
JFP, 15 pages, 2021. c© Cambridge University Press 2021 1
doi:10.1017/xxxxx

E D U C A T I O N M A T T E R S

How to Design Co-Programs

JEREMY GIBBONS
Department of Computer Science, University of Oxford

e-mail: jeremy.gibbons@cs.ox.ac.uk

Abstract

The observation that program structure follows data structure is a key lesson in introductory pro-
gramming: good hints for possible program designs can be found by considering the structure of the
data concerned. In particular, this lesson is a core message of the influential textbook “How to Design
Programs” by Felleisen, Findler, Flatt, and Krishnamurthi. However, that book discusses using only
the structure of input data for guiding program design, typically leading towards structurally recur-
sive programs. We argue that novice programmers should also be taught to consider the structure of
output data, leading them also towards structurally corecursive programs.

1 Introduction

Where do programs come from?
This mystery can be an obstacle to novice programmers, who can become overwhelmed

by the design choices presented by a blank sheet of paper, or an empty editor window—
where does one start? A good place to start, we tell them, is by analyzing the structure of
the data that the program is to consume. For example, if the program h is to process a list
of values, one may start by analyzing the structure of that list. Either the list is empty ([]),
or it is non-empty (a : x) with a head (a) and a tail (x). This provides a candidate program
structure:

h [] = ...

h (a : x) = ... a ... x ...

where for the empty list some result must simply be chosen, and for a non-empty list the
result depends on the head a and tail x. Moreover, x is another list, because lists are a
recursively structured datatype; and it is often the case that the list-consuming program h
can be structured with the same shape as the datatype, making a recursive call on x:

h [] = ...

h (a : x) = ... a ... x ... h x ...

A key lesson in teaching introductory programming is therefore that program structure
follows data structure. This lesson is a central message in the influential textbook “How to

2 How to Design Co-Programs

Design Programs” (Felleisen et al., 2001, 2004, 2018) (henceforth “HtDP”). This book is
organized around design recipes, one of which is for structural recursion as above.

However, there is more structure available to guide the novice programmer in designing
their program than simply the structure of the input data; in particular, there is also the
structure of the output data. For a program h that produces a list, we have an alternative
candidate program structure determined by the output, which is either empty ([]), or non-
empty (b : y) with a head (b) and a tail (y):

h x | ... x ... = []

| otherwise = b : y
where b = ... x ...

y = ... x ...

Again, the tail y is another list, and is often generated by a recursive call of h:

h x | ... x ... = []

| otherwise = b : y
where b = ... x ...

y = h (...x...)

This program structure is corecursive, designed around the structure of the output rather
than the structure of the input. The input x need provide no guidance; indeed, it might be
absent altogether—for example, in a corecursive definition of the list consisting of the first
1000 prime numbers, which is not a function at all.

HtDP presents no design recipe corresponding to this dual structure, and neither (to
the best of this author’s knowledge) does any other introductory programming textbook.
The thesis of this paper is that this dual design recipe is just as important, and novice
programmers deserve also to be taught how to design co-programs.

2 Design Recipes

One key aspect of HtDP is the emphasis on design recipes for solving programming tasks.
A design recipe is a process for solving a programming problem, constructing a sequence
of specific, checkable products along the way: a contract for the function, analogous to
a type signature (but HtDP treats types informally, so this signature is just a comment); a
statement of purpose; a function header; example inputs and outputs; and a template for the
function body. Following the design recipe entails filling in a particular contract etc, then
fleshing out the function body from its template, and finally testing the resulting program
against the initial examples.

The primary strategy for problem solving in the book is via analysis of the structure
of the input. When the input is composite, like a record, the template should name the
available fields as likely ingredients of the solution. When the input has “mixed data”,
such as a union type, the template should enumerate the alternatives, leading to a case
analysis in the solution. When the input is of a recursive type, the template encapsulates
structural recursion—a case analysis between base cases and inductive cases, the latter

Journal of Functional Programming 3

Phase Goal Activity

data analysis
and design

to formulate a data
definition

develop a data definition for mixed data with at
least two alternatives; one alternative must not
refer to the definition; explicitly identify all
self-references in the data definition

contract,
purpose, and
header

to name the function; to
specify its classes of
input data and its class
of output data; to
describe its purpose; to
formulate a header

name the function, the classes of input data, the
class of output data, and specify its purpose:

;; name : in1 in2 ... --> out

;; to compute ... from x1 ...

(define (name x1 x2 ...) ...)

examples to characterize the
input–output
relationship via
examples

create examples of the input–output relationship;
make sure there is at least one example per
subclass

template to formulate an outline develop a cond-expression with one clause per
alternative; add selector expressions to each
clause; annotate the body with natural recursions;
test: the self-references in this template and the
data definition match!

body to define the function formulate a Scheme expression for each simple
cond-line; explain for all other cond-clauses what
each natural recursion computes according to the
purpose statement

test to discover mistakes
(“typos” and logic)

apply the function to the inputs of the examples;
check that the outputs are as predicted

Fig. 1. The design recipe for structural recursion

entailing recursive calls. The design recipe for structural recursion (Felleisen et al., 2001,
Figure 26) is shown in Figure 1.

One of HtDP’s illustrations of structural recursion is sorting (Felleisen et al., 2001,
Chapter 12). Simply following the design recipe for the purpose of sorting (and follow-
ing it a second time for insertion into an ordered list) leads inexorably to the discovery of
Insertion Sort.

Let us retrace those steps. The data definition for the inputs (and as it happens, also for
the outputs) is that of lists of integers: a list is either empty ([]), or non-empty (a : x) with
a head (a, an integer) and a tail (x, another list). The contract and header in HtDP amount
to a type declaration for the function:

insertSort :: [Integer]→ [Integer]

The purpose is to sort the input list of numbers; HtDP chooses to sort in descending order,
but we will sort in ascending order. The design recipe calls for some examples, with at least
one example in which the input is the empty list, and at least one in which it is a non-empty
list:

4 How to Design Co-Programs

insertSort [] = []

insertSort [3, 2, 1] = [1, 2, 3]
insertSort [1, 2, 3] = [1, 2, 3]
insertSort [12, 20,−5] = [−5, 12, 20]
insertSort [1, 1, 2] = [1, 1, 2]

The template instantiates the generic program structure for this particular function:

insertSort [] = ...

insertSort (a : x) = ... a ... x ... insertSort x ...

We then have to fill in the body to complete the definition. The base case is easy:

insertSort [] = []

For the inductive step, HtDP introduces a wish-list including an auxilliary function insert:

insertSort (a : x) = insert a (insertSort x)

so the function recurses on the tail of a non-empty list a : x, inserting the head a into
the sorted subresult insertSort x. HtDP then walks through the same sequence of steps to
implement the wished-for auxilliary function:

insert :: Integer→ [Integer]→ [Integer]
insert b [] = [b]
insert b (a : x) | b 6 a = b : a : x

| b > a = a : insert b x

The overall program satisfies the invariant that the second argument to insert is sorted, and
therefore so is the result of insert. It should finally be tested. From now on, we elide most
of the design recipe steps; apart from the template, they are no different here from those in
HtDP.

A secondary, more advanced, strategy in HtDP is to use generative recursion, in which
the recursive calls are on subproblems that are generated from the input by some more
significant computation than simply projecting out a component. Instances include while
loops and divide-and-conquer. The template in this design recipe incorporates a test for
triviality; in the non-trivial cases, it splits the problem into one or more subproblems,
recursively solves the subproblems, and assembles the subresults into an overall result.

One of the motivating examples for generative recursion is Quick Sort (Felleisen
et al., 2001, Section 25.2), albeit not Hoare’s fast in-place version—dividing a non-empty
input list into two parts using the head as the pivot, recursively sorting both parts, and
concatenating the results with the pivot in the middle:

quickSort :: [Integer]→ [Integer]
quickSort x | null x = []

| otherwise = quickSort y ++ [head x] ++ quickSort z
where y = [b | b← tail x, b 6 head x]

z = [b | b← tail x, b > head x]

No other program structures than structural recursion and generative recursion are
considered in HtDP. (Other design recipes are considered, in particular accumulating

Journal of Functional Programming 5

parameters and imperative features. But these do not determine the gross structure of
the resulting program. Moreover, the Second Edition (Felleisen et al., 2018) drops the
imperative recipe.)

3 Co-programs

The thesis of this paper is that HtDP has missed an opportunity to reinforce its core mes-
sage, that program structure follows data structure. Specifically, some programs have a
shape determined by the shape of the input, but others have a shape determined instead by
the shape of the output. In particular, the next design recipes to consider after structural
recursion, before getting to generative recursion, should be for constructing compound
output and structural corecursion.

More concretely, a function that generates “mixed output”—whether that is a union type,
or simply a boolean—might be defined by case analysis over the output. A function that
generates a record might be composed of subprograms that generate each of the fields of
that record. A function that generates a recursive data structure from some input data might
be defined with a case analysis as to whether the result is trivial, and for non-trivial cases
with recursive calls to generate substructures of the result. Novice programmers should
be given explicit design recipes to address these possibilities, as they are for program
structures determined by the input data.

For an example of mixed output, consider a program that may fail, such as division. One
technique for handling failure is to guard the definition in order to return an alternative
value in cases that would otherwise fail:

safeDiv :: Integer→ Integer→Maybe Integer

A value of type Maybe Integer is either Just n for some integer n, or Nothing; a function
returning a Maybe will make a case analysis leading to one or other of those two outcomes.
There should be a design recipe applicable to programs returning a Maybe.

Whereas the design recipe for structural recursion calls for examples that cover the all
possible input variants, examples for co-programs should cover all possible output variants.
So a minimal collection of examples for safeDiv is:

safeDiv 7 2 = Just 3
safeDiv 7 0 = Nothing

The design recipe should provide a template, which when instantiated to safeDiv is:

safeDiv x y | ... x ... y ... = Nothing
| otherwise = Just (... x ... y...)

Then considering the given examples should lead directly to the expected final program:

safeDiv x y | y == 0 = Nothing
| otherwise = Just (x ‘div‘ y)

Now, certainly this program performs a case analysis, and of course the analysis depends
on the input data. But the analysis is not determined by the structure of the input, only its
value—in particular, whether y is zero. So the best explanation of the program structure

6 How to Design Co-Programs

is not that it is determined by the structure of the input, but that it is determined by the
structure of the output.

For an example of generating composite output, consider the problem of extracting a
date, represented as a record:

data Date = Date {day :: Day, month :: Month, year :: Year}

from a formatted string. The template is naturally structured to match the output type:

readDate :: String→Date
readDate s = Date {day = d, month = m, year = y}

where d = ... s ...
m = ... s ...
y = ... s ...

The output consists of several components, day, month, year; so one should consider a
program structure with subprograms d, m, y, each generating one of those components.

For an example of corecursion, consider the problem of “zipping” together two input
lists to a list of pairs—taking [1, 2, 3] and [4, 5, 6, 7] to [(1, 4), (2, 5), (3, 6)], and pruning
the result to the length of the shorter input. One can again solve the problem by case
analysis on the input, but the fact that there are two inputs makes that a bit awkward—
whether to do case analysis on one list in favour of the other, or to analyse both at once.
For example, here is the outcome of a case analysis on the first input, followed—if the first
input is non-empty—by a case analysis on the second:

zip :: [α]→ [β]→ [(α, β)]

zip [] y = []

zip (a : x) [] = []

zip (a : x) (b : y) = (a, b) : zip x y

The more direct case analysis on both inputs at once would lead to four cases rather than
three, which would not be an improvement.

One can instead solve the problem by case analysis on the output—and it is arguably
more natural to do so, because there is only one output rather than two. For a structurally
corecursive program towards lists, there are three questions to ask:

1. When is the output empty?
2. If the output isn’t empty, what is its head?
3. And from what data is its tail recursively constructed?

These questions are analogous to the “question-and-answer games” introduced in the
Second Edition (Felleisen et al., 2018, Figures 52, 53). The answers for zip are:

1. When is the output empty? — When either input is empty.
2. If the output isn’t empty, what is its head? — The pair of input heads.
3. And from what data is its tail recursively constructed? — The pair of input tails.

which leads the following program:

Journal of Functional Programming 7

zip :: [α]→ [β]→ [(α, β)]

zip x y | null x∨ null y = []

| otherwise = (head x, head y) : zip (tail x) (tail y)

(This version of zip is written using list destructors null, head, tail. It is possible to write it
instead with list constructors [], (:) as patterns, and arguably more idiomatic Haskell to do
so; but we will use destructors for corecursion to emphasize the distinction from recursion.)

Sorting provides another example of corecursion. Whereas Insertion Sort is a structural
recursion over the input list, inserting elements one by one into a sorted intermediate result,
Selection Sort is a structural corecursion towards the output list, repeatedly extracting the
minimum remaining element as the next element of the output. As a question-and-answer
game:

1. When is the output empty? — When the input is empty.
2. If the output isn’t empty, what is its head? — The minimum of the input.
3. And from what data is the tail recursively generated? — The input without this

minimum element.

Simply following the structural corecursion design recipe for the purpose of sorting leads
inexorably to the discovery of Selection Sort:

selectSort :: [Integer]→ [Integer]
selectSort x | null x = []

| otherwise = let a = minimum x in a : selectSort (x \\ [a])

(here, x \\ y denotes list x with the elements of list y removed).

4 Generative recursion

Only once this dual form of program structure has been explored should students be
encouraged to move on to generative recursion, because the latter exploits both structural
recursion and structural corecursion. For example, the Quick Sort algorithm that is used as
the main motivating example of generative recursion (Felleisen et al., 2001, Section 25.2)

quickSort :: [Integer]→ [Integer]
quickSort = flatten · build

essentially consists of a structural corecursion build to construct an intermediate tree,

data NTree = Empty |Node NTree Integer NTree

build :: [Integer]→NTree
build x | null x = Empty

| otherwise = Node (build y) (head x) (build z)
where y = [b | b← tail x, b 6 head x]

z = [b | b← tail x, b > head x]

followed by structural recursion flatten over that tree to produce the resulting list:

8 How to Design Co-Programs

flatten :: NTree→ [Integer]
flatten Empty = []

flatten (Node t a u) = flatten t ++ [a] ++ flatten u

Both build and flatten have a binary pattern of recursive calls; they evidently are structured
according to neither the input nor the output, which are both lists. Instead, they follow the
structure of the intermediate NTree datatype, with build as structural corecursion and flatten
as structural recursion. Some insight is still required to come up with the intermediate
datatype, because it is not explicit in the problem statement; but at least now there is a
concrete artifact for the insight to aim for.

A similar explanation applies to any divide-and-conquer algorithm. For example,
consider Merge Sort, which is another divide-and-conquer sorting algorithm:

mergeSort :: [Integer]→ [Integer]
mergeSort = mergeAll · splitUp

It can be implemented following the same intermediate tree shape, but this time with a
simple splitting phase:

splitUp :: [Integer]→NTree
splitUp x | null x = Empty

| otherwise = let (y, z) = halve (tail x) in
Node (splitUp y) (head x) (splitUp z)

halve :: [α]→ ([α], [α])

halve [] = ([], [])

halve [a] = ([a], [])
halve (a : b : x) = let (y, z) = halve x in (a : y, b : z)

and all the comparisons in the recombining phase:

mergeAll :: NTree→ [Integer]
mergeAll Empty = []

mergeAll (Node t a u) = merge (mergeAll t) (merge [a] (mergeAll u))

merge :: [Integer]→ [Integer]→ [Integer]
merge [] y = y
merge x [] = x
merge (a : x) (b : y) = if a 6 b then a : merge x (b : y) else b : merge (a : x) y

As it turns out, using the same tree type for Merge Sort as for Quick Sort is a bit clunky,
on account of the two calls to merge required in mergeAll. It is neater to use a different kind
of tree, namely non-empty externally labelled binary trees, with elements at the leaves and
none at the branches:

data BTree = Tip Integer | Bin BTree BTree

Because BTree accommodates only non-empty trees, we should use Maybe BTree as the
intermediate datatype, with Nothing for the empty list and Just for a non-empty list. This
leads to the following program:

Journal of Functional Programming 9

mergeSort2 :: [Integer]→ [Integer]
mergeSort2 x = mergeAll2 (splitUp2 x)

splitUp2 :: [Integer]→Maybe BTree
splitUp2 x | null x = Nothing

| single x = Just (Tip (head x))
| otherwise = let (y, z) = halve x -- x has length at least 2

(Just t, Just u) = (splitUp2 y, splitUp2 z)
in Just (Bin t u)

single :: [α]→ Bool
single [a] = True
single x = False

mergeAll2 :: Maybe BTree→ [Integer]
mergeAll2 Nothing = []

mergeAll2 (Just (Tip a)) = [a]
mergeAll2 (Just (Bin t u)) = merge (mergeAll2 (Just t)) (mergeAll2 (Just u))

Now there are three cases to consider: no elements, one element, and two or more elements,
corresponding to the intermediate data Nothing, Just (Tip a), Just (Bin t u) respectively.

The clunkiness of the first mergeSort is a learning opportunity: to realise that there is a
problem, to come up with a fix (tip labels rather than node labels in the tree, so non-empty
trees, so use Maybe), rearrange the furniture accordingly, then replay the development and
compare the results.

Having identified structural recursion and structural corecursion as separate parts, they
may now be studied separately; separation of concerns is a crucial lesson in introductory
programming. Moreover, the parts may be put together in different ways. The divide-and-
conquer pattern is known in the “mathematics of program construction” community as a
hylomorphism (Meijer et al., 1991), an unfold to generate a call tree followed by a fold to
consume that tree. As the Quick Sort example suggests, the tree can always be deforested
(Wadler, 1990)—it is a virtual data structure (Swierstra & de Moor, 1993). But the con-
verse pattern, of a fold from some structured input to some intermediate value, followed by
an unfold to a different structured output, is also important—it can be seen as a change of
structured representation, and has been called a metamorphism (Gibbons, 2007). One sim-
ple application is to convert a number from an input base (a sequence of digits in that base),
via an intermediate representation (the represented number), to an output base (a different
sequence of digits). This time, the intermediate data is unstructured, and the two phases
follow the structure of the input and output types. More interesting applications include
encoding and data compression algorithms, such as arithmetic coding (Bird & Gibbons,
2003) and asymmetric numeral systems (Gibbons, 2019).

Intriguingly, the illustration of generative recursion immediately preceding Quick Sort
in HtDP changes between editions of the book. In the First Edition (Felleisen et al., 2001,
Section 25.1), the example is a simple while loop, moving a ball at constant speed across
a table until it drops over an edge:

moveUntilOut ball | outOfBounds ball = ball
| otherwise = moveUntilOut (moveBall ball)

10 How to Design Co-Programs

The problem of tracking the ball is trivial if the ball is already out of bounds; other-
wise, move the ball a little in its current direction, and repeat. But in the Second Edition
(Felleisen et al., 2018, Section 25.1), the problem is changed to bundling a sequence up
into chunks of a given size:

bundle 3 "abcdefg"= ["abc", "def", "g"]

The book considers structural recursion, but concludes that “a structural approach can-
not work”. Indeed, structural recursion does not work; but structural corecursion works
beautifully:

1. When is the output empty? — When the input list is empty.
2. If the output isn’t empty, what is its head? — The first n-chunk of the input, or

the whole input if it is too short.
3. And from what data is the tail recursively generated? — All but the first n-chunk.

It turns out that this is a classical example of corecursion:

bundle :: Int→ [α]→ [[α]]

bundle n x | null x = []

| otherwise = take n x : bundle n (drop n x)

The corecursive program we end up with is exactly the same as in HtDP. But there is
nothing tricky or ad hoc about the design process, and no eureka required: the full power
of generative recursion is not needed, and the program follows directly from the design
recipe for structural corecursion.

5 Laziness

Although we have used Haskell as a notation, nothing above depends on laziness; it would
all work as well in ML or Scheme. It is true that the mathematical structures underlying
structural recursion and structural corecursion are prettier when one admits infinite data
structures—the final coalgebra of the base functor for lists is the datatype of finite and infi-
nite lists (Meijer et al., 1991), and without admitting the infinite structures some recursive
definitions (such as ones = 1 : ones) have no solution. But that sophistication is beyond
the scope of introductory programming, in which context it suffices to restrict attention to
finite data structures.

HtDP already stipulates a termination argument in the design recipe for generative recur-
sion; the same kind of argument could be required for structural corecursion—and is easy
to make for the sorting, zipping, and bundling examples given above. Of course, structural
recursion over finite data structures is necessarily terminating. But laziness is unnecessary
for co-programming.

6 Structured programming

It is not a new assertion that output structure is important. Ramsey (2014) recorded that his
experience in teaching HtDP led him to the following lesson:

Journal of Functional Programming 11

Last, and rarely, you could design a function’s template around the introduction form
for the result type. When I teach [HtDP] again, I will make my students aware of this
decision point in the construction of a function’s template: should they use elimination
forms, function composition, or an introduction form?

Ramsey also elaborates on test coverage:

Check functional examples to be sure every choice of input is represented. Check
functional examples to be sure every choice of output is represented. This activity is
especially valuable for functions returning Booleans.

(his emphasis). Of course, not all functions need be surjective—but predicates presumably
should be. We should pay attention to output data structure as well as to input data structure.

In fact, HtDP draws on a long tradition of relating data structure and program structure.
Hoare wrote in his “Notes on Data Structuring”:

There are certain close analogies between the methods used for structuring data and
the methods for structuring a program which processes that data. (Hoare, 1972)

Brooks put it pithily in “The Mythical Man-Month”:

Show me your flowcharts and conceal your tables, and I shall continue to be mystified.
Show me your tables, and I won’t usually need your flowcharts; they’ll be obvious.
(Brooks, 1975)

which was modernized by Raymond in his essay “The Cathedral and the Bazaar” to:

Show me your code and conceal your data structures, and I shall continue to be
mystified. Show me your data structures, and I won’t usually need your code; it’ll be
obvious. (Raymond, 1999)

HtDP credits Jackson Structured Programming as partial inspiration for the design recipe
approach. As Jackson wrote:

The central theme of this book has been the relationship between data and program
structures. The data provides a model of the problem environment, and by basing our
program structures on data structures we ensure that our programs will be intelligible
and easy to maintain. (Jackson, 1975, p. 279)

and:

The structure of a program must be based on the structures of all of the data it
processes. (Jackson, 1975, p. 151)

(my emphasis). In a retrospective lecture, he clarified:

program structure should be dictated by the structure of its input and output data
streams. (Jackson, 2002)

Among other classes of problems, Jackson discusses “boundary clashes”—for example,
Telegrams Analysis (Jackson, 1975, Problem 13), or reformatting paragraphs of text from
one page width to another. As a simple instance, consider converting a data stream from
80 columns to a 132 columns, such as from punch-card input to line-printer output; this

12 How to Design Co-Programs

is a perfect example of a metamorphism, being a structural corecursion (bundle 132) after
a structural recursion (concat). The JSP approach was designed for processing sequen-
tial streams of input records to similar streams of output records, and the essence of the
approach is to identify the structures of each of the data files (input and output) in terms of
sequences, selections, and iterations, to refine them all to a common structure that matches
all of them simultaneously, and to use that common data structure as the program struc-
ture. So even way back in 1975 it was clear that we need to pay attention to the structure
of output data as well as to that of input data.

7 Discussion

HtDP apologizes that generative recursion

is much more of an ad hoc activity than the data-driven design of structurally recur-
sive functions. Indeed, it is almost better to call it inventing an algorithm than
designing one. Inventing an algorithm requires a new insight—a “eureka”. (Felleisen
et al., 2001, Chapter 25)

It goes on to suggest that mere programmers cannot generally be expected to have such
algorithmic insights:

In practice, new complex algorithms are often developed by mathematicians and
mathematical computer scientists; programmers, though, must thoroughly understand
the underlying ideas so that they can invent the simple algorithms on their own and
communicate with scientists about the others. (Felleisen et al., 2001, Chapter 25)

This defeatism is a consequence of not following through on the core message, that pro-
gram structure follows data structure. Quick Sort and Merge Sort are not ad hoc: their
program structure clearly does follow some data structure. Admittedly, they do require
some insight in order to identify structure that is not present in either the input or the out-
put; but having identified that structure, there is no further mystery, and no ad-hockery
required. This is even clearer for bundle: the determining data structure is the output type
itself, already present in the problem statement.

Presenting both structural recursion and structural corecursion as design schemes may
leave open a choice: some problems, like sorting and zipping, are amenable to both
approaches, so which does one choose? It might seem at first that providing a choice makes
things more difficult—as they say, a person with one clock knows what time it is, but a per-
son with two clocks is never sure. But really, all the choice does is to reveal a question that
needs to be answered by some other means. It is not that either approach is inherently bet-
ter than the other; rather, the programmer should be open to exploring both possibilities,
and choosing one only after considering the consequences. Perhaps one leads to a neater
program with less duplication of code or computation, or to abstractions or intermediate
results that can be reused elsewhere.

Journal of Functional Programming 13

8 Conclusion

Once one’s eyes have been opened towards them, co-programs start appearing everywhere.
As it happens, I have just finishing marking a programming assignment involving a cross-
word whose entries were Roman numerals; I found two co-programs from students that I
had not considered in my model answers. One co-program was for the function that con-
verts a whole number at most 3999 to a Roman numeral. My model answer was expressed
with structural recursion over the digits of the input number:

roman :: Integer→ String
roman n = consume (labelled n)

where consume [] = ""

consume ((d, p) : x) = digit d p ++ consume x
labelled n = ... -- eg labelled 789 = [(7, 2), (8, 1), (9, 0)]
digit d p = ... -- eg digit 7 2 = "DCC"

But some students came up instead with a structural corecursion towards chunks of the
output numeral:

roman n = concat (produce n letters)
where produce n x | null x = []

| n > v = r : produce (n− v) x
| otherwise = produce n (tail x)

where (v, r) = head x
letters = [(1000, "M"), (900, "CM"), (500, "D"), ...]

(What is the first chunk of the output? And from what number should we compute the
remaining chunks?)

The other co-program was the function to generate all permutations of a list. My model
answer was expressed with structural recursion over the input list:

perms :: [α]→ [[α]]

perms [] = [[]]

perms (a : x) = [y ++ [a] ++ z | x′← perms x, (y, z)← splits x′]
where splits [] = [([], [])]

splits (a : x) = (a : x, []) : [(y, a : z) | (y, z)← splits x]

But some students came up instead with a structural corecursion towards the lists in the
output collection:

perms :: [α]→ [[α]]

perms x | null x = [[]]

| otherwise = [a : z | (a, y)← pick x, z← perms y]
where pick [] = []

pick (a : x) = (a, x) : [(b, a : y) | (b, y)← pick x]

(Of what inputs is [] a permutation? And for permutations of the form a : z, what values
can a take? And what can z be a permutation of?)

14 How to Design Co-Programs

Admittedly, neither of these examples precisely fits the basic pattern. Nevertheless, the
distinction between “program structure follows input data structure” and “program struc-
ture follows output data structure” is helpful in characterizing the branching point in the
design process.

Novice programmers need guidance on how to design programs; one important lesson
is to be led by the structure of the data. Both structural recursion and structural corecursion
are tools, and students need as many tools as we can provide. If we provide them only
with a hammer, they will naturally treat every problem as a nail; if we provide them with a
spanner too, at least we can encourage them to ask themselves whether a particular metal
object is more nail-like or more bolt-like. HtDP tells a good story about being led by the
structure of the input data, but omits to teach students look also at the structure of the
output data. This is a missed opportunity.

Dedication: This paper arose out of a talk I presented at the Matthias Felleisen Half-
Time Show, a symposium held in Boston in November 2018 in celebration of Matthias’s
60th birthday. Matthias is known for many contributions to the field of Programming
Languages; he received the ACM Karl V. Karlstrom Outstanding Educator Award in 2009,
and the ACM SIGPLAN Programming Languages Achievement Award in 2012. And of
course, he was Editor-in-Chief of the Journal of Functional Programming for many years.

The basis of Matthias’s Karlstrom Award is a long series of collaborative projects on
teaching introductory programming, including TeachScheme! (Bloch et al., 1995–2007)
Program by Design (Bloch et al., 2009–2012), and HtDP (Felleisen et al., 2001, 2018).
Matthias describes himself as an iconoclast, and so I make no apologies for provocative
use of Haskell syntax in my examples.

Acknowledgements: Thanks to the participants at the Matthias Felleisen Half-Time Show
and the anonymous reviewers for their many helpful comments, and especially to Shriram
Krishnamurthi for his enthusiastic incitement and shepherding of this paper.

Conflicts of interest: None.

References

Bird, R. and Gibbons, J. (2003) Arithmetic coding with folds and unfolds. Jeuring, J. and
Peyton Jones, S. (eds), Advanced Functional Programming 4. Lecture Notes in Computer Science
2638, pp. 1–26. Springer-Verlag.

Bloch, S., Clements, J., Felleisen, M., Findler, R., Fisler, K., Flatt, M., Proulx, V. and Krishnamurthi,
S. (1995–2007) TeachScheme! https://teach-scheme.org/.

Bloch, S., Clements, J., Felleisen, M., Findler, R., Fisler, K., Flatt, M., Proulx, V. and Krishnamurthi,
S. (2009–2012) Program by Design. https://programbydesign.org/.

Brooks, Jr, F. P. (1975) The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley.
Felleisen, M., Findler, R. B., Flatt, M. and Krishnamurthi, S. (2001) How to Design Programs. First

edn. MIT Press. https://htdp.org/2003-09-26/Book/.
Felleisen, M., Findler, R. B., Flatt, M. and Krishnamurthi, S. (2004) The structure and interpretation

of the computer science curriculum. Journal of Functional Programming 14(4):365–378.

https://teach-scheme.org/
https://programbydesign.org/
https://htdp.org/2003-09-26/Book/

Journal of Functional Programming 15

Felleisen, M., Findler, R. B., Flatt, M. and Krishnamurthi, S. (2018) How to Design Programs.
Second edn. MIT Press. https://htdp.org/2018-01-06/Book/.

Gibbons, J. (2007) Metamorphisms: Streaming representation-changers. Science of Computer
Programming 65(2):108–139.

Gibbons, J. (2019) Coding with asymmetric numeral systems. Hutton, G. (ed), Mathematics of
Program Construction. Lecture Notes in Computer Science 11825, pp. 444–465. Springer-Verlag.

Hoare, C. A. R. (1972) Notes on data structuring. Dahl, O.-J., Dijkstra, E. W. and Hoare, C. A. R.
(eds), Structured Programming. APIC Studies in Data Processing, pp. 83–174. Academic Press.

Jackson, M. A. (1975) Principles of Program Design. Academic Press.
Jackson, M. A. (2002) JSP in perspective. Broy, M. and Denert, E. (eds), Software Pioneers:

Contributions to Software Engineering, pp. 480–493. Springer-Verlag. Available from http:

//mcs.open.ac.uk/mj665/JSPPers1.pdf.
Meijer, E., Fokkinga, M. and Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes and barbed wire. Hughes, J. (ed), Functional Programming Languages and Computer
Architecture. Lecture Notes in Computer Science 523, pp. 124–144. Springer-Verlag.

Ramsey, N. (2014) On teaching “How to Design Programs”: Observations from a newcomer.
International Conference on Functional Programming p. 153–166. Association for Computing
Machinery.

Raymond, E. S. (1999) The Cathedral and the Bazaar. O’Reilly Media.
Swierstra, D. and de Moor, O. (1993) Virtual data structures. Möller, B., Partsch, H. and Schuman, S.

(eds), IFIP TC2/WG2.1 State-of-the-Art Report on Formal Program Development. Lecture Notes
in Computer Science 755, pp. 355–371. Springer-Verlag.

Wadler, P. (1990) Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science 73:231–248.

https://htdp.org/2018-01-06/Book/
http://mcs.open.ac.uk/mj665/JSPPers1.pdf
http://mcs.open.ac.uk/mj665/JSPPers1.pdf

	Introduction
	Design Recipes
	Co-programs
	Generative recursion
	Laziness
	Structured programming
	Discussion
	Conclusion

