
Formalisations and Applications of BPMN

Peter Y. H. Wong∗,a, Jeremy Gibbonsa

aComputing Laboratory, University of Oxford, United Kingdom

Abstract

We present two formalisations of the Business Process Modelling Notation (BPMN).
In particular, we introduce a semantic model for BPMN in the process algebra
CSP; we then study an augmentation of this model in which we introduce rela-
tive timing information, allowing one to specify timing constraints on concurrent
activities. By exploiting CSP refinement, we are able to show some relation-
ships between the timed and the untimed models. We then describe a novel
empirical studies model, and the transformation to BPMN, allowing one to ap-
ply our formal semantics for analysing different kind of workflows. To provide
a better facility for describing behaviour specification about a BPMN diagram,
we also present a pattern-based approach using which a workflow designer could
specify properties which could otherwise be difficult to express. Our approach
is specifically designed to allow behavioural properties of BPMN diagrams to
be mechanically verified via automatic model-checking as provided by the FDR
tool. We use two examples to illustrate our approach.

Key words: business process, CSP, model checking, property specifications,
refinement, semantics, timed behaviour, workflow

1. Introduction

Modelling of business processes and workflows is an important area in soft-
ware engineering. Business Process Modelling Notation (BPMN) allows de-
velopers to take a process-oriented approach to modelling of systems, but the
notation specification [19] does not contain a precise semantics and this means
BPMN diagrams are ambiguous and cannot be verified for behavioural correct-
ness. In this paper we describe two formalisations of the notation and also how
to apply the notation to workflows that are normally beyond its scope.

Specifically the following results are presented in this paper:

• An untimed process semantics for BPMN in the process algebra CSP,
allowing formal reasoning via CSP’s process refinements and verification
via model checking.

∗Corresponding author
Email addresses: peter.wong@comlab.ox.ac.uk (Peter Y. H. Wong),

jeremy.gibbons@comlab.ox.ac.uk (Jeremy Gibbons)

Preprint submitted to Elsevier April 24, 2009

• A relative timed semantics for BPMN in CSP, giving a behavioural model
for specifying timing information to BPMN diagrams. By choosing CSP
as the common semantic domain, behavioural properties can be preserved
between the untimed and timed semantic models.

• A empirical studies model and the bi-directional transformation to BPMN,
allowing one to apply the formal semantics and corresponding tool support
for analysing workflows describing empirical studies e.g. clinical trials.

• A small specification language PL, giving an alternative pattern-based ap-
proach to behavioural specification for BPMN. The correctness of BPMN
diagrams against a PL specification may be verified via model checking.

1.1. Running Example
As a running example for this paper, we consider the scenario where a trav-

eller business process interacts with a travel agent business process. This is
adapted from a well documented example from the W3C [25]. Figure 1 shows
the BPMN diagram describing the collaboration between the traveller and the
travel agent. An overview of BPMN notation is presented in Section 2, but an
informal explanation of Figure 1 follows.

Figure 1: Collaboration between the Traveller and the Travel Agent

2

1.1.1. Traveller
The traveller can order a trip by setting up an itinerary for airline ticket;

thereafter she can reserve the seats and subsequently proceed with the booking,
after which the travel agent and the airline will send her the statement and the
ticket respectively. Specifically, after choosing her preferred travel plan (from
a catalogue independently), the traveller may submit her choice to her travel
agent via her local web service (e.g. web form) (Order Trip). The travel agent
in return offers her an itinerary (not shown in Figure 1). For various reasons this
itinerary might not be satisfactory to the traveller and she may choose to change
her itinerary (Change Itin T). The number of changes allowed is bounded and
may be assumed to be determined by the particular policy of the travel agency
and the airline. She may also decide not to take the trip, in which case she may
cancel her order (Cancel Itin T).

In case she decides to accept the proposed itinerary, she may proceed to
reserve this itinerary (Send Confirmation) and provide her credit card informa-
tion to the travel agent. The travel agent then finalises the ticket reservation
(carried out by the Agent business process in Figure 1), after which the traveller
may either confirm her ticket (Book Ticket) or cancel it (Cancel Ticket); if she
chooses to cancel her ticket, she will receive a cancellation notification (Accept
Cancellation). Also if an error occurs from the travel agent’s system, the trav-
eller would receive an error message and an exception will occur. The ticket
will then be unreserved and she will receive a cancellation notification (Accept
Cancellation).

After the traveller confirmed her ticket, she will receive the statement from
the travel agent (Receive Invoice) and ticket from the airline (Receive Tickets).
Note from the point of view of the traveller’s workflow, it is not important from
whom she receives her invoice and ticket, and in this example we do not present
the airline business process.

1.1.2. Travel Agent
The main purpose of the travel agent is to mediate interactions between the

traveller who wants to buy airline ticket and the airline who supplies them; here
for brevity we have omitted the airline system. Specifically, once the travel agent
receives an initial order from the traveller (Receive Order), he needs to verify
with the airline if the seats are available for the desired trip (Check Seats). In or-
der to cater for the possibility of the traveller making changes to her itinerary,
for every change of her itinerary (Change Itin TA), the travel agent verifies
with the airline the availability of the seats (Check Seats). Once the traveller
has agreed upon a particular itinerary (Receive Reservation), the travel agent
reserves the seats for the traveller (Reserve Seats). During the reservation pe-
riod, modelled by the Reservation subprocess state, the traveller may cancel
her itinerary, thereby releasing the reservation; this is modelled as a message
exception flow, attached to the Reservation subprocess.

Once the reservation has been completed, the travel agent may receive a
confirmation notice from the traveller (Receive Confirmation), in which case
he receives the credit card information from the traveller (Book Ticket TA) and

3

proceeds with the booking (Book Seat). The travel agent may also receive a can-
cellation of the reservation (Cancel Reservation), in which case he will request
a cancellation from the airline (Request Cancellation), wait for a notification
confirming the cancellation from the airline (Receive Notification), and send it
to the traveller (Send Notification). During the booking phase, either an error
(e.g. incorrect card information) (Error Book) or a time out (Reserve Timeout)
may occur; in both cases, a corresponding notification confirming the cancel-
lation will be sent to the traveller. Otherwise, a corresponding invoice on the
booking will be sent to the traveller for billing (Send Invoice).

Here are some of the requirements the collaboration should meet.

1. Individual participants should be deadlock free
2. Collaboration should be deadlock free.
3. If the traveller makes a cancellation, the travel agent must confirm that

cancellation.
4. The travel agent must not allow any kind of cancellation after the traveller

has booked her ticket, if an invoice is to be sent to the traveller.

1.2. Semantics
Our approach is to give two compositional semantic definitions to a subset of

BPMN, informal description and the abstract syntax of this subset are discussed
in Sections 2.1 and 3 respectively. The first one is a purely untimed model [26]
and we have chosen the process algebra CSP [22] to be the semantic domain.
This allows one to compare the behaviour of diagrams and consequently infer
suitable refinements over them. The advantage of our approach is that busi-
ness process developers could now specify abstract properties using the same
notation as for modelling their business processes. Specifically we define a se-
mantic function, which takes the syntax of a given BPMN diagram and returns
a CSP process describing its untimed behaviour. We present an overview of this
semantic model in Section 4.

The untimed model provides the facility for verifying both safety (with CSP’s
traces refinement) and liveness (with failures refinement) properties. However,
the assumption made in the model due to abstraction is that non-interacting
concurrent activities in a business process interleave, that is, they may occur in
any order. This assumption might not be satisfactory in some cases where the
timing information becomes a factor in governing behaviour. In this case our
second model [27] augments the first one by introducing relative timing informa-
tion, this allows one to model concurrent activities under temporal constraints.
We have chosen CSP to be the common semantic domain for both models, and
this enables us to show some properties relating these two models based on CSP
refinements. The augmentation and its relationship with the untimed process
semantics are presented in Sections 5.1 and 5.2 respectively. Section 5.2 also
revisits the example in Figure 1, and discusses how our models may be used to
verify against the business process’s requirements.

4

1.3. Specification
Our semantic models leverage the refinement orderings that derive from

CSP’s denotational semantics, allowing BPMN to be used for specification as
well as modelling of business processes. However, the expressiveness of BPMN
is strictly less than that of CSP, and consequently some behavioural properties,
against which developers might be interested to verify their business processes,
might not be easy or even possible at all to capture in BPMN. Consider Re-
quirement 4 of the ticket reservation example (Figure 1): assuming the process
Agent denotes the process semantics of the travel agent, one might attempt to
draw a BPMN diagram like the one shown in Figure 2 to express the negation
of the property, and prove the satisfiability of Agent by showing this diagram
does not failures-refine the process Agent \ N where N is the set of CSP events
that are not associated with tasks Book Seat, Request Cancel, Request Time-
out and Send Invoice. However, while this behavioural property should also

Figure 2: A BPMN diagram capturing Requirement 4

permit other behaviours such as task Request Cancel being performed before
task Book Seat, it could be difficult to specify all these behaviours in the same
BPMN diagram. Since BPMN is a modelling notation for describing the per-
formance of behaviour, in general it is difficult to use it to specify liveness
properties about the refusal of some behaviour within a context while asserting
the availability of it outside the context. In Section 6 we present a comple-
mentary approach in which we consider a pattern-based approach to expressing
behavioural properties. We describe a property specification language PL for
capturing a generalisation of Dwyer et al.’s Property Specification Patterns [5],
and present a translation from PL into a bounded, positive fragment of linear
temporal logic, which can then be automatically translated into CSP for simple
refinement checking. We demonstrate its application by revisiting the running
example shown in Figure 1.

1.4. Empirical Studies
While BPMN is becoming a standard for modelling business processes and

we could demonstrate the application of our models with conventional business
process example (as shown in Figure 1), we consider extending its application
scope by investigating an alternative class of workflows. Specifically we propose
a declarative model for empirical studies, and a method for transforming this
model into BPMN so that one may leverage BPMN’s graphical expressiveness
and newly-defined formal semantics [28].

5

Here empirical studies are plans consisting of a series of scientific proce-
dures interleaved with a set of observations performed over a period of time;
these observations may be manually performed or automated, and are usually
recorded in a calendar schedule. An example of a long-running empirical study
is a clinical trial, where observations, specifically case report form submissions,
are performed at specific points in the trial. In such examples, observations are
interleaved with clinical interventions on patients; precise descriptions of these
observations and interventions are then recorded in a patient study calendar.

For example, in a clinical study it is important that interventions are carried
out safely and effectively, and often interventions must satisfy a set of oncologi-
cal safety principles [9]. Figure 3 describes a set of clinical intervention A2 that
might be assumed to be part of a more complex clinical procedure. Its con-
structions will be described later on in the paper. Below we show the schedule

Figure 3: A set of clinical interventions

of each drug administration; we have omitted dosage for simplicity.

• EC C – Cyclophosphamide, every 14 to 20 days

• EC E – Epirubicin, every 18 to 21 days

• TG – Paclitaxel, every 5 to 10 days followed by Gemcitabine, up to 10
days later

The safety principle Sequencing ensures that an intervention “order(s) (essen-
tial) actions temporally for good effect and least harm”. Here we are interested
in the following particular instance of this principle for interventions A2:

No more than one dosage of gemcitabine (TG G) may be given
after the administration of cyclophosphamide (EC C) and before
epirubicin (EC E).

It is this type of properties that we would like to verify the BPMN represen-
tation against. While careful calculation could reveal whether or not this trial
specification does indeed satisfy the property and hence is “safe”, we are going

6

to show how the semantic models introduced in this paper allows us to mechan-
ically verify the trial specification via automatic model-checking as provided by
the FDR tool.

This approach is presented in Section 7, in which we give an overview of
our declarative model, for recording empirical studies such as clinical trials, and
show how this model may be transformed into BPMN using a transformation
function implemented in Haskell [10], we also discuss the example shown in
Figure 3 in this section.

1.5. Related Work
Results described in Sections 2 to 4 are based on the work reported in [26, 29];

Section 5 is based on [27]; Section 7 is based on [28]; and parts of Section 6 are
based on [30]. The restrictive disjunctive normal form and the more complete
treatment of the bounded existence pattern, both in Section 6, are previously
unpublished.

2. Notations

2.1. BPMN
States in our subset of BPMN, shown in Figure 4, can either be pools, tasks,

subprocesses, multiple instances or control gateways, each linked by a normal
sequence, an exception sequence flow, or a message flow. A normal sequence
flow can be either incoming to or outgoing from a state and have associated
guards; an exception sequence flow, depicted by the states labelled task*, bpmn*,
task** and bpmn**, represents an occurrence of error within the state. While
sequence flows represent control flows within individual local diagrams, message
flows represent unidirectional communication between states in different local
diagrams. A global diagram hence is a collection of local diagrams connected
via message flows. Note for brevity we only consider a subset of BPMN, which
is used to model the examples in this paper.

In Figure 4, there are two types of start state, start and stime. A start
state models the start of the business process in the current scope by initiating
its outgoing transition; it has no incoming transition and only one outgoing
transition. The stime state is a variant start state; it initiates its outgoing
transition when a specified duration has elapsed. There are also two types of
intermediate state, itime and imessage. An itime state is a delay event; after its
incoming transition is triggered, the delay event waits for the specified duration
before initiating its outgoing transition. An imessage state is a message event;
after its incoming transition is triggered, the message event waits until a specified
message has arrived before initiating its outgoing transition. Both types of state
have a maximum of one incoming transition and one outgoing transition.

There are two types of end state, end and abort. An end state models the
successful completion of an instance of the business process in the current scope
by initialisation of its incoming transition; it has only one incoming transition
with no outgoing transition. The abort state is a variant end state; it models

7

Figure 4: States of BPMN diagrams

a termination, usually an error of an instance of the business process in the
current scope.

Our subset of BPMN contains three types of decision state, xgate, exgate
and agate. Each of them has one or more incoming sequence flows and one or
more outgoing sequence flows. An xgate state is a data-based exclusive choice
gateway, it accepts one of its incoming flows and takes one of its outgoing flows
based on the evaluation of a boolean expression using process data [19, page 71].
An exgate state, on the other hand, is an event-based exclusive choice gateway,
it accepts one of its incoming flows and takes one of its outgoing flows based
on events, such as the receipt of a message, that occurs at that point in the
process [19, page 75]. An agate state is a parallel gateway, which waits for all
of its incoming flows before initialising all of its outgoing flows.

A task state describes an atomic activity, and has exactly one incoming and
one outgoing transition. It takes a unique name for identifying the activity.
In the environment of the timed semantic model, each atomic task must take
a positive amount of time to complete. A bpmn state describes a subprocess
state. It is a business process by itself and so it models a flow of BPMN states.
In this paper, we assume all our subprocess states are expanded [19]; this means
we model the internal behaviours of the subprocesses. The state labelled bpmn
in Figure 4 depicts a collapsed subprocess state where all internal details are
hidden; this state has exactly one incoming and one outgoing transition.

Also in Figure 4 there are graphical notations labelled task*, bpmn*, task**,
bpmn**, task*** and bpmn***, which depict a task state and a subprocess state
with an exception sequence flow. There are three types of exception associated
with task and subprocess states in our subset of BPMN states. Both states
task* and bpmn* are examples of states with an ierror exception flow that

8

models an interruption due to an error within the task or subprocess state; the
states task** and bpmn** are examples of states with a timed exception flow,
and model an interruption due to an elapse of the specified duration; the states
task*** and bpmn*** are examples of states with a message exception flow,
and model an interruption upon receiving the specified message. Each task and
subprocess state can have a maximum of one timed exception flow, although it
may have multiple error and message exception flows.

Each task and subprocess may also be defined as multiple instances. There
are two types of multiple instances in BPMN, sequential and parallel. While
our semantics captures both types, in this paper we only consider the sequential
type, whose task and subprocess are specified by the state types miseq and
miseqs respectively. A sequential multiple instances repeats its task (subprocess)
in sequence.

The graphical notation pool in Figure 4 forms the outermost container for
each local diagram, representing a single business process; only one execution
instance is allowed at any one time. Each local diagram contained in a pool can
also be a participant within a business collaboration (global diagram) involving
multiple business processes.

2.2. Z
Throughout this paper we use the Z notation [31] to provide an abstract

syntax for BPMN. Here we give a brief overview of the notation.
The Z notation has been widely used for state-based specification. It is

based on typed set theory coupled with a structuring mechanism: the schema.
A schema is essentially a pattern of declaration and constraint. Schemas may
be named using the following syntax:

Name
declaration

constraint

or equivalently

Name =̂ [declaration | constraint]

If S is a schema then θS denotes the characteristic binding of S in which
each component is associated with its current value. Schemas can be used as
declarations. For example, the lambda expression λS • t denotes a function
from the schema type underlying S , a set of bindings, to the type of term
expression t .

The mathematical language within Z provides a syntax for set expressions,
predicates and definitions. Types can either be basic types, maximal sets within
the specification, each defined by simply declaring its name, or be free types,
introduced by identifying each of the distinct members, introducing each element
by name. An alternative way to define an object within an specification is by

9

abbreviation, exhibiting an existing object and stating that the two are the
same.

Type ::= element1 | ... | elementn [Type] symbol == term

By using an axiomatic definition we can introduce a new symbol x , an element
of S , satisfying predicate p.

x : S

p

2.3. CSP
In CSP [22], a process is a pattern of behaviour; a behaviour consists of

events, which are atomic and synchronous between the environment and the
process. The environment in this case can be another process. Events can
be compound, constructed using the dot operator ‘.’; often these compound
events behave as channels communicating data objects synchronously between
the process and the environment. Below is the syntax of the language of CSP.

P ,Q ::= P ||| Q | P |[A]|Q | P |[A | B]|Q | P \ A | P ! Q |
P ! Q | P " Q | P o

9 Q | e → P | Skip | Stop

e ::= x | x .e

Process P ||| Q denotes the interleaved parallel composition of processes P and
Q . Process P |[A]| Q denotes the partial interleaving of processes P and Q
sharing events in set A. Process P |[A | B]| Q denotes parallel composition, in
which P and Q can evolve independently but must synchronise on every event
in the set A ∩ B ; the set A is the alphabet of P and the set B is the alphabet
of Q , and no event in A ∪ B can occur without the cooperation of P and Q
respectively. We write ||| i : I • P(i), ‖[A] i : I • P(i) and ‖ i : I • A(i) ◦ P(i)
to denote an indexed interleaving, partial interleaving and parallel combination
of processes P(i) for i ranging over I .

Process P \ A is obtained by hiding all occurrences of events in set A from
the environment of P . Process P ! Q denotes a process initially behaving as P ,
but which may be interrupted by Q . Process P ! Q denotes the external choice
between processes P and Q ; the process is ready to behave as either P or Q . An
external choice over a set of indexed processes is written ! i : I • P(i). Process
P " Q denotes the internal choice between processes P or Q , ready to behave
as at least one of P and Q but not necessarily offer either of them. Similarly
an internal choice over a set of indexed processes is written " i : I • P(i).

Process P o
9 Q denotes a process ready to behave as P ; after P has success-

fully terminated, the process is ready to behave as Q . Process e → P denotes a
process capable of performing event e, after which it will behave like process P .
The process Stop is a deadlocked process and the process Skip is a successful
termination.

10

CSP has three denotational semantics: traces (T), stable failures (F) and
failures-divergences (N) models, in order of increasing precision. In this paper
our process definitions are divergence-free, so we will concentrate on the stable
failures model. The traces model is insufficient for our purposes, because it
does not record the availability of events and hence only models what a process
can do and not what it must do [22]. Notable is the semantic equivalence of
processes P ! Q and P " Q under the traces model. In order to distinguish
these processes, it is necessary to record not only what a process can do, but
also what it can refuse to do. This information is preserved in refusal sets, sets
of events from which a process in a stable state can refuse to communicate no
matter how long it is offered. The set refusals(P) is P ’s initial refusals. A failure
therefore is a pair (s,X) where s ∈ traces(P) is a trace of P leading to a stable
state and X ∈ refusals(P/s) where P/s represents process P after the trace
s. We write traces(P) and failures(P) as the set of all P ’s traces and failures
respectively.

We write Σ to denote the set of all event names, and CSP to denote the
syntactic domain of process terms. We define the semantic function F to return
the set of all traces and the set of all failures of a given process, whereas the
semantic function T returns solely the set of traces of the given process.

F : CSP → (P seq Σ × P(seq Σ × P Σ))
T : CSP → P seq Σ

These models admit refinement orderings based upon reverse containment; for
example, for the stable failures model we have

*F : CSP ↔ CSP

∀P ,Q : CSP •
P *F Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

While traces only carry information about safety conditions, refinement under
the stable failures model allows one to make assertions about a system’s safety
and availability properties. These assertions can be automatically proved using
a model checker such as FDR [6], exhaustively exploring the state space of
a system, either returning one or more counterexamples to a stated property,
guaranteeing that no counterexample exists, or until running out of resources.

3. Abstract Syntax

In this section we describe the abstract syntax of BPMN using Z nota-
tion [31]. For reasons of space, this section provides partial definitions of
BPMN’s abstract syntax; readers may refer to our longer papers [26, 27] for
full definitions.

We first introduce some maximal sets of values to represent constructs such
as transitions, task and message flows, defined as Z basic types:

[PName,Task ,Trans,Msgflow]

11

where PName is the set of process’s names. We also derive subtypes BName
for subprocess names and PLName for pool names, and they partition PName.

BName,PLName : P PName

〈BName,PLName〉 partition PName

Note our relative timed model defines the semantics of BPMN timed events
describing only time cycles (duration) and not absolute time stamps. We define
schema type Time to record each duration; this schema models a strictly positive
subset of the six-dimensional space of the XML schema data type duration [32,
Section 3.2.6].

Time =̂ [year ,month, day , hour ,minute, second : N]

Each type of state shown in Figure 4 is defined using the free type Type where
each of its constructors describes a particular type of state. For example, the
type of an atomic task state is defined by task t where t is a unique name that
identifies that task state. Below is the partial definition.

Type ::= start | stime〈〈Time〉〉 | end〈〈N〉〉 | abort〈〈N〉〉 | task〈〈Task〉〉 |
xgate | bpmn〈〈BName〉〉 | miseq〈〈Task × N〉〉

According to the BPMN specification [19], each state type has other associated
attributes describing its properties; our syntactic definition has included only
some of these attributes. For example, the number of loops of a sequence mul-
tiple instance state type is recorded by the natural number in the constructor
function miseq . In this paper we call both sequence flows and exception flows
‘transitions’; states are linked by transition lines representing flows of control.
Each atomic task state specifies a delay range, min . . max , of type Range, de-
noting a non-deterministic choice of a delay within those bounds. Each task
resolves its choice internally when it is being enacted.

Range =̂ [min,max : Time | min ≤T max]

We record the type, transitions and messageflows of each state by the schema
State. Here we show a partial definition of the schema State, omitting the
inclusion of schema components for message flows for reasons of space.

State =̂ [type : Type; in, out : P Trans; err : P(Type × Trans); ran : Range]

Note in our untimed process semantics, the schema’s component ran is not
considered.

Each BPMN diagram encapsulated by a pool is a local diagram and rep-
resents an individual business participant in a collaboration, built up from a
well-configured finite set of well-formed states [26]. While we associate each
local diagram with a unique name, a global diagram, representing a business
collaboration, is built up from a finite set of names, each associated with its
local diagram; we also associate each global diagram with a unique name. We
define the specification environment as a set of mappings from diagram names
to their states. For example the local environment is defined as the abbreviation
Local == BName 3→ P State.

12

4. Process Semantics

4.1. Semantic Function
Our semantic function bsem takes a syntactic description of a BPMN dia-

gram encapsulated by a state of type pool or a BPMN subprocess and returns
a parallel composition of processes, each corresponding to one of the diagram’s
or process’s states and synchronising on its own alphabet to ensure the correct
order of control flow.

bsem : PName 3→ Local 3→ Process

Here we let [Process,Event] be basic types. Specifically bsem returns a process
in this form,

(‖ i : I • A(i) ◦ P(i)) \ S (1)

where set I indexes states in the diagram, the process P(i) denotes the semantics
of the state identified by i , and the set A(i) is the alphabet of the process P(i).
Set S denotes the set of events associated to all transitions in the diagram;
since they should not be affected by the environment, we internalise them via
the hiding operation. The definition of these sets and processes are described
throughout this section. For brevity, we omit formal definition of the semantic
function. Full definition may be sought in our technical report [26].

The alphabet of a state is the set of events associated with its state type
(Type), transitions (Trans) and message flows (Msgflow). We first define the
functions αtrans and αmge , which take a set of transitions and message flows
and return their corresponding set of events. We also define the function εtask ,
which takes a task name and returns a CSP event denoting the execution of the
task.

Next we define the function αstate , which takes a local environment of type
Local and the state we are interested in and returns a set of events of type
Event . For example, for the Order Trip task state, identified by OrderTrip, of
the traveller participant in Figure 1, its alphabet is

A(OrderTrip) = {init .s1, start .OrderTrip, init .s2,mge.m1}

assuming s1 and s2 identify the incoming and outgoing transitions of the state,
and m1 identifies its outgoing message flow. In this paper we use events init .i ,
start .w and mge.m to denote transition i , message flow m and the execution
of task w respectively. This is convenient as we may now specify the set of all
events denoting transitions S = {|init |}.

Similarly one may define the function αproc to map each diagram to the set
of all possible events performed by the process describing an individual local
diagram’s behaviour.

To capture the behaviour of sequence flow looping [19], we model the be-
haviour of each state in a diagram recursively, where each recursive call denotes
an iteration of the state’s execution. The behaviour of each iteration is defined
by the sequential compositions of the behaviour of performing its incoming

13

transitions and message flows, state type, and outgoing transitions and message
flows. For example, the following process denotes the semantics of the Order
Trip task state.

OrderTripProc = init .s1 → Skip o
9 start .OrderTrip → Skip o

9

mge.m1 → Skip o
9 init .s2 → Skip o

9 OrderTripProc (2)

We observe that the processes corresponding to a start, an end or an abort state
are non-recursive. This is because they have either no incoming or no outgoing
transitions, that is they cannot be part of a sequence flow loop. For example,
the following process denotes the semantics of the start state of the traveller
process.

StartProc = init .s1 → Skip (3)

However, to capture behaviour of completion and termination, denoted by end
and abort states respectively, we introduce a CSP event for each end and abort
state and this event will be communicated to all the other states contained in
the process. For example, the following process denotes the semantics of the
end state of the traveller process,

P(End1) = (init .s8 → Skip o
9 fin.1 → Skip) ! fin.2 → Skip ! fin.3 → Skip (4)

where the events fin.i signals the completion of the process by the end state i ,
and End1 identifies the end state. Here we use natural number to identify each
end state in a process. Consequently we extend the semantics of processes (2)
and (3) as follows,

P(OrderTrip) = OrderTripProc o
9 P(OrderTrip) ! CompleteProc

P(Start) = (StartProc o
9 CompleteProc) ! CompleteProc

where CompleteProc = (!n : {1, 2, 3} • fin.n → Skip), and Start identifies the
start state.

We have implemented the semantics described in this section as a prototype
tool using the functional programming language Haskell. Readers may find a
copy of the implementation from our web site [18]. The tool inputs an XML se-
rialised representation of BPMN diagram from the JViews BPMN Modeler [11],
and translates it into an ASCII file containing CSP processes representing its
behaviours expressed in machine-readable CSP [22].

We now revisit our example in Figure 1. We assume CSP processes Traveller
and Agent denote the semantics of the traveller and travel agent BPMN pro-
cesses respectively. Initially we would like to check Requirement 1 in Section 1.1,
that is, that both traveller and travel agent processes are individually deadlock
free. Semantically we verify this by checking if their process semantics refine
process DF = (" i : Σ • i → DF) " Skip, which characterises deadlock freedom
in the stable-failures model. This refinement may be mechanically checked using
FDR.

DF *F Traveller ∧ DF *F Agent (5)

14

Requirement 2 is that the collaboration should be deadlock free. Semanti-
cally this means the parallel combination of Traveller and Agent , synchronising
on their own alphabet, should refine DF . For efficiency reasons, one might con-
sider abstracting the participant processes into equivalent processes for collabo-
ration. For example, tasks Cancel Itin TA, Reserve TimeOut, Request Cancel,
Receive Notify and Reserve Seat (in the Reservation subprocess of the travel
agent in Figure 1), do not interact with the traveller process. From the point of
view of the traveller process we could define an equivalent travel agent process.
This is shown in Figure 5. Let process AgentR denote the semantics of the travel

Figure 5: An abstracted travel agent process

agent in Figure 5, by showing the following assertion holds via model checking
we prove these two business processes are equivalent from the point of view of
the traveller process.

AgentR *F Agent \ NonIA ∧ Agent \ NonIA *F AgentR (6)

Formally this equivalence may be generalised to allow one to construct a com-
patible class under our formal notion of compatibility, whose formal definition
may be found in our technical reports and papers [29, 26]. Now we may check
Requirement 2 by mechanically verifying the following refinement.

DF *F Traveller |[αTraveller | αAgentR]|AgentR (7)

In fact this requirement is not satisfied, as the collaboration deadlocks after the
Traveller performs the trace 〈start .OrderTrip, start .ChangeItinT , start .ChangeItinT 〉
while AgentR performs trace 〈start .ReceiveOrder , start .CheckSeat , start .Reservation〉.
Referring back to Figure 1, we can see the travel agent could deny the traveller’s
wish to change her itinerary. To correct this workflow, the traveller must notify
the travel agent after her last change to her order.

4.2. Refinements of Diagrams
The motivation behind this model is to define the following refinement or-

dering upon BPMN diagrams. We introduce two types of refinement based

15

on CSP’s stable-failures model and the hierarchical composition of BPMN di-
agrams. We first introduce the notion of hierarchical refinement, where the
specification diagram is an abstraction of the implementation diagram via col-
lapsing subprocess states.

Definition 4.1. Hierarchical Refinement. Given two BPMN diagrams, de-
scribed by the names n1 and n2, and the specification environment l1 and l2
respectively, diagram n1 hierarchically refines diagram n2 iff

bsem n2 l2 *F (bsem n1 l1 \ S)

where S is the set of events corresponding to the alphabet of states that are
contained in the subprocess states, which are defined in diagram n1, and have
been abstracted by collapsing them into task states in diagram n2.

This refinement ordering semantically relates different levels of abstraction
between BPMN diagrams. Now we can introduce the notion of hierarchical
independence upon behavioural specification.

Definition 4.2. Hierarchical Independence. A diagram n1 in the environ-
ment l1 is a hierarchically independent specification of diagram n2 in the
environment l2 iff for all names m and specification environments k, the follow-
ing expression holds:

bsem m k *F (bsem n2 l2 \ S) ⇒ bsem n1 l1 *F bsem m k

where S is the set of events corresponding to the alphabet of states that are
contained in the subprocess states, which have been collapsed.

Hierarchical independence allows us to reason about a BPMN diagram against
a behavioural specification by verifying a more abstract version of that diagram
against the specification. However, sometimes it is not only convenient to hide
details of subprocess states, but it is necessary to also abstract details which are
irrelevant to the behavioural property we are interested in.

Definition 4.3. Partial Refinement. Given two BPMN diagrams, described
by the names n1 and n2, and the specification environments l1 and l2 respectively,
diagram n1 partially refines diagram n2 iff

bsem n2 l2 *F (bsem n1 l1 \ S)

where S is the set of event corresponding to the alphabet of all states that have
been abstracted.

In our example, the process Agent is also a partial refinement of AgentR. These
relationships allow a business process developer to focus on the specification of
part of the diagram.

16

5. Relative Timing

5.1. Semantic function
We now give an overview of our timed model [27] which takes a syntactic

description of a global diagram, describing a collaboration, and returns the CSP
process that models the timed behaviour of that diagram. That is, the function
takes one or more pool states, each encapsulating a local diagram representing
an individual participant within a business collaboration, and returns a parallel
composition of processes each corresponding to the timed behaviour of one of
the individual participants. For reasons of space we use the example of a clinical
trial in Figure 3 to illustrate this semantics. We revisit this example in Section 7.

For each local diagram, the relative-timed semantics is the partial interleav-
ing of two processes defined by an enactment and a coordination function. The
enactment function returns the parallel composition of processes, each corre-
sponding to the untimed aspect of a state of the local diagram; this is essen-
tially our process semantics of local diagrams defined in the previous section.
The coordination function returns a single process for coordinating that dia-
gram’s timed behaviour; it essentially implements a variant of the two-phase
functioning approach adopted by real-time systems and timed coordination lan-
guages [12]. Our timed model permits automatic translation, requiring no user
interaction. We will now give a brief overview of the coordination function;
again for reasons of space we only present function types accompanied with in-
formal descriptions. The complete formal definition of both the enactment and
coordination functions may be found in our technical report [27].

Informally the coordination process carries out the following steps: branch
out and enact all untimed events and gateways until the BPMN process has
reached time stability, that is when all active BPMN states are timed; order all
immediate active states in some sequence 〈t1 . . tn〉 according to their shortest
delay; enact all the time-ready states according to their timing information;
then remove the enacted states from the sequence. The process implements
these steps repeatedly until the enactment terminates.

We define the function clock to implement the coordination, where TimeState
is set of timed BPMN states, function allstates recursively returns the set of
states contained in a local diagram, including those contained within the di-
agram’s subprocess states, and begin returns the set of start states of a local
diagram.

clock : PName 3→ Local 3→ Process

This function takes the name of the diagram of type PName and its specification
environment (a mapping between diagram/subprocess names and their set of
states) of type Local , and returns a process, which first triggers the outgoing
transition of one of the start states, determined by the enactment. The process
then behaves as defined by the function stable.

stable : (P State 3→ Process) 3→ PName 3→ Local 3→
P State 3→ P State 3→ Process

17

The function stable is a higher order function; it takes some function f (for
example, constructed from the function timer below) and a set of active states,
and returns a process, which recursively enacts all untimed active states until
the local diagram is time-stable [27] i.e. when all active states of a local diagram
are timed. Going back to the example in Figure 3, states EC C , EC E , TG T
and TG G are timed and when the function stable is applied to the syntax of
the diagram initially, the process it returns will enact all states according to the
sequence flows until the set of active states are {EC C ,EC E ,TG T }, that
is the diagram is time-stable. After this the function behaves as defined by the
function f ; in the definition of clock , f is the function timer applied with its
first four arguments where the third and fourth arguments are initially empty.

timer : PName 3→ Local 3→ P State 3→ P State 3→ P State 3→ Process

Generally the function timer takes the diagram’s name and specification envi-
ronment, a set of timed states that are active before the previous time stability
(initially empty), a set of timed states that have delayed their enactment non-
determinisistically (initially empty), and a set of timed states that are active
during the current time stability. It orders the set of currently active timed
states according to their timing information. Informally the ordering process
carries out the following two steps:

• creates a subset of active timed states that has the shortest delay, we
denote these states as time-ready [27], in our example after the first time
being time-stable, the only time-ready state is state TG T , which has the
minimum delay of 5 days;

• subtracts the shortest delay from the delay of all timed states that are not
time-ready to represent that at least that amount of time has passed, in
our example, as TG T is the time-ready, other active timed states EC C
and EC E will have delays 9 to 15 days and 13 to 16 days respectively.

The function then behaves as defined by the function trun over the set of
time-ready states and the set of active but not time-ready states.

trun : PName 3→ Local 3→ P State 3→ P State 3→ Process
trun ′ : PName 3→ Local 3→ P State 3→ Process
record : PName 3→ Local 3→ P State 3→ P State 3→ P State 3→ Process

The function trun returns a process that recursively enacts a subset of the cur-
rently active timed states within a given BPMN process that are time-ready.
Coordinating time-ready states is achieved by partially interleaving the execu-
tion process returned by the function trun ′ with the recording process returned
by the recording function record . The function trun ′ takes the diagram’s name,
specification environment and its set of time-ready states, and returns a pro-
cess that interleaves the enactment of a set of processes, corresponding to its
set of time-ready state. These processes terminate if either their corresponding
states terminate, are cancelled, or are delayed. For each of these situations, the

18

process will communicate a corresponding coordination event to the recording
process. After all the interleaved processes terminate, the function trun ′ termi-
nates and behaves like the process run(A) = ! a : A • a → run(A), over the
same set of coordination events, so that if any subsequent coordination contains
the same time-ready states due to cycle, this process will not cause blocking.
Below we show trun ′ applied to the time-ready state TG T , where the event
starts.TG T represents the enactment of state TG T (administration of Pacli-
taxel), init .TG G represents the control flow from state TG T to TG G , and
finish.TG T and delayed .TG T are terminated and delayed events of TG T .

starts.TG T → init .TG G → finish.TG T → Skip
" delayed .TG T → run({finish.TG T , delayed .TG T })

The function record takes the diagram’s name, specification environment,
its set of time-ready states and set of active timed states, and returns a process
that repeatedly waits for coordination events from the execution process and
recalculates the set of active states accordingly. The following rules describe the
function informally:

1. if all time-ready states have delayed their enactments and there are no
other currently active states, record re-calculates these states so that the
states, of which the delay range has the shortest upper bound, are to be
enacted;

2. if all time-ready states have either been enacted or delayed, then this
completes a cycle of timed coordination, and the process then behaves as
defined by stable and proceeds with the next cycle;

3. if there exist time-ready states that have not been enacted or delayed,
record waits for coordination events from the execution process.

In our example when the time-ready state TG T is applied to record , the process
it returns either waits for TG T to be enacted or delayed. If TG T is enacted, it
behaves as stable over a empty set of untimed states and the set of timed states
{EC C ,EC E ,TG G } since the immediately succeeding state of TG T is
TG G , which is a timed state (rule 2). Otherwise it will also behave as stable
since the set of currently active states are not empty (rule 2). The coordination
terminates after it enacts an end state of the top level diagram. A complete
definition of the semantic function may be found in our longer paper [27].

5.2. Analysis
The following are some results about the timed model. We say a diagram

is timed if it contains timing information and untimed otherwise; every timed
diagram is a timed variant of another untimed diagram, i.e. an untimed diagram
augmented with timing information. Below is an intuitive property about timed
variation.

Proposition 5.1. Untimed Invariance. For any untimed local diagram,
there exists an (infinite) set of timed variant diagrams such that all of the dia-
grams in the set are failures-equivalent under the untimed semantics.

19

One of the consequences of using a common semantic domain for both timed
and untimed models is that we can transfer certain behavioural properties from
the untimed to the timed world. We achieve this by showing for any timed
variation of any local diagram, the timed coordination process is a responsive
plug-in [21] to the enactment process. Informally process Q is a responsive
plug-in to P if Q is prepared to cooperate with the pattern set out by P for
their shared interface. We now formally present Reed et al.’s definition of the
binary relation RespondsTo over CSP processes using the stable failures model.

Definition 5.2. For any processes P and Q where there exists a set J of shared
events, Q is a responsive plug-in to P, denoted as Q RespondsTo P iff for
all traces s ∈ seq(αP ∪ αQ) and event sets X

(s ! αP ,X) ∈ failures(P) ∧ (initials(P/s) ∩ J!) \X 5= ∅
⇒ (s ! αQ , (initials(P/s) ∩ J!) \X) /∈ failures(Q)

where initials(P/s) is the set of possible events for P after trace s; A! is a set
of events A ∪ {" }; " denotes successful termination in CSP and s ! A hides
all e such that e /∈ A from s.

Proposition 5.3. Responsiveness. For any local diagram p under the rela-
tive timed model where its enactment and coordination are modelled by processes
E and T respectively, T RespondsTo E.

Proof: (Sketch.) We proceed by considering each of the functions which define
the coordination process, and show that for any local diagram p, if there is a set
of states which may be performed by p’s enactment after some process instance,
then the coordination of p must cooperate in at least one of those states. We
do this by showing that if the process defined by each function cooperates with
p’s enactment, then the sequential composition of them also cooperates with p’s
enactment. !

A direct consequence of Proposition 5.3 is that deadlock freedom is preserved
from the untimed to the timed setting. So taking the definition of process DF
from Section 4,

Proposition 5.4. Deadlock Freedom Preservation. For any process P,
modelling the behaviour of an untimed local diagram, and for any process Q
modelling the behaviour of a timed variant of that diagram,

DF *F P ⇒ DF *F Q

We say that a behavioural property is time-independent if the following holds.

Definition 5.5. Time Independence. A behavioural specification process S
is time-independent with respect to some untimed local diagram whose be-
haviour is given by process P iff for any process Q modelling the behaviour of a
timed variant of that diagram,

S *F P ⇒ S *F Q

20

As a consequence of Propositions 5.3 and 5.4 and refinements over T , we can
generalise time-independent specifications by the following result.

Proposition 5.6. A specification process S is time-independent with respect to
some untimed local diagram whose behaviour is given by the process P iff

S *F P ⇔ traces(S) ⊇ traces(P) ∧ deadlocks(S) ⊇ deadlocks(P)

where traces(P) is the set of possible traces of process P and deadlocks(P) is
the set of traces on which P can deadlock.

As well as describing individual business processes, BPMN may also be used
to specify business collaboration where more than one business process (par-
ticipant) communicates via message flows; informally we say a participant is
compatible with respect to a collaboration if it cooperates on the pattern of
message flow communications. Similar to the notion of compatibility defined
over the untimed model [26, 29] and illustrated in the previous section, we
formalise time-compatibility using CSP’s responsiveness.

Definition 5.7. Time-Compatibility. Given some collaboration described by
the CSP process,

C = (‖ i : { 1 . . n } • αTi ◦ Ti) \ M

where n ranges over N and M is the set of events corresponding to the message
flows between its participants, whose timed behaviour are modelled by the
processes Ti , participant Ti is time-compatible with respect to the collaboration
C iff ∀ j : { 1 . . n } \ { i } • Ti RespondsTo Tj

One result of formalising compatibility under our timed semantics is that,
since responsiveness is refinement-closed under F [21], time-compatibility is also
refinement-closed.

Proposition 5.8. Given that the participants Pi , where i ranges over some
index set, are time-compatible in some collaboration C , their refinements under
F are also time-compatible in C .

However, refinement closure does not capture all possible compatible partici-
pants within a collaboration. Specifically, for each participant in a collaboration
there exists a time-compatible class of participants of which any member may
replace it and preserve time-compatibility. This class may be formalised via the
stable failures equivalence. This notion augments our earlier definitions in the
untimed setting [26].

Definition 5.9. Time-Compatible Class. Given some local diagram name p
and its specification l, we define its time-compatible class of participants cfT (p, l)
axiomatically as a set of pairs where each pair specifies a BPMN diagram by its
environment and the name which identifies it.

21

cfT : (PName × Local) 3→ P(PName × Local)

∀ p : PName; l : Local •
cfT (p, l) =
{ p′ : PName; l ′ : Local |

(tsem p l) \ mgs(p, l) *F (tsem p′ l ′) \ mgs(p′, l ′) }

where mgs(q ,m) = (αproc q m \ mg q m) and function mgs takes a description
of a local diagram and returns a set of CSP events corresponding to the message
flows of that diagram.

This naturally leads to the definition of the characteristic or the most abstract
time-compatible participant with respect to a collaboration.

Definition 5.10. Characteristic Participant. Given the time-compatible
class cp of some participant p, specified in some environment l , for some col-
laboration c, the characteristic participant of cp, specified by a pair of name and
the environment, is given by the function charT applied to cp.

charT : P(PName × Local) 3→ (PName × Local)

charT =
(λ ps : P(PName × Local) • (µ(p′, l ′) : (PName × Local) |

mg p′ l ′ = αproc p′ l ′ ∧
(∀(p, l) : ps • (tsem p′ l ′ *F (tsem p l \ mgs(p′, l ′))))))

The following result is a direct consequence of Proposition 5.8, and Defini-
tions 5.9 and 5.10.

Proposition 5.11. If a characteristic participant p of a time-compatible class
cp, specified in some environment l , is time-compatible with respect to some
collaboration c, then all participants in cp are also time-compatible with respect
to c.

6. Property Specifications

Our semantics provide a natural refinement ordering upon BPMN diagrams,
allowing one to use BPMN for both specification and modelling and as a result,
promoting both compositional and stepwise development of business processes.
However, the expressiveness of BPMN is strictly less than that of CSP and as a
result, some behavioural properties about business processes may not be easy to
capture in BPMN. This is illustrated in Section 1.3, where we consider Require-
ment 4 of our case study. This section gives an overview of a complementary
approach [30], in which a CSP formalisation of a generalisation of Dwyer et
al. Property Specification Patterns (PSP) [5]; PSP are intended to describe
the essential structure of commonly occurring requirements on the permissible
behaviour in a finite state model of a system. We generalise PSP to capture
admissible sequences of patterns of behaviours, rather than individual events,

22

within a scope of a pattern. In particular our approach may be summarised
as follows: we define a small property specification language PL, based on the
generalised patterns, for describing behavioural properties, and then provide a
function that returns an expression in the bounded, positive fragment of linear
temporal logic (BTL) that specifies the behaviour properties; we then translate
the given BTL expression into its corresponding CSP process based on Lowe’s
characterisation [14]; using this, one may check whether a workflow system be-
haves according to a property specification.

BTL. The semantics of BTL extends the original LTL for capturing both per-
formance and availability of behaviour. For example, while atom formula a
denotes the event a is available to be performed initially, and no other events
may be performed, the formula available a denotes the event a must not be
refused initially, and other events may be performed.

Refusal Traces. This formalisation requires a finer CSP semantics, refusal traces
RT [17], than the standard stable failures as it has been demonstrated that F
is not adequate for capturing this interpretation of temporal logics [14]. In RT ,
each CSP process may be denoted as a set of refusal traces; each refusal trace
is an alternating sequence of refusal information and events. More precisely, a
refusal trace takes the form,

〈X1, a1,X2, a2, . .,Xn , an ,Σ〉

where each Xi is a refusal set, and each ai is an event. This test represents
that the process can refuse X1, perform a1, refuse X2, perform a2, etc. In this
particular example the refusal trace finishes by refusing Σ (the set of all possible
events), i.e. deadlocking. We write RT [[P]] for the refusal traces of P and
refinement in the RT is then defined as Spec *RT P ⇔ RT [[Spec]] ⊇ RT [[P]].
Currently FDR [6] is being extended to include the checking of refinement in
this model.

6.1. Patterns of Behaviour
To capture patterns of behaviour for pattern-based specification, PL con-

tains a sub-language SPL, which assists developers to construct BPMN-based
patterns of behaviour. SPL contains a subset of CSP with the addition of a
new nondeterministic interleaving operator (""). Informally the term P ""Q
communicates events from both P and Q , but unlike CSP’s interleaving, our
operator chooses them nondeterministically. Here we present the step law gov-
erning the operator in the form of CSP’s algebraic laws [22]: if P = p → P ′ and
Q = q → Q ′ then P ""Q = (p → (P ′""Q)) " (q → (P ""Q ′)).

SPL contains an atomic term End , which has empty semantics over RT
and that is a unit over "". This operator is particularly useful when reasoning
about a BPMN process over the timed model, that is, when concurrent activi-
ties are constrained due to timing information. In our formalisation [30], SPL
is translated into BTL so that it could be used inside a BTL expression of a

23

property pattern. In particular, all expressions translated from SPL are charac-
terised by atomic formulae over ∨, ∧ and © (‘next’ operator in temporal logic),
and as such each BTL-translation of SPL may be captured by the grammar
E ::= a (∧ ©E)∗ | (E ∨ E), where a is some atomic formula. Moreover, we are
able to show that each BTL-translation of SPL may be translated into an equiv-
alent BTL expression in restricted disjunctive normal form (rDNF). While an
ordinary disjunctive normal form expression is one which consists of a disjunc-
tion of conjunctions of variables and negations of variables, a rDNF expression
consists of a disjunction of conjunctions of atomic formulae and terms defined
by © operators over an atomic formula.

Definition 6.1. An BTL expression is in restricted disjunctive normal
form (rDNF) if it has the form,

(a1
1 ∧ ©a1

2 ∧ . . ∧ ©k−1a1
k) ∨ . . ∨ (a l

1 ∧ ©a l
2 ∧ . . ∧ ©j−1a l

j)

where each aj
i is a atomic formula and ©ia is defined as i © operators over

some formula a.

We have shown that any BTL expression generated by the grammar E may be
translated into rDNF and that the translation is valid under RT [30]. This
normal form is proved to be useful when formalising the bounded existence pat-
tern.

6.2. Bounded Existence
We define the function boundexists to take pattern of behaviour µ, a bound b

and a scope s and returns the corresponding expression in BTL stating µ must
occur for the number of times specified by b within s and other behaviours
may also occur within s. While other patterns only require the maximum num-
ber of states of the patterns of behaviour when specifying properties [30], it is
necessary to calculate all possible number of states of the pattern of behaviour
for specifying properties in the bounded existence pattern. This is because to
express a context over a bounded number of occurrences of some pattern of
behaviour µ, we need to know exactly the number of states all occurrences of µ
span. For example the maximum number of states for the pattern of behaviour
a ∧ (©b ∨ ©(c ∧ ©d)) is three, while it also specifies a behaviour that only
spans two states, namely a ∧ ©b, therefore the number of states covered by two
occurrences of this pattern of behaviour may either be four, five or six; we use
the term state in the sense of a transition system of a CSP process describing
a BPMN diagram: a graph showing the states it can go through and actions,
each denoted by a single CSP event, that it takes to get from one to another.
Algebraically this is where each transition between states is an application of a
step law. To record the all possible numbers of states we provide the function
combine that takes some BTL expression µ in rDNF recording a pattern of be-
haviour and some integer n indicating the possible number of occurrences our
property interested, and return a set of patterns of behaviour, each defining a
disjunction of possible n occurrences of possible behaviour by µ such that each

24

disjunct covers an equal number of states. For example, the two occurrences of
the behaviour a ∧ (©b ∨ ©(c ∧ ©d)) would give the following set

{ a ∧ ©(b ∧ ©(a ∧ ©b)), a ∧ ©(c ∧ ©(d ∧ ©(a ∧ ©(c ∧ ©d)))),
(a ∧ ©(b ∧ ©(a ∧ ©(c ∧ ©d)))) ∨ (a ∧ ©(c ∧ ©(d ∧ ©(a ∧ ©b)))) }

Consequently we define function boundexists, which takes a pattern of behaviour
µ, a bound b and a scope s and returns the corresponding BTL expression
stating µ must occur for the number of times specified by b within s and other
behaviours may also occur within s.

boundexists : (SPL × Bound × SL) 3→ BTL

∀ ps : F1 BTL; µ : SPL; b : Bound ; n ∈ N1; s : SL |
ps = combine(patternDNF (µ), getbound(b)) •

boundexists(µ, b, s) =
∨
{ p : ps • boundexist(p, b, s) }

Here the function patternDNF normalises the SPL term and the function boundexist
considers individual partitions of possible alternative behaviour such that each
partition contains a set of behaviour, each of which covers the same number
of states. We write getbound(b) for some bound b to denote the number part
of the value. Full definitions of functions and BTL mappings of the property
patterns may be found in our technical report [30].

For example we could use the pattern “The bounded existence of µ after
ν” to describe the property that either task A or C followed by D has to
occur followed by either one of them again throughout the whole execution of
a business process. This may be expressed in PL as BEx(a → End " c →
End ,= 2, always) and the CSP specification Spec = Spec0 " Spec1 defines the
the translation corresponding of the PL expression, and it is defined in terms of
the following processes,

Spec0 = start .c → Spec2 Spec1 = start .a → Spec3 " Spec4
Spec2 = start .d → Spec3 " Spec4 Spec3 = start .c → Spec5
Spec4 = start .a → Spec6 " Spec7 Spec5 = start .d → Spec6 " Spec7
Spec6 = Pr({a},Spec8 " Spec9) Spec7 = Pr({a, c},Spec6 " Spec7)

Spec8 = Pr({a, d},Spec8 " Spec9) Spec9 = Pr({a, c, d},Spec6 " Spec7)

where Pr(X ,P) = Stop " Skip " (" x : Σ \ {t : X • starts.t} • x → P)

6.3. Applications
Back to our example in Figure 1, we could now apply the absence pattern

“the absence of µ between some behaviours ν and υ” [30] to specify the Require-
ment 4. Let’s assume travel agent in Figure 1 is deadlock free (i.e. Agent re-
fines DF), and start .BookSeat , start .RequestCancel , start .ReserveTimeOut and
start .SendInvoice denote the tasks Book Seat, Request Cancel, Request TimeOut

25

and Send Invoice of the travel agent in Figure 1 respectively; the following is
the corresponding PL expression specifying this property.

Abs(Cancel , between start .BookSeat → End and(start .Sendinvoice → End , 2))

where the behaviour Cancel is defined as follows:

Cancel = start .RequestCancel → End " start .ReserveTimeOut → End

The corresponding CSP process is Spec = Spec0 " Spec1, which is defined in
terms of the following processes.

Spec0 = Pr({BookSeat },Spec0 " Spec1)
Spec1 = start .BookSeat → (Spec2 " Spec3 " Spec4 " Spec5 " Spec6)
Spec2 = Pr({BookSeat ,SendInvoice },Spec7 " Spec1)
Spec3 = start .SendInvoice → (Spec0 " Spec1)
Spec4 = start .BookSeat → (Spec2 " Spec4 " Spec8 " Spec9)
Spec5 = Pr({BookSeat ,RequestCancel ,ReserveTimeOut},Spec3)
Spec6 = start .BookSeat → (Spec3)
Spec7 = Pr({BookSeat ,SendInvoice },Spec0 " Spec1)
Spec8 = Pr({BookSeat ,RequestCancel ,ReserveTimeOut ,SendInvoice},Spec3)
Spec9 = start .BookSeat → (Spec3)

Now it is possible to see if the travel agent diagram satisfies this property by
checking the following refusal traces refinement assertion using the FDR tool.

Es = {BookSeat ,RequestCancel ,ReserveTimeOut ,SendInvoice }
Spec *RT Agent \ (Σ \ {t : Es • start .t})

7. Modelling Empirical Studies

7.1. Empirical Studies
This section considers the application of BPMN to analysing long-running

empirical studies. In particular we develop a novel declarative model, OWork-
flow, for specifying empirical studies, and implement transformation functions
between OWorkflow and BPMN in Haskell. Note that the mapping from BPMN
to OWorkflow is partial, as only a subset of BPMN is required.

wTob :: OWorkflow -> BPMN bTow :: BPMN -> OWorkflow

OWorkflow extends the original CancerGrid trial model [2], which has been
developed specifically for recording clinical trials.

Formally an empirical study, represented by OWorkflow, is a list of sequence
rules: a sequence rule is a 8 tuple N ,P ,D ,G ,E ,A,R,W , where N is a unique
identifier, typed ActivityId; P is a structural composition of prerequisites,
identifying preceding sequence rules; D is a structural composition of dependen-
cies, identifying succeeding sequence rules; G and E , both typed Condition, are
the starting and terminating conditions; A is a observation group, identifying

26

manual and automated activities to be performed when the rule is evaluated; R
is a list of repeat clauses, and W is a work group, identifying the collection of
work blocks to be carried out when the rule is evaluated, each block representing
a set of empirical procedures such as those of administering drug treatments to
a patient in a clinical trial. For reasons of space we only describe the structure
of a work group via our example in Figure 3; full definition and description of
sequence rules may be found in our technical reports [28]. Each work group is
defined by the data type Wks.

data Wks = ChoiceW [Wks] | ParW [Wks] | SeqW [Wks] | Wk WBlock

where the constructor ChoiceW, ParW and SeqW denotes the choice, interleaving
and sequential composition of collection works [Wks]. Each WBlock records a
set of empirical procedures; each procedure is identified by its name, methods,
duration and iteration. For example the subprocess state EC in Figure 3 is work
block that contains a two work units EC C and EC E which are represented
as BPMN task states.

7.2. Verification
We assume the process A2 to be the relative-timed behaviour of the diagram

in Figure 3. Here we use the CSP events starts.N where N is a value over the
datatype Node to denote administration of the respective drug.

Node ::= TG T | TG G | EC C | EC E

The CSP events fin.i where i ranging over N are special events denoting the
successful termination of subprocesses and diagrams, in our example we use the
event fin.0 to denote the successful termination of the diagram.

To verify the set of clinical intervention against the sequencing rule in Sec-
tion 1, we exploit CSP’s stable failures semantics, that is we turn the question
of property verification into a question of refinement. The following process S
is the most non-deterministic CSP process satisfying the sequencing rule,

S = start .TG G → S " start .EC E → S
" starts.EC C → T " fin.0 → Skip

T = start .EC E → S " start .EC C → T

and here is the corresponding failures refinement assertion.

S *F A2 \ {fin.1,fin.2,fin.3, starts.TG T }

We have abstracted the behaviour of the diagram by hiding part of A2’s
alphabet because the property we are interested in only covers the set of events,

{ start .TG G , start .EC E , start .EC C ,fin.0 }

i.e. the alphabet of the process S . When we ask FDR to check this assertion the
counterexample trace 〈start .EC C , start .TG G〉 is given. This tells us that a

27

dosage of gemcitabine can be given after a dosage cyclophosphamide; this trace
is sufficient to disprove the correctness of our example against the sequence rule,
since a dosage of epirubicin must be after gemcitabine according to the syntactic
structure of the diagram.

A more detailed analysis reveals that while cyclophosphamide may be ad-
ministered after 14 days and epirubicin may only be administered after 18 days,
paclitaxel may be delayed for as long as 10 days before being administered, and
since gemcitabine is allowed to be administered within the 10 days, it may be
given after 5 days, that is before epirubicin and after cyclophosphamide. A
possible solution to this is either to restrict the duration in which cyclophos-
phamide and epirubicin may be administered, or to delay the administration of
gemcitabine.

8. Related Work and Summary

8.1. Semantics
To the best of our knowledge, the only previous attempt at defining a for-

mal semantics for a subset of BPMN did so using Petri nets [4]. However,
that semantics does not properly model multiple instances and does not allow
comparisons of diagrams via refinements. A significant amount of work has
been done towards the mapping between a particular class of BPMN diagrams
and WS-BPEL (e.g. [20]), and the formal semantics of WS-BPEL (e.g. [8]).
However, as the use of graphical notations to assist the development process of
complex software systems has become increasingly important, it is necessary to
define a formal semantics for BPMN to ensure precise specification and to assist
developers in moving towards correct implementation of business processes. A
formal semantics also encourages automated tool support for the notation.

Similarly we introduce the first relative-timed model for a collaborative
graphical notation like BPMN. Some attempts have been made to provide timed
models for similar notations such as UML activity diagrams (e.g. [7]) and Work-
flow nets [13]. Guelifi et al. [7] have defined their discrete timed semantic models
in the Clocked Transition System notation, where behavioural specifications are
expressed as temporal logic formulae and verification is carried out via model
checking; Ling et al. defined a formal semantics for a timed extension of van der
Aalst’s Workflow nets [24] in terms of timed Petri nets; nevertheless, their se-
mantics do not provide the level of abstraction required to model time explicitly,
in that they model discrete units of time, which we believe may not be directly
applicable to the business process developers whereas our definition captures
the six-dimensional space defined by W3C standards [32, Section 3.2.6]. Also
unlike BPMN, their target graphical notations and hence their semantic models
are not designed for analyses of collaborations where more than one diagram
is under consideration. Furthermore, our semantic model has been defined in
correspondence to our earlier untimed model [26] so that timed-independent
behavioural properties may be preserved across both models.

28

8.2. Compatibility
This paper also addresses the notion of compatibility of BPMN diagrams;

in particular, our work documents the relationship between compatibility in
the untimed and timed settings. While we are unaware of prominent work in
dealing with this issue when focusing in the untimed setting, there exist many
approaches in which new process calculi have been introduced to capture the
notion of compatibility in collaborations and choreographies. Notable works in-
clude Carbone et al.’s End-Point and Glocal Calculi for formalising WS-CDL [3]
and Bravetti et al.’s choreography calculus capturing the notion of choreography
conformance [1]. Both these works tackled the problem of ill-formed choreogra-
phies, a class of choreographies of which correct projection is impossible. While
the notion of ill-formed choreographies is similar to our definition of compati-
bility and the notion of contract refinement defined by Bravetti et al. [1] bears
similarity to our definition of compatible class, they have defined their choreogra-
phies solely in terms of process calculi with no obvious graphical specification
notation that could be more accessible to domain specialists.

8.3. Empirical Studies
While the application of graphical workflow technology to empirical studies

and calendar scheduling is new, large amounts of research have focused on the
application of workflow notations and implementations to “in silico” scientific
experiments. Notable is Ludäscher et al.’s Kepler System [15] and Microsoft Re-
search’s Trident Workflow Workbench [23], in which such experiments are spec-
ified as a workflow graphically and fully automated by interpreting the workflow
descriptions on a runtime engine. On the other hand we employ BPMN as a
graphical notation to specify and graphically visualise experiments and studies
that are typically long-running and in which automated tasks are often inter-
leaved with manual ones: studies such as clinical trial would also include “in
vivo” intervention. Furthermore, our approach targets studies that are usually
recorded in a calendar schedule to assist administrators and managers. Simi-
larly, research effort has been directed towards effective planning of specific types
of long running empirical studies, namely clinical trials and guidelines. Notable
is Modgil and Hammond’s Design-a-Trial (DaT) [16]. DaT is a decision sup-
port tool for critiquing the data supplied specifically for randomized controlled
clinical trial specification based on expert knowledge, and subsequently out-
putting a protocol describing the trial. DaT includes a graphical trial planner,
which allows description of complex procedural contents of the trial. To ease to
complexity of protocol constructions, DaT uses macros, common plan (control
flow) constructs, to assist trial designers to construct trial specifications. More
recently

8.4. Summary
This paper presents a formalisation of BPMN and describes some of its ap-

plications through examples. In particular, we introduce a process semantics in

29

CSP and describe how this may be applied to reasoning as well as the refine-
ment of BPMN diagrams. A timed model is then introduced, which augments
our untimed model with relative timing, and using these two models we dis-
cuss the notion of compatibility and its relationship between the models. We
also present a pattern-based approach to constructing property specifications
for BPMN, which complements our formal semantics. In applications of BPMN
we use a well-documented example of ticket reservation systems to illustrate
the applicability of our approach, as well as investigating the use of BPMN in
modelling empirical studies.

References

[1] Mario Bravetti and Gianluigi Zavattaro. Towards a Unifying Theory for
Choreography Conformance and Contract Compliance. In Proc. of 6th
International Symposium on Software Composition (SC’07), 2007.

[2] James Brenton, Carlos Caldas, Jim Davies, Steve Harris, and Peter Mac-
callum. CancerGrid: developing open standards for clinical cancer infor-
matics. In Proceedings of the UK e-science All Hands Meeting 2005, pages
678–681, 2005.

[3] Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary
Brown, and Steve Ross-Talbot. A Theoretical Basis of Communication-
Centred Concurrent Programming. Technical report, W3C, 2006.

[4] R. M. Dijkman, M. Dumas, and C. Ouyang. Formal semantics and auto-
mated analysis of BPMN process models. Technical Report Preprint 5969,
Queensland University of Technology, 2007.

[5] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in Property Specifications for Finite-State Verification. In Proceedings of
the 21st International Conference on Software Engineering, 1999.

[6] Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2
User Manual, 1998. www.fsel.com.

[7] Nicolas Guelfi and Amel Mammar. A Formal Semantics of Timed Activity
Diagrams and its PROMELA Translation. In APSEC05, pages 283–290,
2005.

[8] H. Foster. Mapping BPEL4WS to FSP. Technical report, Imperial College,
London, 2003.

[9] Peter Hammand, Marek J. Sergot, and Jeremy C Wyatt. Formalisation
of Safety Reasoning in Protocols and Hazard Regulations. In 19th Annual
Symposium on Computer Applications in Medical Care, October 1995.

[10] Haskell. http://www.haskell.org.

30

[11] ILOG JViews BPMN Modeler. Available at http://www.ilog.com/
products/jviews/diagrammer/bpmnmodeler/.

[12] I. Linden, J.-M. Jacquet, K. De Bosschere, and A. Brogi. On the expressive-
ness of timed coordination models. Sci. Comput. Program., 61(2):152–187,
2006.

[13] Sea Ling and H. Schmidt. Time petri nets for workflow modelling and anal-
ysis. In Proceedings of 2000 IEEE International Conference on Systems,
Man, and Cybernetics, pages 3039–3044, 2000.

[14] Gavin Lowe. Specification of communicating processes: temporal logic ver-
sus refusals-based refinement. Formal Aspects of Computing, 20(3), 2008.

[15] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank,
M. Jones, E. Lee, J. Tao, and Y. Zhao. Scientific Workflow Management
and the Kepler System. Concurrency and Computation: Practice & Expe-
rience, Special Issue on Scientific Workflows, 2005. to appear.

[16] S. Modgil and P. Hammond. Decision support tools for clinical trial design.
Artificial Intelligence in Medicine, 27, 2003.

[17] Abida Mukarram. A Refusal Testing Model for CSP. D.Phil thesis, Uni-
versity of Oxford, 1992.

[18] Model Checking BPMN. Available at http://www.comlab.ox.ac.uk/
peter.wong/bpmn/.

[19] OMG. Business Process Modeling Notation (BPMN) Specification, Febru-
ary 2006. www.bpmn.org.

[20] C Ouyang, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede.
Translating BPMN to BPEL. Technical Report BPM-06-02, BPM Center,
2006.

[21] J. N. Reed, J. E. Sinclair, and A. W. Roscoe. Responsiveness of interoper-
ating components. Form. Asp. Comput., 16(4):394–411, 2004.

[22] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1998.

[23] Microsoft Research Trident Scientific Workflow Workbench. http://
research.microsoft.com/en-us/collaboration/tools/trident.aspx.

[24] W. M. P. van der Aalst. Verification of Workflow Nets. In ICATPN ’97:
Proceedings of the 18th International Conference on Application and The-
ory of Petri Nets, pages 407–426, 1997.

[25] W3C. Web Service Choreography Interface (WSCI) 1.0, November 2002.
www.w3.org/TR/wsci.

31

[26] Peter Y. H. Wong and Jeremy Gibbons. A Process Semantics for BPMN. In
Proceedings of 10th International Conference on Formal Engineering Meth-
ods, volume 5256 of LNCS, October 2008. Technical report version available
at http://www.comlab.ox.ac.uk/peter.wong/pub/bpmnsem.pdf.

[27] Peter Y. H. Wong and Jeremy Gibbons. A Relative-Timed Semantics
for BPMN. In Proceedings of 7th International Workshop on the Foun-
dations of Coordination Languages and Software Architectures, ENTCS,
July 2008. Technical report version available at http://www.comlab.ox.
ac.uk/peter.wong/pub/bpmntime.pdf.

[28] Peter Y. H. Wong and Jeremy Gibbons. On Specifying and Visualising
Long-Running Empirical Studies. In Proceedings of International Confer-
ence on Model Transformation, volume 5063 of LNCS, July 2008. Technical
report version available at http://www.comlab.ox.ac.uk/peter.wong/
pub/transext.pdf.

[29] Peter Y. H. Wong and Jeremy Gibbons. Verifying Business Process Com-
patibility. In Proceedings of 8th International Conference on Quality Soft-
ware, pages 126–131. IEEE Computer Society, August 2008.

[30] Peter Y. H. Wong and Jeremy Gibbons. Property Specifications for Work-
flow Modelling. In Proceedings of 7th International Conference on Inte-
grated Formal Methods, volume 5423 of LNCS, February 2009. Technical
report version available at http://www.comlab.ox.ac.uk/peter.wong/
pub/psp.pdf.

[31] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refine-
ment. Prentice Hall International Series in Computer Science, 1996.

[32] XML Schema Part 2: Datatypes Second Edition, October 2004. http:
//www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

32

