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Abstract. Fusion is a program transformation that combines adjacent
computations, flattening structure and improving efficiency at the cost of
clarity. Fission is the same transformation, in reverse: creating structure,
ex nihilo. We explore the use of fission for program comprehension, that
is, for reconstructing the design of a program from its implementation.
We illustrate through rational reconstructions of the designs for three
different C programs that count the words in a text file.

1 Introduction

Program fusion is a meaning-preserving transformation that combines two ad-
jacent computations into one. Those computations might be independent; for
example, computing the mean of a sequence of numbers involves both summing
and counting the elements of the sequence, and these two independent loops
may be fused into one, returning a pair. Alternatively, the computations might
be consecutive; for example, testing for membership of a collection can be ex-
pressed as comparisons against every element of the collection, then disjoining
the results, and these two consecutive loops may be fused into one.

Program fusion is usually seen as an efficiency-improving transformation,
perhaps at the cost of comprehensibility. A clear and simple version of a pro-
gram is developed first, as a composition of strongly coherent but loosely coupled
components; for example, membership in terms of comparisons and distributed
disjunction, or mean in terms of sum and count. That modular structure might
incur unnecessary runtime costs: either in building up an intermediate data struc-
ture, only to take it apart straight away, or in making two traversals of a data
structure when only one is required. Fusion laws show how to combine compo-
nents, breaking down the modular structure and the redundant manipulations
it entails.

Program fission uses the same properties of programs as fusion does, but in
the opposite direction. Starting from a complex monolithic optimized program,
one constructs a simpler, more modular ‘specification’ or ‘prototype’, identifying
the components from which the complex program might have been assembled.
This construction might be for the first time, for a program that was never
properly designed or whose structure has evolved over time from an initial design
that has not been kept up to date; or it might be a matter of reconstructing a
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lost design. Either way, it can be used for program comprehension, that is, for
understanding the behaviour of an undocumented unit of code.

Program fission is harder than program fusion, because it entails entropy
reduction: the introduction of structure, rather than its elimination. It is a fun-
damental phenomenon of physical systems that entropy increases in a closed
system: in order to prevent the inevitable increase in disorder over time, it is
necessary to inject some energy into the system. A similar phenomenon seems
to arise in logical systems such as software; witness tales of ‘software rot’, for
example [18].

Program fission is one approach among many to the problem of software
re-engineering, or reconstructing lost or out-of-date documentation for legacy
systems. This whole area has been described as being ‘about as easy as recon-
structing a pig from a sausage’ [5]. Indeed, as we shall see, it is harder even than
that: a given sausage can have only one explanation, but a given program might
have multiple explanations. By analogy, you might not even know that it is a
pig you should be reconstructing from your sausage.

2 Notation

We will make use of a Haskell-like notation, for the sake of familiarity; we will
also use a number of functions from the Haskell standard library, but we will
explain them as we introduce them. However, we will make greater use of sum
and product types and less use of currying than is usual in the Haskell language
or libraries.

2.1 Sums and products

We use α × β for the product type with first component of type α and second
of type β (normally written ‘(α, β)’ in Haskell); the projection functions fst , snd
are as expected. We write ‘f × g ’ for the map operation on pairs, applying f to
the first component and g to the second, and ‘f 4 g ’ for the ‘fork’ operation,
taking x to (f x , g x ). The function twist :: α × β → β × α twists a pair. The
unit type is 1 (normally written ‘()’ in Haskell). We also use α + β for the sum
type (normally written ‘Either α β’ in Haskell). In the special case that α = 1,
we use the injections Nothing :: 1 + α and Just :: α → 1 + α as in Haskell.

2.2 Datatypes

We will have need of both ‘cons lists’ (constructed by prefixing elements) and
‘snoc lists’ (constructed by suffixing). We extend Haskell’s neutral notation in-
volving a plain colon for constructing a non-empty list, and use ‘·:’ for prefixing
to a cons list and ‘:·’ for suffixing to a snoc list. The type [α] denotes cons lists
with elements of type α, and 〈α〉 denotes snoc lists. However, we will resort to
using the conventional notation ‘[ ]’ for the empty list and ‘[a ]’ for a singleton
list in what follows, trusting to context to disambiguate which kind of list is
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meant. We will also use a datatype Nat of Peano numbers, with Zero :: Nat and
Succ :: Nat → Nat .

2.3 Folds

The natural pattern of computation over cons lists, the so-called universal ar-
row induced by the datatype definition, is called foldr in the Haskell library; it
consumes list elements, starting at the end of the list. We use the same name
here, but give it a slightly different type by uncurrying the binary operator.

foldr :: (α× β → β) → β → [α] → β
foldr f e [ ] = e
foldr f e (a ·: x ) = f (a, foldr f e x )

In contrast, the natural pattern of computation over snoc lists consumes list
elements starting from the beginning of the list, since that is how snoc lists are
constructed.

folds :: (β × α → β) → β → 〈α〉 → β
folds f e [ ] = e
folds f e (x :· a) = f (folds f e x , a)

The Haskell standard library also provides a variant of foldr , which uses an
accumulating parameter [2] and consumes the list elements from left to right
rather than right to left. Again, we adapt its type.

foldl :: (β × α → β) → β → [α] → β
foldl f e [ ] = e
foldl f e (a ·: x ) = foldl f (f (e, a)) x

Note that, apart from the variety of lists, the types of foldl and folds are identical.
Indeed, if we introduce the function snoc2cons :: 〈α〉 → [α] to convert from one
list type to another, preserving ordering, then for finite cons lists x , it is not
difficult to show that

folds f e x = foldl f e (snoc2cons x )

The proof is essentially the same as for Bird and Wadler’s Third Duality Theorem
[4] for foldl and foldr . (For infinite x , the above result holds only for certain non-
strict f .)

2.4 Unfolds

The categorical dual of a fold on lists, which collapses a list to a value, is an
unfold, which grows a list from a value. The Haskell standard library provides
essentially the right definition for us.

unfoldr :: (β → 1 + (α× β)) → β → [α]
unfoldr f b = case f b of

Nothing → [ ]
Just (a, b′) → a ·: unfoldr f b′
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Here is an analogous operation for growing natural numbers:

unfoldn :: (β → 1 + β) → β → Nat
unfoldn f b = case f b of

Nothing → Zero
Just b′ → Succ (unfoldn f b′)

2.5 Paramorphisms and hylomorphisms

Meertens [14] presents a generalization of folds called paramorphisms, which cor-
respond to the primitive recursive definitions. Practically, these are characterized
by having available, as well as the results of recursive calls, the data substruc-
tures on which those calls were made. We will use the paramorphism operator
for snoc lists:

paras :: ((β × 〈α〉)× α → β) → β → 〈α〉 → β
paras f e [ ] = e
paras f e (x :· a) = f ((paras f e x , x ), a)

Meijer, Fokkinga and Paterson [15] introduce what they call a hylomorphism,
which is the composition of an unfold (to generate a data structure) and a fold
(to consume that data structure). We use the cons list instance:

hylor :: (α → 1 + (β × α)) → (β × γ → γ) → γ → α → γ
hylor g f e = foldr f e ◦ unfoldr g

The crucial fact about hylomorphisms is that the intermediate data structure is
a virtual data structure [19], and (under certain mild strictness conditions) may
be deforested [21]. In our case, this gives:

hylor g f e a = case g a of
Nothing → e
Just (b, a ′) → f (b, hylor g f e a ′)

2.6 Fusion

Each of the various recursion patterns introduced above enjoys a crucial property
called fusion, whereby an adjacent computation can be absorbed. We will use
the fusion laws for folds:

h ◦ folds f e = folds g (h e) ⇐ h ◦ f = g ◦ (h × id)

and for paras:

h ◦ paras f e = paras g (h e) ⇐ h ◦ f = g ◦ ((h × id)× id)

To be precise, each of these fusion laws has mild side conditions concerning strict-
ness, but we elide them here because they do not affect subsequent calculations.

For more details, including proofs of the fusion laws from universal properties
of the recursion patterns, see for example [8].
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2.7 Functors

Finally, many datatypes form functors, operations on types with a corresponding
‘map’ operation on functions:

fmap :: Functor f ⇒ (α → β) → f α → f β

We will use this just for the ‘maybe’ functor taking α to 1 + α.

3 Counting words

We will use as an illustration in this paper the Unix word count utility wc, a
now-standard example in the program comprehension literature. The program
shown in Figure 1 is taken from Kernighan and Ritchie’s classic book on the
C programming language [13], and counts the characters, words and lines in a
text file. In fact, it is really only the word counting aspect of this program that

#include <stdio.h>

#define IN 1 /* inside a word */

#define OUT 0 /* outside a word */

/* count lines, words, and characters in input */

main()

{

int c, nl, nw, nc, state;

state = OUT;

nl = nw = nc = 0;

while ((c = getchar()) != EOF) {

++nc;

if (c == ’\n’)

++nl;

if (c == ’ ’ || c == ’\n’ || c == ’\t’)

state = OUT;

else if (state == OUT) {

state = IN;

++nw;

}

}

printf("%d %d %d\n", nl, nw, nc);

}

Fig. 1. Kernighan and Ritchie’s wc program

has interesting structure; counting the characters is simply computing the length
of the text, and counting the lines is implemented as counting the newline char-
acters, which is the length of the text filtered for newlines. So we will actually
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#include <stdio.h>

#define IN 1 /* inside a word */

#define OUT 0 /* outside a word */

int blank(int c) {

return ( c==’ ’ || c==’\n’ || c==’\t’);

}

/* count words in input */

main()

{

int c, nw, state;

state = OUT;

nw = 0;

while ((c = getchar()) != EOF) {

if (blank(c))

state = OUT;

else if (state == OUT) {

state = IN;

++nw;

}

}

printf("%d\n", nw);

}

Fig. 2. The word-counting slice of Kernighan and Ritchie’s wc program

start with the program in Figure 2, which counts only the words. This might
be considered as the first step in re-engineering a specification from the original
program, by slicing that program into three independent aspects [22, 20]. (In-
deed, slicing is a fission transformation, reversing the fusion of independent but
similarly-structured computations.)

We argue that the C program in Figure 2 is ‘obviously’ equivalent to the
following functional program. The imperative loop has been converted to a tail-
recursive function.

wc1 :: [Char ] → Integer
wc1 = fst ◦ foldl step1 (0,False)
step1 ((n, b), c) | blank c = (n,False)
step1 ((n,True), c) = (n,True)
step1 ((n,False), c) = (n + 1,True)
blank c = (c ’ ’) ∨ (c ’\n’) ∨ (c ’\t’)

Characters come from a string argument rather than standard input, and the
count is returned as an integer result rather than printed to standard output. In a
fuller study of program comprehension, one would make this equivalence between
imperative and functional programming more explicit; but for our purposes —
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namely, illustrating program fission — we will take the functional program wc1

as the starting point.
In the remainder of this paper, we reconstruct a number of different im-

plementations wc2,wc3... of wc1. They will all be extensionally equal, possibly
modulo different representations of lists, but will have different structures and
hence different ‘explanations’. We refer to this common behaviour collectively
as wc.

4 Directionality

The first observation we make about program wc1 is that tail recursion — here,
in the form of a foldl — is somewhat alien to a lazy functional programmer,
although — in the form of a while loop — it comes quite naturally to an
imperative programmer. Program wc1 would be more comprehensible if it were
expressed in a less alien idiom.

With the benefit of understanding of the purpose of the program, namely
that it counts words, we could reasonably argue that it does not matter whether
we scan the input from left to right or vice versa. We could therefore refactor
wc as follows:

wc2 = fst ◦ foldr step2 (0,False)
step2 = step1

◦ twist

However, there are two counter-arguments. The first is that, although this
refactoring seems reasonable, its formal justification is not so obvious. In partic-
ular, it is not the case that the uses of foldl in wc1 and foldr in wc2 are equal:
a text that starts with a non-blank but ends with a blank will yield different
boolean state values in different directions, even though the number of words is
the same both ways. The second counter-argument is that this step depends on
understanding the purpose of the program, which is exactly what is unavailable
in a program comprehension exercise.

So we take an alternative approach: adapt the underlying data structure to
reflect more closely the pattern of computation. After all, we introduced the list
type into the problem in the first place: it was not present in the C program.
Specifically, the left-to-right traversal in the C program is the natural pattern
of computation on snoc lists rather than on cons lists. Therefore, in place of the
tail-recursive foldl pattern for cons lists, we use the naturally recursive fold on
snoc lists:

folds :: (β × α → β) → β → 〈α〉 → β

We therefore make the following refactoring instead.

wc3 :: 〈Char〉 → Integer
wc3 = fst ◦ folds step1 (0,False)

We might elevate this step to a general principle of program comprehension:
consider carefully the data structures used, because they determine the pattern of
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computation. This strengthens the case for functional programming as a medium
for program comprehension; functional programming encourages the definition
of tailor-made datatypes, rather than shoe-horning a problem into one of a fixed
collection of general-purpose but sometimes ill-fitting datatypes.

5 Extracting length

Now, it seems reasonable (although still an invention) that wc involves length
somehow; in particular, wc is length after some initial computation. It is evident
that wc3 is counting something, because the result that is returned is constructed
from an initial zero that is occasionally incremented. Perhaps we could elevate
this observation to a second principle of program comprehension: if a program
returns a count, investigate what it is counting.

Returning to the program, we name the generator of things to be counted
words — without any justification as yet, but what’s in a name?

wc4 = length ◦ words4

Since wc4 should equal wc3, in order to deduce a definition of words4, we need
to extract a factor of length from the definition of wc3. Extracting this factor
from the fst is straightforward, since, by the pair calculus,

fst ◦ f = length ◦ fst ◦ g ⇐ f = (length× id) ◦ g

That is, extracting a factor of length from wc3 amounts to extracting a factor
of length× id from folds step1 (0,False).

Now we can use fission — fusion in reverse — to deduce e and glue4 (the
latter another name chosen with hindsight) such that

folds step1 (0,False) = (length× id) ◦ folds glue4 e

For the seed, this requires (length × id) e = (0,False), and so e = ([ ],False).
For the binary operator, it requires

(length× id) ◦ glue4 = step1
◦ ((length× id)× id)

This equation characterizes a data refinement relation between glue4 and
step1, where glue4 is the abstract operation, step1 the concrete operation, and
length×id the abstraction function. Informally, where glue4 trades in sequences,
step1 trades in their lengths. Normally, however, one uses a data refinement
relationship to derive a concrete implementation from an abstract one; here, of
course, we need to go in the opposite direction.

That is, where step1 trades in numbers, we need to construct a function
glue4 that trades in their ‘unlengths’, or sequences of those lengths. Of course,
‘unlength’ is not a function; there are many sequences of a given length. As
a consequence, the data refinement relationship does not completely determine
glue4. We need to exercise some creativity in inventing suitable sequences of given
lengths. It seems reasonable to suggest that we should use as little creativity as
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possible in inventing such sequences. This corresponds in our physical analogy
with entropy to minimizing the energy injected into the system. Moreover, one
might expect that the less creative we are at any given step in a re-engineering
exercise, the more freedom there is in later steps (and the less likely we are to
lead ourselves into a dead end).

For example, the first clause of the definition of step1 entails that, when c
is blank, glue4 ((ws, b), c) should be a pair (ws ′,False) such that ws and ws ′

have the same length. The least creative way to achieve this is naturally to let
ws ′ = ws.

glue4 ((ws, b), c) | blank c = (ws,False)

For the second clause, when c is non-blank, we require glue4 ((ws,True), c)
to be a pair (ws ′,True) where ws should again be the same length ws ′. We
could do the same thing again, equating the two sequences, but in fact there
is an even less creative way of proceeding. We note that the physical theory of
information states that it requires energy to erase data as well as to invent it.
Therefore, we look for a way to use c, combining it with ws while maintaining
the latter’s length. This is straightforward to do, if ws is a sequence of sequences
of characters, provided that it is non-empty: we suffix c to the last sequence
in ws. Fortunately, it is an invariant of the fold in wc3 that when the boolean
component of the pair is True, the integer component is greater than zero, so
our abstract value ws will be a non-empty sequence.

glue4 ((ws :· w ,True), c) = (ws :· (w :· c),True)

Finally, for the third clause, again we assume that c is non-blank, and we
require glue4 ((ws,False), c) to be a pair (ws ′,False) where ws ′ is one longer
than ws. The least creative way to extend the sequence of strings ws by one
string, using the given data c, is to suffix c as an additional singleton string.

glue4 ((ws,False), c) = (ws :· [c],True)

Assembling these three cases, we have

glue4 ((ws, b), c) | blank c = (ws,False)
glue4 ((ws :· w ,True), c) = (ws :· (w :· c),True)
glue4 ((ws,False), c) = (ws :· [c],True)

And to rewind the reasoning that led us here: if we let

words4 = fst ◦ folds glue4 ([ ],False)

then indeed the composition

wc4 = length ◦ words4

computes the words in a text, and proceeds to count them.
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6 Mind the gap

In Section 5, we used an argument based on entropy to suggest that, when
introducing structure in order to satisfy a fusion law, one should both invent and
discard as little information as possible. We stuck to this principle for the second
and third clauses of the function glue4, but wavered a little in our resolve when
it came to the first clause. The function words4 does discard some information
that might be preserved: it conflates different blank characters, such as spaces
and newlines, and it also fails to keep track of how many blanks separate words.
Therefore, words4 is not invertible. How would the development have proceeded
if we had stuck to our principle, and found a way to preserve blank characters?

In the case that c is blank, we wanted glue4 ((ws, b), c) to return a pair
(ws ′,False) such that ws and ws ′ have the same length. We chose to let ws ′ = ws,
but this required us to discard c. We can preserve c while maintaining the length
of the first component of the pair, provided that that first component is non-
empty:

glue ((ws :· w , b), c) | blank c = (ws :· (w :· c),False)

In effect, this corresponds to representing each word in the input as a non-
empty sequence of non-blanks followed by a (possibly-empty, in the case of the
last word) sequence of blanks. However, there is nowhere to keep the c while
preserving the length of an empty first component — because this representation
does not capture blanks at the start of the input. We therefore augment the state,
the result of words, to represent also the possibly-empty sequence of blanks at
the start of the input.

words5 :: 〈Char〉 → 〈Char〉 × 〈〈Char〉〉
words5 = fst ◦ folds glue5 (([ ], [ ]),False)
wc5 = (length ◦ snd) ◦ words5

glue5 (((wb, [ ]), b), c) | blank c = ((wb :· c, [ ]),False)
glue5 (((wb,ws :· w), b), c) | blank c = ((wb,ws :· (w :· c)),False)
glue5 (((wb,ws :· w),True), c) = ((wb,ws :· (w :· c)),True)
glue5 (((wb,ws),False), c) = ((wb,ws :· [c]),True)

Note now that the boolean component of the state is redundant, as it can be
determined from the remaining components.

7 A different starting point

The Kernighan and Ritchie C programs above maintain in their main loops, in
addition to the counts which are the point of the exercise and will eventually be
printed out, a boolean variable state indicating whether, if the next character to
be read is a non-blank, it will start a new word. One might start with a different
program: one that dispenses with this boolean variable, but uses instead a two-
character window onto the text to determine which non-blank characters start
words. Such a program is shown in Figure 3. We omit the definition of blank,
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#include <stdio.h>

/* count words in input */

main()

{

int c, d, nw;

nw = 0;

d = ’ ’;

c = getchar();

while (c != EOF) {

if (!blank(c) && blank(d)) {

++nw;

}

d = c; c = getchar();

}

printf("%d\n", nw);

}

Fig. 3. A different wc program, with a two-character window

since it is identical to the one given earlier. In this section, we subject this new
program to the same kind of reasoning as before, to determine whether it could be
considered as having ‘the same explanation’ but with a different implementation,
or whether it really arose from a different design.

The program in Figure 3 maintains the invariant that the variable d records
the character before the ‘current’ character c (except initially, when it acts as
a space character). This is an instance of the general paramorphism pattern,
whereby the treatment of each element depends not just on the treatment of
previous elements, but also on those previous elements themselves.

wc6 = paras step6 0
step6 ((n, x ), c) | blank c = n
step6 ((n, x :· d), c) | blank d = n + 1
step6 ((n, x :· d), c) = n
step6 ((n, [ ]), c) = n + 1

Note that the use of the paramorphism pattern encodes the invariant that n =
wc6 x in every application step6 ((n, x ), c). It therefore explicitly captures the
invariant about the value of variable d, which must therefore be comprehended
from the code. It also provides a separate initial boundary condition to remove
the need for the ‘virtual’ space character before the first ‘real’ character.

As before, we try to write this as the composition of length with some simpler
function, using paramorphism fission. Clearly, the seed of the paramorphism has
to be [ ], the only sequence with length 0. For the operator, the fusion condition
is that

length ◦ glue7 = step6
◦ ((length× id)× id)
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If we can construct a function glue7 satisfying this condition, then length fuses
with paras glue7 [ ] to give wc6.

For the first clause, when c is blank, apparently glue7 should simply return
the first of its three argument components.

glue7 ((ws, x ), c) | blank c = ws

For the second clause, when c is non-blank, the initial segment x :· d of
characters seen so far is non-empty, and the previous character d is blank, we
should return a sequence one longer than the first argument component ws. The
obvious thing to do is to suffix a new element to ws, and the least creative
data-preserving way of doing that is to suffix [c].

glue7 ((ws, x :· d), c) | blank d = ws :· [c]

For the third clause, when c is non-blank, the initial segment x :· d is non-
empty, and d is also non-blank, we should return a sequence the same length
as the first argument component ws. Returning ws unchanged loses the data c.
A less creative way would be to preserve c by combining it with data in ws,
provided the latter is non-empty. Fortunately, it is an invariant that in this
circumstance ws is non-empty.

glue7 ((ws :· w , x :· d), c) = ws :· (w :· c)

For the fourth and final clause, when c is non-blank but the initial segment
of the list is empty, we need to extend the sequence by a single element. The
least creative type-correct way to do this is make a singleton string from c.

glue7 ((ws, [ ]), c) = ws :· [c]

Summing up, we have deduced the following definition of glue7:

glue7 ((ws, x ), c) | blank c = ws
glue7 ((ws, x :· d), c) | blank d = ws :· [c]
glue7 ((ws :· w , x :· d), c) = ws :· (w :· c)
glue7 ((ws, [ ]), c) = ws :· [c]

We then define

wc7 = length ◦ words7

words7 = paras glue7 [ ]

Using paramorphism fusion, the length combines with the paramorphism, yield-
ing the earlier program wc6. Moreover, words7 does indeed yield the individual
words in the text.

8 Nested loops

All the C programs for the wordcount problem that we have seen so far have a
single loop, with additional hidden state to determine the behaviour of the loop
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#include <stdio.h>

main() {

int c=getchar(), nw=0;

while (1) {

while (c != EOF && blank(c))

c=getchar();

if (c == EOF)

break;

nw++;

while (c != EOF && !blank(c))

c=getchar();

}

printf("%d\n", nw);

}

Fig. 4. A wc program with nested loops

body. A different way of solving the problem is to use nested loops, in effect
using the program counter instead of that hidden state. One such program is
shown in Figure 4. In this program, the variable c always contains the next
character in the text, or the EOF character at the end of the text. The outer
loop runs indefinitely. The first inner loop skips blanks. If this first inner loop
reaches the end of the text, control breaks out of the outer loop and the program
quits. Otherwise, the first inner loop terminated because it reached a non-blank
character; the number of words is incremented, and the rest of that word skipped.

We claim that this program has the following ‘obvious’ functional equivalent.

wc8 x = let y = dropWhile blank x in
if null y then 0

else 1 + wc8 (dropWhile (not ◦ blank) y)

where null is the predicate that returns True precisely of the empty list, and
dropWhile::(α → Bool) → [α] → [α] takes a predicate p and a list x and discards
the longest prefix of x all of whose elements satisfy p. (Strictly speaking, getting
to this point entails the elimination of the accumulating parameter that is the
word count.) This program matches the pattern of a list hylomorphism:

wc9 :: [Char ] → Integer
wc9 = hylor word9 plus9 0
plus9 (w ,n) = 1 + n
word9 x = let y = dropWhile blank x in

if null y then Nothing
else Just ((), dropWhile (not ◦ blank) y)

Of course, a hylomorphism fissions automatically into a fold after an unfold:

wc10 = foldr plus9 0 ◦ unfoldr word9
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And as expected, the fold phase is just length, and counts the items generated
by the unfold phase; these items are all units, but there is precisely one of them
for each word.

We might apply the principle of least creativity again, preserving those non-
blank elements of y discarded by word9:

word11 x = let y = dropWhile blank x in
if null y then Nothing

else Just (span (not ◦ blank) y)

Here, span :: (α → Bool) → [α] → [α] × [α] is a generalization of dropWhile:
it takes a predicate p and a list x and returns a pair of lists (y , z ) such that
y ++ z = x and y = dropWhile p x .

When hylor word11 plus9 0 is fissioned, we get:

wc11 = foldr plus9 0 ◦ unfoldr word11

Here, the unfold phase really is just words again.
It might seem curious that we have reverted to cons lists for the virtual data

structure of the hylomorphism, rather than continuing to work with snoc lists.
But of course, the virtual data structure of a hylomorphism merely encapsulates
the pattern of recursion, and hylomorphisms for cons lists and snoc lists are
entirely equivalent.

9 Counting revisited

Let us return our attention to the recursive equivalent of the program with
nested loops from Figure 4:

wc8 x = let y = dropWhile blank x in
if null y then 0

else 1 + wc8 (dropWhile (not ◦ blank) y)

Our reconstruction in Section 8 started from the observation that this recur-
sive program is an instance of the hylomorphism pattern on lists. However, the
list algebra involved in this hylomorphism is a very special one, namely the ini-
tial algebra of natural numbers. This leads to another explanation of the same
program.

We adapt the type of the function, so that it returns a recursively-constructed
natural number rather than a built-in integer.

wc12 :: [Char ] → Nat
wc12 x = let y = dropWhile blank x in

if null y then Zero
else Succ (wc12 (dropWhile (not ◦ blank) y))
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Now we see immediately that this is a straightforward instance of unfoldn:

wc13 = unfoldn dropWord13

dropWord13 x = let y = dropWhile blank x in
if null y then Nothing

else Just (dropWhile (not ◦ blank) y)

In fact, this observation is an instance of a more general rule about the
composition of length and an unfold to lists:

length ◦ unfoldr f = nat2int ◦ unfoldn (fmap snd ◦ f )

where nat2int :: Nat → Integer coerces from recursively-constructed naturals to
built-in integers. This law could be phrased as a principle of counting: rather
than enumerating a list of things, then computing the length of that list, one
can more directly count the number of times the operation ‘discard a thing’ can
be performed.

Unfolds to the naturals are surprisingly common, despite the unfamiliarity
of the operator unfoldn itself. The law above suggests that they capture many
counting problems. Gibbons [9] shows that unfoldn is essentially the minimiza-
tion operator from recursive function theory, the additional operator needed to
progress from the primitive recursive to the general recursive functions, or equiv-
alently from for to while loops. For example, integer division is an unfold to
naturals, since dividing by m is the same as computing the number of times
m can be subtracted without the difference becoming negative. Elsewhere [11]
we have argued that even unfolds to lists are underappreciated; we believe that
argument applies a fortiori to unfolds to other datatypes such as the naturals.

10 Discussion

The reconstruction of specifications from programs is an important part of a
larger endeavour called software renovation. This field addresses the difficult
problem of maintaining legacy software when its design documentation is un-
available: it might have become out of date, or been lost altogether, or it might
never have existed in the first place. In order to modify undocumented software,
one essentially is forced to spend some effort in comprehending the existing sys-
tem (unless one is prepared to use trial and error, making random changes and
hoping for a useful result). Program comprehension might be as lightweight as
simply attempting to understand one small module of code and its interface in
isolation, or it might involve retracing one’s steps all the way back towards a
high-level design for the entire system, or some level in between. However much
ones tries to comprehend, one works backwards from implementation to design,
with the aim of modifying that design and working forwards again to a revised
implementation.

The view we have taken in this paper is that the essence of a design is ex-
pressed in terms of higher-order recursion patterns. A similar view underlies
our and others’ arguments [9, 1] that the different designs for sorting algorithms
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embodied by insertion sort, merge sort, quick sort and so on arise from using
different patterns of recursion. If one accepts the claim that design patterns in
object-oriented programming correspond to recursion patterns in generic func-
tional programming [10], then this is further support for Johnson’s slogan that
‘patterns document architectures’ [12].

An advantage of using a formal linguistic vehicle such as functional pro-
gramming for expressing patterns, rather than the informal prose and pictures
that is traditional in the patterns community [7], is that those patterns and the
programs that exhibit them may be manipulated and reasoned about mathemat-
ically. In particular, well-known fusion laws can be used to flatten the structure
imposed by a pattern, for efficiency; in this paper, we have used those laws in
reverse as fission laws in order to recover lost structure.

We have examined three different C programs for counting the words in a
text file, and attempted to reverse engineer designs from these implementations.
Naturally, different implementations of a program arise from different designs for
those implementations; but it is reasonable to ask how divergent those designs
are: how much of the development is shared, and how late in the process do the
evolutionary forks appear?

In fact, we have shown that the three different wordcount programs might
all have arisen from the same high-level design, namely the composition length ◦

words. The differences between the three programs are explained in terms of
different strategies for implementing words: as a fold, a paramorphism, or an
unfold — the first two of which are inductive, the last coinductive. However, the
coinductive design lends itself to an alternative explanation of the problem, in
terms of counting rather than enumeration, which might be considered a second
high-level design.

Acknowledgements

This paper was inspired by a discussion with José Nuno Oliveira at the 59th
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