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Abstract. Generic programming aims to increase the flexibility of pro-
gramming languages, by expanding the possibilities for parametriza-
tion — ideally, without also expanding the possibilities for uncaught
errors. The term means different things to different people: parametric
polymorphism, data abstraction, meta-programming, and so on. We use
it to mean polytypism, that is, parametrization by the shape of data
structures rather than their contents. To avoid confusion with other
uses, we have coined the qualified term datatype-generic programming
for this purpose. In these lecture notes, we expand on the definition of
datatype-generic programming, and present some examples of datatype-
generic programs. We also explore the connection with design patterns in
object-oriented programming; in particular, we argue that certain design
patterns are just higher-order datatype-generic programs.

1 Introduction

Generic programming is about making programming languages more flexible
without compromising safety. Both sides of this equation are important, and
becoming more so as we seek to do more and more with computer systems,
while becoming ever more dependent on their reliability.

The term ‘generic programming’ means different things to different people,
because they have different ideas about how to achieve the common goal of com-
bining flexibility and safety. To some people, it means parametric polymorphism;
to others, it means libraries of algorithms and data structures ; to another group,
it means reflection and meta-programming; to us, it means polytypism, that is,
type-safe parametrization by a datatype. Rather than trying to impose our mean-
ing on the other users of the term, or risk confusion by ignoring the other uses,
we have chosen to coin the more specific term datatype-generic programming.
We look in more detail at what we mean by ‘datatype-generic programming’,
and how it relates to what others mean by ‘generic programming’, in Section 2.

Among the various approaches to datatype-generic programming, one is what
we have called elsewhere origami programming [38], and what others have vari-
ously called constructive algorithmics [12, 123], Squiggol [93], bananas and lenses

[101], the Bird-Meertens Formalism [122, 52], and the algebra of programming [9],
among other names. This is a style of functional (or relational) programming
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based on maps, folds, unfolds and other such higher-order structured recursion
operators. Malcolm [92], building on earlier theoretical work by Hagino [56],
showed how the existing ad-hoc datatype-specific recursion operators (maps and
folds on lists, on binary trees, and so on) could be unified datatype-generically.
We explain this school of programming in Section 3.

The origami approach to datatype-generic programming offers a number of
benefits, not least of which is the support it provides for reasoning about recur-
sive programs. But one of the reasons for our interest in the approach is that it
seems to offer a good way of capturing precisely the essence of a number of the so-
called Gang of Four design patterns, or reusable abstractions in object-oriented
software [35]. This is appealing, because without some kind of datatype-generic
constructs, these patterns can only be expressed extra-linguistically, ‘as prose,
pictures, and prototypes’, rather than captured in a library, analysed and reused.
We argue this case in Section 4, by presenting higher-order datatype-generic pro-
grams capturing Origami, a small suite of patterns for recursive data structures.

A declarative style of origami programming seems to capture well the compu-
tational structure of at least some of these patterns. But because they are usually
applied in an imperative setting, they generally involve impure aspects too; a
declarative approach does not capture those aspects well. The standard approach
the functional programming community now takes to incorporating impure fea-
tures in a pure setting is by way of monads [105, 135], which elegantly model
all sorts of impure effects such as state, I/O, exceptions and non-determinism.
More recently, McBride and Paterson have introduced the notion of idiom or
applicative functor [95], a slight generalization of monads with better compo-
sitional properties. One consequence of their definitions is a datatype-generic
means of traversing collections ‘idiomatically’, incorporating both pure accumu-
lations and impure effects. In Section 5, we explore the extent to which this
construction offers a more faithful higher-order datatype-generic model of the
Iterator design pattern specifically.

These lecture notes synthesize ideas and results from earlier publications,
rather than presenting much that is new. In particular, Section 3 is a summary
of two earlier sets of lectures [37, 38]; Section 4 recaps the content of a tutorial
presented at ECOOP [39] and OOPSLA [40], and subsequently published in a
short paper [41]; Section 5 reports on some more recent joint work with Bruno
Oliveira [44]. Much of this work took place within the EPSRC-funded Datatype-

Generic Programming project at Oxford and Nottingham, of which this Spring
School marks the final milestone.

2 Generic programming

Generic programming usually manifests itself as a kind of parametrization. By
abstracting from the differences in what would otherwise be separate but similar
specific programs, one can make a single unified generic program. Instantiating
the parameter in various ways retrieves the various specific programs one started
with. Ideally, the abstraction increases expressivity, when some instantiations of
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the parameter yield new programs in addition to the original ones; otherwise, all
one has gained is some elimination of duplication and a warm fuzzy feeling. The
different interpretations of the term ‘generic programming’ arise from different
notions of what constitutes a ‘parameter’.

Moreover, a parametrization is usually only called ‘generic’ programming if it
is of a ‘non-traditional’ kind; by definition, traditional kinds of parametrization
give rise only to traditional programming, not generic programming. (This is
analogous to the so-called AI effect : Rodney Brooks, director of MIT’s Artificial
Intelligence Laboratory, quoted in [79], observes that ‘Every time we figure out a
piece of [AI], it stops being magical; we say, “Oh, that’s just a computation” ’.)
Therefore, ‘genericity’ is in the eye of the beholder, with beholders from dif-
ferent programming traditions having different interpretations of the term. No
doubt by-value and by-reference parameter-passing mechanisms for arguments
to procedures, as found in Pascal [74], look like ‘generic programming’ to an
assembly-language programmer with no such tools at their disposal.

In this section, we review a number of interpretations of ‘genericity’ in terms
of the kind of parametrization they support. Parametrization by value is the kind
of parameter-passing mechanism familiar from most programming languages,
and while (as argued above) this would not normally be considered ‘generic
programming’, we include it for completeness; parametrization by type is what
is normally known as polymorphism; parametrization by function is sometimes
called ‘higher-order programming’, and is really just parametrization by value
where the values are functions; parametrization by structure involves passing
‘modules’ with a varying private implementation of a fixed public signature or
interface; parametrization by property is a refinement of parametrization by
structure, whereby operations of the signature are required to satisfy some laws;
parametrization by stage allows programs to be partitioned, with meta-programs
that generate object programs; and parametrization by shape is to parametriza-
tion by type as ‘by function’ is to ‘by value’.

2.1 Genericity by value

One of the first and most fundamental techniques that any programmer learns
is how to parametrize computations by values. Those old enough to have been
brought up on structured programming are likely to have been given exercises
to write programs to draw simple ASCII art: Whatever the scenario, students
soon realise the futility of hard-wiring fixed behaviour into programs:

procedure Triangle4 ;
begin

WriteString ("*");WriteLn ;
WriteString ("**");WriteLn;
WriteString ("***");WriteLn ;
WriteString ("****");WriteLn

end;

and the benefits of abstracting that behaviour into parameters:
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procedure Triangle (Side : cardinal);
begin

var Row ,Col : cardinal;
for Row := 1 to Side do begin

for Col := 1 to Row do WriteChar (’*’);
WriteLn

end

end

Instead of a parameterless program that always performs the same computation,
one ends up with a program with formal parameters, performing different but
related computations depending on the actual parameters passed: a function.

2.2 Genericity by type

Suppose that one wants a datatype of lists of integers, and a function to append
two such lists. These are written in Haskell [112] as follows:

data ListI = NilI | ConsI Integer ListI

appendI :: ListI → ListI → ListI

appendI NilI ys = ys

appendI (ConsI x xs) ys = ConsI x (appendI xs ys)

Suppose in addition that one wanted a datatype and an append function for lists
of characters:

data ListC = NilC | ConsC Char ListC

appendC :: ListC → ListC → ListC

appendC NilC ys = ys

appendC (ConsC x xs) ys = ConsC x (appendC xs ys)

It is tedious to repeat similar definitions in this way, and it doesn’t take much vi-
sion to realise that the repetition is unnecessary: the definitions of the datatypes
ListI and ListC are essentially identical, as are the definitions of the functions
appendI and appendC . Apart from the necessity in Haskell to choose distinct
names, the only difference in the two datatype definitions is the type of list
elements, Integer or Char . Abstracting from this hard-wired constant leads to
a single polymorphic datatype parametrized by another type, the type of list
elements:

data List a = Nil | Cons a (List a)

(The term ‘parametric datatype’ would probably be more precise, but ‘polymor-
phic datatype’ is well established.) Unifying the two list datatypes in this way
unifies the two programs too, into a single polymorphic program:

append :: List a → List a → List a

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)
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There is a precise technical sense in which the process of abstraction by which
one extracts type parameters reflects that by which one extracts value param-
eters. In Haskell, our definition of the polymorphic datatype List introduces a
polymorphic value Nil of type List a for any type a; in the polymorphic lambda
calculus [51, 116], the polymorphism is made manifest in a type parameter: Nil

would have type Λ a.List a abstracted on the list element type a, and Nil τ
would have type List τ for some specific element type τ .

This kind of type abstraction is called parametric polymorphism. It entails
that the instantiated behaviour is uniform in the type parameter, and cannot
depend on what actual parameter it is instantiated to. Informally, this means
that a polymorphic function cannot examine elements of polymorphic types, but
can merely rearrange them. Formally, this intuition was captured by Reynolds
in his abstraction theorem [117], generalized by Wadler to the parametricity

theorem and popularized under the slogan ‘Theorems for Free’ [132]. In the case
of append , (a corollary of) the free theorem states that, for any function a of
the same type as append ,

a (mapL f xs) (mapL f ys) = mapL f (a xs ys)

where the function mapL (explained in Section 2.3 below) applies its first argu-
ment, a function, to every element of its second argument, a list.

Related to but not quite the same as parametric polymorphism is what
Cardelli and Wegner [16] call inclusion polymorphism. This is the kind of poly-
morphism arising in object-oriented languages. Consider, for example, the fol-
lowing Java method:

public void addObserver (Observer obs){
observers .addElement (obs);
}

This method takes a parameter obs of varying type, as does the Haskell func-
tion append ; moreover, it behaves uniformly in the type of the actual parameter
passed. However, it doesn’t accept parameters of an arbitrary type, like append

does, but only parameters whose type is included in the type Observer . (Al-
ternatively, one could say that the method takes a parameter exactly of type
Observer , but that subtypes of Observer are subsumed within this type.) We
discuss the relationship between inclusion polymorphism and parametric poly-
morphism, and between these two and so-called ad-hoc forms of polymorphism,
in Section 2.8 below.

One well-established interpretation of the term ‘generic programming’ is ex-
actly as embodied by parametric polymorphism and inclusion polymorphism.
Cardelli and Wegner [16, p. 475] state that ‘the functions that exhibit paramet-
ric polymorphism are [. . . ] called generic functions’, and give length :: List a →
Integer as an example. Paradigmatic languages exhibiting parametric polymor-
phism are ML [104] and Haskell [112], which provide (variations on) Hindley–
Milner–Damas typing [103, 23]. These have influenced the ‘generics’ in recent
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versions of Java [13] and C# [80]. (On the other hand, CLOS [81] also uses the
term ‘generic function’, but in a sense related to inclusion polymorphism.)

Ada 83 [1] had a notion of generics, by which procedures and ‘packages’ (mod-
ules) can be parametrized by values, types, procedures (which gives a kind of
higher-order parametrization, as discussed in Section 2.3) and packages (which
gives what we call parametrization by structure, and discuss in Section 2.4).
For example, the code below shows: (1) the declaration of a generic subprogram
Swap, parametrized by a type Element ; (2) the generic body of the subprogram,
which makes use of the formal parameter Element ; and (3) the instantiation of
the generic unit to make a non-generic subprogram that may be used in the
same way as any other subprogram.

generic

type Element is private;
procedure Swap (X ,Y : in out Element); -- (1)

procedure Swap (X ,Y : in out Element) is -- (2)
Z : constant Element := X ;

begin

X := Y ;
Y := Z ;

end Swap;

procedure SwapInteger is new Swap (Integer); -- (3)

However, Ada generic units are templates for their non-generic counterparts,
as are the C++ templates they inspired, and cannot be used until they are
instantiated; Cardelli and Wegner observe that this gives the advantage that
instantiation-specific compiler optimizations may be performed, but aver that
‘in true polymorphic systems, code is generated only once for every generic
procedure’ [16, p. 479].

2.3 Genericity by function

Higher-order programs are programs parametrized by other programs. We men-
tioned above that Ada 83 generics allow parametrization by procedure; so do
languages in the Algol family [111, 108, 138, 128]. However, the usefulness of
higher-order parametrization is greatly reduced in these languages by the inabil-
ity to express actual procedure parameters anonymously in place. Higher-order
parametrization comes into its own in functional programming, which promotes
exactly this feature: naturally enough, making functions first-class citizens.

Suppose one had strings, represented as lists of characters, that one wanted
to convert to uppercase, perhaps for the purpose of normalization:

stringToUpper :: List Char → List Char

stringToUpper Nil = Nil

stringToUpper (Cons x xs) = Cons (toUpper x ) (stringToUpper xs)
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where toUpper converts characters to uppercase. Suppose also that one had a
list of integers for people’s ages, which one wanted to classify into young and
old, represented as booleans:

classifyAges :: List Integer → List Bool

classifyAges Nil = Nil

classifyAges (Cons x xs) = Cons (x < 30) (classifyAges xs)

These two functions, and many others, follow a common pattern. What differs is
in fact a value, but one that is higher-order rather than first-order: the function
to apply to each list element, which in the first case is the function toUpper , and
in the second is the predicate (<30). What is common between the two is the
function mapL, mentioned in Section 2.2 above:

mapL :: (a → b)→ (List a → List b)
mapL f Nil = Nil

mapL f (Cons x xs) = Cons (f x ) (mapL f xs)

We treat this kind of parametrization separately from parametrization by
first-order value, because it has far-reaching consequences. Among other things,
it lets programmers express control structures within the language, rather than
having to extend the language. For example, one might already consider mapL

to be a programmer-defined control construct. For another example, recall the
parametrically polymorphic append function from Section 2.2:

append :: List a → List a → List a

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

A second function, concat , concatenates a list of lists into one long list:

concat :: List (List a)→ List a

concat Nil = Nil

concat (Cons xs xss) = append xs (concat xss)

A third sums a list of integers:

sum :: List Integer → Integer

sum Nil = 0
sum (Cons x xs) = x + sum xs

Each of the three programs above traverses its list argument in exactly the
same way. Abstracting from their differences allows us to capture that control
structure as a pattern of recursion. The common pattern is called a ‘fold’:

foldL :: b → (a → b → b)→ List a → b

foldL n c Nil = n

foldL n c (Cons x xs) = c x (foldL n c xs)
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(We write the suffix ‘L’ to denote an operation over lists; Sections 2.7 and 3
discuss generalizations to other datatypes. It so happens that this function is
equivalent to the function foldr — ‘fold from the right’ — in the Haskell standard
library [112].) Instances of foldL replace the list constructors Nil and Cons with
supplied arguments:

append xs ys = foldL ys Cons xs

concat = foldL Nil append

sum = foldL 0 (+)

In fact, mapL turns out to be another instance of foldL:

mapL f = foldL Nil (Cons ◦ f )

where ◦ is function composition (itself another higher-order operator).

2.4 Genericity by structure

Perhaps the most popular interpretation of the term ‘generic programming’ is
as embodied in the C++ Standard Template Library, an object-oriented class
library providing containers, iterators and algorithms for many datatypes [4]. In-
deed, some writers have taken the STL style as the definition of generic program-
ming; for example, Siek et al. [120] define generic programming as ‘a methodol-
ogy for program design and implementation that separates data structures and
algorithms through the use of abstract requirement specifications’.

As the name suggests, the STL is implemented using the C++ template
mechanism, which offers similar facilities to Ada generics: class- and function
templates are parametrized by type- and value parameters. (Indeed, a predeces-
sor to the STL was an Ada library for list processing [107].) Within the STL
community more than any other, it is considered essential that genericity im-
poses no performance penalty [25, 129].

The containers that are provided in the STL are parametrically polymorphic
datatypes, parametrized by the element type; these are further classified into se-

quence containers (such as Vector , String and Deque) and associative containers

(such as Set , Multiset and Map).
Bulk access to the elements of a container type is provided by iterators. These

are abstractions of C++ pointers to elements, and so support pointer arithmetic.
They are further classified according to what pointer operations they support: in-

put iterators (which can be incremented, copied, assigned, compared for equality,
and read from — that is, used as r-values), output iterators (which are similar,
but can only be written to — that is, used as l-values), forwards iterators (which
refine both input and output iterators), bidirectional iterators (which can also
retreat, that is, supporting decrement), and random-access iterators (which can
move any number of steps in one operation, that is, supporting addition).

Iterators form the interface between container types and algorithms over
data structures. The algorithms provided in the STL include many general-
purpose operations such as searching, sorting, filtering, and so on. Rather than
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operating directly on containers, an algorithm takes one or more iterators as
parameters; the algorithm is generic, in the sense that it applies to any container
that supports the appropriate kind of iterator.

For example, here is a code fragment (taken from [4, §1.1]) implementing a
simplified version of the Unix sort utility.

int main () {
vector〈string〉v ;
string tmp;
while (getline (cin , tmp))

v .push back (tmp);
sort (v .begin (), v .end ());
copy (v .begin (), v .end (), ostream iterator〈string〉(cout , "\n"));
}

It shows a container v (a vector of strings); applications of generic algorithms
(sort and copy); and a pair of iterators (‘pointers’ v .begin () and v .end () to the
beginning and just past-the-end of the vector v) mediating between them.

In the C++ approach, the exact set of requirements on parameters (such
as the iterator passed to a generic algorithm, or the element type passed to a
generic container) is called a concept. A concept encapsulates the operations
required of a formal type parameter and provided by an actual type parameter.
Algorithms and containers are parametrized by the concept, and instantiated by
passing a structure that implements the concept. For example, the STL’s ‘input
iterator’ concept encompasses pointer-like types which support comparison for
equality, copying, assignment, reading, and incrementing. The success of the STL
lies pretty much in the careful choice of such concepts as an organizing principle
for a large library; as Siek and Lumsdaine [121] explain, the same principle has
worked for many other C++ class libraries too.

The C++ template mechanism provides no means to define a concept explic-
itly; it is merely an informal artifact rather than a formal construct. (However,
work is proceeding to formalize concepts as language constructs; see for exam-
ple [54, 121, 53].) In that sense, it is a retrograde step from earlier languages
supporting data abstraction. For instance, Liskov’s CLU language [89] from the
mid-1970s had a where clause, for specifying the requirements (names and sig-
natures) on a type parameter to a cluster ; the following declaration [89, p13]
for a cluster set parametrized by a type t states that t must support a binary
predicate equal .

set = cluster [t : type] is create,member , size, insert , delete, elements

where t has equal : proctype (t , t) returns (bool)

This retrograde step is somewhat ironic, since CLU’s clusters were, via Ada
generics, the inspiration for the C++ template mechanism in the first place.

The notion in Haskell analogous to C++’s concepts, and the basis for current
proposals to to provide linguistic support for concepts in C++ [53], is the type

class, which also captures the requirements required of and provided by types,



10 Jeremy Gibbons

but which is formally part of the language. For example, a function sort in
Haskell might have the following type:

sort :: Ord a ⇒ List a → List a

The constraint ‘Ord a ⇒’ is a type class context ; the function sort is not para-
metrically polymorphic, because it is not applicable to all types of list element,
only those in the type class Ord . The type class Ord includes exactly those types
that support the operation 6, and might be defined in Haskell as follows:

class Ord a where

(6) :: a → a → Bool

(The actual definition is more complex than this [112]; but this simpler version
serves for illustration.) Various types are instance of the type class, by virtue of
supporting a comparison operation:

instance Ord Integer where

(m 6 n) = isNonNegative (n −m)

Attempting to apply 6 to two values of some type that is not in the type class
Ord , or sort to a list of such values, is a type error, and is caught statically. In
contrast, while the equivalent error using the C++ STL ‘less-than comparable’
concept is still a statically caught type error, it is caught at template instan-
tiation time, since there is no way of declaring the uninstantiated template’s
dependence on the concept.

As we stated above, the kind of polymorphism provided by C++ STL con-
cepts and Haskell type classes is not parametric, because it is not universal.
For the same reason, neither is it inclusion polymorphism, even though C++
concepts and Haskell type classes both form hierarchies. In fact, the member
functions of the Haskell type class, such as the operation (6) :: Ord a ⇒ a →
a → Bool , are ad-hoc polymorphic, which is to say non-uniform: there is no
requirement, and indeed it is generally not the case, that definitions of 6 on
different types will be implemented using the same code.

2.5 Genericity by property

We have seen that generic programming in the C++ sense revolves around con-
cepts, which are abstractions of the requirements on and provisions of a type
parameter, specifically in terms of the operations available. In fact, in typical
usage, concepts are more elaborate than this; as well as signatures of operations,
the concept might specify the laws these operations satisfy, and non-functional
characteristics such as the asymptotic complexities of the operations in terms of
time and space. For example, the ‘less-than comparable’ concept in the STL
stipulates that the ordering should be a partial ordering, and the ‘random-
access iterator’ concept stipulates that addition to and subtraction from the
pointer should take constant time. Correctness of operation signatures can be
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verified at instantiation time, and this information is useful to a compiler, for
example in providing efficient dispatching. The laws satisfied by operations and
non-functional characteristics such as complexity cannot be verified in general,
although testing frameworks such as QuickCheck [18] and JUnit [34] can go some
way towards validation; this information nevertheless might still be useful to a
sophisticated optimizing compiler.

In the Haskell setting, the formal part of a type class declaration states the
names and signatures of the operations provided, and the equally important
but informal accompanying documentation may stipulate additional properties,
typically in the form of axioms. For example, the Ord type class might stipulate
that 6 forms a total order or a total preorder; we make use later of a type class
Monoid :

class Monoid m where

∅ :: m
(⊕) :: m → m → m

with the usual monoid laws:

x ⊕ (y ⊕ z ) = (x ⊕ y) ⊕ z

x ⊕ ∅ = x

∅ ⊕ x = x

In Section 3, we make use of a two-parameter version of the following one-
parameter Functor type class:

class Functor f where

fmap :: (a → b)→ (f a → f b)

(Strictly speaking, Functor is a constructor class rather than a type class, since
its members are type constructors rather than base types: in Haskell terminology,
‘types of kind ∗ → ∗’ rather than ‘types of kind ∗’, where kinds classify types in
the same way that types classify values. But in these lecture notes, we use the
term ‘type class’ even for classes of type constructors.) The intention is that this
class contains types supporting functions like mapL:

instance Functor List where

fmap = mapL

The informal intention ‘functions like mapL’ can be captured more formally in
terms of the functor laws:

fmap (f ◦ g) = fmap f ◦ fmap g

fmap id = id

In Section 5, we generalize the Monad type class, a subclass of Functor :

class Functor m ⇒ Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b
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(The Haskell 98 standard library [112] omits the Functor context, but without
any increase in generality, since the operation fmap can be reconstructed from
return and >>=.) Instances of Monad correspond to types of ‘computations with
impure effects’. The exception monad is a simple instance; a ‘computation yield-
ing an a’ might fail.

data Maybe a = Nothing | Just a

foldM :: b → (a → b)→ Maybe a → b

foldM y f Nothing = y

foldM y f (Just x ) = f x

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x ) = Just (f x )

instance Monad Maybe where

return a = Just a

mx >>= k = foldM Nothing k mx

raise :: Maybe a -- raise an exception
raise = Nothing

trycatch :: (a → b)→ b → Maybe a → b -- handle an exception
trycatch f y = foldM y f

Another instance is the state monad, in which a ‘computation yielding an a’ also
affects a state of type s , amounting to a function of type s → (a, s):

newtype State s a = St (s → (a, s))

runSt :: State s a → s → (a, s)
runSt (St f ) = f

instance Functor (State s) where

fmap f mx = St (λs → let (a, s ′) = runSt mx s in (f a, s ′))

instance Monad (State s) where

return a = St (λs → (a, s))
mx >>= k = St (λs → let (a, s ′) = runSt mx s in runSt (k a) s ′)

put :: s → State s () -- write to the state
put s = St (λ → ((), s))

get :: State s s -- read from the state
get = St (λs → (s , s))

Haskell provides a convenient piece of syntactic sugar called ‘do notation’ [134],
allowing an imperative style of programming for monadic computations. This
is defined by translation into expressions involving return and >>=; a simplified
version of the full translation [112, §3.14] is as follows:

do {mx } = mx

do {x ← mx ; stmts } = mx >>= λx → do {stmts}
do { mx ; stmts } = mx >>= λ()→ do {stmts}
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In addition to the laws inherited from the Functor type class, a Monad instance
must satisfy the following three laws:

return a >>= k = k a

m >>= return = m

m >>= (λx → k x >>= h) = (m >>= k) >>= h

The first two are kinds of unit law, and the last one a kind of associative law.
Their importance is in justifying the use of the imperative style of syntax; for
example, they justify flattening of nested blocks:

do {p;do {q; r }; s } = do {p; q; r ; s }

We leave it to the reader to verify that the Maybe and State instances of the
Monad class do indeed satisfy these laws.

More elaborate examples of genericity by property arise from more sophisti-
cated mathematical structures. For example, Horner’s rule for polynomial eval-
uation [21] can be parametrized by a semiring, an extremal path finder by a
regular algebra [5, 7], and a greedy algorithm by a matroid or greedoid struc-
ture [27, 85]. Mathematical structures are fertile grounds for finding more such
examples; the Axiom programming language for computer algebra [73, 14] now
has a library of over 10,000 ‘domains’ (types).

Whereas genericity by structure is an outcome of the work on abstract
datatypes [90], genericity by property follows from the enrichment of that work
to include equational constraints, leading to algebraic specifications [28, 29], as
realised in languages such as Larch [55] and Casl [20, 8].

2.6 Genericity by stage

Another interpretation of the term ‘generic programming’ covers various flavours
of metaprogramming, that is, the development of programs that construct or ma-
nipulate other programs. This field encompasses program generators such as lex
[75, §A.2] and yacc [75, §A.3], reflection techniques allowing a program (typically
in a dynamically typed language) to observe and possibly modify its structure
and behaviour [33], generative programming for the automated customization,
configuration and assembly of components [22], and multi-stage programming for
partitioning computations into phases [125].

For example, an active library [129] might perform domain-specific optimiza-
tions such as unrolling inner loops: rather than implementing numerous slightly
different components for different loop bounds, the library could provide a single
generic metaprogram that specializes to them all. A compiler could even be con-
sidered a generative metaprogram: rather than writing machine code directly,
the programmer writes meta-machine code in a high-level language, and leaves
the generation of the machine code itself to the compiler.

In fact, the C++ template mechanism is surprisingly expressive, and already
provides some kind of metaprogramming facility. Template instantiation takes
place at compile time, so one can think of a C++ program with templates as a
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two-stage computation; as noted above, several high-performance numerical li-
braries rely on templates’ generative properties [129]. The template instantiation
mechanism turns out to be Turing complete; Unruh [126] gives the unsettling
example of a program whose compilation yields the prime numbers as error
messages, Czarnecki and Eisenecker [22] show the Turing-completeness of the
template mechanism by implementing a rudimentary Lisp interpreter as a tem-
plate meta-program, and Alexandrescu [3] presents a tour de force of unexpected
applications of templates.

2.7 Genericity by shape

Recall the polymorphic datatype List introduced in Section 2.2, and the corre-
sponding polymorphic higher-order function foldL in Section 2.3; recall also the
polymorphic datatype Maybe and higher-order function foldM from Section 2.5.
One might also have a polymorphic datatype of binary trees:

data Btree a = Tip a | Bin (Btree a) (Btree a)

The familiar process of abstraction from a collection of similar programs would
lead one to identify the natural pattern of recursion on these trees as another
higher-order function:

foldB :: (a → b)→ (b → b → b)→ Btree a → b

foldB t b (Tip x ) = t x

foldB t b (Bin xs ys) = b (foldB t b xs) (foldB t b ys)

For example, instances of foldB reflect a tree, and flatten it to a list, in both
cases replacing the tree constructors Tip and Bin with supplied constructors:

reflect :: Btree a → Btree a

reflect = foldB Tip nib where nib xs ys = Bin ys xs

flatten :: Btree a → List a

flatten = foldB wrap append where wrap x = Cons x Nil

We have seen that each kind of parametrization allows some recurring pat-
terns to be captured. For example, parametric polymorphism unifies commonal-
ity of computation, abstracting from variability in irrelevant typing information,
and higher-order functions unify commonality of program shape, abstracting
from variability in some of the details.

But what about the two higher-order polymorphic programs foldL and foldB?
We can see that they have something in common: both replace constructors by
supplied arguments; both have patterns of recursion that follow the datatype
definition, with one clause per datatype variant and one recursive call per sub-
structure. But neither parametric polymorphism, nor higher-order functions, nor
module signatures suffice to capture this kind of commonality.

In fact, what differs between the two fold operators is the shape of the data
on which they operate, and hence the shape of the programs themselves. The
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kind of parametrization required is by this shape; that is, by the datatype or type
constructor (such as List or Tree) concerned. We call this datatype genericity;
it allows the capture of recurring patterns in programs of different shapes. In
Section 3 below, we explain the definition of a datatype-generic operation fold

with the following type:

fold :: Bifunctor s ⇒ (s a b → b)→ Fix s a → b

Here, in addition to the type a of collection elements and the fold body (a func-
tion of type s a b → b), the shape parameter s varies; the type class Bifunctor

expresses the constraints we place on its choice. The shape parameter deter-
mines the shape of the input data; for one instantiation of s , the type Fix s a

is isomorphic to List a, and for another instantiation it is isomorphic to Tree a.
(So the parametrization is strictly speaking not by the recursive datatype List

itself, but by the bifunctor s that yields the shape of Lists.) The same shape
parameter also determines the type of the fold body, supplied as an argument
with which to replace the constructors.

The Datatype-Generic Programming project at Oxford and Nottingham [43]
has been investigating programs parametrized by datatypes, that is, by type
constructors such as ‘list of’ and ‘tree of’. Such programs might be paramet-

rically datatype-generic, as with fold above, when the behaviour is uniform in
the shape parameter. Since the shape parameter is of higher kind, this is a
higher-order parametricity property, but it is of the same flavour as first-order
parametricity [117, 132], stating a form of coherence between instances of fold

for different shapes. A similar class of programs is captured by Jay’s theory of
shapely polymorphism [72].

Alternatively, such programs might be ad-hoc datatype-generic, when the be-
haviour exploits that shape in some essential manner. Typical examples of the
latter are pretty printers and marshallers; these can be defined once and for all
for lists, trees, and so on, in a typesafe way, but not in a way that guarantees any
kind of uniformity in behaviour at the instances for different shapes. This ap-
proach to datatype genericity has been variously called polytypism [68], structural

polymorphism [118] or typecase [131, 26], and is the meaning given to ‘generic
programming’ by the Generic Haskell [60, 91] team. Whatever the name, func-
tions are defined inductively by case analysis on the structure of datatypes; the
different approaches differ slightly in the class of datatypes covered. For example,
here is a Generic Haskell definition of datatype-generic encoding to a list of bits.

type Encode{[∗]} t = t → [Bool ]
type Encode{[k → l ]} t = ∀a. Encode{[k ]} a → Encode{[l ]} (t a)

encode{|t :: k |} :: Encode{[k ]} t

encode{|Char |} c = encodeChar c

encode{|Int |} n = encodeInt n

encode{|Unit |} unit = [ ]
encode{|:+:|} ena enb (Inl a) = False : ena a

encode{|:+:|} ena enb (Inr b) = True : enb b

encode{|:×:|} ena enb (a :×: b) = ena a ++ enb b
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The generic function encode works for any type constructed from characters and
integers using sums and products; these cases are defined explicitly, and the cases
for type abstraction, application and recursion are generated automatically. Note
that instances of encode are very different for different type parameters, not even
taking the same number of arguments. In fact, the instances have different kinds

(as mentioned in Section 2.5, and discussed further in Hinze and others’ two
chapters [61, §3.1] and [63, §2.1] in this volume), and type-indexed values have

kind-indexed types [57].

As we have seen, ad-hoc datatype-generic definitions are typically given by
case analysis over the structure of types. One has the flexibility to define different
behaviour in different branches, and maybe even to customize the behaviour for
specific types; consequently, there is no guarantee or check that the behaviours
in different branches conform, except by type. This is in contrast to the para-
metrically datatype-generic definition of fold cited above; there, one has less
flexibility, but instances at different types necessarily behave uniformly. Ad-hoc
datatype genericity is more general than parametric; for example, it is difficult to
see how to define datatype-generic encoding parametrically, and conversely, any
parametric definition can be expanded into an ad-hoc one. However, parametric
datatype genericity offers better prospects for reasoning, and is to be preferred
when it is applicable.

We consider parametric datatype genericity to be the ‘gold standard’, and
in the remainder of these lecture notes, we concentrate on parametric datatype-
generic definitions where possible. In fact, it is usually the case that one must
provide an ad-hoc datatype-generic hook initially, but then one can derive a num-
ber of parametrically datatype-generic definitions from this. In Sections 3 and 4,
we suppose an (ad-hoc) datatype-generic operator bimap, and from this derive
various (parametrically) datatype-generic recursion operators. In Section 5.2 we
suppose a different (ad-hoc) datatype-generic operator traverse, and from this
derive various (parametrically) datatype-generic traversal operators. Clarke and
Löh [19] use the name generic abstractions for parametrically datatype-generic
functions defined in terms of ad-hoc datatype-generic functions.

Datatype genericity is different from various other interpretations of generic
programming outlined above. It is not just a matter of parametric polymorphism,
at least not in a straighforward way; for example, parametric polymorphism ab-
stracts from the occurrence of ‘integer’ in ‘lists of integers’, whereas datatype
genericity abstracts from the occurrence of ‘list’. It is not just interface con-
formance, as with concept satisfaction in the STL; although the latter allows
abstraction from the shape of data, it does not allow exploitation of the shape
of data, as required for the data compression and marshalling examples above.
Finally, it is not metaprogramming: although some flavours of metaprogramming
(such as reflection) can simulate datatype-generic computations, they typically
do so at the cost of static checking.
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2.8 Universal vs ad-hoc genericity

Strachey’s seminal notes on programming languages [124] make the fundamen-
tal distinction between parametric polymorphism, in which a function works
uniformly on a range of types, usually with a common structure, and ad-hoc

polymorphism, in which a function works (or appears to work) on several dif-
ferent types, but these need not have a common structure, and the behaviour
might be different at different types.

Cardelli and Wegner [16] refine this distinction. They rename the former to
universal polymorphism, and divide this into parametric polymorphism again
and inclusion polymorphism. The difference between the two arises from the
different ways in which a value may have multiple types: with parametric poly-
morphism, values and functions implicitly or explicitly take a type parameter, as
discussed in Section 2.2; with inclusion polymorphism, types are arranged into
a hierarchy, and a value of one type is simultaneously a value of all its super-
types. Cardelli and Wegner also refine ad-hoc polymorphism into overloading, a
syntactic mechanism in which the same function name has different meanings in
different contexts, and coercion, in which a function name has just one meaning,
but semantic conversions are applied to arguments where necessary.

The uppermost of these distinctions can be applied to other kinds of param-
eter than types, at least informally. For example, one can distinguish between
universal parametrization by a number, as in the structured program in Sec-
tion 2.1 to draw a triangle of a given size, and ad-hoc parametrization by a
number, as in ‘press 1 to listen to the message again, press 2 to return the
call, press 3 to delete the message. . . ’-style interfaces. In the former, there is
some coherence between the instances for different numbers, but in the latter
there is not. For another example, sorting algorithms that use only comparisons
obey what is known as the zero-one principle [21]: if they work correctly on
sequences of numbers drawn from the set {0, 1}, then they work correctly on
arbitrary number sequences (and more generally, where the element type is lin-
early ordered). Therefore, sorting algorithms defined using only comparisons are
universally parametric in the list elements [24], whereas sorting algorithms using
other operations (such as radix sort, which depends on the ‘digits’ or fields of
the list elements) are ad-hoc parametric, and proving their correctness requires
more effort. Data independence techniques in model checking [87, 88] are a third
illustration. All of these seem to have some relation to the notion of naturality
in category theory, and (perhaps not surprisingly) Reynolds’ notion of para-
metricity. For Cardelli and Wegner, ‘universal polymorphism is considered true
polymorphism, whereas ad-hoc polymorphism is some kind of apparent poly-
morphism whose polymorphic character disappears at close range’; by the same
token, we might say that universal parametrization is truly generic, whereas

ad-hoc parametrization is only apparently generic.

2.9 Another dimension of classification

Backhouse et al. [7] suggest a second dimension of classification of parametriza-
tion: not only in terms of the varieties of entity that can be abstracted, but
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also in terms of what support is provided for this abstraction — the varieties of
construct from which these entities may be abstracted, and whether instances
of those entities can be expressed anonymously in place, or must be defined out
of line and referred to by name.

For an example of the second kind of distinction, consider values and types
in Haskell 98: values can be parametrized by values (for example, a function
preds taking an integer n to the list [n,n − 1, ..., 1] can be considered as a list
parametrized by an integer), types can be parametrized by types (for example,
the polymorphic list type [a ] is parametrized by the element type a), values
can be parametrized by types (for example, the empty list [ ] is polymorphic,
and really stands for a value of type [a ] for any type a), but types cannot
easily be parametrized by values (to capture a type of ‘lists of length n’, one
requires dependent types [96], or some lightweight variant such as generalized
algebraic datatypes [113, 119]). We referred in Section 2.3 to an example of the
third kind of distinction: although procedures in languages in the Algol family
can be parametrized by other procedures, actual procedure parameters must be
declared out of line and passed by name, rather than being defined on the fly as
lambda expressions.

3 Origami programming

There is a branch of the mathematics of program construction devoted to the re-
lationship between the structure of programs and the structure of the data they
manipulate [92, 101, 6, 9, 37]. We saw a glimpse of this field in Sections 2.3, 2.5
and 2.7, with the definitions of foldL, foldM and foldB respectively: the struc-
ture of each program reflects that of the datatype it traverses, for example in the
number of clauses and the number and position of any recursive references. In
this section, we explore a little further. Folds are not the only program structure
that reflects data structure, although they are often given unfair emphasis [48];
we outline unfolds and builds too, which are two kinds of dual (producing struc-
tured data rather than consuming it), and maps, which are special cases of these
operators, and some simple combinations of all of these. There are many other
datatype-generic patterns of computation that we might also have considered:
paramorphisms [98], apomorphisms [130], histomorphisms and futumorphisms
[127], metamorphisms [42], dynamorphisms [78], destroy [36], and so on.

The beauty of all of these patterns of computation is the direct relationship
between their shape and that of the data they manipulate; we go on to explain
how both can be parametrized by that shape, yielding datatype-generic patterns
of computation. We recently coined the term origami programming [38] for this
approach to datatype-generic programming, because of its dependence on folds
and unfolds.

3.1 Maps and folds on lists

Here is the datatype of lists again.
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data List a = Nil | Cons a (List a)

The ‘map’ operator for a datatype applies a given function to every element
of a data structure. In Section 2.3, we saw the (higher-order, polymorphic, but
list-specific) map operator for lists:

mapL :: (a → b)→ (List a → List b)
mapL f Nil = Nil

mapL f (Cons x xs) = Cons (f x ) (mapL f xs)

The ‘fold’ operator for a datatype collapses a data structure down to a value.
Here is the (again higher-order, polymorphic, but list-specific) fold operator for
lists from Section 2.3:

foldL :: b → (a → b → b)→ List a → b

foldL e f Nil = e

foldL e f (Cons x xs) = f x (foldL e f xs)

As a simple application of foldL, the function filterL (itself higher-order, poly-
morphic, but list-specific) takes a predicate p and a list xs, and returns the
sublist of xs consisting of those elements that satisfy p.

filterL :: (a → Bool)→ List a → List a

filterL p = foldL Nil (add p)
where add p x xs = if p x then Cons x xs else xs

As we saw in Section 2.3, the functions sum, append and concat are also instances
of foldL.

3.2 Unfolds on lists

The ‘unfold’ operator for a datatype grows a data structure from a value. In a
precise technical sense, it is the dual of the ‘fold’ operator. That duality isn’t so
obvious in the implementation for lists below, but it becomes clearer with the
datatype-generic version we present in Section 3.8.

unfoldL :: (b → Bool )→ (b → a)→ (b → b)→ b → List a

unfoldL p f g x

= if p x then Nil

else Cons (f x ) (unfoldL p f g (g x ))

For example, here are two instances. The function preds returns the list of pre-
decessors of an integer (which will be an infinite list if that integer is negative);
the function takeWhile takes a predicate p and a list xs, and returns the longest
initial segment of xs all of whose elements satisfy p.

preds :: Integer → List Integer

preds = unfoldL (0 ) id pred where pred n = n − 1
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takeWhile :: (a → Bool )→ List a → List a

takeWhile p = unfoldL (firstNot p) head tail

where firstNot p Nil = True

firstNot p (Cons x xs) = not (p x )

3.3 Origami for binary trees

We might go through a similar exercise for a datatype of internally labelled
binary trees.

data Tree a = Empty | Node a (Tree a) (Tree a)

The ‘map’ operator applies a given function to every element of a tree.

mapT :: (a → b)→ (Tree a → Tree b)
mapT f Empty = Empty

mapT f (Node x xs ys) = Node (f x ) (mapT f xs) (mapT f ys)

The ‘fold’ operator collapses a tree down to a value.

foldT :: b → (a → b → b → b)→ Tree a → b

foldT e n Empty = e

foldT e n (Node x xs ys) = n x (foldT e n xs) (foldT e n ys)

For example, the function inorder collapses a tree down to a list.

inorder :: Tree a → List a

inorder = foldT Nil glue

glue x xs ys = append xs (Cons x ys)

The ‘unfold’ operator grows a tree from a value.

unfoldT :: (b → Bool )→ (b → a)→ (b → b)→ (b → b)→ b → Tree a

unfoldT p f g h x

= if p x then Empty

else Node (f x ) (unfoldT p f g h (g x ))
(unfoldT p f g h (h x ))

For example, the Calkin–Wilf tree, illustrated in Figure 1, contains each of the
positive rationals exactly once:

cwTree :: Tree Rational

cwTree = unfoldT (const False) frac left right (1, 1)
where frac (m,n) = m % n

left (m,n) = (m,m + n)
right (m,n) = (n + m,n)
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Fig. 1. The first few levels of the Calkin–Wilf tree

Here, const a is the function that always returns a, and the operator % con-
structs a rational from its numerator and denominator. For a full derivation of
this algorithm, see [2, 49]; briefly, the paths in the tree correspond to traces of
Euclid’s algorithm computing the greatest common divisor of the numerator and
denominator.

Another example of an unfold is given by the function grow that generates
a binary search tree from a list of elements.

grow :: Ord a ⇒ List a → Tree a

grow = unfoldT isNil head littles bigs

littles (Cons x xs) = filterL (6 x ) xs

bigs (Cons x xs) = filterL (>x ) xs

(where isNil is the predicate that holds precisely of empty lists). As with the
function sort mentioned in Section 2.4, grow has a type qualified by the context
Ord a: the element type must be ordered.

3.4 Hylomorphisms

An unfold followed by a fold is a common pattern of computation [101]; the
unfold generates a data structure, and the fold immediately consumes it. For
example, here is a (higher-order, polymorphic, but list-specific) hylomorphism
operator for lists, and an instance for computing factorials: first generate the
predecessors of the input using an unfold, then compute the product of these
predecessors using a fold.

hyloL :: (b → Bool )→ (b → a)→ (b → b)→ c → (a → c → c)→ b → c

hyloL p f g e h = foldL e h ◦ unfoldL p f g

fact :: Integer → Integer

fact = hyloL (0 ) id pred 1 (∗)

With lazy evaluation, the intermediate data structure is not computed all at
once. It is produced on demand, and each demanded cell consumed immediately.
In fact, the intermediary can be deforested altogether.
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hyloL :: (b → Bool )→ (b → a)→ (b → b)→ c → (a → c → c)→ b → c

hyloL p f g e h x

= if p x then e else h (f x ) (hyloL p f g e h (g x ))

A similar definition can be given for binary trees, as shown below, together with
an instance giving a kind of quicksort (albeit not a very quick one: it is not
in-place, it has a bad space leak, and it takes quadratic time).

hyloT :: (b → Bool )→ (b → a)→ (b → b)→ (b → b)→
c → (a → c → c → c)→ b → c

hyloT p f g1 g2 e h x

= if p x then e

else h (f x ) (hyloT p f g1 g2 e h (g1 x ))
(hyloT p f g1 g2 e h (g2 x ))

qsort :: Ord a ⇒ List a → List a

qsort = hyloT isNil head littles bigs Nil glue

3.5 Short-cut fusion

Unfolds capture a highly structured pattern of computation for generating re-
cursive data structures. There exist slight generalizations of unfolds, such as
monadic unfolds [109, 110], apomorphisms [130] and futumorphisms [127], but
these still all conform to the same structural scheme, and not all programs that
generate data structures fit this scheme [46]. Gill et al. [50] introduced an oper-
ator they called build for unstructured generation of data, in order to simplify
the implementation and broaden the applicability of deforestation optimizations
as discussed in the previous section. During the Spring School, Malcolm Wallace
proposed the alternative term ‘tectomorphism’ for build , maintaining the Greek
naming theme.

The idea behind build is to allow the identification of precisely where in a
program the nodes of a data structure are being generated; then it is straight-
forward for a compiler to fuse a following fold, inlining functions to replace those
constructors and deforesting the data structure altogether. The operator takes
as argument a program with ‘holes’ for constructors, and plugs those holes with
actual constructors.

buildL :: (∀b. b → (a → b → b)→ b)→ List a

buildL g = g Nil Cons

The function buildL has a rank-two type; the argument g must be parametrically
polymorphic in the constructor arguments, in order to ensure that all uses of
the constructors are abstracted. (In fact, the argument g is the Church encoding
of a list as a polymorphic lambda term, and buildL converts that encoding to a
list as a familiar data structure [59].) We argued above that unfoldL is a dual
to foldL in one sense; we make that sense clear in Section 3.8. In another sense,
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buildL is foldL’s dual: whereas the fold deletes constructors and replaces them
with something else, the build inserts those constructors.

The beauty of the idea is that fusion with a following fold is simple to state:

foldL e f (buildL g) = g e f

Perhaps more importantly, it is also easy for a compiler to exploit.
Build operators are strictly more expressive than unfolds. For instance, it is

possible to define unfoldL in terms of buildL:

unfoldL :: (b → Bool )→ (b → a)→ (b → b)→ b → List a

unfoldL p f g b = buildL (h b)
where h b n c = if p b then n else c (f b) (h (g b) n c)

However, some functions that generate lists can be expressed as an instance of
buildL and not of unfoldL [46]; the well-known fast reverse is an example:

reverse xs = buildL (λn c → foldL id (λx g → g ◦ c x ) xs n)

The disadvantage of buildL compared to unfoldL is a consequence of its unstruc-
tured approach: the former does not support the powerful universal properties

that greatly simplify program calculation with the latter [37].
Of course, there is nothing special about lists in this regard. One can define

build operators for any datatype:

buildT :: (∀b. b → (a → b → b → b)→ b)→ Tree a

buildT g = g Empty Node

3.6 Datatype genericity

As we have already argued, data structure determines program structure [64].
It therefore makes sense to abstract from the determining shape, leaving only
what programs of different shape have in common. What datatypes such as List

and Tree have in common is the fact that they are recursive — which is to say,
a datatype Fix , parametrized both by an element type a of basic kind (a plain
type, such as integers or strings), and by a shape type s of higher kind (a type
constructor, such as ‘pairs of’ or ‘lists of’, but in this case with two arguments
rather than one).

data Fix s a = In (s a (Fix s a))

out :: Fix s a → s a (Fix s a)
out (In x ) = x

Equivalently, we could use a record type with a single named field, and define
both the constructor In and the destructor out at once.

data Fix s a = In{out :: s a (Fix s a)}
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The generic datatype Fix is what the specific datatypes List and Tree have
in common; the shape parameter s is what varies. Here are three instances of Fix

using different shapes: lists and internally labelled binary trees as seen before,
and also a datatype of externally labelled binary trees.

data ListF a b = NilF | ConsF a b

type List a = Fix ListF a

data TreeF a b = EmptyF | NodeF a b b

type Tree a = Fix TreeF a

data BtreeF a b = TipF a | BinF b b

type Btree a = Fix BtreeF a

Note that the types List and Tree here are equivalent to but different from the
types List in Section 3.1 and Tree in Section 3.3.

The datatype Fix s a is a recursive type; the type constructor Fix ties the
recursive knot around the shape s . Typically, as in the three instances above,
the shape s has several variants, including a ‘base case’ independent of the
second argument. But with lazy evaluation, infinite structures are possible, and
so the definition makes sense even with no base case. For example, the datatype
Fix ITreeF a with shape parameter data ITreeF a b = INodeF a b b is a type
of infinite internally labelled binary trees, which would suffice for the cwTree

example above.

3.7 Bifunctors

Not all valid binary type constructors s are suitable for Fix ing; for example,
function types with the parameter appearing in contravariant (source) positions
cause problems. It turns out that we should restrict attention to (covariant)
bifunctors, which support a bimap operation ‘locating’ all the elements. We cap-
ture this constraint as a type class.

class Bifunctor s where

bimap :: (a → c)→ (b → d)→ (s a b → s c d)

Technically speaking, bimap should satisfy some properties:

bimap id id = id

bimap f g ◦ bimap h j = bimap (f ◦ h) (g ◦ j )

These properties cannot be expressed formally in most languages today, as we
noted in Section 2.5, but we might expect to be able to express them in the
languages of tomorrow [18, 115], and they are important for reasoning about
programs using bimap.

All sum-of-product datatypes — that is, consisting of a number of variants,
each with a number of arguments — induce bifunctors. Here are instances for
our three example shapes.
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instance Bifunctor ListF where

bimap f g NilF = NilF

bimap f g (ConsF x y) = ConsF (f x ) (g y)

instance Bifunctor TreeF where

bimap f g EmptyF = EmptyF

bimap f g (NodeF x y z ) = NodeF (f x ) (g y) (g z )

instance Bifunctor BtreeF where

bimap f g (TipF x ) = TipF (f x )
bimap f g (BinF y z ) = BinF (g y) (g z )

The operator bimap is datatype-generic, since it is parametrized by the shape s

of the data:

bimap :: Bifunctor s ⇒ (a → c)→ (b → d)→ (s a b → s c d)

However, because bimap is encoded as a member function of a type class, the
definitions for particular shapes are examples of ad-hoc rather than parametric
datatype genericity; each instance entails a proof obligation that the appropriate
laws are satisfied. It is a bit tedious to have to provide a new instance of Bifunctor

for each new datatype shape; one would of course prefer a single datatype-generic
definition. This is the kind of feature for which Generic Haskell [60] is designed,
and one can almost achieve the same effect in Haskell [17, 58, 26]. One might
hope that these instance definitions would in fact be inferred, in the languages
of tomorrow [97, 62]. But whatever the implementation mechanism, the result
will still be ad-hoc datatype-generic: it is necessarily the case that different code
is used to locate the elements within data of different shapes.

3.8 Datatype-generic recursion patterns

It turns out that the class Bifunctor provides sufficient flexibility to capture a
wide variety of recursion patterns as datatype-generic programs. The datatype-
specific recursion patterns introduced above can all be made generic in a bifunc-
torial shape s ; a little bit of ad-hockery goes a long way. (These definitions are
very similar to those in the PolyP approach [68], discussed in more detail in [61,
§4.2] in this volume.)

map :: Bifunctor s ⇒ (a → b)→ (Fix s a → Fix s b)
map f = In ◦ bimap f (map f ) ◦ out

fold :: Bifunctor s ⇒ (s a b → b)→ Fix s a → b

fold f = f ◦ bimap id (fold f ) ◦ out

unfold :: Bifunctor s ⇒ (b → s a b)→ b → Fix s a

unfold f = In ◦ bimap id (unfold f ) ◦ f

hylo :: Bifunctor s ⇒ (b → s a b)→ (s a c → c)→ b → c

hylo f g = g ◦ bimap id (hylo f g) ◦ f

build :: Bifunctor s ⇒ (∀b. (s a b → b)→ b)→ Fix s a

build f = f In
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The datatype-generic definitions are surprisingly short — shorter even than the
datatype-specific ones. The structure becomes much clearer with the higher level
of abstraction. In particular, the promised duality between fold and unfold is
readily apparent. (But note that these datatype-generic definitions are applicable
only to instantiations of Fix , as in Section 3.6, and not to the datatypes of the
same name in Section 2.)

4 The Origami patterns

Design patterns, as the subtitle of the seminal book [35] has it, are ‘elements
of reusable object-oriented software’. However, within the confines of existing
mainstream programming languages, these supposedly reusable elements can
only be expressed extra-linguistically: as prose, pictures, and prototypes. We
believe that this is not inherent in the patterns themselves, but evidence of a
lack of expressivity in those mainstream programming languages. Specifically,
we argue that what those languages lack are higher-order and datatype-generic
features; given such features, the code parts of some design patterns at least are
expressible as directly reusable library components. The benefits of expressing
patterns in this way are considerable: patterns may then be reasoned about,
type-checked, applied and reused, just as any other abstraction can.

We argue our case by capturing as higher-order datatype-generic programs a
small subset Origami of the Gang of Four (GOF) patterns. (Within these notes,
for simplicity, we equate GOF patterns with design patterns; we use Small Cap-

itals for the names of patterns.) These programs are parametrized along three
dimensions: by the shape of the computation, which is determined by the shape
of the underlying data, and represented by a type constructor (an operation on
types); by the element type (a type); and by the body of the computation, which
is a higher-order argument (a value, typically a function).

Although our presentation is in a functional programming style, we do not
intend to argue that functional programming is the paradigm of the future (what-
ever we might feel personally!). Rather, we believe that functional programming
languages are a suitable test-bed for experimental language features — as evi-
denced by parametric polymorphism and list comprehensions, for example, which
are both now finding their way into mainstream programming languages such
as Java and C#. We expect that the evolution of programming languages will
continue to follow the same trend: experimental language features will be devel-
oped and explored in small, nimble laboratory languages, and the successful ex-
periments will eventually make their way into the outside world. Specifically, we
expect that the mainstream languages of tomorrow will be broadly similar to the
mainstream languages of today — strongly and statically typed, object-oriented,
with an underlying imperative approach — but incorporating additional features
from the functional world — specifically, higher-order operators and datatype
genericity.



Datatype-Generic Programming 27

children

Leaf

+operation():void

Component

+operation():void

+add(g:Component):void

+remove(g:Component):void

+getChild(i:int):Component

Composite

+operation():void

+add(g:Component):void

+remove(g:Component):void

+getChild(i:int):Component

void operation() {

foreach g in children {

g.operation();

}

}

0..*

Fig. 2. The class structure of the Composite pattern

4.1 The Origami family of patterns

In this section we describe Origami, a little suite of patterns for recursive data
structures, consisting of four of the Gang of Four design patterns [35]:

• Composite, for modelling recursive structures;
• Iterator, for linear access to the elements of a composite;
• Visitor, for structured traversal of a composite;
• Builder, to generate a composite structure.

These four patterns belong together. They all revolve around the notion of
a hierarchical structure, represented as a Composite. One way of constructing
such hierarchies is captured by the Builder pattern: a client application knows
what kinds of part to add and in what order, but it delegates to a separate object
knowledge of their implementation and responsibility for creating and holding
them. Having constructed a hierarchy, there are two kinds of traversal we might
perform over it: either considering it as a container of elements, in which case we
use an Iterator for a linear traversal; or considering its shape as significant,
in which case we use a Visitor for a structured traversal.

Composite The Composite pattern ‘lets clients treat individual objects and
compositions of objects uniformly’, by ‘composing objects into tree structures’.
The essence of the pattern is a common supertype (Component), of which both
atomic (Leaf ) and aggregate (Composite) objects are subtypes, as shown in
Figure 2.

Iterator The Iterator pattern ‘provides a way to access the elements of an
aggregate object sequentially without exposing its underlying representation’.



28 Jeremy Gibbons

<<instantiate>>

1

ConcreteIterator

Aggregate

+createIterator():Iterator

Iterator

+first():void

+next():void

+isDone():boolean

+current():Item

return new ConcreteIterator(this);

ConcreteAggregate

+createIterator():Iterator

Fig. 3. The class structure of the External Iterator pattern

It does this by separating the responsibilities of containment (Aggregate) and
iteration (Iterator ). The standard implementation is as an external or client-
driven iterator, illustrated in Figure 3 and as embodied for example in the Java
standard library.

<<create>>

1

ConcreteIterator

Aggregate

+createIterator():Iterator

Iterator

+iterate(Action):void

ConcreteAggregate

+createIterator():Iterator

Action

+apply(Object):Object

ConcreteAction

+apply(Object):Object

Fig. 4. The class structure of the Internal Iterator pattern

In addition to the standard implementation, GOF also discuss internal or
iterator-driven Iterators, illustrated in Figure 4. These might be modelled by
the following pair of Java interfaces:

public interface Action{Object apply (Object o); }
public interface Iterator{void iterate (Action a); }

An object implementing the Action interface provides a single method apply ,
which takes in a collection element and returns (either a new, or the same but
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Element

+accept(v:Visitor):void

ElementA ElementB

ObjectStructure

void accept (Visitor v) {
v.visitElementB(this);

}

+accept(v:Visitor):void
+operationA():void

+accept(v:Visitor):void
+operationB():void

void accept (Visitor v) {
v.visitElementA(this);

foreach b in bs

    b.accept(v);
}

bs

Fig. 5. The class structure of the elements in the Internal Visitor pattern

modified) element. The C++ STL calls such objects ‘functors’, but we avoid that
term here to prevent a name clash with type functors. A collection (implements
a Factory Method [35] to return a separate subobject that) implements the
Iterator interface to accept an Action, apply it to each element in turn, and
replace the original elements with the possibly new ones returned. Internal It-

erators are less flexible than external — for example, it is more difficult to
have two linked iterations over the same collection, and to terminate an itera-
tion early — but they are correspondingly simpler to use.

Visitor

+visitElementA(e:ElementA):void

+visitElementB(e:ElementB):void

Visitor1

+visitElementA(e:ElementA):void

+visitElementB(e:ElementB):void

Visitor2

+visitElementA(e:ElementA):void

+visitElementB(e:ElementB):void

Fig. 6. The class structure of the visitors in the Internal Visitor pattern

Visitor In the normal object-oriented paradigm, the definition of each traver-
sal operation is spread across the whole class hierarchy of the structure being
traversed — typically but not necessarily a Composite. This makes it easy to
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Element

+accept(v:Visitor):void

ElementA ElementB

ObjectStructure

void accept (Visitor v) {
v.visitElementB(this);

}

+accept(v:Visitor):void
+operationA():void

+accept(v:Visitor):void
+operationB():void

void accept (Visitor v) {
v.visitElementA(this);

}

bs

Fig. 7. The class structure of the elements in the External Visitor pattern

add new variants of the datatype (for example, new kinds of leaf node in the
Composite), but hard to add new traversal operations.

The Visitor pattern ‘represents an operation to be performed on the ele-
ments of an object structure’, allowing one to ‘define a new operation without
changing the classes of the elements on which it operates’. This is achieved by
providing a hook for associating new traversals (the method accept in Figure 5),
and an interface for those traversals to implement (the interface Visitor in Fig-
ure 6); the effect is to simulate double dispatch on the types of two arguments,
the element type and the operation, by two consecutive single dispatches.

Visitor

+visitElementA(e:ElementA):void

+visitElementB(e:ElementB):void

Visitor1

+visitElementA(e:ElementA):void

+visitElementB(e:ElementB):void

Visitor2

+visitElementA(e:ElementA):void

+visitElementB(e:ElementB):void

void visitElementA(ElementA a) {

   a.operationA();

   foreach b in a.bs { b.accept(v); }

}

void visitElementB(ElementB b) {

   b.operationB();

}

void visitElementA(ElementA a) {

   foreach b in a.bs { b.accept(v); }

   a.operationA();

}

void visitElementB(ElementB b) {

   b.operationB();

}

Fig. 8. The class structure of the visitors in the External Visitor pattern
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The pattern provides a kind of aspect-oriented programming [82], modular-
izing what would otherwise be a cross-cutting concern, namely the definition of
a traversal. It reverses the costs: it is now easy to add new traversals, but hard
to add new variants. (Wadler [137] has coined the term expression problem for
this tension between dimensions of easy extension.)

As with the distinction between internal and external iterators, there is a
choice about where to put responsibility for managing a traversal. Buchlovsky
and Thielecke [15] use the term ‘Internal Visitor’ for the usual presentation,
with the accept methods of Element subclasses making recursive calls as shown
in Figure 5. Moving that responsibility from the accept methods of the Element

classes to the visit methods of the Visitor classes, as shown in Figures 7 and 8,
yields what they call an External Visitor. Now the traversal algorithm is
not fixed, and different visitors may vary it (for example, between preorder and
postorder). One might say that this latter variation encapsulates simple case
analysis or pattern matching, rather than traversals per se.

Builder Finally, the Builder pattern ‘separates the construction of a com-
plex object from its representation, so that the same construction process can
create different representations’. As Figure 9 shows, this is done by delegating
responsibility for the construction to a separate Builder object — in fact, an
instance of the Strategy pattern [35], encapsulating a strategy for performing
the construction.

1

Product

Builder

+addPart():void

ConcreteBuilder

+addPart():void

+getProduct():Product

Director

Fig. 9. The class structure of the Builder pattern

The GOF motivating example of the Builder pattern involves assembling a
product that is basically a simple collection; that is necessarily the case, because
the operations supported by a builder object take just a part and return no
result. However, they also suggest the possibility of building a more structured
product, in which the parts are linked together. For example, to construct a tree,
each operation to add a part could return a unique identifier for the part added,
and take an optional identifier for the parent to which to add it; a directed acyclic
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graph requires a set of parents for each node, and construction in topological
order; a cyclic graph requires the possibility of ‘forward references’, adding parts
as children of yet-to-be-added parents.

GOF also suggest the possibility of Computing Builders. Instead of con-
structing a large Product and eventually collapsing it, one can provide a separate
implementation of the Builder interface that makes the Product itself the col-
lapsed result, computing it on the fly while building.

4.2 An application of Origami

As an example of applying the Origami patterns, consider the little document
system illustrated in Figure 10. (The code for this example is presented as an
appendix in Section 7.)

• The focus of the application is the Composite structure of documents:
Sections have a title and a collection of sub-Components, and Paragraphs
have a body .

• One can iterate over such a structure using an Internal Iterator, which
acts on every Paragraph . For instance, iterating with a SpellCorrector might
correct the spelling of every paragraph body. (For brevity, we have omitted
the possibility of acting on the Section titles of a document, but it would
be easy to extend the Action interface to allow this. We have also made the
apply method return void , so providing no way to change the identity of
the document elements; more generally, apply could optionally return new
elements, as described under the Iterator pattern above.)

• One can also traverse the document structure with a Visitor, for example
to compute some summary of the document. For instance, a PrintVisitor

might yield a string array with the section titles and paragraph bodies in
order.

• Finally, one can construct such a document using a Builder. We have used
the structured variant of the pattern, adding Sections and Paragraphs as chil-
dren of existing Components via unique int identifiers (only non-negative
ints are returned as identifiers, so a parentless node can be indicated by
passing a negative int). A ComponentBuilder constructs a Component as
expected, whereas a PrintBuilder is a Computing Builder, incorporat-
ing the printing behaviour of the PrintVisitor incrementally and actually
constructing a string array instead.

This one application is a paradigmatic example of each of the four Origami

patterns. We therefore claim that any alternative representation of the patterns
cleanly capturing this structure is a faithful rendition of those patterns. In Sec-
tion 4.3 below, we provide just such a representation, in terms of the higher-order
datatype-generic programs from Section 3.8. Section 4.4 justifies our claim of a
faithful rendition by capturing the structure of the document application in this
alternative representation.
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PrintVisitor

Visitor

+visit(Section):void
+visit(Paragraph):void

Builder

PrintBuilderComponentBuilder

+addSection(int):int
+addParagraph(int):int
+getProduct():Component

+addSection(int):int
+addParagraph(int):int

+addSection(int):int
+addParagraph(int):int
+getProduct():String[]

Action

+apply(Paragraph):void

SpellCorrector

+apply(Paragraph):void
0..*

Component

Paragraph

+body:String

Section

+accept(v:Visitor):void
+getIterator():Iterator
+add(Component):void

+title:String

Iterator

+iterate(action):void

ParagraphIterator SectionIterator

+iterate(Action):void +iterate(Action):void+accept(v:Visitor):void
+getIterator():Iterator

+accept(v:Visitor):void
+getIterator():Iterator

<<create>>

<<create>>

+getResult():String[]

Fig. 10. An application of the Origami patterns
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4.3 Patterns as HODGPs

We now revisit the Origami patterns, showing that each of the four patterns
can be captured using higher-order datatype-generic program (HODGP) con-
structs. However, we consider them in a slightly different order; it turns out that
the datatype-generic representation of the Iterator pattern builds on that of
Visitor.

Composite in HODGP Composites are just recursive data structures. So
actually, these correspond not to programs, but to types. Recursive data struc-
tures come essentially for free in functional programming languages.

data Fix s a = In{out :: s a (Fix s a)}

What is datatype-generic about this definition is that it is parametrized by the
shape s of the data structure; thus, one recursive datatype serves to capture all

(technically regular, that is, first-order fixed points of type functors admitting a
map operation) recursive data structures, whatever their shape.

Visitor in HODGP The Visitor pattern collects fragments of each traversal
into one place, and provides a hook for performing such traversals. The resulting
style matches the normal functional-programming paradigm, in which traversals
are entirely separate from the data structures traversed. No explicit hook is
needed; the connection between traversal and data is made within the traversal
by dispatching on the data, either by pattern matching or (equivalently) by
applying a destructor. What was a double dispatch in the OO setting becomes
in HODGP the choice of a function to apply, followed by a case analysis on the
variant of the data structure. A common case of such traversals, albeit not the
most general, is the fold operator introduced above.

fold :: Bifunctor s ⇒ (s a b → b)→ Fix s a → b

fold f = f ◦ bimap id (fold f ) ◦ out

This too is datatype-generic, parametrized by the shape s : the same function fold

suffices to traverse any shape of Composite structure.

Iterator in HODGP External Iterators give sequential access to the
elements of a collection. The functional approach would be to provide a view of
the collection as a list of elements, at least for read-only access. Seen this way, the
Iterator pattern can be implemented using the Visitor pattern, traversing
using a body combiner that combines the element lists from substructures into
one overall element list.

elements :: Bifunctor s ⇒ (s a (List a)→ List a)→ Fix s a → List a

elements combiner = fold combiner
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With lazy evaluation, the list of elements can be generated incrementally on
demand, rather than eagerly in advance: ‘lazy evaluation means that lists and
iterators over lists are identified’ [136].

In the formulation above, the combiner argument has to be provided to the
elements operation. Passing different combiners allows the same Composite

to yield its elements in different orders; for example, a tree-shaped container
could support both preorder and postorder traversal. On the other hand, it
is clumsy always to have to specify the combiner . One could specify it once
and for all, in the class Bifunctor , in effect making it another datatype-generic
operation parametrized by the shape s . In the languages of tomorrow, one might
expect that at least one, obvious implementation of combiner could be inferred
automatically.

Of course, some aspects of external Iterators can already be expressed lin-
guistically; the interface java .util .Iterator has been available for years in the Java
API, the iterator concept has been explicit in the C++ Standard Template Li-
brary for even longer, and recent versions of Java and C# even provide language
support (‘foreach’) for iterating over the elements yielded by such an operator.
Thus, element consumers can already be written datatype-generically today. But
still, one has to implement the Iterator anew for each datatype defined; element
producers are still datatype-specific.

An Internal Iterator is basically a map operation, iterating over a collec-
tion and yielding one of the same shape but with different or modified elements;
it therefore supports write access to the collection as well as read access. In
HODGP, we can give a single generic definition of this.

map :: Bifunctor s ⇒ (a → b)→ (Fix s a → Fix s b)
map f = In ◦ bimap f (map f ) ◦ out

This is in contrast with the object-oriented approach, in which internal Iterator

implementations are ad-hoc datatype-generic. Note also that the HODGP ver-
sion is more general than the OO version, because it can safely return a collection
of elements of a different type.

On the other hand, the object-oriented Iterator can have side-effects, which
the purely functional map cannot; for example, it can perform I/O, accumulate
a measure of the collection, and so on. However, it is possible to generalize the
map operation considerably, capturing all those effects in a datatype-generic
way. This is the subject of Section 5.

Builder in HODGP The standard protocol for the Builder pattern involves
a Director sending Parts one by one to a Builder for it to assemble, and then
retrieving from the Builder a Product . Thus, the product is assembled in a
step-by-step fashion, but is unavailable until assembly is complete. With lazy
evaluation, we can in some circumstances construct the Product incrementally:
we can yield access to the root of the product structure while continuing to
assemble its substructures. In the case that the data structure is assembled in a
regular fashion, this corresponds in the HODGP style to an unfold operation.
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unfold :: Bifunctor s ⇒ (b → s a b)→ b → Fix s a

unfold f = In ◦ bimap id (unfold f ) ◦ f

When the data structure is assembled irregularly, a build operator has to be
used instead.

build :: Bifunctor s ⇒ (∀b. (s a b → b)→ b)→ Fix s a

build f = f In

These are both datatype-generic programs, parametrized by the shape of product
to be built. In contrast, the GOF Builder pattern states the general scheme,
but requires code specific for each Builder interface and each ConcreteBuilder

implementation.
Turning to GOF’s computing builders, with lazy evaluation there is not so

pressing a need to fuse building with postprocessing. If the structure of the
consumer computation matches that of the producer — in particular, if the
consumer is a fold and the producer a build or an unfold — then consumption
can be interleaved with production, and the whole product never need be in
existence at once.

Nevertheless, naive interleaving of production and consumption of parts of
the product still involves the creation and immediate disposal of those parts.
Even the individual parts need never be constructed; often, they can be defor-
ested [133], with the attributes of a part being fed straight into the consumption
process. When the producer is an unfold, the composition of producer and con-
sumer is (under certain mild strictness conditions) a hylomorphism.

hylo :: Bifunctor s ⇒ (b → s a b)→ (s a c → c)→ b → c

hylo f g = g ◦ bimap id (hylo f g) ◦ f

More generally, but harder to reason with, the producer is a build, and the
composition replaces the constructors in the builder by the body of the fold.

foldBuild :: Bifunctor s ⇒ (∀b. (s a b → b)→ b)→ (s a c → c)→ c

foldBuild f g = f g

(that is, foldBuild f g = fold g (build f ).) Once again, both of these definitions
are datatype-generic; both take as arguments a producer f and a consumer g,
both with types parametrized by the shape s of the product to be built. Note
especially that in both cases, the fusion requires no creativity; in contrast, GOF’s
computing builders can take considerable insight and ingenuity to program —
see the code for PrintBuilder in Section 7.14.

4.4 The example, revisited

To justify our claim that the higher-order datatype-generic representation of the
Origami patterns is a faithful rendition, we use it to re-express the document
application discussed in Section 4.2 and illustrated in Figure 10. It is instruc-
tive to compare these 40 lines of Haskell code with the equivalent Java code in
Section 7.
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• The Composite structure has the following shape.

data DocF a b = Para a | Sec String [b ]
type Doc = Fix DocF String

instance Bifunctor DocF where

bimap f g (Para s) = Para (f s)
bimap f g (Sec s xs) = Sec s (map g xs)

We have chosen to consider paragraph bodies as the ‘contents’ of the data
structure, but section titles as part of the ‘shape’; then mapping over the
contents will affect the paragraph bodies but not the section titles. That
decision could easily be varied.
• We used an Internal Iterator to implement the SpellCorrector ; this

would be modelled now as an instance of map.

correct :: String → String -- definition omitted

corrector :: Doc → Doc

corrector = map correct

• The use of Visitor to print the contents of a document is a paradigmatic
instance of a fold .

printDoc :: Doc → [String ]
printDoc = fold combine

combine :: DocF String [String ]→ [String ]
combine (Para s) = [s ]
combine (Sec s xs) = s : concat xs

• Finally, in place of the Builder pattern, we can use unfold for constructing
documents, at least when doing so in a structured fashion. For example,
consider the following simple representation of XML trees.

data XML = Text String | Entity Tag Attrs [XML ]
type Tag = String

type Attrs = [(String,String)]

From such an XML tree we can construct a document.

fromXML :: XML→ Doc

fromXML = unfold element

Text elements are represented as paragraphs, and Entitys as sections having
appropriate titles.

element :: XML→ DocF String XML

element (Text s) = Para s

element (Entity t kvs xs) = Sec (title t kvs) xs
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title :: Tag → Attrs → String

title t [ ] = t

title t kvs = t ++ paren (join (map attr kvs)) where

paren s = " (" ++ s ++ ")"

join [s ] = s

join (s : ss) = s ++ ", " ++ join ss

attr (k , v) = k ++ "=’"++ v ++ "’"

• Printing of a document constructed from an XML file is the composition of
a fold with an unfold.

printXML :: XML→ [String ]
printXML = printDoc ◦ fromXML

It is therefore also a hylomorphism:

printXML = hylo element combine

• For constructing documents in a less structured fashion, we have to resort
to the more general and more complicated build operator. For example, here
is a builder for a simple document of one section with two sub-paragraphs.

docBuilder :: (DocF String b → b)→ b

docBuilder f = f (Sec "Heading" [f (Para "p1"), f (Para "p2")])

We can actually construct the document from this builder, simply by passing
it to the operator build , which plugs the holes with document constructors.

myDoc :: Doc

myDoc = build docBuilder

If we want to traverse the resulting document, for example to print it, we can
do so directly without having to construct the document in the first place;
we do so by plugging the holes instead with the body of the printDoc fold.

printMyDoc :: [String ]
printMyDoc = docBuilder combine

5 The Essence of the Iterator pattern

In Section 4, we argued that the Iterator pattern amounts to nothing more
than the higher-order datatype-generic map operation. However, as we men-
tioned, there are aspects of an Iterator that are not adequately explained by
a map; in particular, the possibility of effects such as I/O, and dependencies
between the actions executed at each element.

For example, consider the code below, showing a C# method loop that it-
erates over a collection, counting the elements and simultaneously interacting
with each of them.
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public static int loop〈MyObj 〉 (IEnumerable〈MyObj 〉 coll){
int n = 0;
foreach (MyObj obj in coll){

n = n + 1;
obj .touch ();
}
return n;
}

The method is parametrized by the type MyObj of collection elements; this pa-
rameter is used twice: to constrain the collection coll passed as a parameter, and
as a type for the local variable obj . The collection itself is rather unconstrained;
it only has to implement the IEnumerable〈MyObj 〉 interface.

In this section, we investigate the structure of such iterations. We emphasize
that we want to capture both aspects of the method loop and iterations like
it: mapping over the elements, and simultaneously accumulating some measure
of those elements. This takes us beyond the more simplistic map model from
Section 4. We still aim to construct a holistic model, treating the iteration as
an abstraction in its own right; this leads us naturally to a higher-order presen-
tation. We also want to develop an algebra of such iterations, with combinators
for composing them and laws for reasoning about them; this strengthens the
case for a declarative approach. We argue that McBride and Paterson’s recently
introduced notion of idioms [95], and in particular the corresponding traverse

operator, have exactly the right properties. (The material in this section is based
on [44]; the reader is warned that this work, and especially the results in Sec-
tion 5.7, is more advanced and less mature than in the earlier parts of these
notes.)

5.1 Functional iteration

In this section, we review a number of simpler approaches to capturing the
essence of iteration. In particular, we look at a variety of datatype-generic recur-
sion operators: maps, folds, unfolds, crushes, and monadic maps. The traversals
we discuss in Section 5.3 generalize all of these.

Origami We have already considered the origami style of programming [37, 38],
in which the structure of programs is captured by higher-order datatype-generic
recursion operators such as map, fold and unfold . And we have already observed
that the recursion pattern map captures iterations that modify each element of
a collection independently; thus, map touch captures the mapping aspect of the
C# loop above, but not the accumulating aspect.

At first glance, it might seem that the datatype-generic fold captures the ac-
cumulating aspect; but the analogy is rather less clear for a non-linear collection.
In contrast to the C# program above, which is sufficiently generic to apply to
non-linear collections, a datatype-generic counting operation defined using fold
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would need a datatype-generic numeric algebra as the fold body. Such a thing
could be defined polytypically [68, 60], but the fact remains that fold in isolation
does not encapsulate the datatype genericity.

Essential to iteration in the sense we are using the term is linear access
to collection elements; this was the problem with fold . One might consider a
datatype-generic operation to yield a linear sequence of collection elements from
possibly non-linear structures, for example by fold ing with a content combiner,
or unfold ing to a list. This could be done (though as with the fold problem, it
requires a datatype-generic sequence algebra or coalgebra as the body of the fold

or unfold); but even then, this would address only the accumulating aspect of
the C# iteration, and not the mapping aspect — it loses the shape of the original
structure. Moreover, although the sequence of elements is always definable as an
instance of fold , it is not always definable as an instance of unfold [46].

We might also explore the possibility of combining some of these approaches.
For example, it is clear from the definitions above that map is an instance of
fold . Moreover, the banana split theorem [31] states that two folds in parallel on
the same data structure can be fused into one. Therefore, a map and a fold in
parallel fuse to a single fold, yielding both a new collection and an accumulated
measure, and might therefore be considered to capture both aspects of the C#
iteration. However, we feel that this is an unsatisfactory solution: it may indeed
simulate or implement the same behaviour, but it is no longer manifest that the
shape of the resulting collection is related to that of the original.

Crush Meertens [99] generalized APL’s ‘reduce’ [67] to a crush operation,
〈〈⊕〉〉 :: t a → a for binary operator (⊕) :: a → a → a with a unit, polytypi-
cally over the structure of a regular functor t . For example, 〈〈+〉〉 polytypically
sums a collection of numbers. For projections, composition, sum and fixpoint,
there is an obvious thing to do, so the only ingredients that need to be provided
are the binary operator (for products) and a constant (for units). Crush cap-
tures the accumulating aspect of the C# iteration above, accumulating elements
independently of the shape of the data structure, but not the mapping aspect.

Monadic map Haskell’s standard library [112] defines a monadic map for lists,
which lifts the standard map on lists (taking a function on elements to a function
on lists) to the Kleisli category (taking a monadic function on elements to a
monadic function on lists):

mapM :: Monad m ⇒ (a → m b)→ ([a ]→ m [b ])

(For notational brevity, we resort throughout Section 5 to the built-in type [a ]
of lists rather than the datatype-generic type List a.) Fokkinga [30] showed
how to generalize this from lists to an arbitrary regular functor, datatype-
generically. Several authors [102, 106, 70, 110, 84] have observed that monadic
map is a promising model of iteration. Monadic maps are very close to the
idiomatic traversals that we propose as the essence of imperative iterations; in-
deed, for certain idioms — specifically, those that arise from monads — traversal
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reduces exactly to monadic map. However, we argue that monadic maps do not
capture accumulating iterations as nicely as they might. Moreover, it is well-
known [77, 83] that monads do not compose in general, whereas it turns out
that idioms do; this gives us a richer algebra of traversals. Finally, monadic
maps stumble over products, for which there are two reasonable but symmetric
definitions, coinciding when the monad is commutative. This stumbling block
forces either a bias to left or right, or a restricted focus on commutative mon-
ads, or an additional complicating parametrization; in contrast, idioms generally
have no such problem, and in fact turn it into a virtue.

Closely related to monadic maps are operations like Haskell’s sequence func-
tion:

sequence :: Monad m ⇒ [m a ]→ m [a ]

and its datatype-generic generalization to arbitrary datatypes. Indeed, sequence

and mapM are interdefinable:

mapM f = sequence ◦ map f

and so

sequence = mapM id

Most writers on monadic maps have investigated such an operation; Moggi et al.

[106] call it passive traversal, Meertens [100] calls it functor pulling, and Pardo
[110] and others have called it a distributive law. It is related to Hoogendijk
and Backhouse’s commuting relators [65], but with the addition of the monadic
structure on one of the functors. McBride and Paterson introduce the function
dist playing the same role, but as we shall see, more generally.

5.2 Idioms

McBride and Paterson [95] recently introduced the notion of an idiom or ap-

plicative functor as a generalization of monads. (‘Idiom’ was the name McBride
originally chose, but he and Paterson now favour the less evocative term ‘ap-
plicative functor’. We prefer the original term, not least because it lends itself
nicely to adjectival uses, as in ‘idiomatic traversal’.) Monads [105, 135] allow
the expression of effectful computations within a purely functional language,
but they do so by encouraging an imperative [114] programming style; in fact,
Haskell’s monadic do notation is explicitly designed to give an imperative feel.
Since idioms generalize monads, they provide the same access to effectful com-
putations; but they encourage a more applicative programming style, and so fit
better within the functional programming milieu. Moreover, as we shall see, id-
ioms strictly generalize monads; they provide features beyond those of monads.
This will be important to us in capturing a wider variety of iterations, and in
providing a richer algebra of those iterations.
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Idioms are captured in Haskell by the following type class. (In contrast to
McBride and Paterson, we insist that every Idiom is also a Functor . This en-
tails no loss of generality, since the laws below ensure that defining fmap f x =
pure f ⊛ x suffices.)

class Functor m ⇒ Idiom m where

pure :: a → m a

(⊛) :: m (a → b)→ (m a → m b)

Informally, pure lifts ordinary values into the idiomatic world, and ⊛ provides
an idiomatic flavour of function application. We make the convention that ⊛

associates to the left, just like ordinary function application.

In addition to those inherited from the Functor class, idioms are expected to
satisfy the following laws.

pure id ⊛ u = u

pure (◦) ⊛ u ⊛ v ⊛ w = u ⊛ (v ⊛ w)
pure f ⊛ pure x = pure (f x )
u ⊛ pure x = pure (λf → f x ) ⊛ u

(recall that (◦) denotes function composition). These two collections of laws are
together sufficient to allow any expression built from the idiom operators to be
rewritten into a canonical form, consisting of a pure function applied to a series
of idiomatic arguments:

pure f ⊛ u1 ⊛ ... ⊛ un

(In case the reader feels the need for some intuition for these laws, we refer them
forwards to the stream Naperian idiom discussed below.)

Monadic idioms Idioms generalize monads; every monad induces an idiom,
with the following operations. (Taken literally as a Haskell declaration, this code
provokes complaints about overlapping instances; it is therefore perhaps better
to take it as a statement of intent instead.)

instance Monad m ⇒ Idiom m where

pure a = do {return a }
mf ⊛ mx = do {f ← mf ; x ← mx ; return (f x )}

The pure operator for a monadic idiom is just the return of the monad; idiomatic
application ⊛ is monadic application, here with the effects of the function preced-
ing those of the argument. There is another, completely symmetric, definition,
with the effects of the argument before those of the function. We leave it to the
reader to verify that the monad laws entail the idiom laws (with either definition
of monadic application).
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Naperian idioms One of McBride and Paterson’s motivating examples of an
idiom arises from the environment monad:

newtype Env e a = Env{unEnv :: e → a }

The pure and ⊛ of this type turn out to be the K and S combinators, respec-
tively.

instance Idiom (Env e) where

pure a = Env (λe → a)
Env ef ⊛ Env ex = Env (λe → (ef e) (ex e))

One can think of instances of Env e as datatypes with fixed shape, which gives rise
to an interesting subclass of monadic idioms. For example, the functor Stream

is equivalent to Env Nat ; under the equivalence, the K and S combinators turn
out to be the familiar ‘repeat’ and ‘zip with apply’ operators.

data Stream a = ConsS a (Stream a)

instance Idiom Stream where

pure a = repeatS a

mf ⊛ mx = zipApS mf mx

repeatS :: a → Stream a

repeatS x = xs where xs = ConsS x xs

zipApS :: (a → b → c)→ Stream a → Stream b → Stream c

zipApS (ConsS f fs) (ConsS x xs) = ConsS (f x ) (zipApS fs xs)

The pure operator lifts a value to a stream, replicating it for each element;
idiomatic application is pointwise, taking a stream of functions and a stream of
arguments to a stream of results. We find that this idiom is the most accessible
one for understanding the idiom laws.

A similar construction works for any fixed-shape datatype: pairs, vectors of
length n, two-dimensional matrices of a given size, infinite binary trees, and so
on. Peter Hancock [94] calls such a datatype Naperian, because the environment
or position type acts as a notion of logarithm. That is, datatype t is Naperian if
t a ≃ ap ≃ p → a for some type p of positions, called the logarithm log t of t .
Then t 1 ≃ 1p ≃ 1, so the shape is fixed, and familiar properties of logarithms
arise — for example, log (t ◦ u) ≃ log t × log u.

class Functor t ⇒ Naperian t p | p → t , t → p where

fill :: (p → a)→ t a -- index ◦ fill = id

index :: t a → (p → a) -- fill ◦ index = id

indices :: t p

indices = fill id

fill f = fmap f indices

(Here, p → t , t → p are functional dependencies, indicating that each of the two
parameters of the type class Naperian determines the other.) We leave as an
exercise for the reader to show that the definitions
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pure a = fill (λp → a)
mf ⊛ mx = fill (λp → (index mf p) (index mx p))

satisfy the idiom laws.
Naperian idioms impose a fixed and hence statically known shape on data. We

therefore expect some connection with data-parallel and numerically intensive
computation, in the style of Jay’s language FISh [71] and its shapely operations

[72], which separate statically analysable shape from dynamically determined
contents. Computations within Naperian idioms tend to perform a transposition
of results; there appears also to be some connection with what Kühne [86] calls
the transfold operator.

The ‘bind’ operation of a monad allows the result of one computation to affect
the choice and ordering of effects of subsequent operations. Idioms in general
provide no such possibility; indeed, as we have seen, every expression built just
from the idiom combinators is equivalent to a pure function applied to a series
of idiomatic arguments, and so the sequencing of any effects is fixed. Focusing
on the idiomatic view of a Naperian datatype, rather than the monadic view in
terms of an environment, enforces that restriction. The interesting thing is that
many useful computations involving monads do not require the full flexibility of
dynamically chosen ordering of effects; for these, the idiomatic interface suffices.

Monoidal idioms Idioms strictly generalize monads; there are idioms that do
not arise from monads. A third family of idioms, this time non-monadic, arises
from constant functors with monoidal targets. McBride and Paterson call these
phantom idioms, because the resulting type is a phantom type (as opposed to
a container type of some kind). Any monoid (∅,⊕) induces an idiom, where the
pure operator yields the unit of the monoid and application uses the binary
operator.

newtype K b a = K{unK :: b}

instance Monoid b ⇒ Idiom (K b) where

pure = K ∅
x ⊛ y = K (unK x ⊕ unK y)

Computations within this idiom accumulate some measure: for the monoid of
integers with addition, they count or sum; for the monoid of lists with con-
catenation, they collect some trace of values; for the monoid of booleans with
disjunction, they encapsulate linear searches; and so on. Note that sequences
of one kind or another therefore form idioms in three different ways: monadic
with cartesian product, modelling non-determinism; Naperian with zip, mod-
elling data-parallelism; and monoidal with concatenation, modelling tracing.

Combining idioms Like monads, idioms are closed under products; so two
independent idiomatic effects can generally be fused into one, their product.

data Prod m n a = Prod{pfst :: m a, psnd :: n a }
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fork :: (a → m b)→ (a → n b)→ a → Prod m n b

fork f g a = Prod (f a) (g a)

instance (Idiom m, Idiom n)⇒ Idiom (Prod m n) where

pure x = Prod (pure x ) (pure x )
mf ⊛ mx = Prod (pfst mf ⊛ pfst mx) (psnd mf ⊛ psnd mx)

Unlike monads in general, idioms are also closed under composition; so two
sequentially dependent idiomatic effects can generally be fused into one, their
composition.

data Comp m n a = Comp{unComp :: m (n a)}

instance (Idiom m, Idiom n)⇒ Idiom (Comp m n) where

pure x = Comp (pure (pure x ))
mf ⊛ mx = Comp (pure (⊛) ⊛ unComp mf ⊛ unComp mx )

We see examples of both of these combinations in Section 5.4.

5.3 Idiomatic traversal

Two of the three motivating examples McBride and Paterson provide for id-
iomatic computations, sequencing a list of monadic effects and transposing a
matrix, are instances of a general scheme they call traversal. This involves iterat-
ing over the elements of a data structure, in the style of a ‘map’, but interpreting
certain function applications within the idiom.

In the case of lists, traversal may be defined as follows.

traverseL :: Idiom m ⇒ (a → m b)→ ([a ]→ m [b ])
traverseL f [ ] = pure [ ]
traverseL f (x : xs) = pure (:) ⊛ f x ⊛ traverseL f xs

A special case is for the identity function, when traversal distributes the data
structure over the idiomatic structure:

distL :: Idiom m ⇒ [m a ]→ m [a ]
distL = traverseL id

The ‘map within the idiom’ pattern of traversal for lists generalizes to any
(finite) functorial data structure. We capture this via a type class of Traversable

data structures (again, unlike McBride and Paterson, but without loss of gener-
ality, we insist on functoriality):

class Functor t ⇒ Traversable t where

traverse :: Idiom m ⇒ (a → m b)→ (t a → m (t b))
dist :: Idiom m ⇒ t (m a)→ m (t a)

traverse f = dist ◦ fmap f

dist = traverse id
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As intended, this class generalizes traverseL:

instance Traversable [ ] where traverse = traverseL

Although traverse and dist are interdefinable (intuitively, dist is to traverse as
monadic join µ is to bind >>=), so only one needs to be given, defining traverse

and inheriting dist is usually simpler and more efficient than vice versa.

data Btree a = Tip a | Bin (Btree a) (Btree a)
instance Traversable Btree where

traverse f (Tip a) = pure Tip ⊛ f a

traverse f (Bin t u) = pure Bin ⊛ traverse f t ⊛ traverse f u

McBride and Paterson propose a special syntax involving ‘idiomatic brack-
ets’, which would have the effect of inserting the occurrences of pure and ⊛ im-
plicitly; apart from these brackets, the definition of traverse then looks exactly
like a definition of fmap. This definition could be derived automatically [62], or
given polytypically once and for all, assuming some universal representation of
datatypes such as sums and products [60] or regular functors [38]:

class Bifunctor s ⇒ Bitraversable s where

bidist :: Idiom m ⇒ s (m a) (m b)→ m (s a b)

instance Bitraversable s ⇒ Traversable (Fix s) where

traverse f = fold (fmap In ◦ bidist ◦ bimap f id)

instance Bitraversable BtreeF where

bidist (TipF a) = pure TipF ⊛ a

bidist (BinF t u) = pure BinF ⊛ t ⊛ u

When m is specialized to the identity idiom, traversal reduces to the functo-
rial map over lists.

newtype Id a = Id{unId :: a }

instance Idiom Id where

pure a = Id a

mf ⊛ mx = Id ((unId mf ) (unId mx))

In the case of a monadic idiom, traversal specializes to monadic map, and has
the same uses. In fact, traversal is really just a slight generalization of monadic
map: generalizing in the sense that it applies also to non-monadic idioms. We
consider this an interesting insight, because it reveals that monadic-map-like
traversal in some sense does not require the full power of a monad; in particular,
it does not require the bind or join operators, which are unavailable in idioms
in general.

For a Naperian idiom, traversal transposes results. For example, interpreted
in the pair Naperian idiom, traverseL id unzips a list of pairs into a pair of lists.

For a monoidal idiom, traversal accumulates values. For example, interpreted
in the integer monoidal idiom, traversal accumulates a sum of integer measures
of the elements.
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tsum :: Traversable t ⇒ (a → Int)→ t a → Int

tsum f = unK ◦ traverse (K ◦ f )

5.4 Examples of traversal: shape and contents

As well as being parametrically polymorphic in the collection elements, the
generic traversal introduced above is parametrized along two further dimensions:
it is ad-hoc datatype-generic in the datatype being traversed, and parametrically
datatype-generic in the idiom in which the traversal is interpreted. Specializing
the latter to the lists-as-monoid idiom yields a generic contents operation, which
is in turn the basis for many other generic operations, including non-monoidal
ones such as indexing:

contents :: Traversable t ⇒ t a → [a ]
contents = unK ◦ traverse (K ◦ single)

single :: a → [a ]
single x = [x ]

This contents operation yields one half of Jay’s decomposition of datatypes
into shape and contents [72]. The other half is obtained simply by a map, which
is to say, a traversal interpreted in the identity idiom:

shape :: Traversable t ⇒ t a → t ()
shape = unId ◦ traverse (Id ◦ bang)

bang :: a → ()
bang = const ()

Of course, it is trivial to combine these two traversals to obtain both halves of
the decomposition as a single function, but doing this by tupling in the obvious
way entails two traversals over the data structure. Is it possible to fuse the
two traversals into one? The product of idioms allows exactly this, yielding the
decomposition of a data structure into shape and contents in a single pass:

decompose ′ :: Traversable t ⇒ t a → Prod Id (K [a ]) (t ())
decompose ′ = traverse (fork (Id ◦ bang) (K ◦ single))

It is then a simple matter of removing the tags for the idiom product and the
idioms themselves:

decompose :: Traversable t ⇒ t a → (t (), [a ])
decompose = getPair ◦ decompose ′

getPair :: Prod Id (K b) a → (a, b)
getPair xy = (unId (pfst xy), unK (psnd xy))

Moggi et al. [106] give a similar decomposition, but using a customized combi-
nation of monads; the above approach is arguably simpler.
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A similar benefit can be found in the reassembly of a full data structure
from separate shape and contents. This is a stateful operation, where the state
consists of the contents to be inserted; but it is also a partial operation, because
the number of elements provided may not agree with the number of positions
in the shape. We therefore make use of both the State monad and the Maybe

monad; but this time, we form their composition rather than their product. (As
it happens, the composition of the State and Maybe monads in this way forms
another monad, but that is not the case in general.)

The crux of the traversal is the partial stateful function that strips the first
element off the list of contents, if this list is non-empty:

takeHead :: State [a ] (Maybe a)
takeHead = do {xs ← get ;

case xs of

[ ] → return Nothing

(y : ys)→ do {put ys ; return (Just y)}}

This is a composite idiomatic value, using the composition of the two monadic
idioms State [a ] and Maybe ; traversal in the composite idiom using this operation
returns a stateful function for the whole data structure.

reassemble′ :: Traversable t ⇒ t ()→ State [a ] (Maybe (t a))
reassemble′ = unComp ◦ traverse (λ()→ Comp takeHead)

Now it is simply a matter of running this stateful function, and checking that
the contents are entirely consumed.

reassemble :: Traversable t ⇒ (t (), [a ])→ Maybe (t a)
reassemble (x , ys) = allGone (runState (reassemble′ x ) ys)

allGone :: (Maybe (t a), [a ])→ Maybe (t a)
allGone (mt , [ ]) = mt

allGone (mt , ( : )) = Nothing

5.5 Collection and dispersal

We have found it convenient to consider special cases of effectful traversals in
which the mapping aspect is independent of the accumulation, and vice versa.

collect :: (Traversable t , Idiom m)⇒
(a → m ())→ (a → b)→ t a → m (t b)

collect f g = traverse (λa → pure (λ()→ g a) ⊛ f a)

disperse :: (Traversable t , Idiom m)⇒
m b → (a → b → c)→ t a → m (t c)

disperse mb g = traverse (λa → pure (g a) ⊛ mb)

The first of these traversals accumulates elements effectfully, but modifies those
elements purely and independently of this accumulation. The C# iteration at
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the start of Section 5 is an example, using the idiom of the State monad to
capture the counting:

loop :: Traversable t ⇒ (a → b)→ t a → State Int (t b)
loop touch = collect (λa → do {n ← get ; put (n + 1)}) touch

The second kind of traversal modifies elements effectfully but dependent on the
state, evolving the state independently of the elements. An example of this is a
kind of converse of counting, labelling every element with its position in order
of traversal.

label :: Traversable t ⇒ t a → State Int (t (a, Int))
label = disperse step (, )

step :: State Int Int

step = do {n ← get ; put (n + 1); return n }

5.6 Backwards traversal

Unlike the case with pure maps, the order in which elements are visited in an
effectful traversal is significant; in particular, iterating through the elements
backwards is observably different from iterating forwards. We can capture this
reversal quite elegantly as an idiom adapter, via the ‘marker type’ Backwards .

newtype Backwards m a = B{runB :: m a }

instance Idiom m ⇒ Idiom (Backwards m) where

pure = B ◦ pure

f ⊛ x = B (pure (λx f → f x ) ⊛ runB x ⊛ runB f )

Informally, Backwards m is an idiom if m is, but any effects happen in reverse; in
this way, the symmetric ‘backwards’ embedding of monads into idioms referred to
in Section 5.2 can be expressed in terms of the forwards embedding given there.
(Such marker types are generally a useful technique for selecting a particular
ad-hoc datatype-generic implementation.)

An adapter can be parcelled up existentially:

data IAdapter m = ∀g. Idiom (g m)⇒
IAdapter (∀a. m a → g m a) (∀a. g m a → m a)

backwards :: Idiom m ⇒ IAdapter m

backwards = IAdapter B runB

and used in a parametrized traversal, for example to label backwards:

ptraverse :: (Idiom m,Traversable t)⇒
IAdapter m → (a → m b)→ t a → m (t b)

ptraverse (IAdapter wrap unwrap) f = unwrap ◦ traverse (wrap ◦ f )

lebal = ptraverse backwards (λa → step)
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Of course, there is a trivial forwards adapter too, which can be used as a default.

newtype Forwards m a = F{runF :: m a }

instance Idiom m ⇒ Idiom (Forwards m) where

pure = F ◦ pure

f ⊛ x = F (runF f ⊛ runF x )

forwards :: Idiom m ⇒ IAdapter m

forwards = IAdapter F runF

5.7 Laws of traverse

The traverse operator is ad-hoc datatype-generic; one must define it indepen-
dently for each Traversable datatype (although, as noted above, its definition
is in principle derivable). The type class Traversable determines its signature,
but in line with other instances of genericity by signature such as Functor and
Monad , we should consider ‘healthiness conditions’ on the definition.

Free theorems The free theorem [117, 132] arising from the type of dist is

dist ◦ fmap (fmap k) = fmap (fmap k) ◦ dist

As corollaries, we get the following two free theorems of traverse:

traverse (g ◦ h) = traverse g ◦ fmap h

traverse (fmap k ◦ f ) = fmap (fmap k) ◦ traverse f

These laws are not constraints on the implementation of dist and traverse; they
follow automatically from their types.

Composition We have seen that idioms compose: there is an identity idiom Id

and, for any two idioms m and n, a composite idiom Comp m n. We impose on
implementations of dist the constraint of respecting this compositional structure.
Specifically, the distributor dist respects the identity idiom:

dist ◦ fmap Id = Id

and the composition of idioms:

dist ◦ fmap Comp = Comp ◦ fmap dist ◦ dist

As corollaries, we get analogous properties of traverse.

traverse (Id ◦ f ) = Id ◦ fmap f

traverse (Comp ◦ fmap f ◦ g) = Comp ◦ fmap (traverse f ) ◦ traverse g

Both of these corollaries have interesting interpretations. The first says that
traverse interpreted in the identity idiom is essentially just fmap, as mentioned
in Section 5.3. The second provides a fusion rule for traversals, whereby two
consecutive traversals can be fused into one. We use this fusion rule in Section 5.8.
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Naturality We also impose the constraint that the distributor dist is natural

in the idiom, as follows. An idiom transformation φ :: m a → n a from idiom m

to idiom n is a polymorphic function (natural transformation) that respects the
idiom structure:

φ purem a = puren a

φ (mf ⊛m mx) = φ mf ⊛n φ mx

(Here, the idiom operators are subscripted by the idiom, for clarity.) Then dist

must satisfy the following naturality property: for idiom transformation φ,

distn ◦ fmap φ = φ ◦ distm

For example, purem
◦unId is an idiom transformation from idiom Id to idiom m,

because

purem
◦ unId ◦ pureId

= { pureId = Id }
purem

and

purem (unId (mf ⊛Id mx))
= { mf ⊛Id mx = Id ((unId mf ) (unId mx )) }

purem ((unId mf ) (unId mx))
= { pure homomorphism }

purem (unId mf ) ⊛m purem (unId mx)

Therefore purem
◦ unId must commute with dist , in the following sense:

distm ◦ fmap (purem
◦ unId) = purem

◦ unId ◦ dist Id

As a consequence, we get a ‘purity law’:

traverse pure = pure

because

traversem purem

= { traverse }
distm ◦ fmap purem

= { unId ◦ Id = id }
distm ◦ fmap purem

◦ fmap unId ◦ fmap Id

= { assumption }
purem

◦ unId ◦ dist Id ◦ fmap Id

= { compositionality: dist Id ◦ fmap Id = Id }
purem

This is an entirely reasonable property of traversal; one might say that it im-
poses a constraint of shape preservation. (But there is more to it than shape
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preservation: a traversal that twists pairs necessarily ‘preserves shape’, because
pairs are Naperian, but still breaks this law.) For example, consider the following
definition of traverse on binary trees, in which the two children are swapped on
traversal:

instance Traversable Btree where

traverse f (Tip a) = pure Tip ⊛ f a

traverse f (Bin t u) = pure Bin ⊛ traverse f u ⊛ traverse f t

With this definition, traverse pure = pure ◦ reflect , where reflect (defined in Sec-
tion 2.7) reverses a tree, and so the purity law does not hold; this is because the
corresponding definition of dist is not natural in the idiom. Similarly, a defini-
tion with two copies of traverse f t and none of traverse f u makes traverse pure

purely return a tree in which every right child has been overwritten with its
left sibling. Both definitions are perfectly well-typed, but (according to our con-
straints) invalid.

On the other hand, the following definition, in which the traversals of the
two children are swapped, but the Bin operator is flipped to compensate, is
blameless.

instance Traversable Btree where

traverse f (Tip a) = pure Tip ⊛ f a

traverse f (Bin t u) = pure (flip Bin) ⊛ traverse f u ⊛ traverse f t

(Here, flip f x y = f y x .) The effect of the reversal is that elements of the tree
are traversed ‘from right to left’, which we consider to be a reasonable, if rather
odd, definition of traverse. The corresponding distributor is

distB (Tip a) = pure Tip ⊛ a

distB (Bin t u) = pure (flip Bin) ⊛ distB u ⊛ distB t

or equivalently

distB = foldB f g where

f ma = pure Tip ⊛ ma

g mt mu = pure (flip Bin) ⊛ mu ⊛ mt

where foldB is the fold for Btree defined in Section 2.7, for which the free theorem
turns out to be the following fusion law:

h ◦ foldB f g = foldB f ′ g ′
◦ fmap h

⇐
h (f a) = f ′ (h a) ∧ h (g a b) = g ′ (h a) (h b)

We leave as a straightforward task for the reader the proof using this fusion law
that

distB ◦ fmap φ = φ ◦ distB

Hence distB is natural in the idiom, and as a consequence the purity law applies
to this right-to-left traversal.
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Composition of monadic traversals Another consequence of naturality is a
fusion law specific to monadic traversals. The natural form of composition for
monadic computations is called Kleisli composition:

(•) :: Monad m ⇒ (b → m c)→ (a → m b)→ (a → m c)
(f • g) x = do {y ← g x ; z ← f y; return z }

The monad m is commutative if, for all mx and my ,

do {x ← mx ; y ← my; return (x , y)}
= do {y ← my; x ← mx ; return (x , y)}

When interpreted in the idiom of a commutative monad m, traversals with
f :: b → m c and g :: a → m b fuse:

traverse f • traverse g = traverse (f • g)

This follows from the fact that µ ◦ unComp forms an idiom transformation from
Comp m m to m, for a commutative monad m with join operator µ. (The proof
is straightforward, albeit a little messy.)

This fusion law for the Kleisli composition of monadic traversals shows the
benefits of the more general idiomatic traversals quite nicely. Note that the cor-
responding more general fusion law for idioms in Section 5.7 allows two different
idioms rather than just one; moreover, there are no side conditions concerning
commutativity. The only advantage of the monadic law is that there is just one
level of monad on both sides of the equation; in contrast, the idiomatic law has
two levels of idiom, because there is no analogue of the µ operator of a monad
for collapsing two levels to one (and besides, those two levels may be for different
idioms).

We conjecture (but have not proved) that the monadic traversal fusion law
also holds even if m is not commutative, provided that f and g themselves
commute (f • g = g • f ); but this no longer follows from naturality of the
distributor in any simple way, and it imposes the alternative constraint that the
three types a, b, c are equal.

No duplication Another constraint we impose upon a definition of traverse is
that it should visit each element precisely once. For example, we consider this
definition of traverse on lists to be bogus, because it visits each element twice.

instance Traversable [ ] where

traverse f [ ] = pure [ ]
traverse f (x : xs) = pure (const (:)) ⊛ f x ⊛ f x ⊛ traverse f xs

Note that this definition satisfies the purity law above; but we would still like to
rule it out.

This axiom is harder to formalize, and we do not yet have a nice theoretical
treatment of it. One way of proceeding is in terms of indexing. We require that
the function labels returns an initial segment of the natural numbers, where
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labels :: Traversable t ⇒ t a → [Int ]
labels t = contents $ fmap snd $ fst $ runState (label t) 0

Here, $ denotes function application, and label is as defined in Section 5.5. The
bogus definition of traverse on lists given above is betrayed by the fact that we
get labels "abc" = [1, 1, 3, 3, 5, 5], which is not an initial segment of the naturals.

5.8 Example

As a small example of fusion of traversals, we consider the familiar repmin prob-
lem [11]. The task here is to take a binary tree of integers, compute the minimum
element, then replace every element of the tree by that minimum — but to do so
in a single traversal rather than the obvious two. Our point here is not the circu-
larity for which the problem was originally invented, but simply an illustration
of the two kinds of traversal (mapping and accumulating) and their fusion.

Flushed with our success at capturing different kinds of traversal idiomati-
cally, we might try computing the minimum in a monoidal idiom,

newtype Min a = Min{unMin :: a }
instance (Ord a,Bounded a)⇒ Monoid (Min a) where

∅ = Min maxBound

x ⊕ y = Min (unMin x ‘min ‘ unMin y)

tmin1 :: (Ord a,Bounded a)⇒ a → K (Min a) a

tmin1 = K ◦ Min

and replacing in the idiom of the environment monad.

trep1 :: a → Env b b

trep
1

= λa → Env id

These two compose elegantly (modulo the type isomorphisms):

trepmin1 :: (Ord a,Bounded a)⇒ Btree a → Btree a

trepmin
1
t = unEnv (traverse trep

1
t) (unMin $ unK $ traverse tmin1 t)

However, the two traversals do not fuse: the first traversal computes the mini-
mum and discards the tree, which then needs to be reintroduced for the second
traversal.

Notice that trepmin
1

could be datatype-generic in the data structure tra-
versed; the only constraint is that it should be Traversable .

grepmin1 :: (Ord a,Bounded a,Traversable t)⇒ t a → t a

grepmin
1
t = unEnv (traverse trep

1
t) (unMin $ unK $ traverse tmin1 t)

The same observation applies to all versions of trepmin in this section; but to
avoid carrying the Traversable t context around, we specialize to Btree through-
out.
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The problem with trepmin
1

is that the traversal that computes the minimum
discards the tree. Apparently this first phase ought to retain and return the tree
as well; this suggests using the idiom of the state monad. The state records the
minimum element; the first traversal updates this state, and the second traversal
reads from it.

tmin2 :: Ord a ⇒ a → State a a

tmin2 a = do {b ← get ; put (min a b); return a }

trep2 :: a → State a a

trep
2
a = get

Again, traversals with tmin2 and trep
2

compose.

trepmin2 :: (Ord a,Bounded a)⇒ Btree a → Btree a

trepmin2 t = fst (runState iteration maxBound)
where iteration = (traverse trep2 • traverse tmin2) t

But when we try to apply the fusion law for monadic traversals, we are forced to
admit that the State monad is the epitome of a non-commutative monad, and
in particular that the two stateful operations tmin2 and trep2 do not commute;
therefore, the two traversals do not fuse.

There is a simple way to make the two stateful operations commute, and
that is by giving them separate parts of the state on which to act. The following
implementation uses a pair as the state; the first component is where the min-
imum element is accumulated, and the second component holds what is copied
across the tree.

tmin3 :: Ord a ⇒ a → State (a, b) a

tmin3 a = do {(a′, b)← get ; put (min a a′, b); return a }

trep3 :: a → State (a, b) b

trep
3
a = do {(a′, b)← get ; return b}

Of course, the whole point of the exercise is that the two parts of the state should

interact; but with lazy evaluation we can use the standard circular programming
trick that originally motivated the repmin problem [11] to tie the two together,
outside the traversal.

trepmin
3

:: (Ord a,Bounded a)⇒ Btree a → Btree a

trepmin3 t = let (u, (m, )) = runState iteration (maxBound ,m) in u

where iteration = (traverse trep3 • traverse tmin3) t

Now, although the State monad is not commutative, the two stateful operations
tmin3 and trep

3
commute (because they do not interfere), and the two traversals

may be fused into one.

trepmin ′

3
:: (Ord a,Bounded a)⇒ Btree a → Btree a

trepmin ′

3 t = let (u, (m, )) = runState iteration (maxBound ,m) in u

where iteration = traverse (trep
3
• tmin3) t
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Modifying the stateful operations in this way to keep them from interfering is
not scalable, and it is not clear whether this trick is possible in general anyway.
Fortunately, idioms provide a much simpler means of fusion. Using the same
single-component stateful operations tmin2 and trep2 as above, but dispensing
with Kleisli composition, we get the following composition of traversals.

trepmin4 :: (Ord a,Bounded a)⇒ Btree a → Btree a

trepmin4 t = let (sf ,m) = runState iteration maxBound

in fst (runState sf m)
where iteration = fmap (traverse trep2) (traverse tmin2 t)

Kleisli composition has the effect of flattening two levels into one; here we have
to deal with both levels separately, hence the two occurrences of runState. The
payback is that fusion of idiomatic traversals applies without side conditions!

trepmin ′

4
:: (Ord a,Bounded a)⇒ Btree a → Btree a

trepmin ′

4 t = let (sf ,m) = runState iteration maxBound

in fst (runState sf m)
where iteration = unComp $ traverse (Comp ◦ fmap trep2

◦ tmin2) t

Note that the Kleisli composition of two monadic computations imposes the
constraint that both computations are in the same monad; in our example above,
both computing the minimum and distributing the result use the State monad.
However, these two monadic computations are actually rather different in struc-
ture, and use different aspects of the State monad: the first writes, whereas the
second reads. We could capture this observation directly by using two different
monads, each tailored for its particular use.

tmin5 :: (Ord a,Bounded a)⇒ a →Writer (Min a) a

tmin5 a = do {tell (Min a); return a }

trep5 :: a → Reader a a

trep
5
a = ask

Here, tell adds a value to a monoidal state, returning unit, and ask retrieves the
state.

newtype Writer s a = Writer {runWriter :: (a, s)}
tell :: Monoid s ⇒ s →Writer s ()

newtype Reader s a = Reader{runReader :: s → a }
ask :: Reader s s

The use of two different monads like this rules out Kleisli composition. However,
idiomatic composition handles two different idioms (and hence two different
monads) with aplomb.

trepmin5 :: (Ord a,Bounded a)⇒ Btree a → Btree a

trepmin5 t = let (r ,m) = runWriter iteration in runReader r (unMin m)
where iteration = fmap (traverse trep

5
) (traverse tmin5 t)
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These two traversals fuse in exactly the same way as before.

trepmin ′

5 :: (Ord a,Bounded a)⇒ Btree a → Btree a

trepmin ′

5 t = let (r ,m) = runWriter iteration in runReader r (unMin m)
where iteration = unComp $ traverse (Comp ◦ fmap trep5

◦ tmin5) t

6 Conclusions

The material in these lecture notes owes much to the work of a number of col-
leagues. Section 2 builds on many discussions with colleagues in and around the
Datatype-Generic Programming project at Oxford and Nottingham. My views
on origami programming in Section 3 are based on ideas from the Algebra of Pro-
gramming (‘Squiggol’) community, and especially the work of: Roland Backhouse
and Grant Malcolm [92, 7, 6]; Richard Bird and Oege de Moor [9, 10]; Maarten
Fokkinga, Erik Meijer and Ross Paterson [32, 101]; Johan Jeuring, Patrik Jans-
son, Ralf Hinze and Andres Löh [68, 69, 57, 60, 91]; and John Hughes [66]. The
analogy between design patterns and higher-order datatype-generic programs
discussed in Section 4 elaborates on arguments developed in a course presented
while on sabbatical at the University of Canterbury in New Zealand in early
2005, and explored further at tutorials at ECOOP [39] and OOPSLA [40] later
that year; the contribution of participants at those venues and at less formal
presentations of the same ideas is gratefully acknowledged. The results reported
in Section 5 are the outcome of joint work with Bruno Oliveira, and have ben-
efited greatly from discussions with Conor McBride and Ross Paterson, whose
work provided most of the technical results. To all of these people, and to the
unnamed others who have also contributed, I am very grateful for encourage-
ment, inspiration and insight. I would like to add final thanks to Andres Löh
and Ralf Hinze for their extremely useful lhs2TEX translator.
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7 Appendix: Java programs

Section 4.4 provides a nearly complete implementation of the document appli-
cation in a higher-order datatype-generic style; all that is missing is a definition
for the spelling corrector correct . In contrast, Section 4.2 presents only the out-
line of a Java implementation of the same application. For completeness, this
appendix presents the Java code.

7.1 Component

public interface Component{
void accept (Visitor v);
Iterator getIterator ();
}

7.2 Section

import java .util .Vector ;
import java .util .Enumeration;
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public class Section implements Component{
protected Vector children ;
protected String title;
public Section (String title){

children = new Vector ();
this.title = title;
}
public String getTitle (){

return title;
}
public void addComponent (Component c){

children .addElement (c);
}
public Enumeration getChildren (){

return children .elements ();
}
public Iterator getIterator (){

return new SectionIterator (this);
}
public void accept (Visitor v){

v .visitSection (this);
}
}

7.3 Paragraph

public class Paragraph implements Component{
protected String body ;
public Paragraph (String body){

setBody (body);
}
public void setBody (String s){

body = s ;
}
public String getBody (){

return body ;
}
public Iterator getIterator (){

return new ParagraphIterator (this);
}
public void accept (Visitor v){

v .visitParagraph (this);
}
}
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7.4 Iterator

public interface Iterator{
void iterate (Action a);
}

7.5 SectionIterator

import java .util .Enumeration;

public class SectionIterator implements Iterator{
protected Section s ;
public SectionIterator (Section s){

this.s = s ;
}
public void iterate (Action a){

for (Enumeration e = s .getChildren ();
e.hasMoreElements (); ){

((Component) (e.nextElement ())).
getIterator ().iterate (a);

}
}

}

7.6 ParagraphIterator

public class ParagraphIterator implements Iterator{
protected Paragraph p;
public ParagraphIterator (Paragraph p){

this.p = p;
}
public void iterate (Action a){

a.apply (p);
}

}

7.7 Action

public interface Action{
void apply (Paragraph p);
}
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7.8 SpellCorrector

public class SpellCorrector implements Action{
public void apply (Paragraph p){

p.setBody (correct (p.getBody ()));
}
public String correct (String s){

return s .toLowerCase ();
}
}

7.9 Visitor

public interface Visitor{
void visitParagraph (Paragraph p);
void visitSection (Section s);
}

7.10 PrintVisitor

import java .util .Enumeration;
import java .util .Vector ;

public class PrintVisitor implements Visitor{

protected String indent = "";
protected Vector lines = new Vector ();

public String [ ] getResult (){
String [ ] ss = new String [0];
ss = (String [ ]) lines .toArray (ss);
return ss ;
}
public void visitParagraph (Paragraph p){

lines .addElement (indent + p.getBody ());
}

public void visitSection (Section s){
String currentIndent = indent ;
lines .addElement (indent + s .getTitle ());
for (Enumeration e = s .getChildren ();

e.hasMoreElements (); ){
indent = currentIndent + " ";
((Component) e.nextElement ()).accept (this);
}
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indent = currentIndent;
}

}

7.11 Builder

public interface Builder{
int addParagraph (String body , int parent)

throws InvalidBuilderId ;
int addSection (String title, int parent)

throws InvalidBuilderId ;
}

7.12 InvalidBuilderId

public class InvalidBuilderId extends Exception{
public InvalidBuilderId (String reason){

super (reason);
}
}

7.13 ComponentBuilder

import java .util .AbstractMap;
import java .util .HashMap;

public class ComponentBuilder implements Builder{
protected int nextId = 0;
protected AbstractMap comps = new HashMap ();
public int addParagraph (String body , int pId)

throws InvalidBuilderId{
return addComponent (new Paragraph (body), pId);
}
public int addSection (String title, int pId)

throws InvalidBuilderId{
return addComponent (new Section (title), pId);
}
public Component getProduct (){

return (Component) comps .get (new Integer (0));
}
protected int addComponent (Component c, int pId)
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throws InvalidBuilderId{
if (pId < 0){ // root component

if (comps .isEmpty ()){
comps .put (new Integer (nextId), c);
return nextId++;
}
else

throw new InvalidBuilderId

("Duplicate root");
} else { // non-root

Component parent = (Component) comps .
get (new Integer (pId));

if (parent null){
throw new InvalidBuilderId

("Non-existent parent");
} else {

if (parent instanceof Paragraph){
throw new InvalidBuilderId

("Adding child to paragraph");
} else {

Section s = (Section) parent ;
s .addComponent (c);
comps .put (new Integer (nextId), c);
return nextId++;
}
}
}
}
}

7.14 PrintBuilder

This is the only class with a non-obvious implementation. It constructs the
printed representation (a String [ ]) of a Component on the fly. In order to do so,
it needs to retain some of the tree structure. This is done by maintaining, for
each Component stored, the unique identifier of its right-most child (or its own
identifier, if it has no children). This is stored in the last field of the corresponding
Record in the vector records . This vector itself is stored in the order the lines will
be returned, that is, a preorder traversal. When adding a new Component , it
should be placed after the rightmost descendent of its immediate parent, and this
is located by following the path of last references. (The code would be cleaner
if we were to use Java generics to declare records as a Vector〈Record〉 rather
than a plain Vector of Objects, but we wish to emphasize that the datatype-
genericity discussed in this paper is a different kind of genericity to that provided
in Java 1.5.)
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import java .util .Vector ;

public class PrintBuilder implements Builder{

protected class Record{
public int id ;
public int last ;
public String line;
public String indent ;
public Record (int id , int last ,

String line,String indent){
this.id = id ;
this.last = last ;
this.line = line;
this.indent = indent ;
}
}
protected Vector records = new Vector ();
protected Record recordAt (int i){

return (Record) records .elementAt (i);
}
protected int find (int id , int start){

while (start < records .size () &&
recordAt (start).id ! = id)

start++;
if (start < records .size ())

return start ;
else

return− 1;
}

protected int nextId = 0;

protected SpellCorrector c = new SpellCorrector ();

public int addParagraph (String body , int pid)
throws InvalidBuilderId{

return addComponent (c.correct (body), pid);
}

public int addSection (String title, int pid)
throws InvalidBuilderId{

return addComponent (title, pid);
}

public String [ ] getProduct (){
String [ ] ss = new String [records .size ()];
for (int i = 0; i < ss .length; i++)

ss [i ] = recordAt (i).indent + recordAt (i).line ;
return ss ;
}
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protected int addComponent (String s , int pId)
throws InvalidBuilderId{

if (pId < 0){
if (records .isEmpty ()){

records .addElement (new Record

(nextId ,nextId , s , ""));
return nextId++;
}
else

throw new InvalidBuilderId

("Duplicate root");
} else {

int x = find (pId , 0);
Record r = recordAt (x );
String indent = r .indent ;
if (x == − 1){

throw new InvalidBuilderId

("Non-existent parent");
} else {

int y = x ;
while (r .id ! = r .last){

y = x ;
x = find (r .last , x );
r = recordAt (x );
}
records .insertElementAt (new Record

(nextId ,nextId , s , indent + " "), x + 1);
recordAt (y).last = nextId ;
return nextId++;
}
}
}
}

7.15 Main

public abstract class Main{
public static void build (Builder b){

try{
int rootId = b.addSection ("Doc",−1);
int sectId = b.addSection ("Sec 1", rootId);
int subsId = b.addSection ("Subsec 1.1", sectId);
int id = b.addParagraph ("Para 1.1.1", subsId);
id = b.addParagraph ("Para 1.1.2", subsId);
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subsId = b.addSection ("Subsec 1.2", sectId);
id = b.addParagraph ("Para 1.2.1", subsId);
id = b.addParagraph ("Para 1.2.2", subsId);
sectId = b.addSection ("Sec 2", rootId);
subsId = b.addSection ("Subsec 2.1", sectId);
id = b.addParagraph ("Para 2.1.1", subsId);
id = b.addParagraph ("Para 2.1.2", subsId);
subsId = b.addSection ("Subsec 2.2", sectId);
id = b.addParagraph ("Para 2.2.1", subsId);
id = b.addParagraph ("Para 2.2.2", subsId);
}catch (InvalidBuilderId e){

System.out .println ("Exception: " + e);
}
}

public static void main (String [ ] args){
String [ ] lines ;
if (false){

ComponentBuilder b = new ComponentBuilder ();
build (b);
Component root = b.getProduct ();
root .getIterator ().iterate (new SpellCorrector ());
PrintVisitor pv = new PrintVisitor ();
root .accept (pv );
lines = pv .getResult ();
} else {

PrintBuilder b = new PrintBuilder ();
build (b);
lines = b.getProduct ();
}
for (int i = 0; i < lines .length; i++)

System.out .println (lines [i ]);
}
}


