## Categories for the Working Haskeller

Jeremy Gibbons, University of Oxford
Haskell eXchange, October 2014

## 1. Motivation

"What part of
monads are just monoids in the category of endofunctors don't you understand?"


## 1. Motivation

"What part of
monads are just monoids in
the category of endofunctors don't you understand?"

I'll try to show how
category theory
inspires better code.
But you don't really need the category theory: it all makes sense in Haskell too.


## 2. Functions that consume lists

Two equations, indirectly defining sum:

$$
\begin{aligned}
& \text { sum }::[\text { Integer }] \rightarrow \text { Integer } \\
& \operatorname{sum}[]=0 \\
& \operatorname{sum}(x: x s)=x+\operatorname{sum} x s
\end{aligned}
$$

## 2. Functions that consume lists

Two equations, indirectly defining sum:

$$
\begin{aligned}
& \text { sum }::[\text { Integer }] \rightarrow \text { Integer } \\
& \operatorname{sum}[]=0 \\
& \operatorname{sum}(x: x s)=x+\operatorname{sum} x s
\end{aligned}
$$

Not just + . For any given $f$ and $e$, these equations uniquely determine $h$ :
$h[]=e$
$h(x: x s)=f x(h x s)$

## 2. Functions that consume lists

Two equations, indirectly defining sum:

$$
\begin{aligned}
& \text { sum }::[\text { Integer }] \rightarrow \text { Integer } \\
& \operatorname{sum}[]=0 \\
& \operatorname{sum}(x: x s)=x+\operatorname{sum} x s
\end{aligned}
$$

Not just + . For any given $f$ and $e$, these equations uniquely determine $h$ :

$$
\begin{array}{ll}
h[] & =e \\
h(x: x s) & =f x(h x s)
\end{array}
$$

The unique solution is called foldr $f e$ in the Haskell libraries:

$$
\begin{aligned}
& \text { foldr }::(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow[a] \rightarrow b \\
& \text { foldr } f e[]=e \\
& \text { foldr } f e(x: x s)=f x(\text { foldr } f e x s)
\end{aligned}
$$

## 3. Some applications of foldr

$$
\begin{array}{ll}
\text { sum } & =\text { foldr }(+) 0 \\
\text { and } & =\text { foldr }(\wedge) \text { True } \\
\text { decimal } & =\text { foldr }(\lambda d x \rightarrow(\text { fromInteger } d+x) / 10) 0 \\
\text { id } & =\text { foldr }(:)[] \\
\text { length } & =\text { foldr }(\lambda \times n \rightarrow 1+n) 0 \\
\text { map } f & =\text { foldr }((:) \circ f)[] \\
\text { filter } p & =\text { foldr }(\lambda \times x s \rightarrow \text { if } p \times \text { then } x: \times s \text { else } x s)[] \\
\text { concat } & =\text { foldr }(+)[] \\
\text { reverse } & =\text { foldr snoc }[] \text { where snoc } x \times s=x s+[x] \quad-\text { quadratic } \\
x s+y s & =\text { foldr }(:) y s \times s \\
\text { inits } & =\text { foldr }(\lambda \times x s s \rightarrow[]: \text { map }(x:) \times s s)[[]] \\
\text { tails } & =\text { foldr }(\lambda \times \times s s \rightarrow(x: \text { head } \times s s): x s s)[[]]
\end{array}
$$

etc etc

## 4. What's special about lists?

... only the special syntax. We might have defined lists ourselves:

$$
\text { data List } a=\text { Nil } \mid \text { Cons } a(\text { List } a)
$$

Then we could have

$$
\begin{aligned}
& \text { foldList }::(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow \text { List } a \rightarrow b \\
& \text { foldList } f \text { e Nil } \quad=e \\
& \text { foldList } f e(\text { Cons } \times x s)=f \times(\text { foldList } f \text { e xs })
\end{aligned}
$$

## 4. What's special about lists?

... only the special syntax. We might have defined lists ourselves:

$$
\text { data List } a=\text { Nil } \mid \text { Cons } a(\text { List } a)
$$

Then we could have

$$
\begin{aligned}
& \text { foldList }::(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow \text { List } a \rightarrow b \\
& \text { foldList } f \text { e Nil }=e \\
& \text { foldList } f e(\text { Cons } \times \times s)=f \times(\text { foldList } f \text { e xs })
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \text { data Tree } a=\text { Tip a } \mid \text { Bin }(\text { Tree } a)(\text { Tree } a) \\
& \text { foldTree :: }(a \rightarrow b) \rightarrow(b \rightarrow b \rightarrow b) \rightarrow \text { Tree } a \rightarrow b \\
& \text { foldTree } f g(\text { Tip } x)=f x \\
& \text { foldTree } f g(\text { Bin } x s y s)=g(\text { foldTree } f g x s) \text { (foldTree } f g y s)
\end{aligned}
$$

## 5. It's not always so obvious

Rose trees (eg for games, or XML):
data Rose $a=$ Node $a[$ Rose $a]$

## 5. It's not always so obvious

Rose trees (eg for games, or XML):
data Rose $a=$ Node $a[$ Rose $a]$
foldRose ${ }_{1}::(a \rightarrow c \rightarrow b) \rightarrow(b \rightarrow c \rightarrow c) \rightarrow c \rightarrow$ Rose $a \rightarrow b$
foldRose $e_{1} f g e($ Node $x t s)=f x\left(\right.$ foldr $g e\left(\operatorname{map}\left(\right.\right.$ foldRose $\left.\left.\left._{1} f g e\right) t s\right)\right)$

## 5. It's not always so obvious

Rose trees (eg for games, or XML):

$$
\begin{aligned}
& \text { data Rose } a=\text { Node } a[\text { Rose } a] \\
& \text { foldRose }_{1}::(a \rightarrow c \rightarrow b) \rightarrow(b \rightarrow c \rightarrow c) \rightarrow c \rightarrow \text { Rose } a \rightarrow b \\
& \text { foldRose }{ }_{1} f g e(\text { Node } x t s)=f x\left(\text { foldr } g e\left(\operatorname{map}\left(\text { foldRose }_{1} f g e\right) t s\right)\right) \\
& \text { foldRose }_{2}::(a \rightarrow b \rightarrow b) \rightarrow([b] \rightarrow b) \rightarrow \text { Rose } a \rightarrow b \\
& \text { foldRose }_{2} f g(\text { Node } \times \text { ts })=f \times\left(g\left(\operatorname{map}\left(\text { foldRose }_{2} f g\right) t s\right)\right)
\end{aligned}
$$

## 5. It's not always so obvious

Rose trees (eg for games, or XML):

$$
\begin{aligned}
& \text { data Rose } a=\text { Node } a[\text { Rose } a] \\
& \text { foldRose }{ }_{1}::(a \rightarrow c \rightarrow b) \rightarrow(b \rightarrow c \rightarrow c) \rightarrow c \rightarrow \text { Rose } a \rightarrow b \\
& \text { foldRose }{ }_{1} f g e(\text { Node } x t s)=f x\left(\text { foldr } g e\left(\operatorname{map}\left(\text { foldRose }_{1} f g e\right) t s\right)\right) \\
& \text { foldRose }_{2}::(a \rightarrow b \rightarrow b) \rightarrow([b] \rightarrow b) \rightarrow \text { Rose } a \rightarrow b \\
& \text { foldRose }_{2} f g(\text { Node } \times \text { ts })=f \times\left(g\left(\operatorname{map}\left(\text { foldRose }_{2} f g\right) t s\right)\right) \\
& \text { foldRose }_{3}::(a \rightarrow[b] \rightarrow b) \rightarrow \text { Rose } a \rightarrow b \\
& \text { foldRose }_{3} f(\text { Node } \times t s)=f \times\left(\operatorname{map}\left(\text { foldRose }_{3} f\right) t s\right)
\end{aligned}
$$

Which should we choose?

## 5. It's not always so obvious

Rose trees (eg for games, or XML):

$$
\begin{aligned}
& \text { data Rose } a=\text { Node } a[\text { Rose } a] \\
& \text { foldRose }{ }_{1}::(a \rightarrow c \rightarrow b) \rightarrow(b \rightarrow c \rightarrow c) \rightarrow c \rightarrow \text { Rose } a \rightarrow b \\
& \text { foldRose }{ }_{1} f g e(\text { Node } x t s)=f x\left(\text { foldr } g e\left(\operatorname{map}\left(\text { foldRose }_{1} f g e\right) t s\right)\right) \\
& \text { foldRose }_{2}::(a \rightarrow b \rightarrow b) \rightarrow([b] \rightarrow b) \rightarrow \text { Rose } a \rightarrow b \\
& \text { foldRose }_{2} f g(\text { Node } \times \text { ts })=f \times\left(g\left(\operatorname{map}\left(\text { foldRose }_{2} f g\right) t s\right)\right) \\
& \text { foldRose }_{3}::(a \rightarrow[b] \rightarrow b) \rightarrow \text { Rose } a \rightarrow b \\
& \text { foldRose }_{3} f(\text { Node } \times t s)=f \times\left(\operatorname{map}\left(\text { foldRose }_{3} f\right) t s\right)
\end{aligned}
$$

Which should we choose?
Haskell libraries get folds for non-empty lists ‘wrong’!

$$
\text { foldr } 1, \text { foldl1 }::(a \rightarrow a \rightarrow a) \rightarrow[a] \rightarrow a
$$

## 6. Preparing for genericity

Separate out list-specific 'shape' from type recursion:

$$
\begin{aligned}
& \text { data ListS a } b=\text { NilS } \mid \text { ConsS a } b \\
& \text { data Fix s } a=\operatorname{In}(s a(\text { Fix } s a)) \\
& \text { type List } a=\text { Fix ListS } a
\end{aligned}
$$

For example, list [ $1,2,3$ ] is represented by

$$
\text { In (ConsS } 1 \text { (In (ConsS } 2(\operatorname{In}(\text { ConsS } 3(\operatorname{In~NilS}))))))
$$

For convenience, define inverse out to In:

$$
\begin{aligned}
& \text { out }:: \text { Fix } s a \rightarrow s a(\text { Fix } s a) \\
& \text { out }(\operatorname{In} x)=x
\end{aligned}
$$

## 6. Preparing for genericity

Separate out list-specific 'shape' from type recursion:

$$
\begin{aligned}
& \text { data ListS } a b=\text { NilS } \mid \text { ConsS a } b \\
& \text { data Fix } s a=\operatorname{In}\{\text { out }:: s \text { } a(\text { Fix } s a)\} \quad \text {-- In and out together } \\
& \text { type List } a=\text { Fix ListS } a
\end{aligned}
$$

Shape is mostly opaque; just need to 'locate' the as and bs:

$$
\begin{aligned}
\text { bimap }::\left(a \rightarrow a^{\prime}\right) \rightarrow(b & \left.\rightarrow b^{\prime}\right) \rightarrow \text { ListS a } b \rightarrow \text { ListS } a^{\prime} b^{\prime} \\
\text { bimap } f g \text { NilS } & =\text { NilS } \\
\text { bimap } f g(\text { ConsS a } b) & =\operatorname{ConsS}(f a)(g b)
\end{aligned}
$$

## 6. Preparing for genericity

Separate out list-specific 'shape' from type recursion:

$$
\begin{aligned}
& \text { data ListS } a b=\text { NilS } \mid \text { ConsS } a b \\
& \text { data Fix } s a=\operatorname{In}\{\text { out }:: s a(\text { Fix } s a)\} \quad \text {-- In and out together } \\
& \text { type List } a=\text { Fix ListS } a \\
& \text { bimap }::\left(a \rightarrow a^{\prime}\right) \rightarrow\left(b \rightarrow b^{\prime}\right) \rightarrow \text { ListS } a b \rightarrow \text { ListS } a^{\prime} b^{\prime}
\end{aligned}
$$

Now we can define a more cleanly separated version of foldr on List:
foldList $::($ ListS $a b \rightarrow b) \rightarrow$ List $a \rightarrow b$
foldList $f=f \circ$ bimap id (foldList $f$ ) $\circ$ out
eg foldList add $::$ List Integer $\rightarrow$ Integer, where
add :: ListS Integer Integer $\rightarrow$ Integer
add NilS $\quad=0$
add $($ ConsS $m n)=m+n$

## 7. Going datatype-generic

Now we can properly abstract away the list-specific details.
To be suitable, a shape must support bimap:

$$
\begin{aligned}
& \text { class Bifunctor } s \text { where } \\
& \quad \text { bimap }::\left(a \rightarrow a^{\prime}\right) \rightarrow\left(b \rightarrow b^{\prime}\right) \rightarrow s a b \rightarrow s a^{\prime} b^{\prime}
\end{aligned}
$$

Then fold works for any suitable shape:

$$
\begin{aligned}
& \text { fold }:: \text { Bifunctor } s \Rightarrow(s \text { a } b \rightarrow b) \rightarrow \text { Fix } s a \rightarrow b \\
& \text { fold } f=f \circ \text { bimap id }(\text { fold } f) \circ \text { out }
\end{aligned}
$$

Of course, ListS is a suitable shape...

$$
\begin{aligned}
& \text { instance Bifunctor ListS where } \\
& \begin{aligned}
\text { bimap } f g \text { NilS } & =\text { NilS } \\
\text { bimap } f g(\text { ConsS a b) } & =\operatorname{ConsS}(f a)(g b)
\end{aligned}
\end{aligned}
$$

## 7. Going datatype-generic

Now we can properly abstract away the list-specific details.
To be suitable, a shape must support bimap:

$$
\begin{aligned}
& \text { class Bifunctor } s \text { where } \\
& \quad \text { bimap }::\left(a \rightarrow a^{\prime}\right) \rightarrow\left(b \rightarrow b^{\prime}\right) \rightarrow s a b \rightarrow s a^{\prime} b^{\prime}
\end{aligned}
$$

Then fold works for any suitable shape:

$$
\begin{aligned}
& \text { fold }:: \text { Bifunctor } s \Rightarrow(s a b \rightarrow b) \rightarrow \text { Fix } s a \rightarrow b \\
& \text { fold } f=f \circ \text { bimap id }(\text { fold } f) \circ \text { out }
\end{aligned}
$$

... but binary trees are also suitable:

```
data TreeS a b = TipS a | BinS b b
instance Bifunctor TreeS where
    bimap f g (TipS a) = TipS (f a)
    bimap f g(BinS bl b b ) = BinS (g b b ) (g b b )
```


## 8. The categorical view, in a nutshell

Think of a bifunctor, $S$. It is also a functor in each argument separately.

## 8. The categorical view, in a nutshell

Think of a bifunctor, $S$. It is also a functor in each argument separately. An algebra for functor $S A$ is a pair $(B, f)$ where $f:: S A B \rightarrow B$.

## 8. The categorical view, in a nutshell

Think of a bifunctor, $S$. It is also a functor in each argument separately.
An algebra for functor $S A$ is a pair $(B, f)$ where $f:: S A B \rightarrow B$.
A homomorphism between ( $B, f$ ) and ( $C, g$ ) is a function $h:: B \rightarrow C$ such that

$$
h \circ f=g \circ \text { bimap id } h
$$

## 8. The categorical view, in a nutshell

Think of a bifunctor, $S$. It is also a functor in each argument separately.
An algebra for functor $S A$ is a pair $(B, f)$ where $f:: S A B \rightarrow B$.
A homomorphism between ( $B, f$ ) and ( $C, g$ ) is a function $h:: B \rightarrow C$ such that

$$
h \circ f=g \circ \text { bimap id } h
$$

Algebra ( $B, f$ ) is initial if there is a unique homomorphism to each $(C, g)$.

## 8. The categorical view, in a nutshell

Think of a bifunctor, $S$. It is also a functor in each argument separately.
An algebra for functor $S A$ is a pair $(B, f)$ where $f:: S A B \rightarrow B$.
A homomorphism between $(B, f)$ and $(C, g)$ is a function $h:: B \rightarrow C$ such that

$$
h \circ f=g \circ \text { bimap id } h
$$

Algebra $(B, f)$ is initial if there is a unique homomorphism to each $(C, g)$.
Eg (List Integer, In) and (Integer, add) are both algebras for ListS Integer:

$$
\begin{aligned}
& \text { In :: ListS Integer (List Integer) } \rightarrow \text { List Integer } \\
& \text { add :: ListS Integer Integer } \rightarrow \text { Integer }
\end{aligned}
$$

and sum :: List Integer $\rightarrow$ Integer is a homomorphism. The initial algebra is
(List Integer, In), and the unique homomorphism to $(C, g)$ is fold $g$.

## 8. The categorical view, in a nutshell

Think of a bifunctor, $S$. It is also a functor in each argument separately.
An algebra for functor $S A$ is a pair $(B, f)$ where $f:: S A B \rightarrow B$.
A homomorphism between $(B, f)$ and $(C, g)$ is a function $h:: B \rightarrow C$ such that

$$
h \circ f=g \circ \text { bimap id } h
$$

Algebra $(B, f)$ is initial if there is a unique homomorphism to each $(C, g)$.
Eg (List Integer, In) and (Integer, add) are both algebras for ListS Integer:

$$
\begin{aligned}
& \text { In :: ListS Integer (List Integer) } \rightarrow \text { List Integer } \\
& \text { add :: ListS Integer Integer } \rightarrow \text { Integer }
\end{aligned}
$$

and sum :: List Integer $\rightarrow$ Integer is a homomorphism. The initial algebra is
(List Integer, In), and the unique homomorphism to $(C, g)$ is fold $g$.
Theorem: for all sensible shape functors $S$, initial algebras exist.

## 9. Duality

Recall
fold :: Bifunctor $s \Rightarrow(s a b \rightarrow b) \rightarrow($ Fix $s a \rightarrow b)$
fold $f=f \circ$ bimap id $($ fold $f) \circ$ out

## 9. Duality

Recall

$$
\begin{aligned}
& \text { fold }:: \text { Bifunctor } s \Rightarrow(s \text { a } b \rightarrow b) \rightarrow(\text { Fix } s a \rightarrow b) \\
& \text { fold } f=f \circ \text { bimap id }(\text { fold } f) \circ \text { out }
\end{aligned}
$$

Reverse certain arrows:

$$
\begin{aligned}
& \text { unfold }:: \text { Bifunctor } s \Rightarrow(b \rightarrow s \text { a } b) \rightarrow(b \rightarrow \text { Fix } s a) \\
& \text { unfold } f=\text { In } \circ \text { bimap id }(\text { unfold } f) \circ f
\end{aligned}
$$

## 9. Duality

Recall

$$
\begin{aligned}
& \text { fold }:: \text { Bifunctor } s \Rightarrow(s \text { a } b \rightarrow b) \rightarrow(\text { Fix } s a \rightarrow b) \\
& \text { fold } f=f \circ \text { bimap id }(\text { fold } f) \circ \text { out }
\end{aligned}
$$

Reverse certain arrows:

$$
\begin{aligned}
& \text { unfold }:: \text { Bifunctor } s \Rightarrow(b \rightarrow s \text { a } b) \rightarrow(b \rightarrow \text { Fix } s a) \\
& \text { unfold } f=\text { In } \circ \text { bimap id }(\text { unfold } f) \circ f
\end{aligned}
$$

The datatype-generic presentation makes the duality very clear-unlike with

$$
\begin{aligned}
& \text { unfoldr }::(b \rightarrow \text { Maybe }(a, b)) \rightarrow b \rightarrow[a] \\
& \text { unfoldr } f b=\text { case } f \text { of } \\
& \qquad \quad \text { Nothing } \rightarrow[] \\
& \quad \text { Just }\left(a, b^{\prime}\right) \rightarrow a: \text { unfoldr } f b^{\prime}
\end{aligned}
$$

## 9. Duality

Recall

$$
\begin{aligned}
& \text { fold }:: \text { Bifunctor } s \Rightarrow(s \text { a } b \rightarrow b) \rightarrow(\text { Fix } s a \rightarrow b) \\
& \text { fold } f=f \circ \text { bimap id }(\text { fold } f) \circ \text { out }
\end{aligned}
$$

Reverse certain arrows:

$$
\begin{aligned}
& \text { unfold }:: \text { Bifunctor } s \Rightarrow(b \rightarrow s \text { a } b) \rightarrow(b \rightarrow \text { Fix } s a) \\
& \text { unfold } f=\text { In } \circ \text { bimap id }(\text { unfold } f) \circ f
\end{aligned}
$$

The datatype-generic presentation makes the duality very clear-unlike with

$$
\begin{aligned}
& \text { unfoldr }::(b \rightarrow \text { Maybe }(a, b)) \rightarrow b \rightarrow[a] \\
& \text { unfoldr } f b=\text { case } f \text { of } \\
& \quad \text { Nothing } \rightarrow[] \\
& \quad \text { Just }\left(a, b^{\prime}\right) \rightarrow a: \text { unfoldr } f b^{\prime}
\end{aligned}
$$

Categorically, coalgebras $(B, f)$ with $f:: B \rightarrow S A B$, finality.

## 10. Conclusions

- category theory as an organisational tool, not for intimidation
- helping you to write better code, with less mess
- the mathematics is really quite pretty
- ...but the Haskell makes sense on its own too


## 10. Conclusions

- category theory as an organisational tool, not for intimidation
- helping you to write better code, with less mess
- the mathematics is really quite pretty
- ...but the Haskell makes sense on its own too
http://patternsinfp.wordpress.com/
http://www.cs.ox.ac.uk/jeremy.gibbons/


## 11. Software Engineering Programme



## Appendix: category theory

## 12. 'Category'

A category consists of

- a collection of objects
- for each pair $A, B$ of objects, a collection $A \rightarrow B$ of arrows
- an identity arrow $i d_{A}: A \rightarrow A$ for each object $A$
- composition $f \circ g: A \rightarrow C$ of compatible arrows $f: B \rightarrow C$ and $g: A \rightarrow B$
- composition is associative, and identities are neutral elements

(think of paths in labelled directed graphs)


## 12. 'Category'

A category consists of

- a collection of objects (sets)
- for each pair $A, B$ of objects, a collection $A \rightarrow B$ of arrows (functions)
- an identity arrow $i d_{A}: A \rightarrow A$ for each object $A$
- composition $f \circ g: A \rightarrow C$ of compatible arrows $f: B \rightarrow C$ and $g: A \rightarrow B$
- composition is associative, and identities are neutral elements

(some of category SET, in which objects are sets and arrows are total functions)


## 13. 'Functor'

A functor $F$ is simultaneously

- an operation on objects
- an operation on arrows
such that
- $F f: F A \rightarrow F B$ when $f: A \rightarrow B$
- $F i d=i d$
- $F(f \circ g)=F f \circ F g$


## 13. 'Functor'

Functor List is simultaneously

- an operation on objects (List $A=[A])$
- an operation on arrows (List $f=$ map $f$ )
such that
- List $f$ : List $A \rightarrow$ List $B$ when $f: A \rightarrow B$
- List id = id
- List $(f \circ g)=$ List $f \circ$ List $g$


## 13. 'Functor'

Functor ListS $A$ is simultaneously

- an operation on objects ((ListS A) B $=$ ListS A B)
- an operation on arrows $((\operatorname{ListS} A) f=$ bimap id $f)$
such that
- (ListS A) $f: \operatorname{ListS} A B \rightarrow \operatorname{ListS} A B^{\prime}$ when $f: B \rightarrow B^{\prime}$
- (ListS A) id = id
- $($ ListS A) $(f \circ g)=($ ListS A) $f \circ($ ListS A) $g$


## 14. 'Algebra'

An algebra for functor $F$ is a pair $(A, f)$ with $f: F A \rightarrow A$.
For example, (Integer, sum) is a List-algebra.

More pertinently, (Integer, add) is a (ListS Integer)-algebra.

$$
\text { add :: ListS Integer Integer } \rightarrow \text { Integer }
$$

So is (List Integer, In):
In :: ListS Integer (List Integer) $\rightarrow$ List Integer

## 15. 'Homomorphism'

For functor $F$, a homomorphism $h$ between $F$-algebras $(A, f)$ and $(B, g)$ is an arrow $h: A \rightarrow B$ such that

$$
h \circ f=g \circ F h
$$

## 15. 'Homomorphism'

For functor $F$, a homomorphism $h$ between $F$-algebras $(A, f)$ and $(B, g)$ is an arrow $h: A \rightarrow B$ such that

$$
h \circ f=g \circ F h
$$



## 15. 'Homomorphism’

For functor $F$, a homomorphism $h$ between $F$-algebras $(A, f)$ and $(B, g)$ is an arrow $h: A \rightarrow B$ such that

$$
h \circ f=g \circ F h
$$

For example, sum: List Integer $\rightarrow$ Integer is a
 homomorphism from (List Integer, In) to (Integer, add):

$$
\text { sum } \circ \text { In }=\text { add } \circ \text { bimap id sum }
$$

## 15. 'Homomorphism’

For functor $F$, a homomorphism $h$ between $F$-algebras $(A, f)$ and $(B, g)$ is an arrow $h: A \rightarrow B$ such that

$$
h \circ f=g \circ F h
$$

For example, sum : List Integer $\rightarrow$ Integer is a
 homomorphism from (List Integer, In) to (Integer, add):

$$
\text { sum } \circ \text { In }=\text { add } \circ \text { bimap id sum }
$$

(Identity function is a homomorphism, and homomorphisms compose. So $F$-algebras and their homomorphisms also form a category.)

## 16. 'Initial'

An $F$-algebra $(A, f)$ is initial if, for each other $F$-algebra $(B, g)$, there is a unique homomorphism from $(A, f)$ to $(B, g)$.

## 16. 'Initial'

An $F$-algebra $(A, f)$ is initial if, for each other $F$-algebra $(B, g)$, there is a unique homomorphism from $(A, f)$ to $(B, g)$.

Theorem: (List Integer, In) is the initial (ListS Integer)-algebra.
The homomorphisms are precisely the folds, and uniqueness is the universal property.

## 16. 'Initial'

An $F$-algebra $(A, f)$ is initial if, for each other $F$-algebra $(B, g)$, there is a unique homomorphism from $(A, f)$ to $(B, g)$.

Theorem: (List Integer, In) is the initial (ListS Integer)-algebra.
The homomorphisms are precisely the folds, and uniqueness is the universal property.

Theorem: For any polynomial* shape functor $F$, there is an initial $F$-algebra.

Datatype-generically, too.
(polynomial": constructed from sums and products, like simple algebraic datatypes)

## 16. 'Initial'

An $F$-algebra $(A, f)$ is initial if, for each other $F$-algebra $(B, g)$, there is a unique homomorphism from $(A, f)$ to $(B, g)$.

Theorem: (List Integer, In) is the initial (ListS Integer)-algebra.
The homomorphisms are precisely the folds, and uniqueness is the universal property.

Theorem: For any polynomial* shape functor $F$, there is an initial $F$-algebra.

Datatype-generically, too.
(polynomial": constructed from sums and products, like simple algebraic datatypes)
(More generally, an initial object in a category is one with a unique arrow to every other object. In $S E T$, the initial object is $\varnothing$, and 'initial $F$-algebra' is short for 'initial object in the category of $F$-algebras'.)

## 17. Morally correct

- those two theorems hold in SET, but not some other settings
- not quite true for realistic Haskell
undefined values, infinite data structures, strictness. . .
- defining equations do not always uniquely define foldr-consider

$$
\begin{array}{ll}
h[] & =3 \\
h(x: x s) & =\text { const (const } 3) x(h x s)
\end{array}
$$

## 17. Morally correct

- those two theorems hold in SET, but not some other settings
- not quite true for realistic Haskell
undefined values, infinite data structures, strictness. . .
- defining equations do not always uniquely define foldr-consider

$$
\begin{array}{ll}
h[] & =3 \\
h(x: x s) & =\text { const (const } 3) x(h x s)
\end{array}
$$

- (in CPO, some strictness side-conditions needed)
- (all works fine in strong functional programming, eg Agda)

