
Categories for the Working Haskeller

Jeremy Gibbons, University of Oxford

Haskell eXchange, October 2014

CWH 2

1. Motivation

“What part of

monads are just monoids in
the category of endofunctors

don’t you understand?”

CWH 2

1. Motivation

“What part of

monads are just monoids in
the category of endofunctors

don’t you understand?”

I’ll try to show how

category theory
inspires better code.

But you don’t really need the category
theory: it all makes sense in Haskell too.

CWH 3

2. Functions that consume lists

Two equations, indirectly defining sum:

sum :: �Integer �! Integer

sum � � � 0

sum �x : xs� � x � sum xs

CWH 3

2. Functions that consume lists

Two equations, indirectly defining sum:

sum :: �Integer �! Integer

sum � � � 0

sum �x : xs� � x � sum xs

Not just �. For any given f and e, these equations uniquely determine h:

h � � � e

h �x : xs� � f x �h xs�

CWH 3

2. Functions that consume lists

Two equations, indirectly defining sum:

sum :: �Integer �! Integer

sum � � � 0

sum �x : xs� � x � sum xs

Not just �. For any given f and e, these equations uniquely determine h:

h � � � e

h �x : xs� � f x �h xs�

The unique solution is called foldr f e in the Haskell libraries:

foldr :: �a ! b ! b�! b ! �a�! b

foldr f e � � � e

foldr f e �x : xs� � f x �foldr f e xs�

CWH 4

3. Some applications of foldr

sum � foldr ��� 0

and � foldr �^� True

decimal � foldr ��d x ! �fromInteger d � x� = 10� 0

id � foldr �:� � �
length � foldr ��x n! 1� n� 0

map f � foldr ��:� � f � � �
filter p � foldr ��x xs ! if p x then x : xs else xs� � �
concat � foldr ���� � �
reverse � foldr snoc � � where snoc x xs � xs �� �x� -- quadratic

xs �� ys � foldr �:� ys xs

inits � foldr ��x xss ! � � : map �x:� xss� �� ��
tails � foldr ��x xss ! �x : head xss� : xss� �� ��

etc etc

CWH 5

4. What’s special about lists?

. . . only the special syntax. We might have defined lists ourselves:

data List a � Nil j Cons a �List a�

Then we could have

foldList :: �a ! b ! b�! b ! List a ! b

foldList f e Nil � e

foldList f e �Cons x xs� � f x �foldList f e xs�

CWH 5

4. What’s special about lists?

. . . only the special syntax. We might have defined lists ourselves:

data List a � Nil j Cons a �List a�

Then we could have

foldList :: �a ! b ! b�! b ! List a ! b

foldList f e Nil � e

foldList f e �Cons x xs� � f x �foldList f e xs�

Similarly,

data Tree a � Tip a j Bin �Tree a� �Tree a�

foldTree :: �a ! b�! �b ! b ! b�! Tree a ! b

foldTree f g �Tip x� � f x

foldTree f g �Bin xs ys� � g �foldTree f g xs� �foldTree f g ys�

CWH 6

5. It’s not always so obvious

Rose trees (eg for games, or XML):

data Rose a � Node a �Rose a�

CWH 6

5. It’s not always so obvious

Rose trees (eg for games, or XML):

data Rose a � Node a �Rose a�

foldRose1 :: �a ! c ! b�! �b ! c ! c�! c ! Rose a ! b

foldRose1 f g e �Node x ts� � f x �foldr g e �map �foldRose1 f g e� ts��

CWH 6

5. It’s not always so obvious

Rose trees (eg for games, or XML):

data Rose a � Node a �Rose a�

foldRose1 :: �a ! c ! b�! �b ! c ! c�! c ! Rose a ! b

foldRose1 f g e �Node x ts� � f x �foldr g e �map �foldRose1 f g e� ts��

foldRose2 :: �a ! b ! b�! ��b�! b�! Rose a ! b

foldRose2 f g �Node x ts� � f x �g �map �foldRose2 f g� ts��

CWH 6

5. It’s not always so obvious

Rose trees (eg for games, or XML):

data Rose a � Node a �Rose a�

foldRose1 :: �a ! c ! b�! �b ! c ! c�! c ! Rose a ! b

foldRose1 f g e �Node x ts� � f x �foldr g e �map �foldRose1 f g e� ts��

foldRose2 :: �a ! b ! b�! ��b�! b�! Rose a ! b

foldRose2 f g �Node x ts� � f x �g �map �foldRose2 f g� ts��

foldRose3 :: �a ! �b�! b�! Rose a ! b

foldRose3 f �Node x ts� � f x �map �foldRose3 f � ts�

Which should we choose?

CWH 6

5. It’s not always so obvious

Rose trees (eg for games, or XML):

data Rose a � Node a �Rose a�

foldRose1 :: �a ! c ! b�! �b ! c ! c�! c ! Rose a ! b

foldRose1 f g e �Node x ts� � f x �foldr g e �map �foldRose1 f g e� ts��

foldRose2 :: �a ! b ! b�! ��b�! b�! Rose a ! b

foldRose2 f g �Node x ts� � f x �g �map �foldRose2 f g� ts��

foldRose3 :: �a ! �b�! b�! Rose a ! b

foldRose3 f �Node x ts� � f x �map �foldRose3 f � ts�

Which should we choose?

Haskell libraries get folds for non-empty lists ‘wrong’!

foldr1; foldl1 :: �a ! a ! a�! �a�! a

CWH 7

6. Preparing for genericity

Separate out list-specific ‘shape’ from type recursion:

data ListS a b � NilS j ConsS a b

data Fix s a � In �s a �Fix s a��
type List a � Fix ListS a

For example, list �1;2;3� is represented by

In �ConsS 1 �In �ConsS 2 �In �ConsS 3 �In NilS������

For convenience, define inverse out to In:

out :: Fix s a ! s a �Fix s a�
out �In x� � x

CWH 7

6. Preparing for genericity

Separate out list-specific ‘shape’ from type recursion:

data ListS a b � NilS j ConsS a b

data Fix s a � In fout :: s a �Fix s a�g -- In and out together

type List a � Fix ListS a

Shape is mostly opaque; just need to ‘locate’ the as and bs:

bimap :: �a ! a0�! �b ! b0�! ListS a b ! ListS a0 b0

bimap f g NilS � NilS

bimap f g �ConsS a b� � ConsS �f a� �g b�

CWH 7

6. Preparing for genericity

Separate out list-specific ‘shape’ from type recursion:

data ListS a b � NilS j ConsS a b

data Fix s a � In fout :: s a �Fix s a�g -- In and out together

type List a � Fix ListS a

bimap :: �a ! a0�! �b ! b0�! ListS a b ! ListS a0 b0

Now we can define a more cleanly separated version of foldr on List:

foldList :: �ListS a b ! b�! List a ! b

foldList f � f � bimap id �foldList f � � out

eg foldList add :: List Integer ! Integer , where

add :: ListS Integer Integer ! Integer

add NilS � 0

add �ConsS m n� �m� n

CWH 8

7. Going datatype-generic

Now we can properly abstract away the list-specific details.
To be suitable, a shape must support bimap:

class Bifunctor s where

bimap :: �a ! a0�! �b ! b0�! s a b ! s a0 b0

Then fold works for any suitable shape:

fold :: Bifunctor s) �s a b ! b�! Fix s a ! b

fold f � f � bimap id �fold f � � out

Of course, ListS is a suitable shape. . .

instance Bifunctor ListS where

bimap f g NilS � NilS

bimap f g �ConsS a b� � ConsS �f a� �g b�

CWH 8

7. Going datatype-generic

Now we can properly abstract away the list-specific details.
To be suitable, a shape must support bimap:

class Bifunctor s where

bimap :: �a ! a0�! �b ! b0�! s a b ! s a0 b0

Then fold works for any suitable shape:

fold :: Bifunctor s) �s a b ! b�! Fix s a ! b

fold f � f � bimap id �fold f � � out

. . . but binary trees are also suitable:

data TreeS a b � TipS a j BinS b b

instance Bifunctor TreeS where

bimap f g �TipS a� � TipS �f a�
bimap f g �BinS b1 b2� � BinS �g b1� �g b2�

CWH 9

8. The categorical view, in a nutshell

Think of a bifunctor, S. It is also a functor in each argument separately.

CWH 9

8. The categorical view, in a nutshell

Think of a bifunctor, S. It is also a functor in each argument separately.

An algebra for functor S A is a pair �B; f � where f :: S A B ! B.

CWH 9

8. The categorical view, in a nutshell

Think of a bifunctor, S. It is also a functor in each argument separately.

An algebra for functor S A is a pair �B; f � where f :: S A B ! B.
A homomorphism between �B; f � and �C;g� is a function h :: B ! C such that

h � f � g � bimap id h

CWH 9

8. The categorical view, in a nutshell

Think of a bifunctor, S. It is also a functor in each argument separately.

An algebra for functor S A is a pair �B; f � where f :: S A B ! B.
A homomorphism between �B; f � and �C;g� is a function h :: B ! C such that

h � f � g � bimap id h

Algebra �B; f � is initial if there is a unique homomorphism to each �C;g�.

CWH 9

8. The categorical view, in a nutshell

Think of a bifunctor, S. It is also a functor in each argument separately.

An algebra for functor S A is a pair �B; f � where f :: S A B ! B.
A homomorphism between �B; f � and �C;g� is a function h :: B ! C such that

h � f � g � bimap id h

Algebra �B; f � is initial if there is a unique homomorphism to each �C;g�.

Eg �List Integer; In� and �Integer;add� are both algebras for ListS Integer :

In :: ListS Integer �List Integer�! List Integer

add :: ListS Integer Integer ! Integer

and sum :: List Integer ! Integer is a homomorphism. The initial algebra is
�List Integer; In�, and the unique homomorphism to �C;g� is fold g.

CWH 9

8. The categorical view, in a nutshell

Think of a bifunctor, S. It is also a functor in each argument separately.

An algebra for functor S A is a pair �B; f � where f :: S A B ! B.
A homomorphism between �B; f � and �C;g� is a function h :: B ! C such that

h � f � g � bimap id h

Algebra �B; f � is initial if there is a unique homomorphism to each �C;g�.

Eg �List Integer; In� and �Integer;add� are both algebras for ListS Integer :

In :: ListS Integer �List Integer�! List Integer

add :: ListS Integer Integer ! Integer

and sum :: List Integer ! Integer is a homomorphism. The initial algebra is
�List Integer; In�, and the unique homomorphism to �C;g� is fold g.

Theorem: for all sensible shape functors S, initial algebras exist.

CWH 10

9. Duality

Recall

fold :: Bifunctor s) �s a b ! b�! �Fix s a ! b�
fold f � f � bimap id �fold f � � out

CWH 10

9. Duality

Recall

fold :: Bifunctor s) �s a b ! b�! �Fix s a ! b�
fold f � f � bimap id �fold f � � out

Reverse certain arrows:

unfold :: Bifunctor s) �b ! s a b�! �b ! Fix s a�
unfold f � In � bimap id �unfold f � � f

CWH 10

9. Duality

Recall

fold :: Bifunctor s) �s a b ! b�! �Fix s a ! b�
fold f � f � bimap id �fold f � � out

Reverse certain arrows:

unfold :: Bifunctor s) �b ! s a b�! �b ! Fix s a�
unfold f � In � bimap id �unfold f � � f

The datatype-generic presentation makes the duality very clear—unlike with

unfoldr :: �b ! Maybe �a;b��! b ! �a�
unfoldr f b � case f b of

Nothing ! � �
Just �a;b0�! a : unfoldr f b0

CWH 10

9. Duality

Recall

fold :: Bifunctor s) �s a b ! b�! �Fix s a ! b�
fold f � f � bimap id �fold f � � out

Reverse certain arrows:

unfold :: Bifunctor s) �b ! s a b�! �b ! Fix s a�
unfold f � In � bimap id �unfold f � � f

The datatype-generic presentation makes the duality very clear—unlike with

unfoldr :: �b ! Maybe �a;b��! b ! �a�
unfoldr f b � case f b of

Nothing ! � �
Just �a;b0�! a : unfoldr f b0

Categorically, coalgebras �B; f � with f :: B ! S A B, finality.

CWH 11

10. Conclusions

• category theory as an organisational tool, not for intimidation

• helping you to write better code, with less mess

• the mathematics is really quite pretty

• . . . but the Haskell makes sense on its own too

CWH 11

10. Conclusions

• category theory as an organisational tool, not for intimidation

• helping you to write better code, with less mess

• the mathematics is really quite pretty

• . . . but the Haskell makes sense on its own too

http://patternsinfp.wordpress.com/
http://www.cs.ox.ac.uk/jeremy.gibbons/

CWH 12

11. Software Engineering Programme

flexible, professional
education

6RIWZDUH�
(QJLQHHULQJ
(part-time)

MSc in

flexible, part-time,
professional education

Software
and
Systems
Security

MSc in

CWH 13

Appendix: category theory

CWH 14

12. ‘Category’

A category consists of

• a collection of objects

• for each pair A;B of objects, a collection A! B of arrows

• an identity arrow idA : A! A for each object A

• composition f � g : A! C of compatible arrows f : B ! C and g : A! B

• composition is associative, and identities are neutral elements

A

b

&&

a

��

d

��

B
coo

h

��

Cf

KK

e

QQ

g

GG
(think of paths in
labelled directed graphs)

CWH 14

12. ‘Category’

A category consists of

• a collection of objects (sets)

• for each pair A;B of objects, a collection A! B of arrows (functions)

• an identity arrow idA : A! A for each object A

• composition f � g : A! C of compatible arrows f : B ! C and g : A! B

• composition is associative, and identities are neutral elements

Integer

even

**

odd

%%

�:� ��

id
77 Bool

id

ddfromEnummm

not

��

�Integer �
id

gglength

SS

sum

ZZ

odd�length

@@

(some of category
SET , in which
objects are sets
and arrows are
total functions)

CWH 15

13. ‘Functor’

A functor F is simultaneously

• an operation on objects

• an operation on arrows

such that

• F f : F A! F B when f : A! B

• F id � id

• F �f � g� � F f � F g

CWH 15

13. ‘Functor’

Functor List is simultaneously

• an operation on objects (List A � �A�)

• an operation on arrows (List f �map f)

such that

• List f : List A! List B when f : A! B

• List id � id

• List �f � g� � List f � List g

CWH 15

13. ‘Functor’

Functor ListS A is simultaneously

• an operation on objects (�ListS A� B � ListS A B)

• an operation on arrows (�ListS A� f � bimap id f)

such that

• �ListS A� f : ListS A B ! ListS A B0 when f : B ! B0

• �ListS A� id � id

• �ListS A� �f � g� � �ListS A� f � �ListS A� g

CWH 16

14. ‘Algebra’

An algebra for functor F is a pair �A; f � with f : F A! A.

For example, �Integer; sum� is a List-algebra.

More pertinently, �Integer;add� is a �ListS Integer�-algebra.

add :: ListS Integer Integer ! Integer

So is �List Integer; In�:

In :: ListS Integer �List Integer�! List Integer

CWH 17

15. ‘Homomorphism’

For functor F , a homomorphism h between F -algebras �A; f � and �B;g� is
an arrow h : A! B such that

h � f � g � F h

CWH 17

15. ‘Homomorphism’

For functor F , a homomorphism h between F -algebras �A; f � and �B;g� is
an arrow h : A! B such that

h � f � g � F h
F A

f //

F h
��
©

A

h
��

F B g
// B

CWH 17

15. ‘Homomorphism’

For functor F , a homomorphism h between F -algebras �A; f � and �B;g� is
an arrow h : A! B such that

h � f � g � F h
F A

f //

F h
��
©

A

h
��

F B g
// B

For example, sum : List Integer ! Integer is a
homomorphism from �List Integer; In� to �Integer;add�:

sum � In � add � bimap id sum

CWH 17

15. ‘Homomorphism’

For functor F , a homomorphism h between F -algebras �A; f � and �B;g� is
an arrow h : A! B such that

h � f � g � F h
F A

f //

F h
��
©

A

h
��

F B g
// B

For example, sum : List Integer ! Integer is a
homomorphism from �List Integer; In� to �Integer;add�:

sum � In � add � bimap id sum

(Identity function is a homomorphism, and homomorphisms compose.
So F -algebras and their homomorphisms also form a category.)

CWH 18

16. ‘Initial’

An F -algebra �A; f � is initial if, for each other F -algebra �B;g�, there is a
unique homomorphism from �A; f � to �B;g�.

CWH 18

16. ‘Initial’

An F -algebra �A; f � is initial if, for each other F -algebra �B;g�, there is a
unique homomorphism from �A; f � to �B;g�.

Theorem: �List Integer; In� is the initial �ListS Integer�-algebra.

The homomorphisms are precisely the folds, and uniqueness is the
universal property.

CWH 18

16. ‘Initial’

An F -algebra �A; f � is initial if, for each other F -algebra �B;g�, there is a
unique homomorphism from �A; f � to �B;g�.

Theorem: �List Integer; In� is the initial �ListS Integer�-algebra.

The homomorphisms are precisely the folds, and uniqueness is the
universal property.

Theorem: For any polynomial* shape functor F ,
there is an initial F -algebra.

Datatype-generically, too.

(polynomial*:
constructed from
sums and products,
like simple algebraic
datatypes)

CWH 18

16. ‘Initial’

An F -algebra �A; f � is initial if, for each other F -algebra �B;g�, there is a
unique homomorphism from �A; f � to �B;g�.

Theorem: �List Integer; In� is the initial �ListS Integer�-algebra.

The homomorphisms are precisely the folds, and uniqueness is the
universal property.

Theorem: For any polynomial* shape functor F ,
there is an initial F -algebra.

Datatype-generically, too.

(polynomial*:
constructed from
sums and products,
like simple algebraic
datatypes)

(More generally, an initial object in a category is one with a unique arrow
to every other object. In SET , the initial object is ;, and ‘initial F -algebra’
is short for ‘initial object in the category of F -algebras’.)

CWH 19

17. Morally correct

• those two theorems hold in SET , but not some other settings

• not quite true for realistic Haskell

undefined values, infinite data structures, strictness. . .

• defining equations do not always uniquely define foldr—consider

h � � � 3

h �x : xs� � const �const 3� x �h xs�

CWH 19

17. Morally correct

• those two theorems hold in SET , but not some other settings

• not quite true for realistic Haskell

undefined values, infinite data structures, strictness. . .

• defining equations do not always uniquely define foldr—consider

h � � � 3

h �x : xs� � const �const 3� x �h xs�

• (in CPO, some strictness side-conditions needed)

• (all works fine in strong functional programming, eg Agda)

