w , ys ′))

for which we have eflush5 = eflush6 where

eflush6 :: Number → [Int]
eflush6 = reverse · unfoldr efstep6

Streaming encoding. As for the input part, we have a foldr where we need
a foldl . Happily, that is easy to achieve, by the Third Duality Theorem. So we
have encode5 = encode6, where

encode6 :: [Symbol]→ [Int]
encode6 = reverse · unfoldr efstep6 · foldl (flip estep5) (l , []) · reverse

It turns out that the streaming condition does not hold for efstep6 and
flip estep5. We can indeed stream digits early out of the remainder, which acts
as a queue; for example, from the state (654, [3, 2, 1]), consuming an ’a’ does
not affect the 1 we can produce:

efstep6 (654, [3, 2, 1]) = Just (1, (654, [3, 2]))
estep5 ’a’ (654, [3, 2, 1]) = (321, [4, 3, 2, 1])
efstep6 (estep5 ’a’ (654, [3, 2, 1])) = Just (1, (321, [4, 3, 2]))

However, we cannot stream the last few digits out of the window:

efstep6 (123, []) = Just (3, (12, []))
estep5 ’c’ (123, []) = (248, [])
efstep6 (estep5 ’c’ (123, [])) = Just (8, (24, []))

We have to resort to flushing streaming, which starts from an apomorphism
rather than an unfold. We’ll use the cautious coalgebra

Coding with Asymmetric Numeral Systems 27

efstep7 :: Number → Maybe (Int ,Number)
efstep7 = guard (not · null · snd) efstep6

which carefully avoids the problematic case when the remainder is empty.
It is now straightforward to verify that the streaming condition holds for

efstep7 and flip estep5: the only way efstep7 can be productive is

efstep7 (w , ys ++ [y]) = Just (y , (w , ys))

and we have:

efstep7 (estep5 s (w , ys ++ [y]))
= { let (w ′, ys ′) = estep5 s (w , ys); lemma (see below) }

efstep7 (w ′, ys ′ ++ [y])
= { efstep7 }

Just (y , (w ′, ys ′))
= { w ′, ys ′ }

Just (y , estep5 s (w , ys))

An input queue. The lemma hinted at above is analogous to the one for
eflush5, stating that already-enqueued digits zs in the remainder do not influence
the computation and simply pass straight through:

estep5 s (w , ys ++ zs) = let (w ′, ys ′) = estep5 s (w , ys) in (w ′, ys ′ ++ zs)

and depends on a corresponding lemma for enorm5:

enorm5 s (w , ys ++ zs) = let (w ′, ys ′) = enorm5 s (w , ys) in (w ′, ys ′ ++ zs)

We prove the latter first, by induction on w . When w = 0, we have estep3 s 0 =
cumul s < u, so neither use of enorm5 has an effect and we have immediately
that

enorm5 s (w , ys ++ zs)
= { enorm5 }

(w , ys ++ zs)
= { enorm5 }

let (w ′, ys ′) = enorm5 s (w , ys) in (w ′, ys ′ ++ zs)

For w > 0, we assume the result holds for w ′ < w , and conduct a case analysis.
When estep3 s w < u, again neither use of enorm5 has an effect, and the result
holds. Finally, when estep3 s w > u, we have:

enorm5 s (w , ys ++ zs)
= { enorm5; case assumption }

let (q , r) = extract w in enorm5 s (q , r : ys ++ zs)
= { induction hypothesis, since q < w }

let (q , r) = extract w ; (w ′, ys ′) = enorm5 s (q , r : ys) in (w ′, ys ′ ++ zs)
= { swapping lets }

let (w ′, ys ′) = (let (q , r) = extract w in enorm5 s (q , r : ys)) in (w ′, ys ′ ++ zs)

28 J. Gibbons

= { enorm5; case assumption }
let (w ′, ys ′) = enorm5 s (w , ys) in (w ′, ys ′ ++ zs)

Then the lemma for estep5 follows:

estep5 s (w , ys ++ zs)
= { estep5 }

let (w ′, ys ′) = enorm5 s (w , ys ++ zs) in (estep3 s w ′, ys ′)
= { lemma for enorm5 }

let (w ′′, ys ′′) = enorm5 s (w , ys); (w ′, ys ′) = (w ′′, ys ′′ ++ zs) in (estep3 s w ′, ys ′)
= { inlining }

let (w ′′, ys ′′) = enorm5 s (w , ys) in (estep3 s w ′′, ys ′′ ++ zs)
= { un-inlining }

let (w ′′, ys ′′) = enorm5 s (w , ys); (w ′, ys ′) = (estep3 s w ′′, ys ′′) in (w ′, ys ′ ++ zs)
= { estep5 }

let (w ′, ys ′) = estep5 s (w , ys) in (w ′, ys ′ ++ zs)

This at last discharges the lemma; therefore encode6 = encode7, where

encode7 :: [Symbol]→ [Int]
encode7 = reverse · fstream efstep7 (unfoldr efstep6) (flip estep5) (l , []) · reverse

and where encode7 streams its output. On the downside, this has to read the
input text in reverse, and also write the output digit sequence in reverse.

7b Decoding as a metamorphism

Fortunately, decoding is rather easier to stream. We have

decode5 = dproduce5 · dstart5

with dproduce5 an unfold; can we turn dstart5 into a fold? Yes, we can! In fact,
we have dstart5 = foldl dsstep8 (0, []), where

dsstep8 (w , []) y = if w < l then (inject w y , []) else (w , [y])
dsstep8 (w , ys) y = (w , ys ++ [y])

That is, starting with 0 for the accumulator, digits are injected one by one into
the window until this is in range, and thereafter appended to the remainder.

Streaming decoding. Now we have decoding as an unfoldr after a foldl , and
it is straightforward to verify that the streaming condition holds for dstep5 and
dsstep8. Suppose (w , ys) is a productive state for dstep5; that is, let

(q , r) = w divMod t
s = find r
w ′ = count s × q + r − cumul s
(w ′′, ys ′′) = dnorm5 (w ′, ys)

and suppose w ′′ > l . Note then that

Coding with Asymmetric Numeral Systems 29

dnorm5 (w ′, ys ++ [y]) = (w ′′, ys ′′ ++ [y])

Then the claim is:

dstep5 (dsstep8 (w , ys) y) = Just (s, dsstep8 (w ′′, ys ′′) y)

In case ys = [], we have (w ′′, ys ′′) = dnorm5 (w ′, ys) = (w ′, []), so w > w ′ =
w ′′ > l , and

dsstep8 (w , ys) y = (w , ys ++ [y])

In case ys 6= [], we also have

dsstep8 (w , ys) y = (w , ys ++ [y])

Either way, we now have:

dstep5 (dsstep8 (w , ys) y)
= { case analysis above }

dstep5 (w , ys ++ [y])
= { dnorm5 (w ′, ys ++ [y]) = (w ′′, ys ′′ ++ [y]) }

Just (s, (w ′′, ys ′′ ++ [y]))
= { w ′′ > l ; dsstep8 }

Just (s, dsstep8 (w ′′, ys ′′) y)

and the streaming condition holds. Therefore decode5 = decode8 on finite inputs,
where

decode8 :: [Int]→ [Symbol]
decode8 = stream dstep5 dsstep8 (0, [])

and decode8 streams.

Summarizing metamorphisms. Inlining definitions and simplifying, we have
ended up with encoding as a flushing stream, reading and writing backwards:

encode9 :: [Symbol]→ [Int]
encode9 = reverse · fstream g ′ (unfoldr g) f (l , []) · reverse where

f (w , ys) s = if w < b × (l div t)× count s
then let (q , r) = w divMod count s in (q × t + cumul s + r , ys)
else let (q , r) = extract w in f (q , r : ys) s

g (0, []) = Nothing
g (w , []) = let (q , r) = extract w in Just (r , (q , []))
g (w , ys) = let (ys ′, y) = (init ys, last ys) in Just (y , (w , ys ′))
g ′ (w , ys) = if null ys then Nothing else g (w , ys)

and decoding as an ordinary stream:

decode9 :: [Int]→ [Symbol]
decode9 = stream g f (0, []) where

g (w , ys) = let (q , r) = w divMod t
s = find r

30 J. Gibbons

(w ′′, ys ′′) = n (count s × q + r − cumul s, ys)
in if w ′′ > l then Just (s, (w ′′, ys ′′)) else Nothing

n (w , ys) = if w > l ∨ null ys then (w , ys) else
let (y : ys ′) = ys in n (inject w y , ys ′)

f (w , []) y = n (w , [y])
f (w , ys) y = (w , ys ++ [y])

The remainder acts as a queue, with digits being added at one end and removed
from the other, so should be represented to make that efficient. But in fact,
the remainder can be eliminated altogether, yielding simply the window for the
accumulator, as we shall see next.

7c Streaming via tail recursion

As we have just seen, it is possible—with some effort—to persuade the definitions
of encode5 and decode5 into metamorphism form; however, that turns out to be
rather complicated. We outline here a more direct route instead.

Streaming encoding. For encoding, we have

encode5 = eflush5 · foldr estep5 (l , [])

A first step for streaming is to make as much of this as possible tail-recursive.
The best we can do is to apply the Third Duality Theorem to transform the
foldr into a foldl :

encode5 = eflush5 · foldl (flip estep5) (l , []) · reverse

Now we note that the remainder component of the Number behaves like a queue,
in the sense that already-enqueued digits simply pass through without being
further examined:

eflush5 (w , ys ++ zs) = eflush5 (w , ys) ++ zs
enorm5 s (w , ys ++ zs) = let (w ′, ys ′) = enorm5 s (w , ys) in (w ′, ys ′ ++ zs)
estep5 s (w , ys ++ zs) = let (w ′, ys ′) = estep5 s (w , ys) in (w ′, ys ′ ++ zs)

(These lemmas were proved in Section 7a.) If we then introduce the auxilliary
functions e1, e2 specified by

reverse (e1 w ss) ++ ys = eflush5 (foldl (flip estep5) (w , ys) ss)
reverse (e2 w) ++ ys = eflush5 (w , ys)

and unfold definitions, exploiting the queueing properties, we can synthesize
encode5 = encode10, where:

encode10 :: [Symbol]→ [Int]
encode10 = reverse · e1 l · reverse where

e1 w (s : ss) = let (q , r) = w divMod count s
w ′ = q × t + cumul s + r in

Coding with Asymmetric Numeral Systems 31

if w ′ < u then e1 w ′ ss
else let (q ′, r ′) = w divMod b in r ′ : e1 q ′ (s : ss)

e1 w [] = e2 w
e2 w = if w == 0 then [] else let (w ′, y) = w divMod b in y : e2 w ′

In this version, the accumulator w simply maintains the window, and digits
in the remainder are output as soon as they are generated. Note that the two
reverses mean that encoding effectively reads its input and writes its output
from right to left; that seems to be inherent to ANS.

Streaming decoding. Decoding is easier, because dnorm5 is already tail-
recursive. Similarly specifying functions d0, d1, d2 by

d0 w ys = dproduce5 (dnorm5 (w , ys))
d1 w ys = dproduce5 (w , ys)
d2 s w ′ ys = let (w ′′, ys ′′) = dnorm5 (w ′, ys) in

if w ′′ > l then s : d1 w ′′ ys ′′ else []

and unfolding definitions allows us to synthesize directly that decode5 = decode10,
where:

decode10 :: [Int]→ [Symbol]
decode10 = d0 0 where

d0 w (y : ys) | w < l = d0 (w × b + y) ys
d0 w ys = d1 w ys
d1 w ys = let (q , r) = w divMod t

s = find r
w ′ = count s × q + r − cumul s

in d2 s w ′ ys
d2 s w (y : ys) | w < l = d2 s (w × b + y) ys
d2 s w ys | w > l = s : d1 w ys
d2 s w [] = []

Ignoring additions and subtractions, encoding involves one division by count s
and one multiplication by t for each input symbol s, plus one division by b for
each output digit. Conversely, decoding involves one multiplication by b for each
input digit, plus one division by t and one multiplication by count s for each
output symbol s. Encoding and decoding are both tail-recursive. The arithmetic
in base b can be simplified to bit shifts by choosing b to be a power of two. They
therefore correspond rather directly to simple imperative implementations [19].

8 Conclusion

We have presented a development using the techniques of constructive functional
programming of the encoding and decoding algorithms involved in asymmetric
numeral systems, including the step from arbitrary- to fixed-precision arithmetic
and then to streaming processes. The calculational techniques depend on the

32 J. Gibbons

theory of folds and unfolds for lists, especially the duality between foldr and foldl ,
fusion, and the Unfoldr–Foldr Theorem. We started out with the hypothesis that
the theory of streaming developed by the author together with Richard Bird for
arithmetic coding [3, 15] would be a helpful tool; but although it can be applied,
it seems here to be more trouble than it is worth.

To be precise, what we have described is the range variant (rANS) of ANS.
There is also a tabled variant (tANS), used by Zstd [9] and LZFSE [10], which
essentially tabulates the functions estep5 and dstep5; for encoding this involves a
table of size n× (u− l), the product of the alphabet size and the window width,
and for decoding two tables of size u − l . Tabulation makes even more explicit
that HC is a special case of ANS, with the precomputed table corresponding to
the Huffman trie. Tabulation also allows more flexibility in the precise allocation
of codes, which slightly improves effectiveness [14]. For example, the coding table
in Figure 3 corresponds to the particular arrangement "aabbbccc" of the three
symbols in proportion to their counts, and lends itself to implementation via
arithmetic; but any permutation of this arrangement would still work, and a
permutation such as "cbcacbcacb" which distributes the symbols more evenly
turns out to be slightly more effective and no more difficult to tabulate.

One nice feature of AC is that the switch from arbitrary-precision to fixed-
precision arithmetic can be expressed in terms of a carefully chosen adaptive
model, which slightly degrades the ideal distribution in order to land on conve-
nient rational endpoints [27]. We do not have that luxury with ANS, because of
the awkwardness of incorporating adaptive coding; consequently, it is not clear
that there is any simple relationship between the arbitrary-precision and fixed-
precision versions. But even with AC, that nice feature only applies to encoding;
the approximate arithmetic seems to preclude a correctness argument in terms
of the Unfoldr–Foldr Theorem, and therefore a completely different (and more
complicated) approach is required for decoding [3].

The ANS algorithms themselves are of course not novel here; they are due to
Duda [13, 14]. Our development in Section 5 of the key bit of arithmetic in ANS
encoding was informed by a very helpful commentary on Duda’s paper published
in a series of twelve blog posts [6] by Charles Bloom. The illustration in Figure 3
derives from Duda, and was also used by Roman Cheplyaka [8] as the basis of a
(clear but very inefficient) prototype Haskell implementation.

Acknowledgements: I am grateful to participants of IFIP WG2.1 Meeting 78 in
Xitou and IFIP WG2.11 Meeting 19 in Salem, who gave helpful feedback on
earlier presentations of this work, and to Jarek Duda and Richard Bird who
gave much helpful advice on content and presentation. I thank the Program-
ming Research Laboratory at the National Institute of Informatics in Tokyo, for
providing a Visiting Professorship during which some of this research was done;
in particular, Zhixuan Yang and Josh Ko of NII explained to me the significance
of t dividing evenly into l , as exploited in Section 6.

Coding with Asymmetric Numeral Systems 33

References

1. Jyrki Alakuijala. Google’s compression projects. https:

//encode.ru/threads/3108-Google-s-compression-projects#post60072, May
2019.

2. Richard Bird. Proof of equivalence between huffman trees and certain bags of
fractions. Personal communication, April 2019.

3. Richard Bird and Jeremy Gibbons. Arithmetic coding with folds and unfolds. In
Johan Jeuring and Simon Peyton Jones, editors, Advanced Functional
Programming 4, volume 2638 of Lecture Notes in Computer Science, pages 1–26.
Springer-Verlag, 2003.

4. Richard S. Bird. Introduction to Functional Programming Using Haskell.
Prentice-Hall, 1998.

5. Richard S. Bird and Philip L. Wadler. An Introduction to Functional
Programming. Prentice-Hall, 1988.

6. Charles Bloom. Understanding ANS. http:

//cbloomrants.blogspot.com/2014/01/1-30-14-understanding-ans-1.html,
January 2014.

7. Jamieson Brettle and Frank Galligan. Introducing Draco: Compression for 3D
graphics. https://opensource.googleblog.com/2017/01/

introducing-draco-compression-for-3d.html, January 2017.

8. Roman Cheplyaka. Understanding asymmetric numeral systems.
https://ro-che.info/articles/2017-08-20-understanding-ans, August 2017.

9. Yann Collet and Chip Turner. Smaller and faster data compression with
Zstandard. https://code.fb.com/core-data/

smaller-and-faster-data-compression-with-zstandard/, August 2016.

10. Sergio De Simone. Apple open-sources its new compression algorithm LZFSE.
InfoQ, July 2016.
https://www.infoq.com/news/2016/07/apple-lzfse-lossless-opensource.

11. Jaros law Duda. Kodowanie i generowanie uk ladówstatystycznych za pomoca̧
algorytmów probabilistycznych (Coding and generation of statistical systems
using probabilistic algorithms). Master’s thesis, Faculty of Physics, Astronomy
and Applied Computer Science, Jagiellonian University, 2006.

12. Jaros law Duda. Optimal encoding on discrete lattice with translational invariant
constrains using statistical algorithms. CoRR, abs/0710.3861, 2007. English
translation of [11].

13. Jaros law Duda. Asymmetric numeral systems. CoRR, 0902.0271v5, May 2009.

14. Jaros law Duda. Asymmetric numeral systems: Entropy coding combining speed
of Huffman coding with compression rate of arithmetic coding. CoRR,
1311.2540v2, January 2014.

15. Jeremy Gibbons. Metamorphisms: Streaming representation-changers. Science of
Computer Programming, 65(2):108–139, 2007.

16. Jeremy Gibbons. Coding with asymmetric numeral systems (Haskell code).
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/asymm.hs, July 2019.

17. Jeremy Gibbons. Coding with asymmetric numeral systems (long version).
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/asymm-long.pdf,
July 2019.

18. Jeremy Gibbons and Graham Hutton. Proof methods for corecursive programs.
Fundamenta Informaticae, 66(4):353–366, April/May 2005.

34 J. Gibbons

19. Fabien Giesen. Simple rANS encoder/decoder.
https://github.com/rygorous/ryg_rans, February 2014.

20. David A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, September 1952.

21. Joint Photographic Experts Group. Overview of JPEG XL.
https://jpeg.org/jpegxl/.

22. Timothy B. Lee. Inventor says Google is patenting work he put in the public
domain. Ars Technica, October 2018.
https://arstechnica.com/tech-policy/2018/06/

inventor-says-google-is-patenting-work-he-put-in-the-public-domain/.
23. Simon Peyton Jones. The Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003.
24. Daniel Reiter Horn and Jongmin Baek. Building better compression together

with DivANS. https://blogs.dropbox.com/tech/2018/06/

building-better-compression-together-with-divans/, June 2018.
25. Jorma J. Rissanen and Glen G. Langdon. Arithmetic coding. IBM Journal of

Research and Development, 23(2):149–162, March 1979.
26. Julian Seward. bzip2. https://en.wikipedia.org/wiki/Bzip2, 1996.
27. Barney Stratford. A Formal Treatment of Lossless Data Compression Algorithms.

DPhil thesis, University of Oxford, 2005.
28. Varmo Vene and Tarmo Uustalu. Functional programming with apomorphisms

(corecursion). Proceedings of the Estonian Academy of Sciences: Physics,
Mathematics, 47(3):147–161, 1998. 9th Nordic Workshop on Programming
Theory.

29. Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, June 1987.

