
Free Delivery
Functional Pearl

Jeremy Gibbons
University of Oxford, UK

http://www.cs.ox.ac.uk/jeremy.gibbons/

Abstract
Remote procedure calls are computationally expensive, because
network round-trips take several orders of magnitude longer than
local interactions. One common technique for amortizing this cost
is to batch together multiple independent requests into one com-
pound request. Batching requests amounts to serializing the ab-
stract syntax tree of a small program, in order to transmit it and
run it remotely. The standard representation for abstract syntax is
to use free monads; we show that free applicative functors are ac-
tually a better choice of representation for this scenario.

Categories and Subject Descriptors C.2.4 [Distributed Systems]:
Distributed applications; D.3.2 [Language Classifications]: Func-
tional languages; F.3.2 [Semantics of Programming Languages]:
Algebraic approaches to semantics

Keywords Remote procedure call, batched request, free monad,
free applicative functor

1. Introduction
Distributed computing is hard. Peter Deutsch famously codified a
number of fallacies of distributed computing (Deutsch 1994) con-
cerning issues such as reliability, cost, and heterogeneity, which
together make distributed systems trickier to get right than cen-
tralized systems. Distributed computing middleware is usually de-
signed to make remote procedure calls look as much like local calls
as possible, in order to hide these issues, and the unwary developer
is thereby tempted into falling foul of every one of Deutsch’s falla-
cies.

This paper is specifically concerned with the second of Deutsch’s
fallacies, that “latency is zero”. Good practice in the modular con-
struction of centralized systems is to provide fine-grained inter-
faces, so that each procedure deals with a single cohesive concern.
But for a distributed system, this practice has to be weighed against
the second fallacy: because of latency, it is much more efficient to
provide coarse-grained interfaces, handling as much as possible
with a single call and hence a single network round-trip. For ex-
ample, Josuttis (2007) argues that whereas a local service dealing
with customer records might provide separate methods to obtain a
customer’s name, address, and payment details, a remote service
ought instead (or additionally) to provide one compound method

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

Haskell’16, September 18-22, 2016, Nara, Japan
Copyright c© 2016 ACM 978-1-4503-4434-0/16/09. . . $15.00
DOI: http://dx.doi.org/10.1145/2976002.2976005

to obtain all three attributes at once. Similarly, Fowler (2002) de-
scribes the REMOTE FAÇADE pattern, which “provides a coarse-
grained façade on fine-grained objects to improve efficiency over a
network”.

But coarse-grained interfaces cause a different problem, charac-
terized by Deutsch’s third fallacy, namely that “bandwidth is infi-
nite”. What if a client requires just a customer’s name and address
and not the payment details? Calling separate methods for each at-
tribute wastes a round trip. Calling the compound method to ob-
tain three attributes then discarding one of them wastes bandwidth.
Implementing a dedicated method to return just the two attributes
needed by this particular client violates modularity and clutters the
interface—the number of different attribute combinations is expo-
nential in the number of attributes. What is the poor distributed
system developer to do?

One compromise presents itself: design the remote system to
provide a fine-grained interface, promoting modularity, but also
support a mechanism to batch up multiple small requests into a
single compound request, minimizing latency. Of course, this only
works in the case that later requests are independent of earlier
responses. This idea has been rediscovered several times. Liskov
et al. (1988) describe a stream abstraction for remote procedure
calls, which among other features can batch together a sequence of
small independent requests into a single message packet. Bogle and
Liskov (1994) adapt this idea to batched futures, whereby cross-
domain calls are simply collected together at the point of request,
but not sent until the client actually needs the results. Ibrahim
et al. (2009) introduce remote batch invocation as an extension
to Java, automatically compounding remote method invocations.
These recurring reinventions justify Fowler’s REMOTE FAÇADE
pattern.

More recently, Gill et al. (2015) describe the REMOTE MONAD
design pattern in Haskell, whereby remote procedure calls in the
IO monad can be queued, as long as they are asynchronous and
return void (“commands”); the queue is flushed and all requests
sent when queueing a synchronous call or one that returns a result
(a “procedure”). Gill et al. also point out that applicative functors
are a more appropriate abstraction than monads for batched remote
invocation, because they precisely capture the constraint that later
requests must be independent of earlier responses.

Still, Gill et al.’s construction is more ad hoc than it need be.
They implement queueing from first principles, combining the IO
monad for interaction with the State monad for maintaining the
queue. Moreover, in order to batch together procedures in the ap-
plicative style, they make essential use of Haskell’s lazy evaluation
and rather sophisticated recursive do notation (Erkök and Launch-
bury 2000). The contribution of this paper is to show that their so-
phistication is unnecessary, and that the necessary definitions can
essentially be obtained for free—specifically, by exploiting free ap-
plicative functors.

This paper is a literate Haskell program; the extracted code
is available online at http://www.cs.ox.ac.uk/jeremy.
gibbons/publications/delivery.hs.

2. Scenario
In order to facilitate comparison, we adopt Gill et al. (2015)’s
‘internet-of-things toaster’ example. This is a device that can be
instructed to display a message on a built-in screen, to toast for a
certain amount of time, and to sense and return its current temper-
ature:

data Command ::∗→ ∗ where
Say :: String→ Command ()
Toast :: Int → Command ()
Sense :: () → Command Integer

Note the essential use of a generalized algebraic datatype: each
Command includes its argument as part of its value, and expresses
its return type via a phantom type index (Hinze 2003).

The main point to be made with the choice of example is to con-
trast the high-level, typed, computationally intensive capabilities
available on the client side against the low-level, perhaps untyped,
more limited capabilities on the server side. Nothing of significance
in what follows would change if a different example were chosen—
for example, one with some truly stateful server-side behaviour.

2.1 Serialization
We will need to serialize and deserialize commands for transmis-
sion. For simplicity, we will use plain Strings as the wire format.
Serialization is so straightforward that it can be derived automati-
cally:

deriving instance Show (Command r)

Deserialization is rather harder, because of the GADT: what type
should be returned when deserializing a given string? We deliber-
ately do not try to do anything too fancy type-wise here, because de-
serialization of a command happens on the server side where there
are limited capabilities. However, we can at least read the ‘name’
of a command:

data Name = NSay | NToast | NSense
deriving Show

and return that, together with any remaining payload:

readCommand :: String→ (Name,String)
readCommand s = head $

[(NSay,s′) | ("Say",s′) ← lex s]++
[(NToast,s′) | ("Toast",s′)← lex s]++
[(NSense,s′) | ("Sense",s′)← lex s]

Here, lex ::String→ [(String,String)] is a standard Haskell function
to extract the first token from a string that is assumed to represent
an expression. For example,

readCommand (show (Toast 3)) = (NToast," 3")

Meanwhile, back on the client side, if we already know the com-
mand, we can use its type index to tell us what type of reply to
expect from a response string, using the same polymorphic read
function in each case:

readReply :: Command r→ String→ r
readReply (Say) s = read s
readReply (Toast) s = read s
readReply (Sense) s = read s

One could make explicit the association between commands and
their names by lifting the type Name to a data kind (Yorgey et al.

2012); but this does not seem to prevent all possible ways of
mismatching requests and responses, so in the interests of keeping
things simple we will refrain from making this refinement.

2.2 Remote Procedure Calls
We will communicate with our toaster by remote procedure calls
over TCP. We factorize the code as follows. We represent the server
behaviour as a function of type

type ServerBehaviour = String→ IO String

It should accept a serialized request as its argument, and return
a serialized response as its result, typically having I/O effects on
the toaster in the process, but not itself performing any network
interaction. We subject this function to a server-side wrapper

server :: ServerBehaviour→ IO ()

that encapsulates the toaster’s network interaction. We identify
a complementary wrapper encapsulating the client-side network
interaction

client :: String→ IO String

which takes a serialized request as argument and returns a serialized
response as result.

Given these server and client wrapper functions, and a suitable
argument ts ::ServerBehaviour representing the toaster’s behaviour,
we can run the server program

mainServer :: IO ()
mainServer = server ts

on one machine (representing the toaster), and the client program

mainClient :: String→ IO ()
mainClient s = do

response← client s
putStrLn ("Received "++ response)

on another. The server and client wrappers are there solely to
facilitate the network interaction; in particular, when mainClient s
is run on the same machine as mainServer, then the combined
behaviour should be the same as running

do
response← ts s
putStrLn ("Received "++ response)

without any network interaction. Since networking per se is not
our primary interest, we relegate to Appendix A simple Haskell
implementations of the server and client wrappers, and turn our
attention to the ServerBehaviour.

2.3 Individual Requests
We now have the ingredients to send individual requests to the
toaster. If we define the toaster’s behaviour for each of the three
commands as follows:

execSay :: String→ IO ()
execSay s = putStrLn s
execToast :: Int→ IO ()
execToast n = do putStr ("Toasting...")

threadDelay (1000000×n)
putStrLn ("done!")

execSense :: IO Integer
execSense = randomRIO (0,100)

(for illustrative purposes, execSense simply picks a temperature
uniformly at random between 0 and 100, rather than manipulat-
ing actual hardware), then we can assemble these into the overall
server-side behaviour:

execCommand :: ServerBehaviour
execCommand s = case readCommand s of

(NSay,s′) → do {r← execSay (read s′);return (show r)}
(NToast,s′) → do {r← execToast (read s′);return (show r)}
(NSense,s′)→ do {r← execSense;return (show r)}

commandServer :: IO ()
commandServer = server execCommand

In light of our stated intention that the server side has only limited
and low-level computational capabilities, we would typically not
use Haskell to program it; we would use something lower-level,
like C. Then commandServer should be thought of as a Haskell
specification for the required C implementation.

However, one might perfectly well use Haskell to program an
internet client to interact with the toaster. For example, this client
takes a single command, converts it to a string, sends it as a request,
then reads the appropriate type of result from the response as
determined by the command that was sent:

commandClient :: Command r→ IO r
commandClient c = do

r← client (show c)
return (readReply c r)

Having started commandServer remotely, one can then interact
with the toaster by invoking individual commands locally:

∗Main〉 commandClient (Say "Howdy doodly do!")
∗Main〉 commandClient (Toast 3)
∗Main〉 commandClient (Sense ())
78

3. Free Monads
We now return to the question of batching up multiple requests. As
a first approximation, we can think of this as passing not a single
command from the client for remote execution on the server, but a
whole program built from such commands. Of course, this raises
the question of whether it is reasonable to expect programs to be
mobile in this way: should a toaster have the capability to run a
program? This is indeed a worthy question, and we will return to it
at the end of this section; but for the time being, let us suspend any
disbelief.

The standard technique for representing programs given a syn-
tax of commands is to use free monads:

data FreeM f a = Var a | Com (f (FreeM f a))

For FreeM f to be a monad, we need f to be a functor:

instance Functor f ⇒Monad (FreeM f) where
return = Var
Var a >>= k = k a
Com x>>= k = Com (fmap (>>=k) x)

Informally, the free monad for a functor f is given by trees with el-
ements in the leaves and f -structures of children for internal nodes;
the unit of the monad constructs a leaf, and the multiplication per-
forms substitution. If f is suitably Showable, then so is FreeM f :

deriving instance (Show (f (FreeM f a)),Show a)⇒
Show (FreeM f a)

The datatype Command has the right kind to be a functor, but
because its type parameter is a phantom type, we cannot complete
the definition—given a function f of type r→ r′, there is no general
way to define fmap f :: Command r→ Command r′. However, we
can make Command into a functor if we combine it with a function
from the phantom type:

data Action a = ∀r.Action (Command r,r→ a)
instance Functor Action where

fmap f (Action (c,k)) = Action (c, f · k)

(This can be seen as the embodiment of the dual of the Yoneda
Lemma (Manzyuk 2013).) Now we have an appropriate Functor,
we define Programs in terms of the corresponding free monad:

type Program a = FreeM Action a

We can now define single-step programs (what Plotkin and Power
(2003) call generic effects) for each of the commands:

effect :: Command r→ Program r
effect c = do {Com (Action (c,Var))}
say :: String→ Program ()
say s = effect (Say s)
toast :: Int→ Program ()
toast n = effect (Toast n)
sense :: Program Integer
sense = effect (Sense ())

and then we can write composite programs using do notation—
both those in which requests are independent, like this straight-line
program:

straight :: Program ()
straight = do {say "hello"; toast 3;say "goodbye"}

and those in which later requests depend on earlier responses, like
this branching program:

branch :: Program ()
branch = do {t← sense; if t<80 then toast 3 else say "hot"}

But these programs are difficult to serialize and hence to distribute:
a program like branch, with a sense command anywhere other than
the final step, is in general infinitely branching. Put another way,
there is no good way of defining a show function for Actions, and
hence not for Programs either. However, if we restrict attention to
finitary functors, we can—at least in principle—enumerate all the
branches:

data ActionF a = ∀r.(Bounded r,Enum r)⇒
ActionF (Command r,r→ a)

instance Show a⇒ Show (ActionF a) where
show (ActionF (c,k)) = show c++" "++

show [show (k r) | r← [minBound . .maxBound]]
type ProgramF a = FreeM ActionF a

Here, the Haskell type class Bounded denotes types with a minBound
and maxBound, and Enum denotes types with the succ function
needed for the ‘. .’ notation.

We cannot support the infinitary Sense command that returns an
Integer, because this type is not Bounded; but we could support a
finitary sensing command, returning a value from an enumeration
instead:

data Temperature = Low |Medium | High
deriving (Show,Read,Enum,Bounded)

data CommandF ::∗→ ∗ where
SayF :: String→ CommandF ()
ToastF :: Int → CommandF ()
SenseF :: () → CommandF Temperature

We can now serialize a finitary program to send to the server; what
should the server do when it receives it? First it should determine
whether the program is a plain Var or a Composite:

readFirstFreeM :: String→ (Bool,String)
readFirstFreeM s = head $

[(True,s′) | ("Var",s′)← lex s]++
[(False,s′) | ("Com",s′)← lex s]

If the program is a Var, then the remaining input is the value to be
returned. Otherwise, the server should read the first command; de-
pending on what command this is, the server should read the appro-
priate type of argument, and execute that command. Finally, based
on the result of executing the command, the server should pick the
next branch to follow. In particular, for the SenseF command, there
will be three continuation branches, one for each Temperature, and
the server reads three serialized subprograms and picks one of
them.

execProgram :: String→ IO String
execProgram s = case readFirstFreeM s of
(True,s′)→ return s′

(False,s′)→ case readCommandF s′ of
(NSayF,s′′) → do (m,s′′′)← readOne s′′

execSay m
execProgram (head (read s′′′))

(NToastF,s′′) → do (n,s′′′)← readOne s′′

execToast n
execProgram (head (read s′′′))

(NSenseF,s′′)→ do ((),s′′′)← readOne s′′

t← execSenseF
execProgram (read s′′′ !! fromEnum t)

Here, readOne is a simple wrapper:

readOne :: Read a⇒ String→ IO (a,String)
readOne s = return (head (reads s))

(Note that the three Composite cases of execProgram are really of
the same form; for example, the Say command returns a () result,
and fromEnum () = 0, and so that case could have been written
instead

do (m,s′′′)← readOne s′′

t← execSay m
execProgram (read s′′′ !! fromEnum t)

But we have stuck with the clearer and simpler but less regular
version above.) Now we can run

programServer :: IO ()
programServer = server execProgram

on the server, and

programClient :: (Show a,Read a)⇒ ProgramF a→ IO a
programClient p = do {r← client (show p);return (read r)}

on the client, and pass a whole program for remote execution.
Still, one might argue that it is a lot to expect of a toaster—

even an internet-of-things toaster—for it to be able to parse nested
serialized commands, select the appropriate branch, and so on. This
brings us back to the question at the start of this section, and the
discussion in the introduction: frameworks for batched requests
typically insist that later requests should be independent of earlier
responses; that is, that there should be no branching in a batch. The
ProgramF type allows branching, so is too general. We show next
how to enforce the no-branching constraint.

4. Free Applicative Functors
Free monads are the standard technique for capturing syntactic de-
scriptions of programs over a particular signature of primitive ac-
tions. However, as we have seen, such programs are typically too

general to be considered appropriate as batched requests for re-
mote execution. In particular, it is arguably unreasonable to expect
a mere toaster to be able to interpret a branching program. More-
over, branching programs can quickly become very large things to
transmit, especially if individual commands have high out-degree.
We already had to dispense with the infinitary Sense that forms
a Command Integer in favour of the finitary SenseF that forms a
CommandF Temperature; but even then, while an out-degree of 3
may be reasonable, an out-degree of 100 is probably not.

These arguments all lead us to the conclusion that branching
programs are inappropriate for batched requests, and that we should
restrict attention to straight-line programs. It is fine for individual
commands to return results, even results drawn from infinite types
like Integer; but we should ensure that subsequent commands in the
batched request are oblivious to those results. Instead, a sequence
of requests is transmitted to the server, invoked one after the other
but independently, yielding a sequence of results that is returned
to the client, and those two sequences are combined to match up
individual requests with the corresponding results.

This independence of later steps on earlier results is precisely
what characterizes the distinction between monads and applicative
functors (McBride and Paterson 2008). So let us explore what hap-
pens if we try to batch up commands using free applicative functors
rather than free monads. There are several equivalent definitions of
free applicative functors (Capriotti and Kaposi 2014), of which we
pick the following:

data FreeA :: (∗→ ∗)→∗→ ∗ where
Pure :: a→ FreeA f a
More :: f (b→ a)→ FreeA f b→ FreeA f a

Informally, a value of type FreeA f a0 is a right-nested sequence of
the form (fs0,(fs1,(...,(fsn−1,x)...))), where n > 0, each element
fsi has type f (ai+1 → ai), and the rightmost element x has type
an. Note that the type variable b in the type of More is implicitly
existentially quantified, as are each of the ai (for i>0) above.

Provided that f is a functor, that datatype can be given the
structure of an applicative functor, as follows:

instance Functor f ⇒ Applicative (FreeA f) where
pure = Pure
Pure f ~ y = fmap f y
More h x~ y = More (fmap uncurry h) (pure (,)~ x~ y)

Now we no longer need to insist that result types of commands
are bounded and enumerable, because we are no longer going to
enumerate them—they need only be readable:

data ActionA a = ∀r.Read r⇒ ActionA (Command r,r→ a)

This ActionA type is straightforwardly a functor, as Action was,

instance Functor ActionA where
fmap f (ActionA (c,k)) = ActionA (c, f · k)

and so we can assemble applicative programs from it:

type ProgramA a = FreeA ActionA a

We can make single-step programs for each of the commands,
much as before:

effectA :: Read r⇒ Command r→ ProgramA r
effectA c = More (ActionA (c,λ r ()→ r)) (Pure ())
sayA :: String→ ProgramA ()
sayA s = effectA (Say s)
toastA :: Int→ ProgramA ()
toastA n = effectA (Toast n)
senseA :: ProgramA Integer
senseA = effectA (Sense ())

Here’s a straight-line program that senses the temperature, toasts
for a bit, and senses the temperature again. Later commands are by
construction independent of the results of earlier ones.

straightA :: ProgramA (Integer, Integer)
straightA = pure (λ t () t′→ (t, t′))~ senseA~ toastA 3~ senseA

We still can’t serialize a whole program; in particular, we can’t
serialize arbitrary pure functions such as λ t () t′→ (t, t′) above. But
crucially, now we don’t need to—all we need to do is to serialize
the commands, not the specific mechanism for collating replies:

serializeA :: ProgramA a→ [String]
serializeA (Pure) = []
serializeA (More (ActionA (c,)) p) = show c : serializeA p

If we have remembered the program, and retrieved a sequence of
responses, we can essentially zip the two together to match up
individual requests with their responses:

deserializeA :: ProgramA a→ [String]→ a
deserializeA (Pure a) [] = a
deserializeA (More (ActionA (c,k)) p) (s : ss)

= k (readReply c s) (deserializeA p ss)

Now all our server needs to be able to do is to unpack a flat
sequence of requests, execute the requested commands one after
the other, and pack up a flat sequence of responses:

execStraight :: String→ IO String
execStraight s = do let reqs = read s

resps← sequence (map execCommand reqs)
return (show resps)

This can be deployed via

straightServer :: IO ()
straightServer = server execStraight
straightClient :: ProgramA a→ IO a
straightClient p = do r← client (show (serializeA p))

return (deserializeA p (read r))

This behaviour is, we argue, not too much to expect of a toaster.

5. Remote Monads for Free
Let us compare our story to Gill et al. (2015)’s REMOTE MONAD
design pattern, which inspired this paper. They do not use free
monads or free applicative functors; instead, they build the batch-
ing mechanism from scratch. They distinguish between an asyn-
chronous Command, which returns no result, and a synchronous
Procedure r, which returns a result of type r; these datatypes to-
gether are analogous to our Command r, since we make no distinc-
tion between synchronous and asynchronous requests.

Their remote Device is essentially a String → IO r function,
where the return type r is () for asynchronous commands and String
for synchronous procedures; it is analogous to our execCommand.
Their individual Command and Procedure requests can be seri-
alized and sent to a Device by their send function, analogous to
our commandClient. Their ‘strong remote monad’ Remote is a
combination of ReaderT Device for accessing a particular device,
StateT [Command] for maintaining a buffer of unsent commands,
and IO for actual remote communication. Individual Commands get
appended to the buffer but not invoked immediately. An individual
Procedure is combined with any buffered Commands into a Packet:

data Packet r = Packet [Command] (Procedure r)

and it is only Packets that are sent across the wire. (There is a
separate function to flush the buffer; this could have been avoided,
if they had provided a skip :: Procedure () instead.)

Their datatype Packet is a simplification of the free applicative
functor. It represents a non-empty sequence of requests, where
the last is synchronous and the others all asynchronous; but it
is built from scratch. By construction, later requests in a packet
are independent of the results of earlier ones—indeed, the earlier
ones have no results on which to depend. But this is a stronger
constraint that necessary; as we have seen, it would be fine to
allow intermediate requests to return results, so long as they do not
influence later requests.

Gill et al. do introduce a ‘strong remote applicative functor’,
motivated by the same observation that we make that “applicative
functors are fundamentally better suited to remoteness than monads
are: subsequent applicative computations cannot depend on the
results of prior computations”, allowing them to batch multiple
Procedures into a single Packet. However, they make essential use
of lazy evaluation and recursive do notation in order to match up
responses with their requests (their send function is now cyclic). We
show that these language features are unnecessary; our approach,
with free applicative functors, will work just as well in a simple
eager language as a sophisticated lazy one.

Neither we nor Gill et al. provide implicit batching of separate
requests. In both cases, the programmer has to explicitly partition
the program’s requests into batches, and it is only the actual assem-
bly of each group of requests into a single batch that happens more
or less for free. Other approaches are similar in this respect; for
example, Ibrahim et al. (2009) introduce a batch construct into
Java in order to explicitly group requests into batches, and Cook
(2010) declares that “although the result itself is elegant and useful,
what is more significant is the realization that the original problems
[of implicit batching] cannot be solved using existing programming
language constructs and libraries. This work calls into question our
assumption that general-purpose programming languages are truly
general-purpose”—unless presumably they have some kind of re-
flection mechanism or meta-object protocol.

6. Conclusions
To summarize: remote procedure calls benefit from batching of in-
dependent requests in order to reduce round-trips; batched requests
are essentially serializations of small programs; the traditional tech-
nique for serializing programs is to use free monads; free monads
are really too liberal for this problem, because they accommodate
(possibly infinitary) branching; free applicative functors, however,
represent serialized straight-line programs; free applicative func-
tors therefore have precisely the right restrictions for batching re-
mote requests.

We have discussed the relationship with the REMOTE MONAD
pattern (Gill et al. 2015); our novel contributions are that free con-
structions are the essence of program serialization, and that batch-
ing is fundamentally about applicative functors rather than monads.
Marlow et al. (2014) present something like Gill et al.’s ‘strong re-
mote applicative functor’, but they too build from first principles
an analogue of the free applicative functor (their datatype Fetch).
They also describe a proposed Haskell extension ApplicativeDo
(Marlow 2015), whereby applicative computations can be writ-
ten in the monadic do notation, and the concurrency inherent in
independent requests can be reconstructed. This has just been in-
corporated into GHC (GHC 8.0), and it will be a very convenient
provision—our applicative program straightA in Section 4 is much
less clear than the similar monadic program straight in Section 3.

Acknowledgments
This work was partially supported by UK EPSRC grant number
EP/K020919/1 on A Theory of Least Change for Bidirectional
Transformations, and partially undertaken during a Visiting Profes-

sorship at the National Institute of Informatics in Tokyo, hosted by
Zhenjiang Hu; I am very grateful for these sources of support. The
idea itself was inspired by Gill et al. (2015), who kindly shared and
discussed their code with me. I am also grateful to Matthew Picker-
ing, who suggested that I look at free applicatives, to Michał Gajda,
who pointed me to the example RPC code used in Section 2.2 and
in the Appendix, and to Tim Zakian and Andy Gill and the anony-
mous reviewers for helpful comments.

References
P. Bogle and B. Liskov. Reducing cross domain call overhead using

batched futures. In Object-Oriented Programming: Systems, Languages
and Applications, pages 314–354. ACM, 1994. doi: 10.1145/191080.
191133.

P. Capriotti and A. Kaposi. Free applicative functors. In P. Levy and
N. Krishnaswami, editors, Mathematically Structured Functional
Programming, volume 153 of EPTCS, pages 2–30, 2014. doi:
10.4204/EPTCS.153.2.

W. R. Cook. Breaking through to remote data and services. In
S. Padmanabhuni, S. K. Aggarwal, and U. Bellur, editors, India
Software Engineering Conference, pages 161–162. ACM, 2010. doi:
10.1145/1730874.1730877. Abstract of keynote talk.

L. P. Deutsch. The eight fallacies of distributed computing. https:
//blogs.oracle.com/jag/resource/Fallacies.html,
1994.

L. Erkök and J. Launchbury. Recursive monadic bindings. In International
Conference on Functional Programming, pages 174–185. ACM, 2000.
doi: 10.1145/351240.351257.

M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

GHC 8.0. Glasgow Haskell Compiler Users’ Guide, Version 8.0.1,
May 2016. http://downloads.haskell.org/˜ghc/8.0.
1/docs/html/.

A. Gill, N. Sculthorpe, J. Dawson, A. Eskilson, A. Farmer, M. Grebe,
J. Rosenbluth, R. Scott, and J. Stanton. The Remote Monad design
pattern. In B. Lippmeier, editor, Haskell Symposium, pages 59–70.
ACM, 2015. doi: 10.1145/2804302.2804311.

R. Hinze. Fun with phantom types. In J. Gibbons and O. de Moor, editors,
The Fun of Programming, Cornerstones in Computing, pages 245–262.
Palgrave, 2003. ISBN 1-4039-0772-2.

A. Ibrahim, Y. Jiao, E. Tilevich, and W. R. Cook. Remote batch invocation
for compositional object services. In S. Drossopoulou, editor, European
Conference on Object-Oriented Programming, volume 5653 of Lecture
Notes in Computer Science, pages 595–617. Springer, 2009. doi:
10.1007/978-3-642-03013-0 27.

N. M. Josuttis. SOA in Practice: The Art of Distributed System Design.
O’Reilly, 2007.

B. Liskov, T. Bloom, D. Gifford, R. Scheifler, and W. Weihl. Com-
munication in the Mercury system. In Hawaii International Con-
ference on System Sciences, pages 178–187. IEEE, 1988. doi:
10.1109/HICSS.1988.11804.

O. Manzyuk. Co-Yoneda Lemma. https://oleksandrmanzyuk.
wordpress.com/2013/01/18/co-yoneda-lemma/, Jan.
2013.

S. Marlow. Applicative do-notation. https://ghc.haskell.org/
trac/ghc/wiki/ApplicativeDo, Mar. 2015.

S. Marlow, L. Brandy, J. Coens, and J. Purdy. There is no fork: An
abstraction for efficient, concurrent, and concise data access. In
International Conference on Functional Programming, pages 325–337.
ACM, 2014. doi: 10.1145/2628136.2628144.

C. McBride and R. Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(1):1–13, 2008. doi: 10.1017/
S0956796807006326.

G. Plotkin and J. Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69–94, 2003. doi: 10.1023/A:
1023064908962.

J. Tibell, maintainer. Network.Socket.Bytestring doc-
umentation. http://hackage.haskell.org/
package/network-bytestring-0.1.3.4/docs/
Network-Socket-ByteString.html.

B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis,
and J. P. Magalhães. Giving Haskell a promotion. In Types in
Language Design and Implementation, pages 53–66. ACM, 2012. doi:
10.1145/2103786.2103795.

A. Server and Client Wrappers
The server and client wrappers discussed in Section 2.2 are mi-
nor modifications of the example shown in the documentation for
the Network.Socket.ByteString library (Tibell). To use these defini-
tions, we need the following imports:

import Control.Monad (unless, forever)
import Network.Socket hiding (recv)
import Network.Socket.ByteString (recv,sendAll)
import qualified Data.ByteString as S
import qualified Data.ByteString.Char8 as C

The server is set up to listen on port 3000:

server :: ServerBehaviour→ IO ()
server f = withSocketsDo $ do

(addr:)← getAddrInfo
(Just (defaultHints {addrFlags = [AI PASSIVE]}))
Nothing (Just "3000")

s← socket (addrFamily addr) Stream defaultProtocol
bindSocket s (addrAddress addr)
listen s 1
forever $ do

(conn,)← accept s
talk f conn
sClose conn

where talk f c repeatedly reads up to 4096 bytes from connection c,
converts the corresponding bytestring to a string, applies f to it, and
sends the result back, until it reads null:

talk :: (String→ IO String)→ Socket→ IO ()
talk f conn =
do req← recv conn 4096

unless (S.null req)$ do
resp← f (C.unpack req)
sendAll conn (C.pack resp)
talk f conn

And for the client, we have

client :: String→ IO String
client request = withSocketsDo $ do
(addr:)← getAddrInfo

Nothing (Just "127.0.0.1") (Just "3000")
s← socket (addrFamily addr) Stream defaultProtocol
connect s (addrAddress addr)
sendAll s (C.pack request)
response← recv s 4096
sClose s
return (C.unpack response)

The hard-wired IP address (here, for demonstration purposes, the
loopback address "127.0.0.1") and port ("3000") in client
are for the machine on which the server is running and the port on
which it is listening.

