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Abstract. Domain-specific languages become effective only in the pres-
ence of convenient lightweight tools for defining, implementing, and op-
timizing new languages. Functional programming provides a promising
framework for such tasks; FP and DSLs are natural partners. In these
lectures we will discuss FP techniques for DSLs—especially standalone
versus embedded DSLs, and shallow versus deep embeddings.

1 Introduction

In his book [1], Fowler defines a domain-specific language (DSL) as

a computer programming language of limited expressiveness focussed on
a particular domain

A DSL is targetted at a specific class of programming tasks; it may indeed
not be Turing-complete. By restricting scope to a particular domain, one can
tailor the language specifically for that domain. Common concepts or idioms
in the domain can be made more easily and directly expressible—even at the
cost of making things outside the intended domain more difficult to write. The
assumptions common to the domain may be encoded within the language itself,
so that they need not be repeated over and over for each program within the
domain—and again, those assumptions may be inconsistent with applications
outside the domain.

The term ‘DSL’ is rather more recent than its meaning; DSLs have been
prevalent throughout the history of computing. As Mernik et al. [2] observe,
DSLs have in the past been called ‘application-oriented’, ‘special-purpose’, ‘spe-
cialized’, ‘task-specific’, and ‘application’ languages, and perhaps many other
things too. The ‘fourth-generation languages’ (4GLs) popular in the 1980s were
essentially DSLs for database-oriented applications, and were expected at the
time to supercede general-purpose 3GLs such as Pascal and C. One might even
say that Fortran and Cobol were domain-specific languages, focussed on scientific
and business applications respectively, although they are both Turing-complete.
Bentley [3] wrote influentially in his Programming Pearls column about the ‘lit-
tle languages’ constituting the philosophy and much of the functionality of the
Unix operating system: tools for programmers such as the shell, regular expres-
sions, lex and yacc, and tools for non-programmers such as the Pic language for
line drawings and a language for specifying surveys.
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There are two main approaches to implementing DSLs. The historically
prevalent approach has been to build standalone languages, with their own cus-
tom syntax. Standard compilation techniques are used to translate or interpret
programs written in the DSL into a general-purpose language (GPL) for ex-
ecution. This has the advantage that the syntax of the DSL can be designed
specifically for the intended users, and need bear no relation to that of the host
language—indeed, there may be many different host languages, as there are for
SQL, or the DSL ‘syntax’ may be diagrammatic rather than textual.

Conversely, implementing a new standalone DSL is a significant undertaking,
involving a separate parser and compiler, and perhaps an interactive editor too.
Moreover, the more the DSL is a kind of ‘programming’ language, the more
likely it is that it shares some features with most GPLs—variables, definitions,
conditionals, etc—which will have to be designed and integrated with the DSL.
In the process of reducing repetition and raising the level of abstraction for
the DSL programmer, we have introduced repetition and lowered the level of
abstraction for the DSL implementer. That may well be a rational compromise.
But is there a way of getting the best of both worlds?

The second approach to implementing DSLs attempts exactly that: to retain
as much as possible of the convenient syntax and raised level of abstraction
that a DSL provides, without having to go to the trouble of defining a separate
language. Instead, the DSL is embedded within a host language, essentially as a
library of definitions written in the host GPL (although it is debatable to what
extent ‘library’ and ‘language’ coincide: we return to this point in Section 2.1
below). All the existing facilities and infrastructure of the host environment can
continue to be used, and familiarity with the syntactic conventions of the host
can be carried over to the DSL.

However, there are some downsides. DSL programs have to be written in
the syntax of the host language; this may be clumsy if the the host syntax is
rigid, and daunting to non-programmer domain specialists if the host syntax is
obscure. It can be difficult to preserve the abstract boundary between the DSL
its host: naive users may unwittingly invoke sophisticated language features, and
error messages may be reported unhelpfully in terms of the host language rather
than the DSL. Needless to say, these issues are hot research topics among those
working on embedded DSLs.

Fowler [1] calls the standalone and embedded approaches ‘external’ and ‘in-
ternal’ respectively. He does this not least because ‘embedded’ suggests mislead-
ingly that specialized code written in a DSL is quoted verbatim within a host
program written in a GPL, with the whole being expressed in a hybrid language
that is neither the DSL nor the GPL; for example, JavaServer Pages ‘programs’
are hybrids, consisting of HTML markup interspersed with fragments of Java. (In
fact, Fowler calls such hybrids ‘fragmentary’, and uses the term ‘standalone’ for
pure-bred DSLs, in which any program is written in just one language, whether
internal or external.) That objection notwithstanding, we will stick in this article
to the terms ‘standalone’ and ‘embedded’.
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We will concentrate in this article on embedded DSLs, only briefly making
the connection back to standalone DSLs. Again, there are two main approaches
to embedded DSLs, which are conventionally called deep and shallow embedding.
With a deep embedding, terms in the DSL are implemented simply to construct
an abstract syntax tree; this tree is subsequently transformed for optimization
and traversed for evaluation. With a shallow embedding, terms in the DSL are
implemented directly as the values to which they evaluate, bypassing the inter-
mediate AST and its traversal. We explore this distinction in Section 2.4.

It turns out that functional programming languages are particularly well
suited for hosting embedded DSLs. Language features such as algebraic datatypes,
higher-order functions, lazy evaluation, and rich type systems supporting type
inference all contribute. We discuss these factors in more detail in Section 3.

The syntax of the host language is another factor, albeit a relatively minor
one: functional languages often have lightweight syntax, for example favouring
the use of whitespace and layout rather than punctuation for expressing program
structure, and strongly supporting orthogonality of naming in the sense that both
symbolic as well as alphabetic identifiers may be used in definitions. Both of these
features improve flexibility, so that an embedded DSL can have a syntax close
to what one might provide for a corresponding standalone DSL. Of course, there
are functional languages with noisy syntactic conventions, and non-functional
languages with quiet ones, so this factor doesn’t map precisely onto the language
paradigm. We make no more of it in this article, simply using Haskell syntax for
convenience.

We use a number of little examples of embedded DSLs throughout the first
part of the article. We conclude in Section 4, with a more detailed study of one
particular embedded DSL, namely Yorgey’s Diagrams package [4].

2 Exploring the design space

In the interests of focussing on the essence of DSLs, we start with a very simple
example: a DSL for finite sets of integers. This consists of a representation of
sets, and a number of operations manipulating that representation:

type IntegerSet = ...

empty :: IntegerSet
insert :: Integer → IntegerSet → IntegerSet
delete :: Integer → IntegerSet → IntegerSet
member :: Integer → IntegerSet → Bool

For example, one might evaluate the expression

member 3 (insert 1 (delete 3 (insert 2 (insert 3 empty))))

and get the result False (assuming the usual semantics of these operations).
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2.1 Libraries

The first approach one might take to implementing this characterization of in-
teger sets might be as a library, that is, as a collection of related functions.
For example, one might represent the set as a list, possibly with duplicates and
treating order as insignificant:

type IntegerSet = [Integer ] -- unsorted, duplicates allowed

empty :: IntegerSet
empty = [ ]

insert :: Integer → IntegerSet → IntegerSet
insert x xs = x : xs

delete :: Integer → IntegerSet → IntegerSet
delete x xs = filter (6≡ x ) xs

member :: Integer → IntegerSet → Bool
member x xs = any (≡ x ) xs

(Here, the standard library function any p = foldr ((∨) ◦ p) False determines
whether any element of a list satisfies predicate p.)

We have been writing code in this style—that is, collections of types and
related functions—from the earliest days of computing. Indeed, compilers are so
called because they ‘compile’ (collect and assemble the pieces for) an executable
by linking together the programmer’s main program with the necessary functions
from the library. The problem with this style is that there is no encapsulation
of the data representation: it is evident to all clients of the abstraction that
the representation uses lists, and client code may exploit this knowledge by
using other list functions on the representation. The representation is public
knowledge, and it becomes very difficult to change it.

2.2 Modules

The realisation that libraries expose data representations prompted the notion
of modular programming, especially as advocated by Parnas [5]: code should be
partitioned into modules, and in particular, the modules should be chosen so
that each hides a design decision (such as, but not necessarily, a choice of data
representation) from all the others, allowing that decision subsequently to be
changed.

The modular style that Parnas espouses presupposes mutable state: the mod-
ule hides a single data structure, and operations query and modify the value of
that data structure. Because of this dependence on mutable state, it is a little
awkward to write in the Parnas style in a pure functional language like Haskell.
To capture this behaviour using only pure features, one adapts the operations
so that each accepts the ‘current’ value of the data structure as an additional
argument, and returns the ‘updated’ value as an additional result. Thus, an
impure function of type a → b acting statefully on a data structure of type s
can be represented as a pure function of type (a, s)→ (b, s), or equivalently by
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currying, a → (s → (b, s)). The return part s → (b, s) of this is an instance of
the state monad, implemented in the Haskell standard library as a type State s b.
Then the set module can be written as follows:

module SetModule (Set , runSet , insert , delete,member) where

import Control .Monad .State

type IntegerSet = [Integer ]
newtype Set a = S {runS :: State IntegerSet a }
instance Monad Set where

return a = S (return a)
m >>= k = S (runS m >>= (runS ◦ k))

runSet :: Set a → a
runSet x = evalState (runS x ) [ ]

insert :: Integer → Set ()
insert x = S $ do {modify (x :)}
delete :: Integer → Set ()
delete x = S $ do {modify (filter ( 6≡ x ))}
member :: Integer → Set Bool
member x = S $ do {xs ← get ; return (any (≡ x ) xs)}

Here, the type Set of stateful operations on the set is abstract: the representation
is not exported from the module, only the type and an observer function runSet
are. The operations insert , delete, and member are also exported; they may be
sequenced together to construct larger computations on the set. But the only
way of observing this larger computation is via runSet , which initializes the set
to empty before running the computation. Haskell’s do notation conveniently
hides the plumbing required to pass the set representation from operation to
operation:

runSet $ do {insert 3; insert 2; delete 3; insert 1; member 3}

(To be precise, this stateful programming style does not really use mutable state:
all data is still immutable, and each operation that ‘modifies’ the set in fact
constructs a fresh data structure, possibly sharing parts of the original. Haskell
does support true mutable state, with imperative in-place modifications; but to
do this with the same interface as above requires the use of unsafe features, in
particular unsafePerformIO .)

2.3 Abstract datatypes

Parnas’s approach to modular programming favours modules that hide a sin-
gle data structure; the attentive reader will note that it is easy to add a union
operation to the library, but difficult to add one to the module. A slightly dif-
ferent approach is needed to support data abstractions that encompass multiple
data structures—abstract datatypes. In this case, the module exports an abstract
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type, which specifies the hidden representation, together with operations to cre-
ate, modify and observe elements of this type.

module SetADT (IntegerSet , empty , insert , delete,member) where

newtype IntegerSet = IS [Integer ]

empty :: IntegerSet
empty = IS [ ]

insert :: IntegerSet → Integer → IntegerSet
insert (IS xs) x = IS (x : xs)

delete :: IntegerSet → Integer → IntegerSet
delete (IS xs) x = IS (filter (6≡ x ) xs)

member :: IntegerSet → Integer → Bool
member (IS xs) x = any (≡ x ) xs

Note that in addition to the three operations insert , delete and member exported
by SetModule, we now export the operation empty to create a new set, and the
abstract type IntegerSet so that we can store its result, but not the constructor
IS that would allow us to deconstruct sets and to construct them by other means
than the provided operations. Note also that we can revert to a purely functional
style; there is no monad, and ‘modifiers’ manifestly construct new sets—this was
not an option when there was only one set. Finally, note that we have rearranged
the order of arguments of the three operations, so that the source set is the first
argument; this gives the feeling of an object-oriented style, whereby one ‘sends
the insert message to an IntegerSet object’:

((((empty ‘insert ‘ 3) ‘insert ‘ 2) ‘delete‘ 3) ‘insert ‘ 1) ‘member ‘ 3

2.4 Languages

One might, in fact, think of the abstract datatype SetADT as a DSL for sets,
and the set expression above as a term in this DSL—there is at best a fuzzy line
between ADTs and embedded DSLs. If one were to make a formal distinction
between ‘languages’ and ‘libraries’, it would presumably be that a ‘language’
privileges one particular datatype whose elements represent terms in the lan-
guage, with constructors that compose terms, and observers that analyse terms;
a ‘library’, on the other hand, is just a collection of related functions, and may
have no such privileged datatype.

The SetADT implementation above can be seen as an intermediate point
on the continuum between two extreme approaches to implementing embedded
DSLs: deep and shallow embedding. In a deep embedding, the operations that
construct elements of the abstraction do as little work as possible—they simply
preserve their arguments in an abstract syntax tree.

module SetLanguageDeep (IntegerSet (Empty , Insert ,Delete),member) where

data IntegerSet :: ∗ where
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Empty :: IntegerSet
Insert :: IntegerSet → Integer → IntegerSet
Delete :: IntegerSet → Integer → IntegerSet

member :: IntegerSet → Integer → Bool
member Empty y = False
member (Insert xs x ) y = (y ≡ x ) ∨ member xs y
member (Delete xs x ) y = (y 6≡ x ) ∧ member xs y

Now we declare and export an algebraic datatype IntegerSet as the implementa-
tion of the three operations that yield a set; we have used Haskell’s generalized
algebraic datatype notation to emphasize their return types, even though we
make no use of the extra expressive power of GADTs. The member operation,
on the other hand, is implemented as a traversal over the terms of the language,
and is not itself part of the language.

((((Empty ‘Insert ‘ 3) ‘Insert ‘ 2) ‘Delete‘ 3) ‘Insert ‘ 1) ‘member ‘ 3

Whereas in a deep embedding the constructors do nothing and the observers
do all the work, in a shallow embedding it is the other way round: the observers
are trivial, and all the computation is in the constructors. Given that the sole ob-
server in our set abstraction is the membership function, the shallow embedding
represents the set directly as this membership function:

module SetLanguageShallow (IntegerSet , empty , insert , delete,member) where

newtype IntegerSet = IS (Integer → Bool)

empty :: IntegerSet
empty = IS (λy → False)

insert :: IntegerSet → Integer → IntegerSet
insert (IS f ) x = IS (λy → (y ≡ x ) ∨ f y)

delete :: IntegerSet → Integer → IntegerSet
delete (IS f ) x = IS (λy → (y 6≡ x ) ∧ f y)

member :: IntegerSet → Integer → Bool
member (IS f ) = f

It is used in exactly the same way as the SetADT definition:

((((empty ‘insert ‘ 3) ‘insert ‘ 2) ‘delete‘ 3) ‘insert ‘ 1) ‘member ‘ 3

We have only a single observer, so the shallow embedding is as precisely that
observer, and the observer itself is essentially the identity function. More gener-
ally, there may be multiple observers; then the embedding would be as a tuple
of values, and the observers would be projections.

In a suitable sense, the deep embedding can be seen as the most abstract
implementation possible of the given interface, and the shallow embedding as
the most concrete: there are transformations from the deep embedding to any
intermediate implementation, such as SetADT—roughly,



8 Jeremy Gibbons

elements :: SetLanguageDeep.IntegerSet → SetADT .IntegerSet
elements Empty = [ ]
elements (Insert xs x ) = x : elements xs
elements (Delete xs x ) = filter (6≡ x ) (elements xs)

and from this to the shallow embedding—roughly,

membership :: SetADT .IntegerSet → SetLanguageShallow .IntegerSet
membership xs = λx → any (≡ x ) xs

Expressed categorically, there is a category of implementations and transforma-
tions between them, and in this category the deep embedding is the initial object
and the shallow embedding the final object [6]. The shallow embedding arises by
deforesting the abstract syntax tree that forms the basis of the deep embedding.

Kamin [7] calls deep and shallow embedding operational and denotational
domain modelling, respectively, and advocates the latter in preference to the
former. Erwig and Walkingshaw [8] call shallow embedding semantics-driven
design, and also favour it over what they might call syntax-driven design.

Deep embedding makes it easier to extend the DSL with new observers, such
as new analyses of programs in the language: just define a new function by
induction over the abstract syntax. But it is more difficult to extend the syntax
of the language with new operators, because each extension entails revisiting the
definitions of all existing observers. Conversely, shallow embedding makes new
operators easier to add than new observers. This dichotomy is reminiscent of that
between OO programs structured around the Visitor pattern [9] and those in
the traditional OO style with methods attached to subclasses of an abstract
Node class. The challenge of getting the best of both worlds—extensibility in
both dimensions at once—has been called the expression problem [10].

2.5 Embedded and standalone

All the approaches described above have been for embedded DSLs, of one kind
or another: ‘programs’ in the DSL are simply expressions in the host language.
An alternative approach is given by standalone DSLs. As the name suggests,
a standalone DSL is quite independent of its implementation language: it may
have its own syntax, which need bear no relation to that of the implementation
language—indeed, the same standalone DSL may have many implementations,
in many different languages, which need have little in common with each other.
Of course, being standalone, the DSL cannot depend on any of the features of
any of its implementation languages; everything must be build independently,
using more or less standard compiler technology: lexer, parser, optimizer, code
generator, etc.

Fortunately, there is a shortcut. It turns out that a standalone DSL can
share much of the engineering of the embedded DSL—especially if one is not
so worried about absolute performance, and is more concerned about ease of
implementation. The standalone DSL can be merely a frontend for the embedded
DSL; one only needs to write a parser converting strings in the standalone DSL
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to terms in the embedded DSL. (In fact, Parnas made a similar point over
forty years ago [5]: he found that many of the design decisions—and hence the
modules—could be shared between a compiler and an interpreter for the same
language, in his case for Markov processes.)

For example, suppose that we are given a type Parser a of parsers reading
values of type a

type Parser a = ...

and an observer that applies a parser to a string and returns either a value or
an error message:

runParser :: Parser a → String → Either a String

Then one can write a parser program :: Parser Bool for little set programs in
a special syntax; perhaps “{}+3+2-3+1?3” should equate to the example ex-
pressions above, with “{}” denoting the empty set, “+” and “-” the insertion
and deletion operations, and “?” the membership test. Strings recognized by
program are interpreted in terms of insert , delete etc, using one of the various
implementations of sets described above. Then a simple wrapper program reads
a string from the command line, tries to parse it, and writes out the boolean
result or an error message:

main :: IO ()
main = do

ss ← getArgs
case ss of

[s ]→ case runParser program s of -- single arg
Left b → putStrLn ("OK: " ++ show b) -- parsed
Right s → putStrLn ("Failed: " ++ s) -- not parsed
→ do -- zero or multiple args

n ← getProgName
putStrLn ("Usage: " ++ n ++ " <set-expr>")

Thus, from the command line:

> ./sets "{}+3+2-3+1?3"

OK: False

We will return to this example in Section 3.3. Of course, parsers can be expressed
as another DSL. . .

3 Functional programming for embedded DSLs

Having looked around the design space a little, we now step back to consider what
it is about functional programming that makes it particularly convenient for
implementing embedded DSLs. After all, a good proportion of the work on DSLs
expressed in the functional paradigm focusses on embedded DSL; and conversely,
most work on DSLs in other (such as OO) paradigms focusses on standalone
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DSLs. Why is that? We contend that there are three main aspects of modern
functional programming that play a part: they are both useful for implementing
embedded DSLs, and absent from most other programming paradigms. These are
algebraic datatypes, higher-order functions, and (perhaps to a lesser extent) lazy
evaluation. We discuss each in turn, and illustrate with more simple examples
of embedded DSLs. Some parts are left as exercises.

3.1 Algebraic datatypes

The deep embedding approach depends crucially on algebraic datatypes, which
are used to represent abstract syntax trees for programs in the language. Without
a lightweight mechanism for defining and manipulating new tree datatypes, this
approach becomes unworkably tedious.

Algebraic datatypes are extremely convenient for representing abstract syn-
tax trees within the implementation of a DSL. Operations and observers typically
have simple recursive definitions, inductively defined over the structure of the
tree; optimizations and transformations are often simple rearrangements of the
tree—for example, rotations of tree nodes to enforce right-nesting of associative
operators.

In addition to this, algebraic datatypes are also extremely convenient for
making connections outside the DSL implementation. Often the DSL is one in-
habitant of a much larger software ecosystem; while an embedded implementa-
tion within a functional programming language may be the locally optimal choice
for this DSL, it may have to interface with other inhabitants of the ecosystem,
which for legacy reasons or because of other constraints require completely differ-
ent implementation paradigms. (For example, one might have a DSL for financial
contracts, interfacing with Microsoft Excel at the front end for ease of use by
domain specialists, and with monolithic C++ pricing engines at the back end
for performance.) Algebraic datatypes form a very useful marshalling format for
integration, parsed from strings as input and pretty-printed back to strings as
output.

Consider a very simple language of arithmetic expressions, involving integer
constants and addition. As a deeply embedded DSL, this can be captured by the
following algebraic datatype:

data Expr = Val Integer
| Add Expr Expr

Some people call this datatype Hutton’s Razor, because Graham Hutton has been
using it for years as a minimal vehicle for exploring many aspects of compilation
[11].

Exercises

1. Write an observer for the expression language, evaluating expressions as
integers.

eval :: Expr → Integer
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2. Write another observer, printing expressions as strings.

print :: Expr → String

3. Reimplement the expression language using a shallow embedding, such that
the interpretation is that of evaluations.

type Expr = Integer
val :: Integer → Expr
add :: Expr → Expr → Expr

4. Reimplement the expression language via a shallow embedding again, but
this time such that the interpretation is that of printing.

type Expr = String
val :: Integer → Expr
add :: Expr → Expr → Expr

5. Reimplement via a shallow embedding again, such that the interpretation
provides both evaluation and printing.

6. What interpretation of the shallow embedding provides the deep embed-
ding? Conversely, given the deep embedding, what additional computation
is needed to obtain the various interpretations we have used as shallow em-
beddings?

7. What if you wanted a third interpretation, say computing the size of an
expression? What if you wanted to allow ten different interpretations? What
about allowing for unforeseen future interpretations?

3.2 Generalized algebraic datatypes

The Expr DSL above is untyped, or rather “unityped”: there is only a single
type involved, namely integer expressions. Suppose that we want to represent
both integer- and boolean-valued expressions:

data Expr = ValI Integer
| Add Expr Expr
| ValB Boolean
| And Expr Expr
| EqZero Expr
| If Expr Expr Expr

The idea is that EqZero yields a boolean value (whether its argument evaluates
to zero), and If should take a boolean-valued expression as its first argument.
But what can we do for the evaluation function? Sometimes it should return an
integer, sometimes a boolean. One simple solution is to make it return an Either
type:

eval :: Expr → Either Integer Bool
eval (ValI n) = Left n
eval (Add x y) = case (eval x , eval y) of (Left m,Left n)→ Left (m + n)
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eval (ValB b) = Right b
eval (And x y) = case (eval x , eval y) of (Right a,Right b)→ Right (a ∧ b)
eval (EqZero x ) = case eval x of Left n → Right (n ≡ 0)
eval (If x y z ) = case eval x of Right b → if b then eval y else eval z

This is rather clumsy. For one thing, eval has become a partial function; there
are improper values of type Expr such as EqZero (ValB True) on which eval is
undefined. For a second, all the tagging and untagging of return types is a source
of inefficiency. Both of these problems are familiar symptoms of dynamic type
checking; if we could statically check the types instead, then we could rule out
ill-typed programs, and also abolish the runtime tags—a compile-time proof of
well-typedness prevents the former and eliminates the need for the latter.

A more sophisticated solution, and arguably The Right Way, is to use de-
pendent types, as discussed by Edwin Brady elsewhere in this Summer School.
There are various techniques one might use; for example, one might tuple values
with value-level codes for types, provide an interpretation function from codes
to the types they stand for, and carry around “proofs” that values do indeed
inhabit the type corresponding to their type code.

Haskell provides an intermediate, lightweight solution in the form of type
indexing, through so-called generalized algebraic datatypes or GADTs. Let us
rewrite the Expr datatype in an equivalent but slightly more repetitive form:

data Expr :: ∗ where
ValI :: Integer → Expr
Add :: Expr → Expr → Expr
ValB :: Bool → Expr
And :: Expr → Expr → Expr
EqZero :: Expr → Expr
If :: Expr → Expr → Expr → Expr

This form lists the signatures of each of the constructors; of course, they are all
constructors for the datatype Expr , so they all repeat the same return type Expr .
But this redundancy allows us some flexibility: we might allow the constructors
to have different return types. Specifically, GADTs allow the constructors of a
polymorphic datatype to have return types that are instances of the type being
returned, rather than the full polymorphic type.

In this case, we make Expr a polymorphic type, but only provide constructors
for values of type Expr Integer and Expr Bool , and not for other instances of the
polymorphic type Expr a.

data Expr :: ∗ → ∗ where
ValI :: Integer → Expr Integer
Add :: Expr Integer → Expr Integer → Expr Integer
ValB :: Bool → Expr Bool
And :: Expr Bool → Expr Bool → Expr Bool
EqZero :: Expr Integer → Expr Bool
If :: Expr Bool → Expr a → Expr a → Expr a
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We use the type parameter as an index: a term of type Expr a is an expression
that evaluates to a value of type a. Evaluation becomes much simpler:

eval :: Expr a → a
eval (ValI n) = n
eval (Add x y) = eval x + eval y
eval (ValB b) = b
eval (And x y) = eval x ∧ eval y
eval (EqZero x ) = eval x ≡ 0
eval (If x y z ) = if eval x then eval y else eval z

As well as being simpler, it is also safer (there is no possibility of ill-typed
expressions, and eval is a total function again) and swifter (there are no runtime
Left and Right tags to manipulate any more).

Exercises

8. The type parameter a in Expr a is called a phantom type: it doesn’t represent
contents, as the type parameter in a container datatype such as List a does,
but some other property of the type. Indeed, there need be no Boolean inside
an expression of type Expr Bool ; give an expression of type Expr Bool that
contains no Bools. Is there always an Integer inside an expression of type
Expr Integer?

9. How do Exercises 2 to 7 work out in terms of GADTs?

3.3 Higher-order functions

Deep embeddings lean rather heavily on algebraic datatypes. Conversely, shallow
embeddings depend on higher-order functions—functions that accept functions
as arguments or return them as results—and more generally on functions as
first-class citizens of the host language. A simple example where this arises is if
we were to extend the Expr DSL to allow for let bindings and variable references:

val :: Integer → Expr
add :: Expr → Expr → Expr
var :: String → Expr
bnd :: (String ,Expr)→ Expr → Expr

The idea is that bnd represents let-bindings and var represents variable refer-
ences, so that

bnd ("x", val 3) (add (var "x") (var "x"))

corresponds to the Haskell expression let x = 3 in x + x . The standard structure
of an evaluator for languages with such bindings is to pass in and manipulate
an environment of bindings from variables to values (not to expressions):

type Env = [(String , Integer)]
eval :: Expr → Env → Integer
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The environment is initially empty, but is augmented when evaluating the body
of a let expression. With a shallow embedding, the interpretation is the evalu-
ation function:

type Expr = Env → Integer

That is, expressions are represented not as integers, or strings, or pairs, but as
functions (from environments to values).

Exercises

10. Complete the definition of the Expr DSL with let bindings, via a shallow
embedding whose interpretation provides evaluation in an environment.

11. Look again at Exercise 7: can we define a shallow embedding that allows for
unforeseen future interpretations? Hint: think about a ‘generic’ or ‘parametrized’
interpretation, as a higher-order function, which can be instantiated to yield
evaluation, or printing, or any of a number of other concrete interpretations.
What is common to the evaluation and printing interpretations above, and
what is specific? What kinds of function is it sensible to consider as ‘inter-
pretations’, and what should be ruled out?

A larger and very popular example of shallow embeddings with functional
interpretations is given by parser combinators. Recall the type Parsera of parsers
recognizing values of type a from Section 2.5; such a parser is roughly a function
of type String → a. But we will want to combine parsers sequentially, so it is
important that a parser also returns the remainder of the string after recognizing
a chunk, so it would be better to use functions of type String → (a,String). But
we will also want to allow parsers that fail to match (so that we can try a series
of alternatives until one matches), and more generally parsers that match in
multiple ways, so it is better still to return a list of results:

type Parser a = String → [(a,String)]

(Technically, these are more than just parsers, because they combine semantic
actions with recognizing and extracting structure from strings. But the termi-
nology is well established.)

The runParser function introduced in Section 2.5 takes such a parser and an
input string, and returns either a successful result or an error message:

runParser :: Parser a → String → Either a String
runParser p s = case p s of

[(a, s)]→ if all isSpace s then Left a else Right ("Leftover input: " ++ s)
[ ] → Right "No parse"

x → Right ("Ambiguous, with leftovers " ++ show (map snd x ))

If the parser yields a single match, and any leftover input is all whitespace,
we return that value; if there is a nontrivial remainder, no match, or multiple
matches, we return an error message.

Such parsers can be assembled from the following small set of combinators:
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success :: a → Parser a
failure :: Parser a
(〈∗〉) :: Parser (a → b)→ Parser a → Parser b
(〈|〉) :: Parser a → Parser a → Parser a
match :: (Char → Bool) → Parser Char

In other words, these are the operators of a small DSL for parsers. The intention
is that: parser success x always succeeds, consumes no input, and returns x ;
failure always fails; p〈∗〉q is a kind of sequential composition, matching according
to p (yielding a function) and then on the remaining input to q (yielding an
argument), and applying the function to the argument; p 〈|〉q is a kind of choice,
matching according to p or to q ; and match b matches the single character at
the head of the input, if this satisfies b, and fails if the input is empty or the
head doesn’t satisfy.

We can implement the DSL via a shallow embedding, such that the interpre-
tation is the type Parser a. Each operator has a one- or two-line implementation:

success :: a → Parser a
success x s = [(x , s)]

failure :: Parser a
failure s = [ ]

(〈∗〉) :: Parser (a → b)→ Parser a → Parser b
(p 〈∗〉 q) s = [(f a, s ′′) | (f , s ′)← p s, (a, s ′′)← q s ′ ]

(〈|〉) :: Parser a → Parser a → Parser a
(p 〈|〉 q) s = p s ++ q s

match :: (Char → Bool)→ Parser Char
match q [ ] = [ ]
match q (c : s) = if q c then [(c, s)] else [ ]

From the basic operators above, we can derive many more, without depending
any further on the representation of parsers as functions. In each of the following
exercises, the answer is another one- or two-liner.

Exercises

12. Implement two variations of sequential composition, in which the first (re-
spectively, the second) recognized value is discarded. These are useful when
one of the recognized values is mere punctuation.

(∗〉) :: Parser a → Parser b → Parser b
(〈∗) :: Parser a → Parser b → Parser a

13. Implement iteration of parsers, so-called Kleene plus (some) and Kleene star
(many), which recognize one or more (respectively, zero or more) occurrences
of what their argument recognizes.

some,many :: Parser a → Parser [a ]
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14. Implement a whitespace parser, which recognizes a nonempty section of
whitespace characters (you might find the Haskell standard library func-
tion Data.Char .isSpace helpful). Implement a variation ows for which the
whitespace is optional. For both of these, we suppose that the actual nature
of the whitespace is irrelevant, and should be discarded.

whitespace, ows :: Parser ()

15. Implement a parser token, which takes a string and recognizes exactly and
only that string at the start of the input. Again, we assume that the string
so matched is irrelevant, since we know precisely what it will be.

token :: String → Parser ()

16. Now implement the parser program from Section 2.5, which recognizes a
“set program”. A set program starts with the empty set {}, has zero or
more insert (+) and delete (-) operations, and a mandatory final member
(?) operation. Each operation is followed by an integer argument. Optional
whitespace is allowed in all sensible places.

program :: Parser Bool

3.4 Lazy evaluation

A third aspect of modern functional programming that lends itself to embedded
DSLs—albeit, perhaps, less important than algebraic datatypes and higher-order
functions—is lazy evaluation. Evaluation is demand-driven, and function argu-
ments are not evaluated until their value is needed to determine the next step
(for example, to determine which of multiple clauses of a definition to apply);
and moreover, once an argument is evaluated, that value is preserved and reused
rather than being discarded and recomputed for subsequent uses.

One nice consequence of lazy evaluation is that infinite data structures work
just as well as finite ones: as long as finite parts of the result of a function can
be constructued from just finite parts of the input, the complete infinite data
structure may not need ever to be constructed. This is sometimes convenient for
a shallow embedding, allowing one to use a datatype of infinite data structures
for the domain of interpretation. This can lead to simpler programs than would
be the case if one were restricted to finite data structures—in the latter case,
some terminating behaviour has to be interwoven with the generator, whereas
in the former, the two can be quite separate. But we will not study infinite data
structures further in this article.

A second consequence of lazy evaluation manifests itself even in finite data:
if one component of a result is not used anywhere, it is not evaluated. This is
very convenient for shallow embeddings of DSLs with multiple observers. The
interpretation is then as a tuple containing all the observations of a term; but if
some of those observations are not used, they need not be computed.
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Exercises

17. Review Exercise 5, which was to define a shallow embedding interpreted as a
pair, providing both evaluation and printing. Convince yourself that if only
one component of the pair is demanded, only that component gets computed.

18. Here is an alternative technique for allowing for multiple observers with a
shallow embedding. It is presented here using Haskell type classes; but the
general idea is about having a data abstraction with an interface and a
choice of implementations, and doing abstract interpretation in one of those
implementations. For simplicity, let us return to Hutton’s Razor

type Expr = ...
val :: Integer → Expr
add :: Expr → Expr → Expr

with two desired observers

eval :: Expr → Integer
print :: Expr → String

The trick is to define Expr as a type class, the class of those types suitable as
representations of expressions according to this little DSL. What operations
must a type support, if it is to be suitable for representing expressions? It
needs to have at least the val and add operations:

class Expr a where
val :: Integer → a
add :: a → a → a

Of course, it is easy to define these two operations on integers:

instance Expr Integer where
val n = n
add x y = x + y

It is also easy to define them on strings:

instance Expr String where
val n = show n
add x y = "(" ++ x ++ "+" ++ y ++ ")"

Now, a term in the expression DSL has a polymorphic type: it can be inter-
preted in any type in the type class Expr .

expr :: Expr a ⇒ a
expr = add (val 3) (val 4)

Then evaluating and printing expressions amounts to interpreting the poly-
morphic type at the appropriate instance:

eval Expr :: Integer
eval Expr = expr
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print Expr :: String
print Expr = expr

Try this approach out. (You’ll find that you need some language extensions
for the String instance, but the Haskell type checker should guide you in
the right direction.) It’s a bit of an idiosyncratic way of implementing data
abstraction: the implementation is chosen implicitly by fixing a type, rather
than explicitly by passing a parameter. This is a slight problem, if you want
two different interpretations on the same type, such as compact and verbose
printings. What can you do to work around that?

4 An extended example: diagrams

We now turn to a larger example of an embedded DSL, inspired by Brent
Yorgey’s diagrams project [4] for two-dimensional diagrams. That project im-
plements a very powerful language which Yorgey doesn’t name, but we’ll call it
Diagrams. But it’s also rather a large language, so we won’t attempt to cover the
whole thing; instead, we build a much simpler language in the same style. The
diagrams project does, however, provide a useful backend to output Scalable
Vector Graphics (SVG) files, which we will borrow to save ourselves from having
to reinvent one.

4.1 Shapes, styles, and pictures

The basics of our diagram DSL can be expressed in three simpler sublanguages,
for shapes, styles, and pictures. We express them first via deep embedding. First,
there are primitive shapes—as a language, these aren’t very interesting, because
they aren’t recursive.

data Shape
= Rectangle Double Double
| Ellipse Double Double
| Triangle Double

The parameters of a Rectangle specify its width and height; those of an Ellipse
its x- and y-radii. A Triangle is equilateral, with its lowest edge parallel to the
x-axis; the parameter is the length of the side.

Then there are drawing styles. A StyleSheet is a (possibly empty) sequence
of stylings, each of which specifies fill colour, stroke colour, and stroke width.
(The defaults are for no fill, and very thin black strokes.)

type StyleSheet = [Styling ]
data Styling

= FillColour Col
| StrokeColour Col
| StrokeWidth Double
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Here, colours are defined in an external library, which among other things pro-
vides a large number of colour constants named according to the W3C SVG
Recommendation [12, §4.4].

type Col = ...
red , blue, green, yellow , brown, black ... ::Col

Finally, pictures are arrangements of shapes: individual shapes, with styling; or
one picture above another, or one beside another. For simplicity, we specify that
horizontal and vertical alignment of pictures is by their centres.

data Picture
= Place StyleSheet Shape
| Above Picture Picture
| Beside Picture Picture

For example, here is a little stick figure of a woman in a red dress and blue
stockings.

figure :: Picture
figure = Place [StrokeWidth 0.1,FillColour bisque ] (Ellipse 3 3) ‘Above‘

Place [FillColour red ,StrokeWidth 0] (Rectangle 10 1) ‘Above‘
Place [FillColour red ,StrokeWidth 0] (Triangle 10) ‘Above‘
(Place [FillColour blue,StrokeWidth 0] (Rectangle 1 5) ‘Beside‘
Place [StrokeWidth 0] (Rectangle 2 5) ‘Beside‘
Place [FillColour blue,StrokeWidth 0] (Rectangle 1 5)) ‘Above‘

(Place [FillColour blue,StrokeWidth 0] (Rectangle 2 1) ‘Beside‘
Place [StrokeWidth 0] (Rectangle 2 1) ‘Beside‘
Place [FillColour blue,StrokeWidth 0] (Rectangle 2 1))

The intention is that it should be drawn like this:

(Note that blank spaces can be obtained by rectangles with zero stroke width.)
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4.2 Transformations

In order to arrange pictures, we will need to be able to translate them. Later on,
we will introduce some other transformations too; with that foresight in mind,
we introduce a simple language of transformations—the identity transformation,
translations, and compositions of these.

type Pos = Complex Double

data Transform
= Identity
| Translate Pos
| Compose Transform Transform

For simplicity, we borrow the Complex type from the Haskell libraries to repre-
sent points in the plane; the point with coordinates (x, y) is represented by the
complex number x :+y . Complex is an instance of the Num type class, so we get
arithmetic operations on points too. For example, we can apply a Transform to
a point:

transformPos :: Transform → Pos → Pos
transformPos Identity = id
transformPos (Translate p) = (p+)
transformPos (Compose t u) = transformPos t ◦ transformPos u

Exercises

19. Transform is represented above via a deep embedding, with a separate ob-
server function transformPos. Reimplement Transform via a shallow embed-
ding, with this sole observer.

4.3 Simplified pictures

As it happens, we could easily translate the Picture language directly into
Diagrams: it has equivalents of Above and Beside, for example. But if we were
“executing” our pictures in a less sophisticated setting—for example, if we had
to implement the SVG backend from first principles—we would eventually have
to simplify recursively structured pictures into a flatter form.

Here, we flatten the hierarchy into a non-empty sequence of transformed
styled shapes:

type Drawing = [(Transform,StyleSheet ,Shape)]

In order to simplify alignment by centres, we will arrange that each simplified
Drawing is itself centred: that is, the combined extent of all translated shapes
will be centred on the origin. Extents are represented as pairs of points, for the
lower left and upper right corners of the orthogonal bounding box.

type Extent = (Pos,Pos)
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The crucial operation on extents is to compute their union:

unionExtent :: Extent → Extent → Extent
unionExtent (llx 1 :+ lly1, urx 1 :+ ury1) (llx 2 :+ lly2, urx 2 :+ ury2)

= (min llx 1 llx 2 :+ min lly1 lly2,max urx 1 urx 2 :+ max ury1 ury2)

Now, the extent of a drawing is the union of the extents of each of its translated
shapes, where the extent of a translated shape is the translation of the two
corners of the extent of the untranslated shape:

drawingExtent :: Drawing → Extent
drawingExtent = foldr1 unionExtent ◦map getExtent where

getExtent (t , , s) = let (ll , ur) = shapeExtent s
in (transformPos t ll , transformPos t ur)

(You might have thought initially that if all Drawings are kept centred, one point
rather than two serves to define the extent. But this doesn’t work: in computing
the extent of a whole Picture, of course we have to translate its constituent
Drawings off-centre.) The extents of individual shapes can be computed using a
little geometry:

shapeExtent :: Shape → Extent
shapeExtent (Ellipse xr yr) = (−(xr :+ yr), xr :+ yr)

shapeExtent (Rectangle w h) = (−(w/2 :+ h/2), w/2 :+ h/2)

shapeExtent (Triangle s) = (−(s/2 :+
√

3× s/4), s/2 :+
√

3× s/4)

Now to simplify Pictures into Drawings, via a straightforward traversal over
the structure of the Picture.

drawPicture :: Picture → Drawing
drawPicture (Place u s) = drawShape u s
drawPicture (Above p q) = drawPicture p ‘aboveD ‘ drawPicture q
drawPicture (Beside p q) = drawPicture p ‘besideD ‘ drawPicture q

All the work is in the individual operations. drawShape constructs an atomic
styled Drawing , centred on the origin.

drawShape :: StyleSheet → Shape → Drawing
drawShape u s = [(Identity , u, s)]

aboveD and besideD both work by forming the “union” of the two child Drawings,
but first translating each child by the appropriate amount—an amount calcu-
lated so as to ensure that the resulting Drawing is again centred on the origin.

aboveD , besideD :: Drawing → Drawing → Drawing
pd ‘aboveD ‘ qd = transformDrawing (Translate (0 :+ qury)) pd ++

transformDrawing (Translate (0 :+ plly)) qd where
(pllx :+ plly , pur) = drawingExtent pd
(qll , qurx :+ qury) = drawingExtent qd

pd ‘besideD ‘ qd = transformDrawing (Translate (qllx :+ 0)) pd ++
transformDrawing (Translate (purx :+ 0)) qd where
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(pll , purx :+ pury) = drawingExtent pd
(qllx :+ qlly , qur) = drawingExtent qd

This involves transforming the child Drawings; but that’s easy, given our repre-
sentation.

transformDrawing :: Transform → Drawing → Drawing
transformDrawing t = map (λ(t ′, u, s)→ (Compose t t ′, u, s))

Exercises

20. Add Square and Circle to the available Shapes; for simplicity, you can im-
plement these using rect and ellipseXY .

21. Add Blank to the available shapes; implement this as a rectangle with zero
stroke width.

22. Centring and alignment, as described above, are only approximations, be-
cause we don’t take stroke width into account. How would you do so?

23. Add InFrontOf ::Picture → Picture → Picture as an operator to the Picture
language, for placing one Picture in front of (that is, on top of) another.
Using this, you can draw a slightly less childish-looking stick figure, with the
“arms” overlaid on the “body”:

24. Add FlipV :: Picture → Picture as an operator to the Picture language, for
flipping a Picture vertically (that is, from top to bottom, about a horizontal
axis). Then you can draw this chicken:
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You’ll need to add a corresponding operator ReflectY to the Transform
language; you might note that the conjugate function on complex numbers
takes x :+ y to x :+ (−y). Be careful in computing the extent of a flipped
picture!

25. Picture is represented above via a deep embedding, with a separate observer
function drawPicture. Reimplement Picture via a shallow embedding, with
this sole observer.

4.4 Generating SVG

The final step is to assemble our simplified Drawing into some expression in the
Diagrams language. What we need are the following:

– A type for representing diagrams.

type DiagramSVG = ...

(This is actually a synonym for a specialization of a more flexible Diagrams
type from Yorgey’s library.)

– Primitives of type DiagramSVG :

rect :: Double → Double → DiagramSVG
ellipseXY :: Double → Double → DiagramSVG
eqTriangle :: Double → DiagramSVG

– An operator for superimposing diagrams:

atop :: DiagramSVG → DiagramSVG → DiagramSVG

– Transformations on diagrams:

translate ◦ r2 :: (Double,Double)→ DiagramSVG → DiagramSVG
reflectY :: DiagramSVG → DiagramSVG

(The latter is needed for Exercise 24.)
– Functions for setting fill colour, stroke colour, and stroke width attributes:

fc :: Col → DiagramSVG → DiagramSVG
lc :: Col → DiagramSVG → DiagramSVG
lw :: Double → DiagramSVG → DiagramSVG

– A wrapper function that writes a diagram out in SVG format to a specified
file:

writeSVG :: FilePath → DiagramSVG → IO ()

Then a Drawing can be assembled into a DiagramSVG by laying one translated
styled shape on top of another:

assemble :: Drawing → DiagramSVG
assemble = foldr1 atop ◦map draw where

draw (t , u, s) = transformDiagram t (diagramShape u s)
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Note that Shapes earlier in the list appear “in front” of those later; you’ll need
to use this fact in solving Exercise 23.

A StyleSheet represents a sequence of functions, which are composed into one
styling function:

applyStyleSheet :: StyleSheet → (DiagramSVG → DiagramSVG)
applyStyleSheet = foldr (◦) id ◦map applyStyling

applyStyling :: Styling → DiagramSVG → DiagramSVG
applyStyling (FillColour c) = fc c
applyStyling (StrokeColour c) = lc c
applyStyling (StrokeWidth w) = lw w

A single styled shape is drawn by applying the styling function to the corre-
sponding atomic diagram:

diagramShape :: StyleSheet → Shape → DiagramSVG
diagramShape u s = shape (applyStyleSheet u) s where

shape f (Ellipse xr yr) = f (ellipseXY xr yr)
shape f (Rectangle w h) = f (rect w h)
shape f (Triangle s) = f (translate (r2 (0,−y)) (eqTriangle s))

where y = s ×
√
3/12

(The odd translation of the triangle is because we place triangles by their centre,
but Diagrams places them by their centroid.)

A transformed shape is drawn by transforming the diagram of the underlying
shape.

transformDiagram :: Transform → DiagramSVG → DiagramSVG
transformDiagram Identity = id
transformDiagram (Translate (x :+ y)) = translate (r2 (x , y))
transformDiagram (Compose t u) = transformDiagram t ◦

transformDiagram u

And that’s it! (You can look at the source file Shapes.lhs for the definition of
writeSVG , and some other details.)

Exercises

26. In Exercise 19, we reimplemented Transform as a shallow embedding, with
the sole observer being to transform a point. This doesn’t allow us to apply
the same transformations to DiagramSVG objects, as required by the func-
tion transformDiagram above. Extend the shallow embedding of Transform
so that it has two observers, for transforming both points and diagrams.

27. A better solution to Exercise 26 would be to represent Transform via a
shallow embedding with a single parametrized observer, which can be in-
stantiated at least to the two uses we require. What are the requirements on
such instantiations?
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28. Simplifying a Picture into a Drawing is a bit inefficient, because we have to
continually recompute extents. A more efficient approach would be to extend
the Drawing type so that it caches the extent, as well as storing the list of
shapes. Try this.

29. It can be a bit painful to specify a complicated Picture with lots of Shapes all
drawn in a common style—for example, all blue, with a thick black stroke—
because those style settings have to be repeated for every single Shape. Ex-
tend the Picture language so that Pictures too may have StyleSheets; styles
should be inherited by children, unless they are overridden.

30. Add an operator Tile to the Shape language, for square tiles with markings
on. It should take a Double parameter for the length of the side, and a list
of lists of points for the markings; each list of points has length at least
two, and denotes a path of straight-line segments between those points. For
example, here is one such pattern of markings:

markingsP :: [[Pos ]]
markingsP = [[(4 :+ 4), (6 :+ 0)],

[(0 :+ 3), (3 :+ 4), (0 :+ 8), (0 :+ 3)],
[(4 :+ 5), (7 :+ 6), (4 :+ 10), (4 :+ 5)],
[(11 :+ 0), (10 :+ 4), (8 :+ 8), (4 :+ 13), (0 :+ 16)],
[(11 :+ 0), (14 :+ 2), (16 :+ 2)],
[(10 :+ 4), (13 :+ 5), (16 :+ 4)],
[(9 :+ 6), (12 :+ 7), (16 :+ 6)],
[(8 :+ 8), (12 :+ 9), (16 :+ 8)],
[(8 :+ 12), (16 :+ 10)],
[(0 :+ 16), (6 :+ 15), (8 :+ 16), (12 :+ 12), (16 :+ 12)],
[(10 :+ 16), (12 :+ 14), (16 :+ 13)],
[(12 :+ 16), (13 :+ 15), (16 :+ 14)],
[(14 :+ 16), (16 :+ 15)]
]

In Shapes.lhs, you’ll find this definition plus three others like it. They yield
tile markings looking like this:

You can draw such tiles via the function

tile :: [[Pos ]]→ DiagramSVG

provided for you. Also add operators to the Picture and Transform languages
to support scaling by a constant factor and rotation by a quarter-turn an-
ticlockwise, both centred on the origin. You can implement these on the
DiagramSVG type using two Diagrams operators:
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scale :: Double → DiagramSVG → DiagramSVG
rotateBy (1/4) :: DiagramSVG → DiagramSVG

Then suitable placements, rotations, and scalings of the four marked tiles
will produce a rough version of Escher’s “Square Limit” print, as shown in
the left-hand image below:

This construction was explored by Peter Henderson in a famous early paper
on functional geometry [13, 14]; I have taken the data for the markings from a
note by Frank Buß [15]. The image on the right is taken from WikiPaintings
[16].

31. Morally, “Square Limit” is a fractal image: the recursive decomposition can
be taken ad infinitum. Because Haskell uses lazy evaluation, that’s not an
insurmountable obstacle. The datatype Picture includes also infinite terms;
and because Diagrams is an embedded DSL, you can use a recursive Haskell
definition to define an infinite Picture. You can’t render it directly to SVG,
though; that would at best yield an infinite SVG file. But still, you can prune
the infinite picture to a finite depth, and then render the result. Construct
the infinite Picture. (You’ll probably need to refactor some code. Note that
you can’t compute the extent of an infinite Picture either.)
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