
Compositionality in embedded DSLs
(talk proposal)

Jeremy Gibbons
Department of Computer Science, University of Oxford

http://www.cs.ox.ac.uk/people/jeremy.gibbons/

1. Context
There are two main approaches to implementing domain-specific
languages. With the standalone approach [1, 5], independent tools
such as compilers and run-time environments for the DSL are
implemented in one or more general-purpose programming lan-
guages. With the embedded approach [3, 8], the DSL implemen-
tation takes the form of a library of definitions in the host language,
and a program in the DSL is merely a program in the host language
that makes use of the library.

Amongst embedded DSLs, there are two further refinements.
With a deep embedding, terms in the DSL are implemented simply
to construct an abstract syntax tree (AST), which is subsequently
transformed for optimization and traversed for evaluation. With a
shallow embedding, terms in the DSL are implemented directly
by their semantics, bypassing the intermediate AST and its traver-
sal. Deep embeddings might seem like the obvious approach, but
Kamin [10] and Erwig [4] (among others) argue that shallow em-
beddings are superior.

Our focus in this talk proposal is the relationship between deep
and shallow embeddings of DSLs, and the connection to composi-
tional semantics.

2. Embeddings
Consider for example a DSL for 2D graphics, which might involve
sublanguages for affine transformations (translation, scaling, rota-
tion). As a deep embedding, this sublanguage could be represented
using an algebraic datatype:

data Transform where
Identity :: Transform
Translate :: Complex→ Transform
Scale :: Real→ Transform
Rotate :: Real→ Transform
Compose :: (Transform,Transform)→ Transform

(The notation is Haskell; we trust that it is sufficiently self-
explanatory.) This sublanguage might be used in various ways
within the overall graphics language. For example, we probably
want to transform points:

transform :: (Transform,Complex)→ Complex
transform (Identity,p) = p
transform (Translate p,q) = p+q
transform (Scale s,p) = scale s p
transform (Rotate a,p) = rotate a p
transform (Compose (t,u),p) = transform (t, transform (u,p))
scale,rotate :: Real→ Complex→ Complex
scale s p = (s :+0)×p
rotate a p = mkPolar (magnitude p) (a+phase p)

With a shallow embedding, we dispense with the abstract syntax
trees (that is, the algebraic datatype), and represent terms directly
by their semantics. This is straightforward to do for a single inter-
pretation, for example representing a transformation directly as a
function on points:

type TransformS = Complex→ Complex
identityS :: TransformS
identityS = λp→ p
translateS :: Complex→ TransformS
translateS p = λq→ p+q
scaleS :: Real→ TransformS
scaleS s = λp→ scale s p
rotateS :: Real→ TransformS
rotateS a = λp→ rotate a p
composeS :: (TransformS,TransformS)→ TransformS
composeS (f ,g) = f ◦g

Note the similarity between the interpretation of a deep embedding
(such as the clauses of transform) and the direct representation in a
shallow embedding (via identityS, translateS, etc).

3. Tension
With a deep embedding, it is trivial to provide additional interpre-
tations of a language:

isLinear :: Transform→ Bool
print :: Transform→ String

But what about multiple interpretations in a shallow embedding?
We don’t want to have to redefine the representation Transform
and reimplement all the constructors for each new interpretation.
Sometimes we are lucky enough to have a common generaliza-
tion of multiple interpretations (for example, we could represent
a Transform as a matrix, and implement transform and isLinear in
terms of this) but we are not always so lucky (it doesn’t work for
print). What is the general solution?

4. Resolution
The general pattern is that

each feasible shallow embedding of a language corresponds
to a compositional interpretation of the deep embedding of
the language in question.

For example, the function transform—or rather, its curried version
transform′ :: Transform → (Complex → Complex)—is composi-
tional, in the sense that the interpretation transform′ (Compose (t,u))
of a term Compose (t,u) depends only on the interpretations
transform′ t and transform′ u of its subterms t and u, and not on any

1 2014/8/27



other attributes of t and u. This is both a necessary and a sufficient
condition for transform′ to be feasible as a shallow embedding of
the language of transformations.

In functional programming, such compositional functions are
called folds [9]. Folds follow a fixed recursion pattern, correspond-
ing to the shape of the data structure; their points of variation con-
stitute what is called an algebra, specifying how to interpret each
constructor of the datatype. For example, the Transform datatype
has five constructors, so an algebra for this shape of data is a quin-
tuple, with one component per constructor:

type TAlg a = (a,Complex→ a,Real→ a,Real→ a,(a,a)→ a)

The fold operator for Transforms takes such an algebra, and col-
lapses a Transform down to a value; the recursion follows the shape
of the Transform, and the individual constructors are handled by the
corresponding components of the algebra:

fold :: TAlg a→ (Transform→ a)
fold (i, t,s,r,c) Identity = i
fold (i, t,s,r,c) (Translate p) = t p
fold (i, t,s,r,c) (Scale a) = s a
fold (i, t,s,r,c) (Rotate a) = r a
fold (i, t,s,r,c) (Compose (f ,g)) = c (fold (i, t,s,r,c) f ,

fold (i, t,s,r,c) g)

Compositional interpretations can be expressed as folds; for exam-
ple,

transform′ t = fold (id,(+),scale,rotate,uncurry (◦)) t

One can see folds as the essence of compositional interpretations.
And this gives us a clue about supporting multiple interpretations
in a shallow embedding: if interpretations in a shallow embedding
have to be compositional, and compositional interpretations are all
and only those expressible as folds, then

the fold pattern is precisely the least common generalization
of all shallow interpretations.

The folding pattern is what all shallow interpretations have in com-
mon; the instantiation of the pattern—that is, the specific algebra—
is what varies. Consider a version of fold with its arguments in the
opposite order:

flip fold :: Transform→ (TAlg a→ a)

We should use the result type TAlg a→ a of this function as the
semantic domain for our parametrized shallow embedding; it can
then be instantiated to any fold by supplying the corresponding
algebra.

type TransformA = ∀a. TAlg a→ a

(For technical reasons, the type parameter a above has to be explic-
itly quantified rather than left unbound.) All the constructors of the
language can be implemented easily under this representation:

identityA :: TransformA
identityA (i, t,s,r,c) = i
translateA :: Complex→ TransformA
translateA p (i, t,s,r,c) = t p
scaleA :: Real→ TransformA
scaleA a (i, t,s,r,c) = s a
rotateA :: Real→ TransformA
rotateA a (i, t,s,r,c) = r a
composeA :: (TransformA,TransformA)→ TransformA
composeA (f ,g) (i, t,s,r,c) = c (f (i, t,s,r,c),g (i, t,s,r,c))

And any compositional interpretation arises from applying the shal-
low embedding (which is a fold computation) to the appropriate
algebra:

transformA :: TransformA→ (Complex→ Complex)
transformA t = t (id,(+),scale,rotate,uncurry (◦))

Many seemingly non-compositional interpretations are still ex-
pressible as folds, if looked at in the right way. For example,
the interpretation isLinear above is non-compositional, because
to determine whether Compose (t,u) is linear, it does not suffice to
know whether t and u are linear. Still, it is a simple projection from
transform, which is compositional:

isLinear t = (transform (t,0) == 0)

Mutually dependent interpretations can be defined together as a
pair. Context-dependent interpretations, such as precedence-aware
printing, can be turned into context-independent compositional
higher-order interpretations:

printPrec :: Transform→ (Precedence→ String)

5. Conclusion
Deep and shallow embeddings are more popular in functional pro-
gramming circles than in object-oriented ones. That’s not so sur-
prising, give as we have seen that they depend heavily on alge-
braic datatypes and higher-order functions, respectively. Still, mod-
ern language design (C#, Scala, Python) combines the best of both
paradigms, so hopefully that barrier will gradually recede. Then the
lightweight embedded approach will become more widely avail-
able.

6. Acknowledgements
This talk proposal is based on a functional pearl [7] appearing at
ICFP 2014, joint work with Nicolas Wu, which in turn grew out
of lectures [6] given at the Central European Functional Program-
ming summer school in 2013. The work was supported by EPSRC
research grant EP/J010995/1 on Unifying Theories of Generic Pro-
gramming.

References
[1] J. Bentley. Programming pearls: Little languages. Comm. ACM,

29(8):711–721, 1986. Also Chapter 9 of [2].
[2] J. Bentley. More Programming Pearls: Confessions of a Coder.

Addison-Wesley, 1988.
[3] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. V.

Tassel. Experience with embedding hardware description languages in
HOL. In Theorem Provers in Circuit Design, pages 129–156. North-
Holland/Elsevier, 1992.

[4] M. Erwig and E. Walkingshaw. Semantics-driven DSL design. In
M. Mernik, editor, Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments, pages 56–80. IGI-Global, 2012.

[5] M. Fowler. Domain-Specific Languages. Addison-Wesley, 2011.
[6] J. Gibbons. Functional programming for domain-specific languages.

In V. Zsók, editor, Central European Functional Programming Sum-
mer School, volume 8606 of LNCS, pages 1–27. Springer, 2014. To
appear.

[7] J. Gibbons and N. Wu. Folding domain-specific languages: Deep and
shallow embeddings. In ICFP, Sept. 2014.

[8] P. Hudak. Building domain-specific embedded languages. Comput.
Surveys, 28(4), 1996.

[9] G. Hutton. A tutorial on the universality and expressiveness of fold. J.
Funct. Prog., 9(4), 1999.

[10] S. M. Kamin and D. Hyatt. A special-purpose language for picture-
drawing. In Domain-Specific Languages. Usenix, 1997.

2 2014/8/27


