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Abstract
A domain-specific language can be implemented by embedding
within a general-purpose host language. This embedding may be
deep or shallow, depending on whether terms in the language
construct syntactic or semantic representations. The deep and
shallow styles are closely related, and intimately connected to folds;
in this paper, we explore that connection.

1. Introduction
General-purpose programming languages (GPLs) are great for
generality. But this very generality can count against them: it may
take a lot of programming to establish a suitable context for a
particular domain; and the programmer may end up being spoilt
for choice with the options available to her—especially if she is a
domain specialist rather than primarily a software engineer. This
tension motivates many years of work on techniques to support the
development of domain-specific languages (DSLs) such as VHDL,
SQL and PostScript: languages specialized for a particular domain,
incorporating the contextual assumptions of that domain and guiding
the programmer specifically towards programs suitable for that
domain.

There are two main approaches to DSLs. Standalone DSLs
provide their own custom syntax and semantics, and standard
compilation techniques are used to translate or interpret programs
written in the DSL for execution. Standalone DSLs can be designed
for maximal convenience to their intended users. But the exercise
can be a significant undertaking for the implementer, involving an
entirely separate ecosystem—compiler, editor, debugger, and so on—
and typically also much reinvention of standard language features
such as local definitions, conditionals, and iteration.

The alternative approach is to embed the DSL within a host
GPL, essentially as a collection of definitions written in the host
language. All the existing facilities and infrastructure of the host
environment can be appropriated for the DSL, and familiarity with
the syntactic conventions and tools of the host language can be
carried over to the DSL. Whereas the standalone approach is the
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most common one within object-oriented circles [11], the embedded
approach is typically favoured by functional programmers [19]. It
seems that core FP features such as algebraic datatypes and higher-
order functions are extremely helpful in defining embedded DSLs;
conversely, it has been said [24] that language-oriented tasks such
as DSLs are the killer application for FP.

Amongst embedded DSLs, there are two further refinements.
With a deep embedding, terms in the DSL are implemented simply
to construct an abstract syntax tree (AST), which is subsequently
transformed for optimization and traversed for evaluation. With a
shallow embedding, terms in the DSL are implemented directly by
their semantics, bypassing the intermediate AST and its traversal.
The names ‘deep’ and ‘shallow’ seem to have originated in the
work of Boulton and colleagues on embedding hardware description
languages in theorem provers for the purposes of verification [6].
Boulton’s motivation for the names was that a deep embedding
preserves the syntactic representation of a term, “whereas in a
shallow embedding [the syntax] is just a surface layer that is easily
blown away by rewriting” [5]. It turns out that deep and shallow
embeddings are closely related, and intimately connected to folds;
our purpose in this paper is to explore that connection.

2. Embedding DSLs
We start by looking a little closer at deep and shallow embeddings.
Consider a very simple language of arithmetic expressions, involving
integer constants and addition:

type Expr1 = ...

lit :: Integer → Expr1
add :: Expr1→ Expr1→ Expr1

The expression (3+ 4)+ 5 is represented in the DSL by the term
add (add (lit 3) (lit 4)) (lit 5).

As a deeply embedded DSL, the two operations lit and add are
encoded directly as constructors of an algebraic datatype:

data Expr2 ::∗ where
Lit :: Integer → Expr2
Add :: Expr2→ Expr2→ Expr2

lit n = Lit n
add x y = Add x y

(We have used Haskell’s ‘generalized algebraic datatype’ notation,
in order to make the types of the constructors Lit and Add explicit;
but we are not using the generality of GADTs here, and the old-
fashioned way would have worked too.) Observations of terms in
the DSL are defined as functions over the algebraic datatype. For
example, here is how to evaluate an expression:



Figure 1. The Brent–Kung parallel prefix circuit of width 4

eval2 :: Expr2→ Integer
eval2 (Lit n) = n
eval2 (Add x y) = eval2 x+ eval2 y

This might be used as follows:

> eval2 (Add (Add (Lit 3) (Lit 4)) (Lit 5))
12

In other words, a deep embedding consists of a representation of
the abstract syntax as an algebraic datatype, together with some
functions that assign semantics to that syntax by traversing the
algebraic datatype.

A shallow embedding eschews the algebraic datatype, and hence
the explicit representation of the abstract syntax of the language;
instead, the language is defined directly in terms of its semantics.
For example, if the semantics is to be evaluation, then we could
define:

type Expr3 = Integer
lit n = n
add x y = x+ y
eval3 :: Expr3→ Integer
eval3 n = n

This might be used as follows:

> eval3 (add (add (lit 3) (lit 4)) (lit 5))
12

We have used subscripts to distinguish different representations of
morally ‘the same’ functions (eval2 and eval3) and types (Expr2 and
Expr3). We will continue that convention throughout the paper.

One might see the deep and shallow embeddings as duals, in a
variety of senses. For one sense, the language constructs Lit and Add
in the deep embedding do none of the work, leaving this entirely to
the observation function eval; in contrast, in the shallow embedding,
the language constructs lit and add do all the work, and the observer
eval3 is simply the identity function.

For a second sense, it is trivial to add a second observer such
as pretty-printing to the deep embedding—just define another
function alongside eval—but awkward to add a new construct such
as multiplication: doing so entails revisiting the definitions of all
existing observers to add an additional clause. In contrast, adding
a construct to the shallow embedding—alongside lit and add—is
trivial, but the obvious way of introducing an additional observer
entails completely revising the semantics by changing the definitions
of all existing constructs. This is precisely the tension underlying the
expression problem [23, 30], so named for precisely this example.

The types of lit and add in the shallow embedding coincide
with those of Lit and Add in the deep embedding; moreover, the
definitions of lit and add in the shallow embedding correspond to
the ‘actions’ in each clause of the definition of the observer in the
deep embedding. The shallow embedding presents a compositional
semantics for the language, since the semantics of a composite term
is explicitly composed from the semantics of its components. Indeed,
it is only such compositional semantics that can be captured in a
shallow embedding; it is possible to define a more sophisticated non-

Figure 2. Identity circuit identity 4 and fan circuit fan 4 of width 4

compositional semantics as an interpretation of a deep embedding,
but not possible to represent that semantics directly via a shallow
embedding.

However, there is no duality in the categorical sense of reversing
arrows. Although deep and shallow embeddings have been called
the ‘initial’ and ‘final’ approaches [8], in fact the two approaches are
equivalent, and both correspond to initial algebras; Carette et al. say
only that they use the term ‘final’ “because we represent each object
term not by its abstract syntax but by its denotation in a semantic
algebra”, and they are not concerned with final coalgebras.

3. Scans
The expression language above is very simple—perhaps too simple
to serve as a convincing vehicle for discussion. As a more inter-
esting example of a DSL, we turn to a language for parallel prefix
circuits [14], which crop up in a number of different applications—
carry-lookahead adders, parallel sorting, and stream compaction,
to name but a few. Given an associative binary operator •, a prefix
computation of width n>0 takes a sequence x1,x2, ...,xn of inputs
and produces the sequence x1,x1•x2, ...,x1•x2•· · ·•xn of outputs.
A parallel prefix circuit performs this computation in parallel, in a
fixed format independent of the input values xi.

An example of such a circuit is depicted in Figure 1. This circuit
diagram should be read as follows. The inputs are fed in at the top,
and the outputs fall out at the bottom. Each node (the blobs in the
diagram) represents a local computation, combining the values on
each of its input wires using •, in left-to-right order, and providing
copies of the result on each of its output wires. It is an instructive
exercise to check that this circuit does indeed take x1,x2,x3,x4 to
x1,x1•x2,x1•x2•x3,x1•x2•x3•x4.

Such circuits can be constructed using the following operators:

type Size = Int -- positive
type Circuit1 = ...

identity :: Size→ Circuit1
fan :: Size→ Circuit1
above :: Circuit1→ Circuit1→ Circuit1
beside :: Circuit1→ Circuit1→ Circuit1
stretch :: [Size]→ Circuit1→ Circuit1

The most basic building block is the identity circuit, identity n,
which creates a circuit consisting of n parallel wires that copy input
to output. The other primitive is the fan circuit; fan n takes n inputs,
and adds its first input to each of the others. We only consider non-
empty circuits, so n must be positive in both cases. Instances of
identity and fan of width 4 are shown in Figure 2.

Then there are three combinators for circuits. The series or
vertical composition, above c d, takes two circuits c and d of the
same width, and connects the outputs of c to the inputs of d. The
parallel or horizontal composition, beside c d, places c beside d,
leaving them unconnected; there are no width constraints on c and d.
Figure 3 shows a 2-fan beside a 1-identity, a 1-identity beside a 2-
fan, and the first of these above the second (note that they both have
width 3); this yields the “serial” parallel prefix circuit of width 3.

Finally, the stretch combinator, stretch ws c, takes a non-empty
list of positive widths ws = [w1, ...,wn ] of length n, and a circuit c
of width n, and “stretches” c out to width sum ws by interleaving
some additional wires. Of the first bundle of w1 inputs, the last is
routed to the first input of c and the rest pass straight through; of



Figure 3. The construction of a parallel prefix circuit of width 3

the next bundle of w2 inputs, the last is routed to the second input
of c and the rest pass straight through; and so on. (Note that each
bundle width wi must be positive.) For example, Figure 4 shows a
3-fan stretched out to width 8, in bundles of [3,2,3].

So one possible construction of the Brent–Kung parallel prefix
circuit in Figure 1 is

(fan 2 ‘beside‘ fan 2) ‘above‘
stretch [2,2] (fan 2) ‘above‘
(identity 1 ‘beside‘ fan 2 ‘beside‘ identity 1)

The general Brent–Kung construction [7] is given recursively. The
general pattern is a row of 2-fans, possibly with an extra wire in
the case of odd width; then a Brent–Kung circuit of half the width,
stretched out by a factor of two; then another row of 2-fans, shifted
one place to the right.

brentkung :: Size→ Circuit1
brentkung 1 = identity 1
brentkung w

= (row (replicate u (fan 2)) ‘pad‘ w) ‘above‘
(stretch (replicate u 2) (brentkung u) ‘pad‘ w) ‘above‘
(row (identity 1 : replicate v (fan 2)) ‘pad‘ (w−1))

where (u,v) = (w ‘div‘ 2,(w−1) ‘div‘ 2)
c ‘pad‘ w = if even w then c else c ‘beside‘ identity 1
row = foldr1 beside

The Brent–Kung circuit of width 16 is shown in Figure 5. Note
one major benefit of defining Circuit as an embedded rather than a
standalone DSL: we can exploit for free host language constructions
such as replicate and foldr1, rather than having to reinvent them
within the DSL.

As a deeply embedded DSL, circuits can be captured by the
following algebraic datatype:

data Circuit2 ::∗ where
Identity :: Size→ Circuit2
Fan :: Size→ Circuit2
Above :: Circuit2→ Circuit2→ Circuit2
Beside :: Circuit2→ Circuit2→ Circuit2
Stretch :: [Size]→ Circuit2→ Circuit2

It is, of course, straightforward to define functions to manipulate this
representation. Here is one, which computes the width of a circuit:

type Width = Int
width2 :: Circuit2→Width
width2 (Identity w) = w
width2 (Fan w) = w
width2 (Above x y) = width2 x
width2 (Beside x y) = width2 x+width2 y
width2 (Stretch ws x) = sum ws

Note that width2 is compositional: it is a fold over the abstract
syntax of Circuit2s. That makes it a suitable semantics for a shallow
embedding. That is, we could represent circuits directly by their
widths, as follows:

type Circuit3 = Width
identity w = w

Figure 4. A 3-fan stretched out by widths [3,2,3 ]

fan w = w
above x y = x
beside x y = x+ y
stretch ws x = sum ws
width3 :: Circuit3→Width
width3 = id

Clearly, width is a rather uninteresting semantics to give to circuits.
But what other kinds of semantics will fit the pattern of composi-
tionality, and so be suitable for a shallow embedding? In order to
explore that question, we need to look a bit more closely at folds
and their variations.

4. Folds
Folds are the natural pattern of computation induced by inductively
defined algebraic datatypes. We consider here just polynomial
algebraic datatypes, namely those with one or more constructors,
each constructor taking zero or more arguments to the datatype being
defined, and each argument either having a fixed type independent
of the datatype, or being a recursive occurrence of the datatype itself.
For example, the polynomial algebraic datatype Circuit2 above
has five constructors; Identity and Fan each take one argument of
the fixed type Size; Above and Beside take two arguments, both
recursive occurrences; Stretch takes two arguments, one of which
is the fixed type [Size], and the other is a recursive argument. Thus,
we rule out contravariant recursion, polymorphic datatypes, higher
kinds, and other such esoterica. For simplicity, we also ignore DSLs
with binding constructs, which complicate matters significantly; for
more on this, see [1, 8].

The general case is captured by a shape—also called a base or
pattern functor—which is an instance of the Functor type class:

class Functor f where
fmap :: (a→ b)→ (f a→ f b)

For Circuit2, the shape is given by CircuitF as follows, where the
parameter x marks the recursive spots:

data CircuitF ::∗→ ∗ where
IdentityF :: Size→ CircuitF x
FanF :: Size→ CircuitF x
AboveF :: x→ x→ CircuitF x
BesideF :: x→ x→ CircuitF x
StretchF :: [Size]→ x→ CircuitF x

instance Functor CircuitF where
fmap f (IdentityF w) = IdentityF w
fmap f (FanF w) = FanF w
fmap f (AboveF x1 x2) = AboveF (f x1) (f x2)
fmap f (BesideF x1 x2) = BesideF (f x1) (f x2)
fmap f (StretchF ws x) = StretchF ws (f x)

We can use this shape functor as the basis of an alternative definition
of the algebraic datatype Circuit2:

data Circuit4 = In (CircuitF Circuit4)

Now, an algebra for a functor f consists of a type a and a function
taking an f -structure of a-values to an a-value. For the functor
CircuitF, this is:

type CircuitAlg a = CircuitF a→ a



Figure 5. The Brent–Kung parallel prefix circuit of width 16

Such an algebra is precisely the information needed to fold a data
structure:

foldC :: CircuitAlg a→ Circuit4→ a
foldC h (In x) = h (fmap (foldC h) x)

For example, width is a fold for the deeply embedded DSL of shape
CircuitF, and is determined by the following algebra:

widthAlg :: CircuitAlg Width
widthAlg (IdentityF w) = w
widthAlg (FanF w) = w
widthAlg (AboveF x y) = x
widthAlg (BesideF x y) = x+ y
widthAlg (StretchF ws x) = sum ws
width4 :: Circuit4→Width
width4 = foldC widthAlg

So a compositional observation function for the deep embedding,
such as width4, is precisely a fold using such an the algebra. We
know a lot about folds, and this tells us a lot about embedded DSLs.
We discuss these consequences next.

4.1 Multiple interpretations
As mentioned above, the deep embedding smoothly supports ad-
ditional observations. For example, suppose that we also wanted
to find the depth of our circuits. No problem—we can just define
another observation function.

type Depth = Int
depthAlg :: CircuitAlg Depth
depthAlg (IdentityF w) = 0
depthAlg (FanF w) = 1
depthAlg (AboveF x y) = x+ y
depthAlg (BesideF x y) = x ‘max‘ y
depthAlg (StretchF ws x) = x
depth4 :: Circuit4→ Depth
depth4 = foldC depthAlg

But what about with a shallow embedding? With this approach, cir-
cuits can only have a single semantics, so how do we accommodate
finding both the width and the depth of a circuit? It’s not much more
difficult than with a deep embedding; we simply make the semantics
a pair, providing both interpretations simultaneously.

type Circuit5 = (Width,Depth)

Now the observation functions width5 and depth5 become projec-
tions, rather than just the identity function.

width5 :: Circuit5→Width
width5 = fst
depth5 :: Circuit5→ Depth
depth5 = snd

The individual operations can be defined much as before, just by
projecting the relevant components out of the pair:

wdAlg :: CircuitAlg Circuit5
wdAlg (IdentityF w) = (w,0)
wdAlg (FanF w) = (w,1)
wdAlg (AboveF x y) = (width5 x,depth5 x+depth5 y)
wdAlg (BesideF x y) = (width5 x+width5 y,

depth5 x ‘max‘ depth5 y)
wdAlg (StretchF ws x) = (sum ws,depth5 x)

This algebra is the essence of the shallow embedding; for example,

identity5 w = wdAlg (IdentityF w)

and so on. Of course, this works better under lazy than under eager
evaluation: if only one of the two interpretations of an expression
is needed, only that one is evaluated. And it’s rather clumsy from a
modularity perspective; we will return to this point later.

Seen from the fold perspective, this step is no surprise: the
‘banana split law’ [10] tells us that tupling two independent folds
gives another fold, so multiple interpretations can be provided in the
shallow embedding nearly as easily as in the deep embedding.

4.2 Dependent interpretations
A shallow embedding supports only compositional interpretations,
whereas a deep embedding provides full access to the AST and hence
also non-compositional manipulations. Here, ‘compositionality’ of
an interpretation means that the interpretation of a whole may be
determined solely from the interpretations of its parts; it is both
a valuable property for reasoning and a significant limitation to
expressivity. Not all interpretations are of this form; sometimes a
‘primary’ interpretation of the whole depends also on ‘secondary’
interpretations of its parts.

For example, whether a circuit is well formed depends on the
widths of its constituent parts. Given that we have an untyped (or
rather, ‘unsized’) model of circuits, we might capture this property
in a separate function wellSized:

type WellSized = Bool
wellSized :: Circuit2→WellSized
wellSized (Identity w) = True
wellSized (Fan w) = True



wellSized (Above x y) = wellSized x ∧ wellSized y
∧ width x≡ width y

wellSized (Beside x y) = wellSized x ∧ wellSized y
wellSized (Stretch ws x) = wellSized x ∧ length ws≡ width x

This is a non-compositional interpretation of the abstract syntax,
because wellSized sometimes depends on the width of subcircuits
as well as their recursive image under wellSized. In other words,
wellSized is not a fold, and there is no corresponding CircuitAlg.

What can we do about such non-compositional interpretations
in the shallow embedding? Again, fold theory comes to the rescue:
wellSized and width together form a mutumorphism [10]—that is,
two mutually dependent folds—and the tuple of these two functions
again forms a fold. (In fact, this is a special case, a zygomorphism
[10], since the dependency is only one-way. Simpler still, we have
seen another special case in the banana split above, where neither of
the two folds depends on the other.)

type Circuit6 = (WellSized,Width)
wswAlg :: CircuitAlg Circuit6
wswAlg (IdentityF w) = (True,w)
wswAlg (FanF w) = (True,w)
wswAlg (AboveF x y) = (fst x ∧ fst y ∧ snd x≡ snd y,snd x)
wswAlg (BesideF x y) = (fst x ∧ fst y,snd x+ snd y)
wswAlg (StretchF ws x) = (fst x ∧ length ws≡ snd x,sum ws)

So although wellSized = fst ◦ foldC wswAlg is not a fold, it is
manifestly clear that foldC wswAlg is. Tupling functions in this
way is analogous to strengthening the invariant of an imperative
loop to record additional information [20], and is a standard trick in
program calculation [18].

Another example of a dependent interpretation is provided
by what Hinze [14] calls the standard model of the circuit: its
interpretation as a computation. As discussed in the introduction,
this is defined in terms of an associative binary operator (•), which
we capture by the following type class:

class Semigroup s where
(•) :: s→ s→ s -- • is associative

The interpretation apply interprets a circuit of width n as a function
operating on lists of length n:

apply :: Semigroup a⇒ Circuit2→ [a]→ [a ]
apply (Identity w) xs = xs
apply (Fan w) (x : xs) = x : map (x•) xs
apply (Above c d) xs = apply d (apply c xs)
apply (Beside c d) xs = apply c ys++apply d zs

where (ys,zs) = splitAt (width c) xs
apply (Stretch ws c) xs = concat
(zipWith snoc (map init xss) (apply c (map last xss)))
where xss = bundle ws xs

Here, snoc is ‘cons’ backwards,

snoc ys z = ys++[z]

and bundle ws xs groups the list xs into bundles of widths ws,
assuming that sum ws≡ length xs:

bundle :: Integral i⇒ [i]→ [a ]→ [[a ]]
bundle [ ] [ ] = [ ]
bundle (w : ws) xs = ys : bundle ws zs

where (ys,zs) = splitAt w xs

The apply interpretation is another zygomorphism, because in the
Beside case apply depends on width c as well as apply c and apply d.
And indeed, Hinze’s ‘standard model’ [14] comprises both the list
transformer and the width, tupled together.

4.3 Context-sensitive interpretations
Consider generating a circuit layout from a circuit description, for
example as the first step in expressing the circuit in a hardware
description language such as VHDL—or, for that matter, for pro-
ducing the diagrams in this paper. The essence of the translation is
to determine the connections between vertical wires. Note that each
circuit can be thought of as a sequence of layers, and connections
only go from one layer to the next (and only rightwards, too). So it
suffices to generate a list of layers, where each layer is a collection
of pairs (i, j) denoting a connection from wire i on this layer to wire j
on the next. The ordering of the pairs on each layer is not significant.
We count from 0. For example, the Brent–Kung circuit of size 4
given in Figure 1 has the following connections:

[[(0,1),(2,3)], [(1,3)], [(1,2)]]

That is, there are three layers; the first layer has connections from
wire 0 to wire 1 and from wire 2 to wire 3; the second a single
connection from wire 1 to wire 3; and the third a single connection
from wire 1 to wire 2.

type Layout = [[(Size,Size)]]
layout :: Circuit2→ Layout
layout (Identity w) = [ ]
layout (Fan w) = [[(0, j) | j← [1 . .w−1]]]
layout (Above c d) = layout c++ layout d
layout (Beside c d) = lzw(++) (layout c)

(shift (width c) (layout d))
layout (Stretch ws c) = map (map (connect ws)) (layout c)
shift w = map (map (pmap (w+)))
connect ws = pmap (pred ◦ ((scanl1 (+) ws)!!))

Here, pmap is the map function for homogeneous pairs:

pmap :: (a→ b)→ (a,a)→ (b,b)
pmap f (x,y) = (f x, f y)

The function lzw is ‘long zip with’ [13], which zips two lists together
and returns a result as long as the longer argument. The binary
operator is used to combine corresponding elements; if one list is
shorter then the remaining elements of the other are simply copied.

lzw :: (a→ a→ a)→ [a ]→ [a ]→ [a]
lzw f [ ] ys = ys
lzw f xs [ ] = xs
lzw f (x : xs) (y : ys) = f x y : lzw f xs ys

The layout interpretation is yet another zygomorphism, because
layout (Beside c d) depends on width c as well as layout c and
layout d. In fact, in general we need the width of the circuit anyway
in order to determine the layout, in case the rightmost wire is not
connected to the others. So the techniques discussed above will allow
us to express the layout as a shallow embedding, whose essence is
as follows:

lwAlg :: CircuitAlg (Layout,Width)
lwAlg (IdentityF w) = ([ ],w)
lwAlg (FanF w) = ([[(0, j) | j← [1 . .w−1]]],w)
lwAlg (AboveF c d) = (l1 ++ l2,w2)

where (l1,w1) = c;(l2,w2) = d
lwAlg (BesideF c d) = (lzw(++) l1 (shift w1 l2),w1 +w2)

where (l1,w1) = c;(l2,w2) = d
lwAlg (StretchF ws (l,w)) = (map (map (connect ws)) l,sum ws)

But even having achieved this, there is room for improvement. In
the Beside and Stretch clauses, sublayouts are postprocessed using
shift and map (map (connect ws)) respectively. It would be more
efficient to do this processing via an accumulating parameter [3]



instead. In this case, a transformation on wire indices suffices as the
accumulating parameter (‘tlayout’ stands for ‘transformed layout’):

tlayout :: (Size→ Size)→ Circuit2→ Layout
tlayout f c = map (map (pmap f )) (layout c)

Of course, layout = tlayout id, and it is a straightforward exercise
to synthesize the following more efficient definition of tlayout:

tlayout :: (Size→ Size)→ Circuit2→ Layout
tlayout f (Identity w) = [ ]
tlayout f (Fan w) = [[(f 0, f j) | j← [1 . .w−1 ]]]
tlayout f (Above c d) = tlayout f c++ tlayout f d
tlayout f (Beside c d) = lzw(++) (tlayout f c)

(tlayout ((w+)◦ f ) d)
where w = width c

tlayout f (Stretch ws c) = tlayout (pred ◦ (vs!!)◦ f ) c
where vs = scanl1 (+) ws

And how does this work out with a shallow embedding? Note that
tlayout f is no longer a fold, because the accumulating parameter
changes in some recursive calls. One might say that tlayout is
a context-sensitive layout function, and the context may vary in
recursive calls. But standard fold technology comes to the rescue
once more: tlayout may not be a fold, but flip tlayout is—specifically,
an accumulating fold.

tlwAlg :: CircuitAlg ((Size→ Size)→ Layout,Width)
tlwAlg (IdentityF w) = (λ f → [ ],w)
tlwAlg (FanF w) = (λ f → [[(f 0, f j) | j← [1 . .w−1]]],w)
tlwAlg (AboveF c d) = (λ f → fst c f ++ fst d f ,snd c)
tlwAlg (BesideF c d) = (λ f → lzw(++) (fst c f )

(fst d ((snd c+)◦ f )),
snd c+ snd d)

tlwAlg (StretchF ws c) = (λ f → fst c (pred ◦ (vs!!)◦ f ),sum ws)
where vs = scanl1 (+) ws

The alert reader may have noted another source of inefficiency
in layout, namely the uses of ++ and lzw(++) in the Above and
Beside cases. These too can be removed, by introducing two more
accumulating parameters, giving:

ulayout :: (Size→ Size)→ Layout→ Layout→
Circuit2→ Layout

ulayout f l l′ c = (lzw(++) (map (map (pmap f )) (layout c)) l)++ l′

(now ‘ulayout’ stands for ‘ultimate layout’). From this specification
we can synthesize a definition that takes linear time in the ‘size’ of
the circuit, for a reasonable definition of ‘size’. We leave the details
as an exercise.

In fact, the standard interpretation apply given above is really
another accumulating fold, in disguise. Rather than reading the type

apply :: Semigroup a⇒ Circuit2→ [a]→ [a ]

as defining an interpretation of circuits as list transformers of type
Semigroup a⇒ ([a ]→ [a]), one can read it as defining a context-
dependent interpretation as an output list of type Semigroup a⇒ [a ],
dependent on some input list of the same type. The interpretation
is implemented in terms of an accumulating parameter; this is
initially the input list, but it ‘accumulates’ by attrition via splitAt
and map last ◦bundle ws as the evaluation proceeds.

4.4 Parametrized interpretations
We saw in Section 4.1 that it is not difficult to provide multiple
interpretations with a shallow embedding, by constructing a tuple as
the semantics of an expression and projecting the desired interpreta-
tion from the tuple. But this is still a bit clumsy: it entails revising
existing code each time a new interpretation is added, and wide
tuples generally lack good language support [25].

But as we have also seen, all compositional interpretations
conform to a common pattern: they are folds. So we can provide
a shallow embedding as precisely that pattern—that is, in terms of
a single parametrized interpretation, which is a higher-order value
representing the fold.

newtype Circuit7 = C7 {unC7 ::∀a . CircuitAlg a→ a}
identity7 w = C7 (λh→ h (IdentityF w))
fan7 w = C7 (λh→ h (FanF w))
above7 x y = C7 (λh→ h (AboveF (unC7 x h) (unC7 y h)))
beside7 x y = C7 (λh→ h (BesideF (unC7 x h) (unC7 y h)))
stretch7 ws x = C7 (λh→ h (StretchF ws (unC7 x h)))

(We need the newtype instead of a plain type synonym because of
the quantified type.) This shallow encoding subsumes all others; it
specializes to depth and width, and of course to any other fold:

width7 :: Circuit7→Width
width7 circuit = unC7 circuit widthAlg
depth7 :: Circuit7→ Depth
depth7 circuit = unC7 circuit depthAlg

In fact, the shallow embedding provides a universal generic interpre-
tation as the Church encoding [15] of the AST—or more precisely,
because it is typed, the Böhm–Berarducci encoding [4].

Universality is witnessed by the observation that it is possible to
recover the deep embedding from this one ‘mother of all shallow
embeddings’ [8]:

deep :: Circuit7→ Circuit4
deep circuit = unC7 circuit In

(So it turns out that the syntax of the DSL is not really as ephemeral
in a shallow embedding as Boulton’s choice of terms [6] suggests.)
And conversely, one can map from the deep embedding to the
parametrized shallow embedding, and thence to any other shallow
embedding:

shallow :: Circuit4→ Circuit7
shallow = foldC shallowAlg
shallowAlg :: CircuitAlg Circuit7
shallowAlg (IdentityF w) = identity7 w
shallowAlg (FanF w) = fan7 w
shallowAlg (AboveF c d) = above7 c d
shallowAlg (BesideF c d) = beside7 c d
shallowAlg (StretchF ws c) = stretch7 ws c

Moreover, deep and shallow are each other’s inverses, assuming
parametricity [29].

4.5 Implicitly parametrized interpretations
The shallow embedding in Section 4.4 involves explicitly passing
an algebra with which to interpret terms. That parameter may be
passed implicitly instead, if it can be determined from the type of
the interpretation. In Haskell, this can be done by defining a suitable
type class:

class Circuit8 circuit where
identity8 :: Size→ circuit
fan8 :: Size→ circuit
above8 :: circuit→ circuit→ circuit
beside8 :: circuit→ circuit→ circuit
stretch8 :: [Size]→ circuit→ circuit

To specify a particular interpretation, one defines an instance of the
type class for the type of that interpretation. For example, here is
the specification of the ‘width’ interpretation:

newtype Width8 = Width {unWidth :: Int}



instance Circuit8 Width8 where
identity8 w = Width w
fan8 w = Width w
above8 x y = x
beside8 x y = Width (unWidth x+unWidth y)
stretch8 ws x = Width (sum ws)

The newtype wrapper is often needed to allow multiple interpreta-
tions over the same underlying type; for example, we can provide
both ‘width’ and ‘depth’ interpretations over integers:

newtype Depth8 = Depth {unDepth :: Int}
instance Circuit8 Depth8 where

identity8 w = Depth 0
fan8 w = Depth 1
above8 x y = Depth (unDepth x+unDepth y)
beside8 x y = Depth (unDepth x ‘max‘ unDepth y)
stretch8 ws x = x

Some of the wrapping and unwrapping of Width8 and Depth8 values
could be avoided by installing these types as instances of the Num
and Ord type classes; this can even be done automatically in GHC,
by exploiting the ‘Generalized Newtype Deriving’ extension.

The conventional implementation of type classes [31] involves
constructing a dictionary for each type in the type class, and
generating code that selects and passes the appropriate dictionary
as an additional parameter to each overloaded member function
(identity8, fan8 etc). For an instance c of the type class Circuit8, the
dictionary type is equivalent to CircuitAlg c. Indeed, we might have
defined instead

class Circuit9 c where
alg :: CircuitAlg c

instance Circuit9 Width8 where
alg = Width◦widthAlg◦ fmap unWidth

so that the dictionary type is literally a CircuitAlg c: the Böhm–
Berarducci and type-class approaches are really very similar.

4.6 Intermediate interpretations
Good practice in the design of embedded DSLs is to distinguish
between a minimal ‘core’ language and a more useful ‘everyday’
language [27]. The former is more convenient for the language
designer, but the latter more convenient for the language user.
This apparent tension can be resolved by defining the additional
constructs in the everyday language by translation to the core
language.

For example, the identity construct in our DSL of circuits is
redundant: identity 1 is morally equivalent to fan 1, and for any
other width n, we can construct a circuit equivalent to identity n
by placing n copies of identity 1 side by side (or alternatively,
as stretch [n] (identity 1)). One might therefore identify a simpler
datatype

data CoreCircuit ::∗ where
CFan :: Size→ CoreCircuit
CAbove :: CoreCircuit→ CoreCircuit→ CoreCircuit
CBeside :: CoreCircuit→ CoreCircuit→ CoreCircuit
CStretch :: [Size]→ CoreCircuit→ CoreCircuit

and use it as the carrier of a shallow embedding for the everyday
language. The everyday constructs that correspond to core constructs
are represented directly; the derived constructs are defined by
translation.

type Circuit10 = CoreCircuit
coreAlg :: CircuitAlg Circuit10

coreAlg (IdentityF w) = foldr1 CBeside (replicate w (CFan 1))
coreAlg (FanF w) = CFan w
coreAlg (AboveF x y) = CAbove x y
coreAlg (BesideF x y) = CBeside x y
coreAlg (StretchF ws x) = CStretch ws x

One might see this as a shallow embedding, with the carrier
CoreCircuit itself the deep embedding of a different, smaller lan-
guage; the core constructs are implemented directly as constructors
of CoreCircuit, and non-core constructs as a kind of ‘smart con-
structor’.

This suggests that ‘deep’ and ‘shallow’ do not form a dichotomy,
but rather are two extreme points on a scale of embedding depth.
Augustsson [2] discusses representations of intermediate depth, in
which some constructs have deep embeddings and some shallow. In
particular, for a language with a ‘semantics’ in the form of generated
assembly code, the deeply embedded constructs will persist as
generated code, whereas those with shallow embeddings will get
translated away at ‘compile time’. Augustsson calls these neritic
embeddings, after the region of the sea between the shore and the
edge of the continental shelf.

4.7 Modular interpretations
The previous section explored cutting down the grammar of circuits
by eliminating a constructor. Conversely, one might extend the
grammar by adding constructors. Indeed, in addition to the ‘left
stretch’ combinator we have used, Hinze [14] also provides a ‘right
stretch’ combinator, which connects the first rather than the last wire
of each bundle to the inner circuit. This is not needed in the core
language, because it can be built out of existing components:

rstretch (ws++[w+1]) c = stretch (1 : ws) c ‘beside‘ identity w

So one might extend the grammar of the everyday language, as
embodied in the functor CircuitF or the type class Circuit8, to
incorporate this additional operator, but still use CoreCircuit as
the actual representation.

Alternatively, one might hope for a modular technique for
assembling embedded languages and their interpretations from parts,
so that it is straightforward to add additional constructors like ‘right
stretch’. Swierstra’s datatypes à la carte machinery [28] provides
precisely such a thing, going some way towards addressing the
expression problem discussed in Section 2.

The key idea is to represent each constructor separately:

data Identity11 c = Identity11 Size deriving Functor
data Fan11 c = Fan11 Size deriving Functor
data Above11 c = Above11 c c deriving Functor
data Beside11 c = Beside11 c c deriving Functor
data Stretch11 c = Stretch11 [Size] c deriving Functor

with a right-associating ‘sum’ operator for combining them:

data (f :+: g) e = Inl (f e) | Inr (g e) deriving Functor
infixr :+:

One can assemble a functor from these components and make a deep
embedding from it. For example, the sum of functors CircuitF11 is
equivalent to CircuitF from the start of Section 4, and its fixpoint
Circuit11 to Circuit4:

type CircuitF11 = Identity11 :+: Fan11 :+: Above11 :+:
Beside11 :+: Stretch11

data Fix f = In (f (Fix f ))
type Circuit11 = Fix CircuitF11

This works, but it is rather clumsy. In particular, an expression of
type Circuit11 involves a mess of Inl, Inr and In constructors, as
seen in this rendition of the circuit in Figure 4:



stretchfan :: Circuit11
stretchfan = In (Inr (Inr (Inr (Inr (Stretch11 [3,2,3 ] (

In (Inr (Inl (Fan11 3)))))))))

Fortunately, there is an obvious way of injecting payloads into sum
types in this fashion, which we can express through a simple notion
of subtyping between functors, witnessed by an injection:

class (Functor f ,Functor g)⇒ f :≺: g where
inj :: f a→ g a

Subtyping is reflexive, and summands are subtypes of their sum:

instance Functor f ⇒ f :≺: f where
inj = id

instance (Functor f ,Functor g)⇒ f :≺: (f :+: g) where
inj = Inl

instance (Functor f ,Functor g,Functor h, f :≺: g)⇒
f :≺: (h :+: g) where

inj = Inr ◦ inj

Note that these type class instances overlap, going beyond Haskell 98;
nevertheless, as Swierstra explains, provided that sums are associ-
ated to the right this should not cause any problems.

Now we can define smart constructors that inject in this ‘obvious’
way:

identity11 :: (Identity11 :≺: f )⇒Width→ Fix f
identity11 w = In (inj (Identity11 w))
fan11 :: (Fan11 :≺: f )⇒Width→ Fix f
fan11 w = In (inj (Fan11 w))
above11 :: (Above11 :≺: f )⇒ Fix f → Fix f → Fix f
above11 x y = In (inj (Above11 x y))
beside11 :: (Beside11 :≺: f )⇒ Fix f → Fix f → Fix f
beside11 x y = In (inj (Beside11 x y))
stretch11 :: (Stretch11 :≺: f )⇒ [Width]→ Fix f → Fix f
stretch11 ws x = In (inj (Stretch11 ws x))

and the mess of injections can be inferred instead:

stretchfan :: (Fan11 :≺: f ,Stretch11 :≺: f )⇒ Fix f
stretchfan = stretch11 [3,2,3] (fan11 3)

Crucially, this technique also leaves the precise choice of grammar
open; all that is required is for the grammar to provide fan and
stretch constructors, and we can capture that dependence in the
flexible declared type for stretchfan.

Interpretations can be similarly modularized. Of course, we
expect them to be folds:

fold :: Functor f ⇒ (f a→ a)→ Fix f → a
fold h (In x) = h (fmap (fold h) x)

In order to accommodate open datatypes, we define interpretations
in pieces. We declare a type class of those constructors supporting a
given interpretation:

class Functor f ⇒WidthAlg f where
widthAlg11 :: f Width→Width

Interpretations lift through sums in the obvious way:

instance (WidthAlg f ,WidthAlg g)⇒WidthAlg (f :+: g) where
widthAlg11 (Inl x) = widthAlg11 x
widthAlg11 (Inr y) = widthAlg11 y

Then we provide instances for each of the relevant constructors. For
example, if we only ever wanted to compute the width of circuits
expressed in terms of the fan and stretch constructors, we need only
define those two instances:

instance WidthAlg Fan11 where
widthAlg11 (Fan11 w) = w

instance WidthAlg Stretch11 where
widthAlg11 (Stretch11 ws x) = sum ws

For example, this width function works for the flexibly typed circuit
stretchfan above:

width11 :: WidthAlg f ⇒ Fix f →Width
width11 = fold widthAlg11

—although the circuit does need to be given a specific type first:

> width11 (stretchfan :: Circuit11)
8

These algebra fragments together constitute the essence of an
implicitly parametrized shallow embedding.

But the main benefit of the à la carte approach is that it is easy to
add new constructors. We just need to add the datatype constructor
as a functor, and provide a smart constructor:

data RStretch11 c = RStretch11 [Size] c deriving Functor
rstretch11 :: (RStretch11 :≺: f )⇒ [Width ]→ Fix f → Fix f
rstretch11 ws x = In (inj (RStretch11 ws x))

Now the circuit in Figure 4 can be expressed using right stretch
instead of left stretch:

rstretchfan :: (Identity11 :≺: f ,Fan11 :≺: f ,Beside11 :≺: f ,
RStretch11 :≺: f )⇒ Fix f

rstretchfan = beside11 (identity11 2)
(rstretch11 [2,3,1 ] (fan11 3))

When adding new constructors such as RStretch11, it is tempting
to provide an instance for each of the interpretations of interest,
such as WidthAlg. However, this is an unnecessary duplication
of effort when rstretch11 can itself be simulated out of existing
components. We might instead write a function that handles the
RStretch11 constructor:

handle :: (Stretch11 :≺: f ,Beside11 :≺: f , Identity11 :≺: f )⇒
Fix (RStretch11 :+: f )→ Fix f

handle (In (Inl (RStretch11 ws c))) =
stretch11 (1 : ws′) (handle c) ‘beside11‘ identity11 w

where (ws′,w) = (init ws, last ws−1)
handle (In (Inr other)) = In (fmap handle other)

Here, we recursively translate all instances of RStretch11 into other
constructors. This technique is at the heart of the effects and handlers
approach [22], although the setting there uses the free monad rather
than Fix. With this in place, we can first handle all of the RStretch11
constructors before passing the result on to an interpretation function
such as width11 that need not deal with RStretch11s. This method of
interpreting only a core fragment of syntax might not be optimally
efficient, but of course we still leave open the possibility of providing
a specialized instance if that is an issue.

5. Discussion
The essential observation made here—that shallow embeddings
correspond to the algebras of folds over the abstract syntax captured
by a deep embedding—is surely not new. For example, it was
probably known to Reynolds [26], who contrasted deep embeddings
(‘user defined types’) and shallow (‘procedural data structures’), and
observed that the former were free algebras; but he didn’t explicitly
discuss anything corresponding to folds.

It is also implicit in the finally tagless approach [8], which
uses a shallow embedding and observes that ‘this representation
makes it trivial to implement a primitive recursive function over



object terms’, providing an interface that such functions should
implement; but this comment is made rather in passing, and their
focus is mainly on staging and partial evaluation. The observation
is more explicit in Kiselyov’s lecture notes on the finally tagless
approach [21], which go into more detail on compositionality; he
makes the connection to “denotational semantics, which is required
to be compositional”, and observes that “making context explicit
turns seemingly non-compositional operations compositional”. The
finally tagless approach also covers DSLs with binding constructs,
which we have ignored here.

Neither is it a new observation that algebraic datatypes (such as
Circuit4) and their Böhm–Berarducci encodings (such as Circuit7)
are equivalent. And of course, none of this is specific in any way to
the Circuit DSL; a datatype-generic version of the story can be told,
by abstracting away from the shape functor CircuitF—the reader
may enjoy working out the details.

Nevertheless, the observation that shallow embeddings corre-
spond to the algebras of folds over deep embeddings seems not to be
widely appreciated; at least, we have been unable to find an explicit
statement to this effect, either in the DSL literature or elsewhere.
And it makes a nice application of folds: many results about folds
evidently have interesting statements about shallow embeddings as
corollaries. The three generalizations of folds (banana split, mutu-
morphisms, and accumulating parameters) exploited in Section 4
are all special cases of adjoint fold [16, 17]; perhaps other adjoint
folds yield other interesting insights about shallow embeddings?
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