
The Beauty of Simplicity

Jeremy Gibbons

(published as [2])

As an admirer of the “artistic flare, nuanced style, and technical prowess that
separates good code from great code” explored by Robert Green and Henry
Ledgard [1], I was disappointed by the authors’ emphasis on “alignment,
naming, use of white space, use of context, syntax highlighting, and IDE
choice.” As effective as these aspects of beautiful code may be, they are at
best only skin deep.

Beauty may indeed be in the eye of the beholder, but there is a more
compelling beauty in the deeper semantic properties of code than layout and
naming. I also include judicious use of abstraction, deftly balancing preci-
sion and generality; elegant structuring of class hierarchies, carefully trading
between breadth and depth; artful ordering of parameter lists, neatly sup-
porting common cases of partial application; and efficient reuse of library
code, leveraging existing definitions with minimum effort. These are subjec-
tive characteristics, beyond the reach of objective scientific analysis—matters
of taste not of fact—so represent aspects of the art rather than the science
of software.

Formalizing such semantic properties is more difficult than establishing
uniform coding conventions; we programmers spend our professional lifetimes
honing our writing skills, not unlike novelists and journalists. Indeed, the
great American essayist Ralph Waldo Emerson (1803–1882) anticipated the
art in the science of software like this: “We ascribe beauty to that which is
simple; which has no superfluous parts; which exactly answers its end; which
stands related to all things; which is the mean of many extremes.” It is to
this standard I aspire.

References

[1] Robert Green and Henry Ledgard, “Coding Guidelines: Finding the Art
in the Science”. Communications of the ACM, 54(12):57–63, December
2011. DOI 10.1145/2043174.2043191.

[2] Jeremy Gibbons, “The Beauty of Simplicity”. Communications of the
ACM, 55(4):6, April 2012. DOI 10.1145/2133806.2133808.


