

Categories for the Working Haskeller

Jeremy Gibbons, University of Oxford Haskell eXchange, October 2014

1. Motivation

"What part of

monads are just monoids in the category of endofunctors don't you understand?"

1. Motivation

"What part of

monads are just monoids in the category of endofunctors don't you understand?"

I'll try to show how

category theory inspires better code.

But you don't really need the category theory: it all makes sense in Haskell too.

2. Functions that consume lists

Two equations, indirectly defining *sum*:

 $sum :: [Integer] \rightarrow Integer$ sum [] = 0sum (x : xs) = x + sum xs

2. Functions that consume lists

Two equations, indirectly defining *sum*:

 $sum :: [Integer] \rightarrow Integer$ sum [] = 0sum (x : xs) = x + sum xs

Not just +. For *any* given *f* and *e*, these equations uniquely determine *h*:

$$h[] = e$$

$$h(x:xs) = f x (h xs)$$

2. Functions that consume lists

Two equations, indirectly defining *sum*:

 $sum :: [Integer] \rightarrow Integer$ sum [] = 0sum (x : xs) = x + sum xs

Not just +. For *any* given *f* and *e*, these equations uniquely determine *h*:

$$h[] = e$$

$$h(x:xs) = f x (h xs)$$

The unique solution is called *foldr f e* in the Haskell libraries:

$$foldr :: (a \to b \to b) \to b \to [a] \to b$$

$$foldr f e [] = e$$

$$foldr f e (x:xs) = f x (foldr f e xs)$$

3. Some applications of foldr

$$sum = foldr (+) 0$$

$$and = foldr (\wedge) True$$

$$decimal = foldr (\lambda d x \rightarrow (fromInteger d + x) / 10) 0$$

$$id = foldr (:) []$$

$$length = foldr (\lambda x n \rightarrow 1 + n) 0$$

$$map f = foldr ((:) \circ f) []$$

$$filter p = foldr (\lambda x xs \rightarrow if p x then x : xs else xs) []$$

$$concat = foldr (+) []$$

$$reverse = foldr snoc [] where snoc x xs = xs + [x] - quadratic$$

$$xs + ys = foldr (:) ys xs$$

$$inits = foldr (\lambda x xss \rightarrow [] : map (x:) xss) [[]]$$

$$tails = foldr (\lambda x xss \rightarrow (x : head xss) : xss) [[]]$$

etc etc

4. What's special about lists?

... only the special syntax. We might have defined lists ourselves:

data List a = Nil | Cons a (List a)

Then we could have

 $foldList :: (a \to b \to b) \to b \to List \ a \to b$ $foldList \ f \ e \ Nil = e$ $foldList \ f \ e \ (Cons \ x \ xs) = f \ x \ (foldList \ f \ e \ xs)$

4. What's special about lists?

... only the special syntax. We might have defined lists ourselves:

data List a = Nil | Cons a (List a)

Then we could have

$$foldList :: (a \to b \to b) \to b \to List \ a \to b$$

$$foldList \ f \ e \ Nil = e$$

$$foldList \ f \ e \ (Cons \ x \ xs) = f \ x \ (foldList \ f \ e \ xs)$$

Similarly,

data Tree $a = Tip \ a \mid Bin (Tree \ a) (Tree \ a)$ foldTree :: $(a \rightarrow b) \rightarrow (b \rightarrow b \rightarrow b) \rightarrow Tree \ a \rightarrow b$ foldTree f g (Tip x) = f x foldTree f g (Bin xs ys) = g (foldTree f g xs) (foldTree f g ys)

Rose trees (eg for games, or XML):

data *Rose a* = *Node a* [*Rose a*]

Rose trees (eg for games, or XML):

data Rose a = Node a [Rose a] $foldRose_1 :: (a \rightarrow c \rightarrow b) \rightarrow (b \rightarrow c \rightarrow c) \rightarrow c \rightarrow Rose a \rightarrow b$ $foldRose_1 f g e (Node x ts) = f x (foldr g e (map (foldRose_1 f g e) ts))$

Rose trees (eg for games, or XML):

data Rose a = Node a [Rose a] $foldRose_1 :: (a \to c \to b) \to (b \to c \to c) \to c \to Rose a \to b$ $foldRose_1 f g e (Node x ts) = f x (foldr g e (map (foldRose_1 f g e) ts))$ $foldRose_2 :: (a \to b \to b) \to ([b] \to b) \to Rose a \to b$ $foldRose_2 f g (Node x ts) = f x (g (map (foldRose_2 f g) ts))$

Rose trees (eg for games, or XML):

data Rose a = Node a [Rose a] $foldRose_1 :: (a \to c \to b) \to (b \to c \to c) \to c \to Rose a \to b$ $foldRose_1 f g e (Node x ts) = f x (foldr g e (map (foldRose_1 f g e) ts))$ $foldRose_2 :: (a \to b \to b) \to ([b] \to b) \to Rose a \to b$ $foldRose_2 f g (Node x ts) = f x (g (map (foldRose_2 f g) ts))$ $foldRose_3 :: (a \to [b] \to b) \to Rose a \to b$ $foldRose_3 f (Node x ts) = f x (map (foldRose_3 f) ts)$

Which should we choose?

Rose trees (eg for games, or XML):

data Rose a = Node a [Rose a] $foldRose_1 :: (a \to c \to b) \to (b \to c \to c) \to c \to Rose a \to b$ $foldRose_1 f g e (Node x ts) = f x (foldr g e (map (foldRose_1 f g e) ts))$ $foldRose_2 :: (a \to b \to b) \to ([b] \to b) \to Rose a \to b$ $foldRose_2 f g (Node x ts) = f x (g (map (foldRose_2 f g) ts))$ $foldRose_3 :: (a \to [b] \to b) \to Rose a \to b$ $foldRose_3 f (Node x ts) = f x (map (foldRose_3 f) ts)$

Which should we choose?

Haskell libraries get folds for non-empty lists 'wrong'!

*foldr*1, *foldl*1 ::
$$(a \rightarrow a \rightarrow a) \rightarrow [a] \rightarrow a$$

6. Preparing for genericity

Separate out list-specific 'shape' from type recursion:

data ListS a b = NilS | ConsS a bdata Fix s a = In (s a (Fix s a))type List a = Fix ListS a

For example, list [1, 2, 3] is represented by

In (ConsS 1 (In (ConsS 2 (In (ConsS 3 (In NilS))))))

For convenience, define inverse *out* to *In*:

out :: Fix $s a \rightarrow s a$ (Fix s a) out (In x) = x

6. Preparing for genericity

Separate out list-specific 'shape' from type recursion:

data ListS a b = NilS | ConsS a b
data Fix s a = In { out :: s a (Fix s a) } -- In and out together
type List a = Fix ListS a

Shape is mostly opaque; just need to 'locate' the *a*s and *b*s:

 $\begin{array}{ll} bimap :: (a \rightarrow a') \rightarrow (b \rightarrow b') \rightarrow ListS \ a \ b \rightarrow ListS \ a' \ b'\\ bimap \ f \ g \ NilS &= NilS\\ bimap \ f \ g \ (ConsS \ a \ b) &= ConsS \ (f \ a) \ (g \ b) \end{array}$

6. Preparing for genericity

Separate out list-specific 'shape' from type recursion:

data ListS a b = NilS | ConsS a bdata Fix $s a = In \{ out :: s a (Fix s a) \}$ -- In and out together type List a = Fix ListS a $bimap :: (a \rightarrow a') \rightarrow (b \rightarrow b') \rightarrow ListS a b \rightarrow ListS a' b'$

Now we can define a more cleanly separated version of *foldr* on *List*:

foldList :: (*ListS* $a \ b \rightarrow b$) \rightarrow *List* $a \rightarrow b$ *foldList* $f = f \circ bimap \ id \ (foldList \ f) \circ out$

eg foldList add :: List Integer \rightarrow Integer, where

 $add :: ListS Integer Integer \rightarrow Integer$ add NilS = 0add (ConsS m n) = m + n

7. Going datatype-generic

Now we can properly abstract away the list-specific details. To be suitable, a shape must support *bimap*:

class *Bifunctor s* **where** *bimap* :: $(a \rightarrow a') \rightarrow (b \rightarrow b') \rightarrow s \ a \ b \rightarrow s \ a' \ b'$

Then *fold* works for any suitable shape:

fold :: *Bifunctor* $s \Rightarrow (s \ a \ b \rightarrow b) \rightarrow Fix \ s \ a \rightarrow b$ *fold* $f = f \circ bimap \ id \ (fold \ f) \circ out$

Of course, *ListS* is a suitable shape...

instance Bifunctor ListS where bimap f g NilS = NilS bimap f g (ConsS a b) = ConsS (f a) (g b)

7. Going datatype-generic

Now we can properly abstract away the list-specific details. To be suitable, a shape must support *bimap*:

class *Bifunctor s* **where** *bimap* :: $(a \rightarrow a') \rightarrow (b \rightarrow b') \rightarrow s \ a \ b \rightarrow s \ a' \ b'$

Then *fold* works for any suitable shape:

fold :: Bifunctor $s \Rightarrow (s \ a \ b \rightarrow b) \rightarrow Fix \ s \ a \rightarrow b$ fold $f = f \circ bimap \ id \ (fold \ f) \circ out$

... but binary trees are also suitable:

data TreeS a b = TipS a | BinS b binstance Bifunctor TreeS where bimap f g (TipS a) = TipS (f a) $bimap f g (BinS b_1 b_2) = BinS (g b_1) (g b_2)$

Think of a bifunctor, *S*. It is also a functor in each argument separately.

Think of a bifunctor, *S*. It is also a functor in each argument separately. An *algebra* for functor *S A* is a pair (*B*, *f*) where $f :: S A B \rightarrow B$.

Think of a bifunctor, *S*. It is also a functor in each argument separately.

An *algebra* for functor *S A* is a pair (B, f) where $f :: S A B \rightarrow B$. A *homomorphism* between (B, f) and (C, g) is a function $h :: B \rightarrow C$ such that

 $h \circ f = g \circ bimap \ id \ h$

Think of a bifunctor, *S*. It is also a functor in each argument separately. An *algebra* for functor *S A* is a pair (*B*, *f*) where $f :: S A B \rightarrow B$. A *homomorphism* between (*B*, *f*) and (*C*, *g*) is a function $h :: B \rightarrow C$ such that

 $h \circ f = g \circ bimap \ id h$

Algebra (B, f) is *initial* if there is a unique homomorphism to each (C, g).

Think of a bifunctor, *S*. It is also a functor in each argument separately. An *algebra* for functor *S A* is a pair (B, f) where $f :: S A B \rightarrow B$. A *homomorphism* between (B, f) and (C, g) is a function $h :: B \rightarrow C$ such that

 $h \circ f = g \circ bimap \ id \ h$

Algebra (B, f) is *initial* if there is a unique homomorphism to each (C, g). Eg (*List Integer*, *In*) and (*Integer*, *add*) are both algebras for *ListS Integer*:

In :: *ListS Integer* (*List Integer*) \rightarrow *List Integer add* :: *ListS Integer Integer* \rightarrow *Integer*

and *sum*:: *List Integer* \rightarrow *Integer* is a homomorphism. The initial algebra is (*List Integer*, *In*), and the unique homomorphism to (*C*, *g*) is *fold g*.

Think of a bifunctor, *S*. It is also a functor in each argument separately. An *algebra* for functor *S A* is a pair (B, f) where $f :: S A B \rightarrow B$. A *homomorphism* between (B, f) and (C, g) is a function $h :: B \rightarrow C$ such that

 $h \circ f = g \circ bimap \ id \ h$

Algebra (B, f) is *initial* if there is a unique homomorphism to each (C, g). Eg (*List Integer*, *In*) and (*Integer*, *add*) are both algebras for *ListS Integer*:

In :: *ListS Integer* (*List Integer*) \rightarrow *List Integer add* :: *ListS Integer Integer* \rightarrow *Integer*

and *sum*:: *List Integer* \rightarrow *Integer* is a homomorphism. The initial algebra is (*List Integer*, *In*), and the unique homomorphism to (*C*, *g*) is *fold g*. **Theorem:** for all sensible shape functors *S*, initial algebras exist.

Recall

fold :: *Bifunctor* $s \Rightarrow (s \ a \ b \rightarrow b) \rightarrow (Fix \ s \ a \rightarrow b)$ *fold* $f = f \circ bimap \ id \ (fold \ f) \circ out$

Recall

fold :: *Bifunctor* $s \Rightarrow (s \ a \ b \rightarrow b) \rightarrow (Fix \ s \ a \rightarrow b)$ *fold* $f = f \circ bimap \ id \ (fold \ f) \circ out$

Reverse certain arrows:

unfold :: *Bifunctor* $s \Rightarrow (b \rightarrow s \ a \ b) \rightarrow (b \rightarrow Fix \ s \ a)$ *unfold* $f = In \circ bimap \ id \ (unfold \ f) \circ f$

Recall

fold :: *Bifunctor* $s \Rightarrow (s \ a \ b \rightarrow b) \rightarrow (Fix \ s \ a \rightarrow b)$ *fold* $f = f \circ bimap \ id \ (fold \ f) \circ out$

Reverse certain arrows:

unfold :: *Bifunctor* $s \Rightarrow (b \rightarrow s \ a \ b) \rightarrow (b \rightarrow Fix \ s \ a)$ *unfold* $f = In \circ bimap \ id \ (unfold \ f) \circ f$

The datatype-generic presentation makes the duality very clear—unlike with

```
unfoldr :: (b \to Maybe (a, b)) \to b \to [a]

unfoldr f b = \mathbf{case} f b \mathbf{of}

Nothing \to []

Just (a, b') \to a : unfoldr f b'
```

Recall

fold :: *Bifunctor* $s \Rightarrow (s \ a \ b \rightarrow b) \rightarrow (Fix \ s \ a \rightarrow b)$ *fold* $f = f \circ bimap \ id \ (fold \ f) \circ out$

Reverse certain arrows:

unfold :: *Bifunctor* $s \Rightarrow (b \rightarrow s \ a \ b) \rightarrow (b \rightarrow Fix \ s \ a)$ *unfold* $f = In \circ bimap \ id \ (unfold \ f) \circ f$

The datatype-generic presentation makes the duality very clear—unlike with

```
unfoldr :: (b \to Maybe (a, b)) \to b \to [a]

unfoldr f b = \mathbf{case} f b \mathbf{of}

Nothing \to []

Just (a, b') \to a : unfoldr f b'
```

Categorically, *coalgebras* (B, f) with $f :: B \rightarrow S \land B$, *finality*.

10. Conclusions

- category theory as an organisational tool, not for intimidation
- helping you to write better code, with *less mess*
- the mathematics is really quite pretty
- ... but the Haskell makes sense on its own too

10. Conclusions

- category theory as an organisational tool, not for intimidation
- helping you to write better code, with *less mess*
- the mathematics is really quite pretty
- ... but the Haskell makes sense on its own too

http://patternsinfp.wordpress.com/
http://www.cs.ox.ac.uk/jeremy.gibbons/

11. Software Engineering Programme

MSc in Software and Systems Security

flexible, part-time, professional education

12

Appendix: category theory

12. 'Category'

A category consists of

- a collection of *objects*
- for each pair A, B of objects, a collection $A \rightarrow B$ of arrows
- an *identity* arrow $id_A : A \rightarrow A$ for each object A
- *composition* $f \circ g : A \to C$ of compatible arrows $f : B \to C$ and $g : A \to B$
- composition is *associative*, and identities are *neutral* elements

(think of *paths* in labelled directed graphs)

12. 'Category'

A category consists of

- a collection of *objects* (sets)
- for each pair *A*, *B* of objects, a collection $A \rightarrow B$ of *arrows* (functions)
- an *identity* arrow $id_A : A \rightarrow A$ for each object A
- *composition* $f \circ g : A \to C$ of compatible arrows $f : B \to C$ and $g : A \to B$
- composition is associative, and identities are neutral elements

(some of category *SET*, in which objects are sets and arrows are total functions)

13. 'Functor'

- A *functor* **F** is simultaneously
 - an operation on objects
 - an operation on arrows

such that

- $F f : F A \rightarrow F B$ when $f : A \rightarrow B$
- F id = id
- $F(f \circ g) = Ff \circ Fg$

13. 'Functor'

Functor *List* is simultaneously

- an operation on objects (*List A* = [*A*])
- an operation on arrows (*List* f = map f)

such that

- List $f : List A \rightarrow List B$ when $f : A \rightarrow B$
- List id = id
- List $(f \circ g) = List f \circ List g$

13. 'Functor'

Functor *ListS* A is simultaneously

- an operation on objects ((*ListS A*) *B* = *ListS A B*)
- an operation on arrows ((*ListS A*) f = bimap id f)

such that

- (ListS A) f: ListS A $B \rightarrow$ ListS A B' when $f : B \rightarrow B'$
- (ListS A) id = id
- (ListS A) $(f \circ g) = (ListS A) f \circ (ListS A) g$

14. 'Algebra'

An *algebra* for functor *F* is a pair (A, f) with $f : F A \rightarrow A$. For example, (*Integer*, *sum*) is a *List*-algebra.

More pertinently, (*Integer*, *add*) is a (*ListS Integer*)-algebra.

add :: *ListS Integer Integer* → *Integer*

So is (*List Integer*, *In*):

In:: *ListS Integer* (*List Integer*) → *List Integer*

For functor *F*, a *homomorphism h* between *F*-algebras (A, f) and (B, g) is an arrow $h: A \rightarrow B$ such that

 $h \circ f = g \circ F h$

For functor *F*, a *homomorphism h* between *F*-algebras (A, f) and (B, g) is an arrow $h: A \rightarrow B$ such that

$$h \circ f = g \circ F h$$

For functor *F*, a *homomorphism h* between *F*-algebras (A, f) and (B, g) is an arrow $h: A \rightarrow B$ such that

 $h \circ f = g \circ F h$

For example, *sum*: *List Integer* \rightarrow *Integer* is a homomorphism from (*List Integer*, *In*) to (*Integer*, *add*):

 $sum \circ In = add \circ bimap id sum$

For functor *F*, a *homomorphism h* between *F*-algebras (A, f) and (B, g) is an arrow $h: A \rightarrow B$ such that

 $h \circ f = g \circ F h$

For example, *sum*: *List Integer* \rightarrow *Integer* is a homomorphism from (*List Integer*, *In*) to (*Integer*, *add*):

 $sum \circ In = add \circ bimap id sum$

(Identity function is a homomorphism, and homomorphisms compose. So *F*-algebras and their homomorphisms also form a category.)

An *F*-algebra (A, f) is *initial* if, for each other *F*-algebra (B, g), there is a unique homomorphism from (A, f) to (B, g).

An *F*-algebra (A, f) is *initial* if, for each other *F*-algebra (B, g), there is a unique homomorphism from (A, f) to (B, g).

Theorem: (*List Integer*, *In*) is the initial (*ListS Integer*)-algebra.

The homomorphisms are precisely the folds, and uniqueness is the *universal property*.

An *F*-algebra (A, f) is *initial* if, for each other *F*-algebra (B, g), there is a unique homomorphism from (A, f) to (B, g).

Theorem: (*List Integer*, *In*) is the initial (*ListS Integer*)-algebra.

The homomorphisms are precisely the folds, and uniqueness is the *universal property*.

Theorem: For any polynomial^{*} shape functor F, there is an initial F-algebra.

Datatype-generically, too.

(polynomial^{*}: constructed from sums and products, like simple algebraic datatypes)

An *F*-algebra (A, f) is *initial* if, for each other *F*-algebra (B, g), there is a unique homomorphism from (A, f) to (B, g).

Theorem: (*List Integer*, *In*) is the initial (*ListS Integer*)-algebra.

The homomorphisms are precisely the folds, and uniqueness is the *universal property*.

Theorem: For any polynomial^{*} shape functor F, there is an initial F-algebra.

Datatype-generically, too.

(polynomial^{*}: constructed from sums and products, like simple algebraic datatypes)

(More generally, an *initial object* in a category is one with a unique arrow to every other object. In *SET*, the initial object is \emptyset , and 'initial *F*-algebra' is short for 'initial object in the category of *F*-algebras'.)

17. Morally correct

- those two theorems hold in *SET*, but not some other settings
- not quite true for realistic Haskell

undefined values, infinite data structures, strictness...

• defining equations do not always uniquely define *foldr*—consider

h[] = 3h(x:xs) = const (const 3) x (h xs)

17. Morally correct

- those two theorems hold in *SET*, but not some other settings
- not quite true for realistic Haskell

undefined values, infinite data structures, strictness...

• defining equations do not always uniquely define *foldr*—consider

h[] = 3h(x:xs) = const (const 3) x (h xs)

- (in *CPO*, some strictness side-conditions needed)
- (all works fine in *strong functional programming*, eg Agda)