
Design Patterns as Higher-Order Datatype-Generic Programs

Jeremy Gibbons
http://www.comlab.ox.ac.uk/jeremy.gibbons/

7th December 2010

Abstract

Design patterns are reusable abstractions in object-oriented software. However, using current main-
stream programming languages, these elements can only be expressed extra-linguistically: as prose,
pictures, and prototypes. We believe that this is not inherent in the patterns themselves, but evidence
of a lack of expressivity in the languages of today. We expect that, in the languages of the future,
the code parts of design patterns will be expressible as reusable library components. Indeed, we claim
that the languages of tomorrow will suffice; the future is not far away. All that is needed, in addition
to commonly-available features, are higher-order and datatype-generic constructs; these features are al-
ready or nearly available now. We argue the case by presenting higher-order datatype-generic programs
capturing Origami, a small suite of patterns for recursive data structures.

1 Introduction

Design patterns, as the subtitle of the seminal book [20] has it, are ‘elements of reusable object-oriented
software’. However, within the confines of existing mainstream programming languages, these supposedly
reusable elements can only be expressed extra-linguistically: as prose, pictures, and prototypes. We believe
that this is not inherent in the patterns themselves, but evidence of a lack of expressivity in the languages of
today. We expect that, in the languages of the future, the code parts of design patterns will be expressible
as directly reusable library components. The benefits will be considerable: patterns may then be reasoned
about, type-checked, applied and reused, just as any other abstractions can.

Indeed, we claim that the languages of tomorrow will suffice; the future is not far away. All that is needed,
in addition to what is provided by essentially every programming language, are higher-order (parametrization
by code) and datatype-generic (parametrization by type constructor) features. Higher-order constructs have
been available for decades in functional programming languages such as ML [53] and Haskell [66]. Datatype
genericity can be simulated in existing programming languages [11, 36, 59], but we already have significant
experience with robust prototypes of languages that support it natively [37, 49].

We argue our case by capturing as higher-order datatype-generic programs a small subset Origami
of the Gang of Four (GOF) patterns. (For the sake of rhetorical style, in this paper we equate ‘GOF
patterns’ with ‘design patterns’.) These programs are parametrized along three dimensions: by the shape
of the computation, which is determined by the shape of the underlying data, and represented by a type
constructor (an operation on types); by the element type (a type); and by the body of the computation,
which is a higher-order argument (a value, typically a function).

Although our presentation is in a functional programming style, we do not intend to argue here that
functional programming is the paradigm of the future. Rather, we believe that functional programming
languages are a suitable test-bed for experimental language features—as evidenced by parametric polymor-
phism, list comprehensions, and of course closures, which are all now finding their way into mainstream
programming languages such as Java and C#. We expect that the evolution of programming languages
will continue to follow the same trend: experimental language features will be developed and explored in
small, nimble laboratory languages, and the successful experiments will eventually make their way into the
outside world. In particular, we expect that the mainstream languages of tomorrow will be broadly similar
to the languages of today—strongly and statically typed, object-oriented, with an underlying imperative

1

mindset—but incorporating additional features from the functional world—specifically, higher-order opera-
tors and datatype genericity. (Indeed, we would not be in the least surprised to see the language mainstream
heading in the direction of the functional/object-oriented language Scala [57]. We have elsewhere [60] argued
that Scala makes a fine language for generic programming; it supports both the familiar concepts of the OO
paradigm and the higher-order and datatype-generic features we make use of in this paper.)

Thus, our main contribution in this paper is to show that the code aspects of four of the familiar
Gang of Four design patterns [20]—namely Composite, Iterator, Visitor, and Builder, together with
some variations—can be captured as reusable library code in the form of higher-order, datatype-generic
programs—specifically, as recursive datatypes with maps, folds, and unfolds, again with some variations; we
therefore claim that higher-order and datatype-generic features are very helpful in defining flexible software
components. This argument is presented in Section 6, where we show how to capture our Origami patterns
as higher-order datatype-generic programs; Sections 2 to 5 cover the necessary background, on functional
programming, generic programming, folds and unfolds, and design patterns, respectively, and Sections 7 to 9
discuss limitations, survey related work, and conclude.

2 Functional programming

We start with a brief review of the kinds of parametrization available in functional programming languages.
We do this in order to emphasize what is different about datatype genericity, which we believe will be the
next step in parametrization.

2.1 First-order, monomorphic

Functional programming is a matter of programming with expressions rather than statements, manipulating
values rather than actions. For example, consider the following two datatype definitions, of lists of integers
and lists of characters respectively. In each case, there are two variants: a constant for the empty list, and
a binary operator constructing a non-empty list from its head and tail.

data ListI = NilI | ConsI Integer ListI
data ListC = NilC | ConsC Char ListC

Unlike in conventional imperative (and object-oriented) programming, computations do not proceed by
executing actions that destructively update a state; instead, they construct values by evaluating expressions.
Thus, instead of a loop repeatedly updating a running total, summing a list of integers entails the recursive
evaluation of one lengthy expression. For example, the following program computes the sum of a list of
integers: the sum of the empty list is zero, and the sum of a non-empty list is the head plus the sum of the
tail.

sumI :: ListI → Integer
sumI NilI = 0
sumI (ConsI x xs) = x + sumI xs

Similarly, programs to append two lists (of integers, or of characters) proceed non-destructively by recursion.

appendI :: ListI → ListI → ListI
appendI NilI ys = ys
appendI (ConsI x xs) ys = ConsI x (appendI xs ys)

appendC :: ListC → ListC → ListC
appendC NilC ys = ys
appendC (ConsC x xs) ys = ConsC x (appendC xs ys)

2

2.2 First-order, polymorphic

The attentive reader will note that the definitions above of appendI and appendC are essentially identical:
their monomorphic types are over-specific. Abstracting from their differences allows us to capture their
commonalities. The kind of abstraction that is required is parametrization by type. This can be done both
in the programs and in the datatypes they manipulate, yielding parametrically polymorphic datatypes and
functions. The datatype declaration defines a type constructor List , which when applied to an element type
(such as Integer) denotes another type (in this case, lists of integers):

data List a = Nil | Cons a (List a)

sum :: List Integer → Integer
sum Nil = 0
sum (Cons x xs) = x + sum xs

Now we no longer need two monomorphic datatypes ListI and ListC ; both can be obtained by instantiating
the polymorphic datatype List a. Consequently, we do not need two different monomorphic append functions
either; a single polymorphic function suffices.

append :: List a → List a → List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Here, for later reference, is another example of a parametrically polymorphic function: the function concat
concatenates a list of lists (of elements of some type) to a single long list (of elements of the same type).

concat :: List (List a)→ List a
concat Nil = Nil
concat (Cons xs xss) = append xs (concat xss)

2.3 Higher-order, list-specific

Each of the three programs sum, append , and concat traverses its list argument in exactly the same way.
Abstracting from their differences allows us to capture a second kind of commonality, namely the pattern
of recursion. The kind of parametrization that is required is parametrization by a program; doing so yields
higher-order programs. The common pattern is called a ‘fold’; it has two cases, one for each variant of the
datatype, and makes identical recursive calls on each recursive substructure.

foldL :: b → (a → b → b)→ List a → b
foldL n c Nil = n
foldL n c (Cons x xs) = c x (foldL n c xs)

Instances of foldL replace the list constructors Nil and Cons with the supplied arguments n and c:

sum = foldL 0 (+)
append xs ys = foldL ys Cons xs
concat = foldL Nil append

For more about higher-order programming, see any textbook on functional programming [65, 6].

2.4 Higher-order, tree-specific

Now, suppose one also had a polymorphic datatype of binary trees (here, externally labelled—that is, with
elements at the tips and not at the binary nodes):

data Btree a = Tip a | Bin (Btree a) (Btree a)

3

A similar process would lead one to abstract the natural pattern of computation on these trees as another
higher-order function:

foldB :: (a → b)→ (b → b → b)→ Btree a → b
foldB t b (Tip x) = t x
foldB t b (Bin xs ys) = b (foldB t b xs) (foldB t b ys)

For example, instances of foldB reflect a tree, and flatten it to a list, in both cases replacing the tree
constructors Tip and Bin with supplied arguments:

reverse :: Btree a → Btree a
reverse = foldB Tip nib where

nib xs ys = Bin ys xs

flatten :: Btree a → List a
flatten = foldB wrap append where

wrap x = Cons x Nil

2.5 Datatype-generic

We have seen that each kind of parametrization allows some recurring patterns to be captured. Parametric
polymorphism unifies commonality of computation, abstracting from variability in irrelevant typing infor-
mation. Higher-order functions unify commonality of program shape, abstracting from variability in some
of the details.

But what about the two higher-order, polymorphic programs foldL and foldB? We can see that they have
something in common: both replace constructors by supplied arguments; both have patterns of recursion that
follow the datatype definition, with one clause per datatype variant and one recursive call per substructure.
There is evidently a recurrent pattern; but neither parametric polymorphism nor higher-order functions
suffice to capture this commonality.

In fact, what differs between the two fold operators is the shape of the data on which they operate, and
hence the shape of the programs themselves. The kind of parametrization required is by this shape; that is,
by the datatype or type constructor (such as List or Tree) concerned. We call this datatype genericity ; it
allows the capture of recurring patterns in programs of different shapes. In Section 4 below, we explain the
definition of a datatype-generic operation fold with the following type:

fold :: Bifunctor s ⇒ (s a b → b)→ Fix s a → b

Here, in addition to the type a of collection elements and the fold body (a function of type s a b → b),
the shape parameter s varies; the type class Bifunctor expresses the constraints we place on its choice. The
shape parameter determines the shape of the input data; for one instantiation ListF of s, the type Fix s a
is isomorphic to List a, and for another instantiation BtreeF , the type Fix s a is isomorphic to Btree a.
The same shape parameter also determines the type of the fold body, supplied as an argument with which
to replace the constructors; when s is instantiated to ListF , the function fold specializes to foldL, and when
s is BtreeF , it specializes to foldB .

For more about datatype genericity, see [27].

3 Genera of genericity

The term generic programming means different things to different people: to some, it means parametric
polymorphism; to some, it means libraries of algorithms and data structures; to some, it means reflection
and meta-programming; to some, it means polytypism. By and large, though, everyone agrees with the
intention, characterized by Sheard [3], of ‘making programs more adaptable by making them more general’.

Generic programming usually manifests itself as a kind of parametrization. By abstracting from the
differences in what would otherwise be separate but similar specific programs, one can make a single unified
generic program. Instantiating the parameter in various ways retrieves the various specific programs, and

4

(a) generic
type Element is private ;

procedure Swap (X , Y : in out Element) ;

(b) procedure Swap (X , Y : in out Element) is
Z : constant Element := X ;

begin
X := Y ;
Y := Z ;

end Swap ;

(c) procedure SwapInteger is new Swap (Integer) ;

Figure 1: An Ada generic subprogram: (a) declaration, (b) definition, and (c) instantiation

ideally some new ones too. The different interpretations of the term ‘generic programming’ arise from
different notions of what constitutes a ‘parameter’.

Moreover, a parametrization is usually only called ‘generic’ programming if it is of a ‘non-traditional’
kind; by definition, traditional kinds of parametrization give rise only to traditional programming, not generic
programming. Therefore, ‘genericity’ is in the eye of the beholder, with beholders from different programming
traditions having different interpretations of the term. No doubt by-value and by-name parameter-passing
mechanisms for arguments to procedures, as found in Pascal, look like ‘generic programming’ to an assembly-
language programmer.

3.1 Parametric polymorphism

One interpretation of the term ‘generic programming’ is as embodied by Ada generics [54]. These were
inspired by Liskov’s CLU language [48], and were in turn the inspiration for the C++ template mechanism,
which we discuss below. Ada generic units encompass ‘subprograms’ (functions or procedures) and ‘packages’
(modules or abstract datatypes). These generic units can be parametrized in various ways: by types, by
values, by subprograms, and by packages. As with C++, Ada generic units are templates for their non-
generic counterparts; they cannot be used until they are instantiated.

For example, Figure 1 shows: (a) the declaration of a generic subprogram Swap, parametrized by a type
Element ; (b) the generic body of the subprogram, which makes use of the formal parameter Element ; and
(c) the instantiation of the generic unit to make a non-generic subprogram that may be used in the same
way as any other subprogram.

Ada generics implement a form of parametric polymorphism: the same generic definition is applicable
to all possible instantiations. This is true for the other available kinds of formal parameter, as well as for
type parameters (although Cardelli and Wegner [10] would call parametrization by these other kinds of
parameter universal polymorphism, restricting parametric polymorphism to mean ‘universal polymorphism
with a type parameter’). For example, a value parameter could be used to parametrize a collection type by a
size bound; a subprogram parameter could be used to parametrize a sorting subprogram with an ordering; a
package parameter could be used to parametrize Horner’s rule for polynomial evaluation by a semiring [13],
an extremal path finder by a regular algebra [4, 5], or a greedy algorithm by a matroid or greedoid structure
[18, 47].

3.2 Generic programming and the STL

The most popular interpretation of the term ‘generic programming’ is as embodied by the C++ Standard
Template Library (STL). This is an object-oriented class library providing containers, iterators and algo-
rithms for many datatypes. As the name suggests, it is implemented using the C++ template mechanism,
which offers similar facilities to Ada generics: class- and function templates are parametrized by type- and
value parameters. (Indeed, a predecessor to the STL was an Ada library for list processing [55].) Within this

5

community more than any other, it is considered essential that genericity imposes no performance penalty
[16, 74].

The containers in the STL are parametrically polymorphic datatypes, parametrized by the element type;
these are further classified into sequence containers (such as Vector , String and Deque) and associative
containers (such as Set , Multiset and Map).

Bulk access to the elements of a container type is provided by iterators. These are abstractions of C++
pointers to elements, and so support pointer arithmetic. They are further classified according to what pointer
operations they support: input iterators (which can only be read from, that is, dereferenced as r-values),
output iterators (which can only be written to, that is, dereferenced as l-values), forwards iterators (which can
be advanced, that is, supporting increment), backwards iterators (which can also retreat, that is, supporting
decrement), and random access iterators (which can move any number of steps in one operation, that is,
supporting addition).

Iterators form the interface between container types and algorithms over data structures. STL algorithms
include many general-purpose operations such as searching, sorting, filtering, and so on. Rather than oper-
ating directly on a container, an algorithm takes one or more iterators as parameters; but then the algorithm
is generic, in the sense that it applies to any container that supports the appropriate kind of iterator.

In the C++ approach, the exact set of requirements on parameters (such as the iterator passed to a generic
algorithm, or the element type passed to a generic container, or indeed any other template parameter) is
called a concept [42]. It might specify the operations available on a type parameter, the laws these operations
satisfy, and the asymptotic complexities of the operations in terms of time and space; the first of these can
be checked at instantiation time, but the other two cannot. The C++ template mechanism provides no
means explicitly to define a concept; it is merely an informal artifact rather than a formal construct. (They
were dropped at a late stage from the forthcoming ‘C++0x’ language standard.)

The STL is perhaps the best known instantiation of generic programming. Indeed, some writers have
taken the STL style as the definition of generic programming; for example, Siek et al. [68] define generic
programming as ‘a methodology for program design and implementation that separates data structures and
algorithms through the use of abstract requirement specifications’. We feel that this is squandering a useful
term on a well-established existing practice, namely good old-fashioned abstraction.

3.3 Metaprogramming

Another interpretation of the term ‘generic programming’ covers various flavours of metaprogramming, that
is, the construction of programs that write or manipulate other programs. This field encompasses program
generators such as lex and yacc, reflection techniques allowing a program (typically in a dynamically-typed
language) to observe and possibly modify its structure and behaviour [45], generative programming for the
automated customization, configuration and assembly of components [14], and multi-stage programming for
partitioning computations into phases [70]. A compiler could be considered a generative metaprogram.
Rather than writing machine code directly, the programmer writes meta-machine code in a high-level lan-
guage, and leaves the generation of the machine code itself to the compiler.

In fact, the C++ template mechanism is surprisingly expressive, and already provides some kind of
metaprogramming facility. Template instantiation takes place at compile time, so one can think of a C++
program with templates as a two-stage computation; several high-performance numerical libraries rely on
templates’ generative properties [74]. The template instantiation mechanism turns out to be Turing complete;
Unruh [72] demonstrated the disquieting possibility of a program whose compilation yields the prime numbers
as error messages, Czarnecki and Eisenecker [14] show the Turing-completeness of the template mechanism
by implementing a rudimentary Lisp interpreter as a template meta-program, and Alexandrescu [2] presents
a tour-de-force of unexpected applications of templates.

3.4 Datatype genericity

The Datatype-Generic Programming project at Oxford and Nottingham [28] has yet another interpreta-
tion of the term ‘generic programming’. As the name suggests, datatype-generic programs are programs
parametrized by a datatype or type functor. We motivated above the type declaration of the following
datatype-generic ‘fold’ on multiple datatypes:

6

fold :: Bifunctor s ⇒ (s a b → b)→ Fix s a → b
fold f = f · bimap id (fold f) · out

We explain the definition of this fold in Section 4; we stress that the function is parametrized not only by the
type a of the elements of the datatype and the body f of the fold, but also by the shape s of the datatype
itself.

One approach to datatype genericity is what is variously called polytypism [41], structural polymor-
phism [67] or typecase [76, 59], in which functions are defined inductively by case analysis on the structure of
datatypes. This is the kind of genericity provided by Generic Haskell [37]. For example, here is a datatype-
generic definition of encoding to a list of bits.

type Encode{[∗]} t = t → [Bool]
type Encode{[k → l]} t = ∀a.Encode{[k]} a → Encode{[l]} (t a)

encode{|t :: k |} :: Encode{[k]} t
encode{|Char |} c = encodeChar c
encode{|Int |} n = encodeInt n
encode{|Unit |} unit = []
encode{|: + :|} ena enb (Inl a) = False : ena a
encode{|: + :|} ena enb (Inr b) = True : enb b
encode{|: ∗ :|} ena enb (a : ∗ : b) = ena a ++ enb b

The generic function encode generates a list of booleans for any type constructed from characters and
integers using sums and products. The cases for base types, sums, and products are given explicitly: by calls
to encodeChar and encodeInt for those types, yielding the empty list for the unit type, prepending a boolean
to indicate which injection into a sum, and concatenating the encodings of the two components of a product.
The ‘obvious’ cases for type abstraction, application and recursion are generated automatically. Note that
encode does not have a constant type, but a parametrized one; for example, the instance for products takes
as two additional arguments the encoders for the two components, whereas the instance for characters needs
no such arguments—type-indexed values have kind-indexed types [35].

Because a structurally polymorphic definition is given by case analysis in this fashion, it is an ad-hoc form
of datatype genericity. One has the flexibility to define different behaviour in different branches, and maybe
even to customize the behaviour for specific types; but consequently, there is no guarantee or check that
the behaviours in different branches conform, except by type. In contrast, the definition of fold cited above
and explained below uses a parametric form of datatype genericity; one has less flexibility, but instances at
different types necessarily behave uniformly. Ad-hoc datatype genericity is more general than parametric;
for example, it is difficult to see how to define datatype-generic encoding parametrically, and conversely, any
parametric definition can be expanded into an ad-hoc one. However, parametric datatype genericity offers
better prospects for reasoning, and is to be preferred when it is applicable. We consider parametric datatype
genericity to be the ‘gold standard’, and in the remainder of this paper, we concentrate on parametric
datatype-generic definitions where possible.

Datatype genericity is different from the other three interpretations of generic programming outlined
above. It is not just a matter of parametric polymorphism, at least not in a straighforward way; for
example, parametric polymorphism abstracts from the occurrence of ‘integer’ in ‘lists of integers’, whereas
datatype genericity abstracts from the occurrence of ‘list’. It is not just interface conformance, as with
concept satisfaction in the STL; although the latter allows abstraction from the shape of data, it does not
allow exploitation of the shape of data, as required for the data compression and marshalling examples
above. Finally, it is not metaprogramming: although some flavours of metaprogramming (such as reflection)
can simulate datatype-generic computations, they typically do so at the expense of static checking.

4 Origami programming

There is a branch of the mathematics of program construction devoted to the relationship between the
structure of programs and the structure of the data they manipulate [50, 52, 7, 22]. We saw a glimpse of
this field in Sections 2.3 and 2.4, with the definitions of foldL and foldB respectively: the structure of each

7

program reflects that of the datatype it traverses, for example in the number of clauses and the number and
position of recursive references. In this section, we explore a little further. Folds are not the only program
structure that reflects data structure, although they are often given unfair emphasis [30]; we outline unfolds
and builds too, which are two kinds of dual (producing structured data rather than consuming it), and maps,
which are special cases of these operators, and some simple combinations of these. The beauty of all of these
patterns of computation is the direct relationship between their shape and that of the data they manipulate
[39]; we go on to explain how both can be parametrized by that shape, yielding datatype-generic patterns of
computation. Elsewhere, we have called this approach origami programming [23].

4.1 Maps on lists

Here is the polymorphic datatype of lists again.

data List a = Nil | Cons a (List a)

The ‘map’ operator for a datatype applies a given function to every element of a data structure. The
(higher-order, polymorphic, but list-specific) map operator for lists is given by:

mapL :: (a → b)→ List a → List b
mapL f Nil = Nil
mapL f (Cons x xs) = Cons (f x) (mapL f xs)

Thus, mapping over the empty list yields the empty list; mapping f over a non-empty list applies f to the
head and maps over the tail.

4.2 Folds on lists

The ‘fold’ operator for a datatype collapses a data structure down to a value. Here is the (again higher-order,
polymorphic, but list-specific) fold operator for lists that we saw in Section 2.3.

foldL :: b → (a → b → b)→ List a → b
foldL e f Nil = e
foldL e f (Cons x xs) = f x (foldL e f xs)

For example, the function filterL (itself higher-order, polymorphic, but list-specific) takes a predicate p and
a list xs, and returns the sublist of xs consisting of those elements that satisfy p.

filterL :: (a → Bool)→ List a → List a
filterL p = foldL Nil (add p) where

add p x xs = if p x then Cons x xs else xs

As we saw in Section 2.3, the functions sum, append , and concat are also instances of foldL.

4.3 Unfolds on lists

The ‘unfold’ operator for a datatype grows a data structure from a value. In a precise technical sense, it is
the dual of the ‘fold’ operator. That duality is not so evident in the implementation for lists below, but it
will become clearer with the datatype-generic version we present in Section 4.11.

unfoldL :: (b → Bool)→ (b → a)→ (b → b)→ b → List a
unfoldL p f g x = if p x then Nil else Cons (f x) (unfoldL p f g (g x))

The unfold operates on a seed x ; if that seed satisfies p, the empty list is returned, and if not, a non-empty list
is constructed, with head f x and tail generated recursively by unfolding an updated seed g x . For example,
here are two instances. The function preds returns the list of predecessors of a (presumed non-negative)
integer; the function takeWhile takes a predicate p and a list xs, and returns the longest initial segment of xs
all of whose elements satisfy p.

8

preds :: Integer → List Integer
preds = unfoldL (0 ≡) id pred where

pred n = n − 1

takeWhile :: (a → Bool)→ List a → List a
takeWhile p = unfoldL (firstNot p) head tail where

firstNot p Nil = True
firstNot p (Cons x xs) = not (p x)

4.4 Origami for binary trees

We might go through a similar exercise for a datatype of internally labelled binary trees.

data Tree a = Empty | Node a (Tree a) (Tree a)

The ‘map’ operator applies a given function to every element of a tree.

mapT :: (a → b)→ Tree a → Tree b
mapT f Empty = Empty
mapT f (Node x xs ys) = Node (f x) (mapT f xs) (mapT f ys)

The ‘fold’ operator collapses a tree down to a value.

foldT :: b → (a → b → b → b)→ Tree a → b
foldT e f Empty = e
foldT e f (Node x xs ys) = f x (foldT e f xs) (foldT e f ys)

For example, the function inorder collapses a tree down to a list.

inorder :: Tree a → List a
inorder = foldT Nil glue

glue x xs ys = append xs (Cons x ys)

The ‘unfold’ operator grows a tree from a value.

unfoldT :: (b→Bool)→ (b→a)→ (b→b)→ (b→b)→ b → Tree a
unfoldT p f g h x = if p x then Empty

else Node (f x) (unfoldT p f g h (g x)) (unfoldT p f g h (h x))

For example, the Calkin–Wilf tree, the first few levels of which are illustrated in Figure 2, contains each of
the positive rationals exactly once [1, 31]:

cwTree :: Tree Rational
cwTree = unfoldT (const False) frac left right (1, 1) where

frac (m, n) = m/n
left (m, n) = (m, m + n)
right (m, n) = (n + m, n)

(Here, const a is the function that always returns a.)

4.5 Aside: ad-hoc polymorphism

For another example of an unfold to trees, consider the function grow that generates a binary search tree
from a list of elements whose type supports an ordering.

grow :: Ord a ⇒ List a → Tree a
grow = unfoldT isNil head littles bigs

9

1/1

1/2
2/1

1/3
3/2

2/3
3/1

1/4
4/3

3/5
5/2

2/5
5/3

3/4
4/1

Figure 2: The first few levels of the Calkin–Wilf tree

littles (Cons x xs) = filterL (6 x) xs
bigs (Cons x xs) = filterL (not · (6 x)) xs

The ‘Ord a ⇒’ is a Haskell type class context, expressing a kind of ad-hoc polymorphism: the function grow
is defined only for those element types a that support an ordering. Element ordering is ad hoc in the sense
that the 6 operator (and hence also grow) is not defined for all element types a; moreover, for those types
on which 6 is defined, it may be defined in quite different ways. In contrast, a parametrically polymorphic
type, such as the type Tree a → List a of the function inorder in Section 4.4, is defined for all element
types a; moreover, it is defined ‘in the same way’ for all types, so that there is a parametricity property
stating coherence between the different instances [77]. A similar effect can be achieved using OO generic
classes [58]. (In fact, Haskell’s type classes provide an alternative to ad-hoc polymorphism that does not
involve sacrificing parametricity: the dictionary-passing translation [34] allows programs depending on a type
constraint such as ordering still to be defined parametrically, by extracting the necessary operations from a
supplied dictionary; the coherence property of the whole program becomes conditional a similar coherence
property for the operations on which it depends.) The type class Ord might be defined in Haskell as follows:

class Ord a where
(6) :: a → a → Bool

(In fact, the definition in the standard library is more complex than this; but this will serve for illustration.)
Various types are instance of the type class, by virtue of supporting a comparison operation:

instance Ord Integer where
(m 6 n) = isNonNegative (n −m)

We explain the type class mechanism here, because we will use it again later.

4.6 Hylomorphisms

An unfold followed by a fold is a common pattern of computation [52]; the unfold generates a data structure,
and the fold immediately consumes it. For example, here is a (higher-order, polymorphic, but list-specific)
hylomorphism operator for lists, and an instance for computing factorials: first generate the predecessors of
the input using an unfold, then compute the product of these predecessors using a fold.

hyloL :: (b → Bool)→ (b → a)→ (b → b)→ c → (a → c → c)→ b → c
hyloL p f g e h = foldL e h · unfoldL p f g

fact :: Integer → Integer
fact = hyloL (0 ≡) id pred 1 (∗)

With lazy evaluation, the intermediate data structure (the list of predecessors, for fact) is not computed all
at once. It is produced on demand, and each demanded cell consumed immediately. In fact, the intermediary
can be deforested altogether—the following equation serves as an equivalent definition of hyloL.

hyloL :: (b → Bool)→ (b → a)→ (b → b)→ c → (a → c → c)→ b → c
hyloL p f g e h x = if p x then e else h (f x) (hyloL p f g e h (g x))

10

A similar definition can be given for binary trees:

hyloT :: (b → Bool)→ (b → a)→ (b → b)→ (b → b)→ c → (a → c → c → c)→ b → c
hyloT p f g1 g2 e h x = if p x then e

else h (f x) (hyloT p f g1 g2 e h (g1 x))
(hyloT p f g1 g2 e h (g2 x))

together with an instance giving a kind of quicksort—albeit not a very quick one, since it is not in-place, it
has a space leak, and it takes quadratic time:

qsort :: Ord a ⇒ List a → List a
qsort = hyloT isNil head littles bigs Nil glue

4.7 Short-cut fusion

Unfolds capture a highly structured pattern of computation for generating recursive data structures. There
exist slight generalizations of unfolds, such as monadic unfolds [63, 64], apomorphisms [75] and futumorphisms
[73], but these still all conform to the same structural scheme, and not all programs that generate data
structures fit this scheme [29]. Gill et al. [33] introduced an operator they called build for unstructured
generation of data, in order to simplify the implementation and broaden the applicability of deforestation
optimizations as discussed in Section 4.6.

The idea behind build is to allow the identification of precisely where in a program the nodes of a data
structure are being generated; then it is straightforward for a compiler to fuse a following fold, inlining
functions to replace those constructors and deforesting the data structure altogether. The definition of build
is reminiscent of the continuation-passing style [15] beloved of LISP and Scheme programmers; it takes as
argument a program with ‘holes’ for constructors, and plugs those holes with actual constructors.

buildL :: (∀b. b → (a → b → b)→ b)→ List a
buildL g = g Nil Cons

The function buildL has a rank-two type; the argument g must be parametrically polymorphic in the con-
structor arguments, in order to ensure that all uses of the constructors are abstracted. We argued above
that unfoldL is a dual to foldL in one sense; we will make that sense clear in Section 4.11. In another sense,
buildL is foldL’s dual: whereas the fold deletes constructors and replaces them with something else, the build
inserts those constructors.

The beauty of the idea is that fusion with a following fold is simple to state:

foldL e f (buildL g) = g e f

Perhaps more importantly, this fusion rule is also easy for a compiler to exploit [33].
Build operators are strictly more expressive than unfolds. For instance, it is possible to define unfoldL

in terms of buildL:

unfoldL :: (b → Bool)→ (b → a)→ (b → b)→ b → List a
unfoldL p f g b = buildL (h b) where

h b n c = if p b then n else c (f b) (h (g b) n c)

However, some functions that generate lists can be expressed as an instance of buildL and not of unfoldL;
one such example is the function that computes the infinite list of multiples of an integer [29]:

mults :: Int → List Int
mults n = buildL (next n 0) where

next :: Int → Int → b → (Int → b → b)→ b
next i j n c = c j (next i (i + j) n c)

11

The disadvantage of buildL compared to unfoldL is a consequence of its unstructured approach: the former
does not support the powerful universal properties that greatly simplify program calculation with the latter
[22].

Of course, there is nothing special about lists in this regard. One can define build operators for any
datatype—here is one for trees:

buildT :: (∀b. b → (a → b → b → b)→ b)→ Tree a
buildT g = g Empty Node

4.8 Datatype genericity

As we have already seen, data structure determines program structure. It therefore makes sense to abstract
from the determining shape, leaving only what they have in common. We do this by defining a datatype
Fix , parametrized both by an element type a of basic kind (a plain type, such as integers or strings), and
by a shape type s of higher kind (a type constructor, such as ‘pairs of’ or ‘lists of’).

data Fix s a = In (s a (Fix s a))

out :: Fix s a → s a (Fix s a)
out (In x) = x

Equivalently, we could use a record type with a single named field, and define both the constructor In and
the destructor out at once.

data Fix s a = In{out :: s a (Fix s a)}

4.9 Specific datatypes

The parameter s determines the shape; ‘Fix ’ ties the recursive knot. Here are three instances of Fix using
different shapes, for lists and for externally and internally labelled binary trees.

data ListF a b = NilF | ConsF a b
type List a = Fix ListF a

data BtreeF a b = TipF a | BinF b b
type Btree a = Fix BtreeF a

data TreeF a b = EmptyF | NodeF a b b
type Tree a = Fix TreeF a

Note that Fix s a is a recursive type. Typically, as in the three instances above, the shape s has several
variants, including a ‘base case’ independent of its second argument. But with lazy evaluation, infinite
structures are possible, and so the definition makes sense even with no such base case. For example, here is
a type of infinite internally-labelled binary trees (which would suffice for the cwTree example in Section 4.4):

data ITreeF a b = INodeF a b b
type Fix ITreeF a

4.10 Bifunctors

Not all binary type constructors s are suitable for Fix ing; for example, function types with the parameter
appearing in contravariant (source) positions cause problems. It turns out that we should restrict attention
to (covariant) bifunctors, which support a bimap operation ‘locating’ all the elements. We capture this
constraint as a type class.

class Bifunctor s where
bimap :: (a → c)→ (b → d)→ s a b → s c d

12

(For ‘locating the elements’ in an s-structure, one might initially might think of an operation that returns
two collections of ‘pointers’, one for each of the two kinds of element. Instead of pointers, we take a higher-
order approach: the operation bimap accepts an s-structure and two functions, one for each kind of element,
and returns a new s-structure in which each element has been subjected to the appropriate function. That
is, instead of producing elements, bimap consumes element-consumers.) Technically speaking, bimap should
satisfy some properties:

bimap id id = id
bimap f g · bimap h j = bimap (f · h) (g · j)

—properties which cannot be formally stated in Haskell, but which we might expect to be able to express
in the languages of tomorrow [12, 71]. Datatype-genericity is thus a kind of constrained type-constructor
polymorphism.

All datatypes made from sum and product constructors induce bifunctors. Here are instances for our
three example shapes.

instance Bifunctor ListF where
bimap f g NilF = NilF
bimap f g (ConsF x y) = ConsF (f x) (g y)

instance Bifunctor BtreeF where
bimap f g (TipF x) = TipF (f x)
bimap f g (BinF y z) = BinF (g y) (g z)

instance Bifunctor TreeF where
bimap f g EmptyF = EmptyF
bimap f g (NodeF x y z) = NodeF (f x) (g y) (g z)

The type signature of the operator bimap is datatype-generic, since it is parameterized by the shape s of the
data:

bimap :: Bifunctor s ⇒ (a → c)→ (b → d)→ s a b → s c d

However, because bimap is encoded as a member function of a type class, the definitions for particular shapes
are examples of ad-hoc rather than parametric datatype genericity; each instance entails a proof obligation
that the appropriate laws are satisfied.

It is a bit tedious to have to provide a new instance of Bifunctor for each new datatype shape; one would
of course prefer a single datatype-generic definition. This is the kind of feature for which research languages
like Generic Haskell [37] are designed, and one can almost achieve the same effect in Haskell [11, 59, 36]. One
might hope that these instance definitions could in fact be inferred, in the languages of tomorrow [38]. But
whatever the implementation mechanism, the result will still be ad-hoc datatype-generic: it is necessarily
the case that different code is used to locate the elements within data of different shapes.

4.11 Datatype-generic recursion patterns

The datatype-specific recursion patterns introduced above can be made generic in the shape s, provided that
this is a bifunctor.

map :: Bifunctor s ⇒ (a → b)→ Fix s a → Fix s b
map f = In · bimap f (map f) · out

fold :: Bifunctor s ⇒ (s a b → b)→ Fix s a → b
fold f = f · bimap id (fold f) · out

unfold :: Bifunctor s ⇒ (b → s a b)→ b → Fix s a
unfold f = In · bimap id (unfold f) · f
hylo :: Bifunctor s ⇒ (b → s a b)→ (s a c → c)→ b → c
hylo f g = g · bimap id (hylo f g) · f

13

children

Leaf

+operation():void

Component

+operation():void
+add(g:Component):void
+remove(g:Component):void
+getChild(i:int):Component

Composite

+operation():void
+add(g:Component):void
+remove(g:Component):void
+getChild(i:int):Component

void operation() {
foreach g in children {
g.operation();

}
}

0..*

Figure 3: The class structure of the Composite pattern

build :: Bifunctor s ⇒ (∀b. (s a b → b)→ b)→ Fix s a
build f = f In

The datatype-generic definitions are surprisingly short—shorter even than the datatype-specific ones. The
structure becomes much clearer with the higher level of abstraction. In particular, the duality between fold
and unfold is evident from the code: compositions are reversed, and Ins and outs exchanged. .

For more about origami programming, see [22, 23].

5 Origami patterns

In this section we describe Origami, a little suite of patterns for recursive data structures, consisting of four
of the Gang of Four design patterns [20]:

• Composite, for modelling recursive structures;
• Iterator, for linear access to the elements of a composite;
• Visitor, for structured traversal of a composite; and
• Builder, to generate a composite structure.

These four patterns belong together. They all revolve around the notion of a hierarchical structure,
represented as a Composite. One way of constructing such hierarchies is captured by the Builder pattern:
a client application knows what kinds of part to add and in what order, but it delegates to a separate object
knowledge of the implementation of the parts and responsibility for creating and holding them. Having
constructed a hierarchy, there are two kinds of traversal we might perform over it: either considering it as a
container of elements, in which case we use an Iterator for a linear traversal; or considering its shape as
significant, in which case we use a Visitor for a structured traversal.

5.1 Composite

The Composite pattern ‘lets clients treat individual objects and compositions of objects uniformly’, by
‘composing objects into tree structures’ [20]. The crux of the pattern is a common supertype (class Composite
in Figure 3), of which both atomic (class Leaf) and aggregated (class Composite) objects are subtypes.

5.2 Iterator

The Iterator pattern ‘provides a way to access the elements of an aggregate object sequentially without
exposing its underlying representation’ [20]. It does this by separating the responsibilities of containment

14

<<instantiate>>

1

ConcreteIterator

Aggregate

+createIterator():Iterator

Iterator

+first():void
+next():void
+isDone():boolean
+current():Item

return new ConcreteIterator(this);

ConcreteAggregate

+createIterator():Iterator

Figure 4: The class structure of the External Iterator pattern

<<create>>

1

ConcreteIterator

Aggregate

+createIterator():Iterator

Iterator

+iterate(Action):void

ConcreteAggregate

+createIterator():Iterator

Action

+apply(Object):Object

ConcreteAction

+apply(Object):Object

Figure 5: The class structure of the Internal Iterator pattern

15

Element

+accept(v:Visitor):void

ElementA ElementB

ObjectStructure

void accept (Visitor v) {
v.visitElementB(this);

}

+accept(v:Visitor):void
+operationA():void

+accept(v:Visitor):void
+operationB():void

void accept (Visitor v) {
v.visitElementA(this);
foreach b in bs
 b.accept(v);

}

bs

Visitor

Figure 6: The class structure of the elements in the Internal Visitor pattern

Visitor

+visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void

Visitor1

+visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void

Visitor2

+visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void

Element

Figure 7: The class structure of the visitors in the Internal Visitor pattern

(class Aggregate in Figure 4) and iteration (class Iterator). The standard implementation is as an external
or client-driven iterator, illustrated in Figure 4 and as embodied for example in the Java standard library.

In addition to the standard implementation, GOF also discuss internal or iterator-driven Iterators,
illustrated in Figure 5. These might be modelled in Java by the following pair of interfaces:

public interface Action {Object apply (Object o);}
public interface Iterator {void iterate (Action a);}

An object implementing the Action interface provides a single method apply , which takes in a collection
element and returns (either a new, or the same but modified) element. (The C++ STL calls such objects
‘functors’, but we avoid that term here to prevent name clashes with type functors.) A collection (implements
a Factory Method to return a separate subobject that) implements the Iterator interface to accept an
Action, apply it to each element in turn, and replace the original elements with the possibly new ones
returned. Internal Iterators are less flexible than external—for example, it is more difficult to have two
linked iterations over the same collection, and to terminate an iteration early—but they are correspondingly
simpler to use.

5.3 Visitor

In the normal object-oriented paradigm, the definition of each traversal operation is spread across the whole
class hierarchy of the structure being traversed—typically but not necessarily a Composite. This makes it

16

Element

+accept(v:Visitor):void

ElementA ElementB

ObjectStructure

void accept (Visitor v) {
v.visitElementB(this);

}

+accept(v:Visitor):void
+operationA():void

+accept(v:Visitor):void
+operationB():void

void accept (Visitor v) {
v.visitElementA(this);

}

bs

Visitor

Figure 8: The class structure of the elements in the External Visitor pattern

Visitor

+visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void

Visitor1

+visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void

Visitor2

+visitElementA(e:ElementA):void
+visitElementB(e:ElementB):void

void visitElementA(ElementA a) {
 a.operationA();
 foreach b in a.bs { b.accept(v); }
}
void visitElementB(ElementB b) {
 b.operationB();
}

void visitElementA(ElementA a) {
 foreach b in a.bs { b.accept(v); }
 a.operationA();
}
void visitElementB(ElementB b) {
 b.operationB();
}

Element

Figure 9: The class structure of the visitors in the External Visitor pattern

easy to add new variants of the datatype (for example, new kinds of leaf node in the Composite), but hard
to add new traversal operations.

The Visitor pattern ‘represents an operation to be performed on the elements of an object structure’,
allowing one to ‘define a new operation without changing the classes of the elements on which it operates’
[20]. This is achieved by providing a hook for associating new traversals (method accept in Figure 6), and
an interface for those traversals to implement (interface Visitor in Figure 7). The effect is to simulate
double dispatch on the types of two arguments, the element type and the operation, by two consecutive
single dispatches. It is a kind of aspect-oriented programming [46], modularizing what would otherwise be
a cross-cutting concern. It reverses the costs: it is now easy to add new traversals, but hard to add new
variants. (Wadler [80] has coined the term expression problem for this tension between dimensions of easy
extension.)

As with the distinction between internal and external iterators, there is a choice about where to put
responsibility for managing a traversal. Buchlovsky and Thielecke [9] use the term ‘Internal Visitor’ for
the usual presentation, with the accept methods of Element subclasses making recursive calls as shown in
Figure 6. Moving that responsibility from the accept methods of the Element classes to the visit methods

17

1

Product

Builder

+addPart():void

ConcreteBuilder

+addPart():void
+getProduct():Product

Director

Figure 10: The class structure of the Builder pattern

of the Visitor classes, as shown in Figures 8 and 9, yields what they call an External Visitor. Now
the traversal algorithm is not fixed, and different visitors may vary it (for example, between preorder and
postorder). One might say that this latter variation encapsulates simple case analysis or pattern matching,
rather than traversals per se.

5.4 Builder

Finally, the Builder pattern ‘separates the construction of a complex object from its representation, so that
the same construction process can create different representations’ [20]. As Figure 10 shows, this is done by
delegating responsibility for the construction to a separate object—in fact, a Strategy for performing the
construction.

The GOF motivating example of the Builder pattern involves assembling a product that is basically
a simple collection; that is necessarily the case, because the operations supported by a builder object take
just a part and return no result. However, GOF also suggest the possibility of building a more structured
product, in which the parts are linked together. For example, to construct a tree, each operation to add
a part could return a unique identifier for the part added, and take an optional identifier for the parent
to which to add it; a directed acyclic graph requires a set of parents for each node, and construction in
topological order; a cyclic graph requires the possibility of ‘forward references’, adding parts as children of
yet-to-be-added parents.

GOF also suggest the possibility of Builders that compute. Instead of constructing a large Product and
eventually collapsing it, one can provide a separate implementation of the Builder interface that makes the
Product itself the collapsed result, computing it on the fly while building.

5.5 An example

As an example of applying the Origami patterns, consider the little document system illustrated in Figure 11.
(The complete code is given in an appendix, for reference.)

• The focus of the application is a Composite structure of documents: Sections have a title and a
collection of sub-Components, and Paragraphs have a body .

• One can iterate over such a structure using an Internal Iterator, which acts on every Paragraph.
For instance, iterating with a SpellCorrector might correct the spelling of every paragraph body. (For
brevity, we have omitted the possibility of acting on the Sections of a document, but it would be easy
to extend the Action interface to allow this. We have also simplified the pattern from the presentation
in Section 5.2, making the apply method return void , and so providing no way to change the identity
of the document elements; more generally, apply could optionally return new elements.)

18

PrintVisitor

Visitor

+visit(Section):void
+visit(Paragraph):void

Builder

PrintBuilderComponentBuilder

+addSection(int):int
+addParagraph(int):int
+getProduct():Component

+addSection(int):int
+addParagraph(int):int

+addSection(int):int
+addParagraph(int):int
+getProduct():String[]

Action

+apply(Paragraph):void

SpellCorrector

+apply(Paragraph):void
0..*

Component

Paragraph

+body:String

Section

+accept(v:Visitor):void
+getIterator():Iterator
+add(Component):void

+title:String

Iterator

+iterate(action):void

ParagraphIterator SectionIterator

+iterate(Action):void +iterate(Action):void+accept(v:Visitor):void
+getIterator():Iterator

+accept(v:Visitor):void
+getIterator():Iterator

<<create>>

<<create>>

+getResult():String[]

Figure 11: An application of the Origami patterns

19

• One can also traverse the document structure with a Visitor, for example to compute some summary
of the document. For instance, a PrintVisitor might yield a string array with the section titles and
paragraph bodies in order.

• Finally, one can construct such a document using a Builder. We have used the structured variant,
adding Sections and Paragraphs as children of existing Components via unique integer identifiers.
A ComponentBuilder constructs a Component as expected, whereas a PrintBuilder incorporates the
printing behaviour of the PrintVisitor incrementally, actually constructing a string array instead.

This one application is a paradigmatic example of each of the four Origami patterns. We therefore
claim that any alternative representation of the patterns cleanly capturing this application structure is a
faithful rendition of (at least the code parts of) those patterns. In Section 6 below, we provide just such a
representation, in terms of the higher-order datatype-generic programs from Section 4. Section 6.5 justifies
our claim of a faithful rendition by capturing the structure of the document application in this alternative
representation.

6 Patterns as HODGPs

We now revisit the Origami patterns from Section 5, showing that each of the four patterns can be captured
as a higher-order datatype-generic program (HODGP). However, we consider them in a slightly different
order; it turns out that the datatype-generic representation of the Iterator pattern builds on that of
Visitor.

6.1 Composite in HODGP

Composites are recursive data structures; in the OO setting, they are packaged together with some opera-
tions, but in a functional setting the operations are represented separately. So actually, these correspond not
to programs, but to types. Recursive data structures come essentially for free in functional programming
languages.

data Fix s a = In{out :: s a (Fix s a)}

What is datatype-generic about this definition is that it is parametrized by the shape s of the data structure;
thus, one recursive datatype serves to capture all (regular) recursive data structures, whatever their shape.

6.2 Visitor in HODGP

The Visitor pattern collects fragments of each traversal into one place, and provides a hook for perform-
ing such traversals. The resulting style matches the normal functional programming paradigm, in which
traversals are entirely separate from the data structures traversed. No explicit hook is needed; the connec-
tion between traversal and data is made within the traversal by dispatching on the data, either by pattern
matching or (equivalently) by applying a destructor. What was a double dispatch in the OO setting becomes
in HODGP the choice of a function to apply, followed by a case analysis on the variant of the data structure.
A common case of such traversals, albeit not the most general, is the fold operator introduced above.

fold :: Bifunctor s ⇒ (s a b → b)→ Fix s a → b
fold f = f · bimap id (fold f) · out

This too is datatype-generic, parametrized by the shape s: the same function fold suffices to traverse any
shape of Composite structure.

For a detailed study of an implementation of the Visitor pattern that is generic both in the datatype
and along various ‘strategy’ dimensions such as between internal and external control, see [61].

20

6.3 Iterator in HODGP

External Iterators give sequential access to the elements of collection. The functional approach would
be to provide a view of the collection as a list of elements, at least for read-only access. Seen this way, the
Iterator pattern can be implemented using the Visitor pattern, traversing using a body combiner that
combines the element lists from substructures into one overall element list.

contents :: Bifunctor s ⇒ (s a (List a)→ List a)→ Fix s a → List a
contents combiner = fold combiner

With lazy evaluation, the list of elements can be generated incrementally on demand, rather than eagerly in
advance: ‘lazy evaluation means that lists and iterators over lists are identified’ [81].

In the formulation above, the combiner argument has to be provided to the contents operation. Passing
different combiners allows the same Composite to yield its elements in different orders; for example, a
tree-shaped container could support both preorder and postorder traversal. On the other hand, it is clumsy
always to have to specify the combiner . One could specify it once and for all, in the class Bifunctor , in effect
making it another datatype-generic operation parametrized by the shape s. In the languages of tomorrow,
one might expect that at least one, obvious implementation of combiner could be inferred automatically.

Of course, some aspects of external Iterators can already be expressed linguistically; the interface
java.util .Iterator has been available for years in the Java API, the iterator concept has been explicit in the
C++ Standard Template Library for even longer, and recent versions of Java and C# even provide language
support (the foreach statement in C#) for iterating over the elements yielded by such an operator. Thus,
element consumers can be written datatype-generically today. But still, one has to implement the Iterator
anew for each datatype defined; element producers are still datatype-specific.

An internal Iterator is basically a map operation, iterating over a collection and yielding another
collection of the same shape but with different or modified elements; it therefore supports write access to
the collection as well as read access. In HODGP, we can give a single generic definition of this.

map :: Bifunctor s ⇒ (a → b)→ Fix s a → Fix s b
map f = In · bimap f (map f) · out

This is in contrast with the object-oriented approach, in which Iterator implementations are datatype-
specific. Note also that the HODGP version is more general than the OO version, because the elements in
the return collection may be of a different type.

Although the internal Iterator explains both read and write access to a collection, it does not explain
imperative access, with impure aspects such as side-effects, I/O and so on. Moreover, it does not subsume
the HODGP external Iterator, because it does not allow accumulation of some measure of the elements
(for example, to compute the size of the collection in passing). Recent work on idiomatic traversals [51, 32]
overcomes both of these shortcomings: idiomatic traversals support imperative features and mapping and
accumulating aspects simultaneously, using idioms or applicative functors, a slight generalization of monads
[79]. One small extra piece of ad-hockery is required: a mechanism for pulling an idiomatic effect out of the
shape of a data structure.

class Bifunctor s ⇒ Bitraversable s where
bidist :: Idiom m ⇒ s (m a) (m b)→ m (s a b)

Given this tool, a datatype-generic traverse operator turns out to be an instance of fold :

instance Bitraversable s ⇒ Traversable (Fix s) where
traverse f = fold (fmap In · bidist · bimap f id)

Applications of traverse include maps, accumulations and imperative iterations over collections [32].

6.4 Builder in HODGP

The standard protocol for the Builder pattern involves a Director sending Parts one by one to a Builder
for it to assemble, and then retrieving from the Builder a Product . Thus, the product is assembled in a

21

step-by-step fashion, but is unavailable until assembly is complete. With lazy evaluation, we can in some
circumstances construct the Product incrementally: we can yield access to the root of the product structure
while continuing to assemble its substructures. In the case that the data structure is assembled in a regular
fashion, this corresponds in the HODGP style to an unfold operation.

unfold :: Bifunctor s ⇒ (b → s a b)→ b → Fix s a
unfold f = In · bimap id (unfold f) · f

When the data structure is assembled irregularly, a build operator has to be used instead.

build :: Bifunctor s ⇒ (∀b. (s a b → b)→ b)→ Fix s a
build f = f In

These are both datatype-generic programs, parametrized by the shape of product to be built. In contrast,
the GOF Builder pattern states the general scheme, but requires code specific for each Builder interface
and each ConcreteBuilder implementation.

Turning to GOF’s computing builders, with lazy evaluation there is not so pressing a need to fuse
building with postprocessing. If the structure of the consumer computation matches that of the producer—
in particular, if the consumer is a fold and the producer a build or an unfold—then consumption can be
interleaved with production, and the whole product never need be in existence at once.

Nevertheless, naive interleaving of production and consumption of parts of the product still involves the
creation and immediate disposal of those parts. Even the individual parts need never be constructed; often,
they can be deforested [78], with the attributes of a part being fed straight into the consumption process.
When the producer is an unfold, the composition of producer and consumer is (under certain mild strictness
conditions [52]) a hylomorphism.

hylo :: Bifunctor s ⇒ (b → s a b)→ (s a c → c)→ b → c
hylo f g = g · bimap id (hylo f g) · f

More generally, but less conveniently for reasoning, the producer is a build, and the composition simply
replaces the constructors in the builder by the body of the fold.

foldBuild :: Bifunctor s ⇒ (∀b. (s a b → b)→ b)→ (s a b → b)→ b
foldBuild f g = f g

Once again, both definitions are datatype-generic; both take as arguments a producer f and a consumer g ,
both with types parametrized by the shape s of the product to be built. Note especially that in both cases,
the fusion requires no creativity; in contrast, GOF’s computing builders can take considerable insight and
ingenuity to program (as we shall see in the appendix).

6.5 The example, revisited

To justify our claim that the higher-order datatype-generic representation of the Origami patterns is a
faithful rendition, we use it to re-express the document application discussed in Section 5.5 and illustrated
in Figure 11. (It is instructive to compare these 40-odd lines of Haskell code with the equivalent Java code
in the appendix.)

• The Composite structure has the following shape.

data DocF a b = Para a | Sec String [b]
type Doc = Fix DocF String

instance Bifunctor DocF where
bimap f g (Para s) = Para (f s)
bimap f g (Sec s xs) = Sec s (map g xs)

We have chosen to consider paragraph bodies as the ‘contents’ of the data structure, but section titles
as part of the ‘shape’; that decision could be varied.

22

• We used an Internal Iterator to implement the SpellCorrector ; this would be modelled now as an
instance of map.

correct :: String → String -- definition omitted

corrector :: Doc → Doc
corrector = map correct

• The use of Visitor to print the contents of a document is a paradigmatic instance of a fold .

printDoc :: Doc → [String]
printDoc = fold combine

combine :: DocF String [String]→ [String]
combine (Para s) = [s]
combine (Sec s xs) = s : concat xs

• Finally, in place of the Builder pattern, we can use unfold for constructing documents, at least when
doing so in a structured fashion. For example, consider the following simple representation of XML
trees.

data XML = Text String | Entity Tag Attrs [XML]
type Tag = String
type Attrs = [(String , String)]

From such an XML tree we can construct a document, with Text elements as paragraphs and Entitys
as sections with appropriate titles.

fromXML :: XML→ Doc
fromXML = unfold step

step :: XML→ DocF String XML
step (Text s) = Para s
step (Entity t kvs xs) = Sec (title t kvs) xs

title :: Tag → Attrs → String
title t [] = t
title t kvs = t ++ paren (join (map attr kvs)) where

join [s] = s
join (s : ss) = s ++ ", " ++ join ss
attr (k , v) = k ++ "=’" ++ v ++ "’"
paren s = " (" ++ s ++ ")"

Printing of a document constructed from an XML tree is the composition of a fold with an unfold, and
so a hylomorphism:

printXML :: XML→ [String]
printXML = hylo step combine

• For constructing documents in a less structured fashion, we have to resort to the more general and
more complicated build operator. For example, here is a builder for a simple document of one section
with two sub-paragraphs.

buildDoc :: (DocF String b → b)→ b
buildDoc f = f (Sec "Heading" [f (Para "p1"), f (Para "p2")])

23

We can actually construct the document from this builder, simply by passing it to the operator build ,
which plugs the holes with document constructors.

myDoc :: Doc
myDoc = build buildDoc

If we want to traverse the resulting document, for example to print it, we can do so directly without
having to construct the document in the first place; we do so by plugging the holes instead with the
body of the printDoc fold.

printMyDoc :: [String]
printMyDoc = buildDoc combine

7 Discussion

We have shown that two advanced language features—higher-order functions and datatype genericity—suffice
(in the presence of other standard features such as datatypes and interfaces) to capture as reusable code a
number of the familiar GOF design patterns; specifically, the patterns we have considered are Composite,
Iterator, Visitor and Builder, which together we call the Origami patterns. We also believe that these
or equivalent features are necessary for this purpose, since the design patterns are parametrized by actions
and by the shape of datatypes.

Our intentions in doing this work are not so much to criticize the existing informal presentations of these
four and other patterns; indeed, as we explain below, the informal presentations contribute much useful
information beyond the code. Rather, we aim to promote the uptake of higher-order and datatype-generic
techniques, and to encourage their incorporation in mainstream programming languages. In this regard,
we are following in the footsteps of Norvig [56], who wrote that 16 of the 23 GOF patterns are ‘invisible
or simple’ in Lisp, and others who argue that design patterns amount to admissions of inexpressiveness in
programming languages. However, in contrast to Norvig and the others favouring dynamic languages [69],
our presentation provides genericity while preserving strong static typing.

We do not claim to have captured all 23 of the GOF patterns, or for that matter any deuterocanonical
ones either. In particular, we do not see yet how to capture creational design patterns as higher-order
datatype-generic programs. This is perhaps because our approach is to model object-oriented ideas in a
functional framework, and that framework has no direct analogue of object creation. However, we hope
and expect that the languages of tomorrow will provide higher-order datatype-generic features in a more
traditional framework, and then we may be able to make better progress. Indeed, Alexandrescu’s type
list implementation of a Generic Abstract Factory [2] is essentially a datatype-generic metaprogram
written using C++ templates.

We also appreciate that there is much more to design patterns than their extensional characteristics, which
can be expressed as class and sequence diagrams and captured as programs or programming constructs. Also
important are their intensional characteristics: motivation for their use, paradigmatic examples, trade-offs
in their application, and other aspects of the ‘story’ behind the pattern. Our presentation impinges only on
the limited extensional aspects of those patterns we treat; the intensional characteristics are not amenable
to ‘implementation’.

8 Related work

This paper is based on ideas from the Algebra of Programming (‘Squiggol’) community, and especially the
work of Backhouse and Malcolm [50, 5], Bird and de Moor [7, 8], Fokkinga, Meijer and Paterson [19, 52],
Jeuring and Hinze [41, 35, 37], and Hughes [40]. For their inspiration, I am indebted. For further details on
the datatype-generic style presented here, see [22, 23] and the above references.

Jay has an alternative approach to datatype-generic programming, which he calls shape polymorphism
[43, 44]. He and Palsberg have also done some work on a generic representation of the Visitor pattern [62],
but this relies heavily on reflection rather than his work on shape.

24

For other recent discussions of the meeting between functional and object-oriented views of genericity,
see [17, 21].

9 Conclusions

Design patterns are traditionally expressed informally, using prose, pictures and prototypes. We have argued
that, given the right language features, certain patterns at least could be expressed more usefully as reusable
library code. The language features required, in addition to those provided by mainstream languages,
are higher-order functions and datatype genericity ; for some aspects, lazy evaluation also turns out to be
helpful. These features are familiar in the world of functional programming; we hope to see them soon in
more mainstream programming languages.

10 Acknowledgements

This paper elaborates on arguments developed in a course presented while the author was a Visiting Er-
skine Fellow at the University of Canterbury in New Zealand in 2005, and explored further at tutorials at
ECOOP [24] and OOPSLA [25]. The contribution of participants at those venues and at less formal presen-
tations of the same ideas is gratefully acknowledged, as is that of several anonymous referees (and one brave
soul who signed his review). An earlier version appeared as a workshop paper [26], and some of the material
was also incorporated into lecture notes from a Spring School [27]. The work was carried out as part of the
EPSRC-funded Datatype-Generic Programming project at Oxford and Nottingham; we thank members of
the project for advice and encouragement, and especially Bruno Oliveira for his significant contribution.

References

[1] M. Aigner and G. M. Ziegler. Proofs from The Book. Springer-Verlag, third edition, 2004.

[2] A. Alexandrescu. Modern C++ Design. Addison-Wesley, 2001.

[3] R. Backhouse and T. Sheard, editors. Proceedings of the Workshop on Generic Programming. Unpub-
lished, Marstrand, Sweden, June 1998. http://www.cs.uu.nl/people/johanj/wgp98.html.

[4] R. C. Backhouse and B. A. Carré. Regular algebra applied to path-finding problems. Journal of the
Institute of Mathematics and Applications, 15:161–186, 1975.

[5] R. C. Backhouse, P. Jansson, J. Jeuring, and L. G. L. T. Meertens. Generic programming: An introduc-
tion. In Advanced Functional Programming, volume 1608 of Lecture Notes in Computer Science, pages
28–115, 1998.

[6] R. Bird. Introduction to Functional Programming Using Haskell. Prentice-Hall, 1998.

[7] R. Bird and O. de Moor. The Algebra of Programming. Prentice-Hall, 1996.

[8] R. Bird, O. de Moor, and P. Hoogendijk. Generic functional programming with types and relations.
Journal of Functional Programming, 6(1):1–28, 1996.

[9] P. Buchlovsky and H. Thielecke. A type-theoretic reconstruction of the Visitor pattern. Electronic
Notes in Theoretical Computer Science, 155, 2005. 21st Conference on Mathematical Foundations of
Programming Semantics.

[10] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism. ACM Comput.
Surv., 17(4):471–522, Dec. 1985.

[11] J. Cheney and R. Hinze. A lightweight implementation of generics and dynamics. In Haskell Workshop,
pages 90–104, 2002.

25

[12] K. Claessen and J. Hughes. Specification-based testing with QuickCheck. In J. Gibbons and O. de Moor,
editors, The Fun of Programming, pages 17–40. Palgrave, 2003.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1990.

[14] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools and Applications. Addison-
Wesley, 2000.

[15] O. Danvy and A. Filinski. Representing control: A study of the CPS transformation. Mathematical
Structures in Computer Science, 2(4):361–391, 1992.

[16] J. C. Dehnert and A. Stepanov. Fundamentals of generic programming. In M. Jazayeri, R. Loos, and
D. Musser, editors, Report of the Dagstuhl Seminar on Generic Programming, volume 1766 of Lecture
Notes in Computer Science, pages 1–11. Springer-Verlag, Heidelberg, Germany, 2000.

[17] G. Dos Reis and J. Järvi. What is generic programming? In Library-Centric Software Design, 2005.

[18] J. Edmonds. Matroids and the Greedy Algorithm. Mathematical Programming, 1:125–136, 1971.

[19] M. M. Fokkinga and E. Meijer. Program calculation properties of continuous algebras. Technical Report
CS-R9104, CWI, Amsterdam, Jan. 1991.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[21] R. Garcia, J. Järvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A comparative study of language support
for generic programming. In Object-Oriented Programming, Systems, Languages, and Applications, Oct.
2003.

[22] J. Gibbons. Calculating functional programs. In R. Backhouse, R. Crole, and J. Gibbons, editors,
Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, volume 2297 of Lecture
Notes in Computer Science, pages 148–203. Springer-Verlag, 2002.

[23] J. Gibbons. Origami programming. In J. Gibbons and O. de Moor, editors, The Fun of Programming,
pages 41–60. Palgrave, 2003.

[24] J. Gibbons. Design patterns as higher-order datatype-generic programs. http://2005.ecoop.org/8.
html, June 2005. Tutorial presented at ECOOP.

[25] J. Gibbons. Design patterns as higher-order datatype-generic programs. http://www.oopsla.org/
2005/ShowEvent.do?id=121, Oct. 2005. Tutorial presented at OOPSLA.

[26] J. Gibbons. Design patterns as higher-order datatype-generic programs. In R. Hinze, editor, Workshop
on Generic Programming, Sept. 2006.

[27] J. Gibbons. Datatype-generic programming. In Spring School on Datatype-Generic Programming,
volume 4719 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

[28] J. Gibbons, R. Backhouse, B. Oliveira, and F. Reig. Datatype-generic programming project. http:
//web.comlab.ox.ac.uk/oucl/research/pdt/ap/dgp/, Oct. 2003.

[29] J. Gibbons, G. Hutton, and T. Altenkirch. When is a function a fold or an unfold? Electronic Notes
in Theoretical Computer Science, 44(1), Apr. 2001. Proceedings of Coalgebraic Methods in Computer
Science.

[30] J. Gibbons and G. Jones. The under-appreciated unfold. In Proceedings of the Third ACM SIGPLAN
International Conference on Functional Programming, pages 273–279, Baltimore, Maryland, Sept. 1998.

[31] J. Gibbons, D. Lester, and R. Bird. Enumerating the rationals. Journal of Functional Programming,
16(4), 2006.

26

[32] J. Gibbons and B. C. d. S. Oliveira. The essence of the Iterator pattern. Journal of Functional
Programming, 19(3-4):307–402, 2009.

[33] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation. In Functional Programming
Languages and Computer Architecture, 1993.

[34] C. Hall, K. Hammond, S. Peyton Jones, and P. Wadler. Type classes in Haskell. ACM Transactions on
Programming Languages and Systems, 18(2):19–138, 1996.

[35] R. Hinze. Polytypic values possess polykinded types. In R. C. Backhouse and J. N. Oliveira, editors,
Mathematics of Program Construction, volume 1837 of Lecture Notes in Computer Science, pages 2–27.
Springer, 2000.

[36] R. Hinze. Generics for the masses. Journal of Functional Programming, 16(4-5):451–483, 2006.

[37] R. Hinze and J. Jeuring. Generic Haskell: Practice and theory. In R. Backhouse and J. Gibbons, editors,
Summer School on Generic Programming, volume 2793 of Lecture Notes in Computer Science, pages
1–56. Springer-Verlag, 2003.

[38] R. Hinze and S. Peyton Jones. Derivable type classes. In G. Hutton, editor, Haskell Workshop, volume
41.1 of Electronic Notes in Theoretical Computer Science. Elsevier Science, Aug. 2000.

[39] C. A. R. Hoare. Notes on data structuring. In O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors,
Structured Programming, pages 83–174. Academic Press, 1972.

[40] J. Hughes. Why functional programming matters. Computer Journal, 32(2):98–107, Apr. 1989.

[41] P. Jansson and J. Jeuring. PolyP – a polytypic programming language extension. In Principles of
Programming Languages, pages 470–482, 1997.

[42] J. Järvi, M. Marcus, and J. N. Smith. Programming with C++ concepts. Science of Computer Pro-
gramming, 75(7):596–614, 2010.

[43] C. B. Jay. A semantics for shape. Science of Computer Programming, 25:251–283, 1995.

[44] C. B. Jay, G. Bellè, and E. Moggi. Functorial ML. Journal of Functional Programming, 8(6):573–619,
1998.

[45] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol. MIT Press, 1991.

[46] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In M. Akşit and S. Matsuoka, editors, European Conference on Object-Oriented
Programming, volume 1241 of Lecture Notes in Computer Science, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[47] B. Korte, L. Lovász, and R. Schrader. Greedoids. Springer-Verlag, 1991.

[48] B. Liskov. A history of CLU. In T. J. Bergin, Jr. and R. G. Gibson, Jr., editors, History of Programming
Languages—II, pages 471–510, 1996.

[49] A. Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, 2004.

[50] G. Malcolm. Data structures and program transformation. Science of Computer Programming, 14:255–
279, 1990.

[51] C. McBride and R. Paterson. Applicative programming with effects. Journal of Functional Programming,
18(1):1–13, 2008.

[52] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, envelopes
and barbed wire. In J. Hughes, editor, Functional Programming Languages and Computer Architecture,
volume 523 of Lecture Notes in Computer Science, pages 124–144. Springer-Verlag, 1991.

27

[53] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML. MIT Press, revised
edition, 1997.

[54] MITRE Corp. Ada Reference Manual. ISO, 2000. IEC 8652.

[55] D. R. Musser and A. A. Stepanov. The Ada Generic Library linear list processing packages. Springer-
Verlag New York, Inc., New York, NY, USA, 1989.

[56] P. Norvig. Design patterns in dynamic programming. In Object World, Boston, MA, May 1996. Tutorial
slides at http://norvig.com/design-patterns/.

[57] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima, 2008.

[58] B. Oliveira, A. Moors, and M. Odersky. Type classes as objects and implicits. In OOPSLA, pages
341–360, 2010.

[59] B. C. d. S. Oliveira and J. Gibbons. TypeCase: A design pattern for type-indexed functions. In
D. Leijen, editor, Haskell Workshop, 2005.

[60] B. C. d. S. Oliveira and J. Gibbons. Scala for generic programmers. Journal of Functional Programming,
20(3,4):303–352, 2010.

[61] B. C. d. S. Oliveira, M. Wang, and J. Gibbons. The Visitor pattern as a reusable, generic, type-safe
component. In OOPSLA, Oct. 2008.

[62] J. Palsberg and C. B. Jay. The essence of the Visitor pattern. In 22nd Annual International Computer
Software and Applications Conference, pages 9–15, Vienna, Austria, August 1998.

[63] A. Pardo. Fusion of recursive programs with computation effects. Theoretical Comput. Sci., 260:165–207,
2001.

[64] A. Pardo. Combining datatypes and effects. In Advanced Functional Programming, volume 3622 of
Lecture Notes in Computer Science. Springer-Verlag, 2005.

[65] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, second edition, 1996.

[66] S. Peyton Jones. The Haskell 98 Language and Libraries: The Revised Report. Cambridge University
Press, 2003.

[67] F. Ruehr. Analytical and Structural Polymorphism Expressed Using Patterns over Types. PhD thesis,
University of Michigan, 1992.

[68] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library. Addison-Wesley, 2002.

[69] G. T. Sullivan. Advanced programming language features for executable design patterns: Better patterns
through reflection. Artificial Intelligence Laboratory Memo AIM-2002-005, Artificial Intelligence Lab,
MIT, Mar. 2002.

[70] W. Taha. A gentle introduction to multi-stage programming. In C. Lengauer, D. Batory, C. Consel, and
M. Odersky, editors, Domain-Specific Program Generation, number 3016 in Lecture Notes in Computer
Science, pages 30–50. Springer-Verlag, 2004.

[71] The Programatica Team. Programatica tools for certifiable, auditable development of high-assurance
systems in Haskell. In High Confidence Software and Systems Conference. National Security Agency,
April 2003.

[72] E. Unruh. Prime number computation. Technical Report X3J16-94-0075/ISO WG21-462, ANSI, 1994.

[73] T. Uustalu and V. Vene. Primitive (co)recursion and course-of-value (co)iteration, categorically. Infor-
matica, 10(1):5–26, 1999.

28

[74] T. Veldhuizen. Active Libraries and Universal Languages. PhD thesis, Computer Science, Indiana
University, 2004.

[75] V. Vene and T. Uustalu. Functional programming with apomorphisms (corecursion). Proceedings of the
Estonian Academy of Sciences: Physics, Mathematics, 47(3):147–161, 1998. 9th Nordic Workshop on
Programming Theory.

[76] D. Vytiniotis, G. Washburn, and S. Weirich. An open and shut typecase. In International Conference
on Functional Programming, 2004.

[77] P. Wadler. Theorems for free! In Functional Programming and Computer Architecture, 1989.

[78] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer Science,
73:231–248, 1990.

[79] P. Wadler. Monads for functional programming. In M. Broy, editor, Program Design Calculi: Proceedings
of the Marktoberdorf Summer School, 1992.

[80] P. Wadler. The expression problem. Posting to java-genericity mailing list, 12th Nov 1998.

[81] P. Wadler. How to solve the reuse problem? Functional programming. In Internal Conference on
Software Reuse, pages 371–372. IEEE, 1998.

11 Appendix: Java programs

Section 6.5 provides a nearly complete implementation of the document application in a higher-order
datatype-generic style; all that is missing is a definition for the spelling corrector correct . In contrast,
Section 5.5 and Figure 11 present only the outline of a Java implementation of the same application. For
completeness, this appendix presents the Java code. (Note that we have used Java generics throughout, in
order to avoid type casts. Nevertheless, we wish to emphasize that the datatype-genericity discussed in this
paper is a different kind of genericity to that provided in Java or C# generics.)

11.1 Components

The Component interface forms the root of the Composite hierarchy.

public interface Component {
void accept (Visitor v) ;
Iterator getIterator () ;
}

The class Section plays the Composite role in the Composite pattern—a section has a Vector of child
Components, and is itself a Component .

import java.util .Vector ;
import java.util .Enumeration ;

public class Section implements Component {
protected Vector〈Component〉 children ;
protected String title ;
public Section (String title) {

children = new Vector〈Component〉 () ;
this.title = title ;

}
public String getTitle () {

return title ;
}

29

public void addComponent (Component c) {
children.addElement (c) ;

}
public Enumeration〈Component〉 getChildren () {

return children.elements () ;
}
public Iterator getIterator () {

return new SectionIterator (this) ;
}
public void accept (Visitor v) {

v .visitSection (this) ;
}
}

The class Paragraph plays the Leaf role in the Composite pattern—a paragraph has a body, which is
a String , and no children.

public class Paragraph implements Component {
protected String body ;
public Paragraph (String body) {

setBody (body) ;
}
public void setBody (String s) {

body = s ;
}
public String getBody () {

return body ;
}
public Iterator getIterator () {

return new ParagraphIterator (this) ;
}
public void accept (Visitor v) {

v .visitParagraph (this) ;
}
}

11.2 Iterators

The Iterator interface provides Internal Iterator behaviour over a document.

public interface Iterator {
void iterate (Action a) ;
}

As discussed in Section 5.5, we have chosen to model the Actions of the Internal Iterator as applying
only to the paragraphs in a document, not the sections; that could be changed. Also, Action.apply returns
void for simplicity: an action can update the state of a paragraph, but it cannot change the identity of that
paragraph, nor delete it.

public interface Action {
void apply (Paragraph p) ;
}

The natural implementation of an Iterator for Sections is to iterate over the child components of that
section.

30

import java.util .Enumeration ;

public class SectionIterator implements Iterator {
protected Section s ;
public SectionIterator (Section s) {

this.s = s ;
}
public void iterate (Action a) {

for (Enumeration〈Component〉 e = s.getChildren () ; e.hasMoreElements ();) {
e.nextElement ().getIterator ().iterate (a) ;

}
}
}

The Iterator for a Paragraph applies the Action provided to the paragraph.

public class ParagraphIterator implements Iterator {
protected Paragraph p ;
public ParagraphIterator (Paragraph p) {

this.p = p ;
}
public void iterate (Action a) {

a.apply (p) ;
}
}

For example, correcting the spelling of each paragraph body could be implemented using the Internal
Iterator pattern.

public class SpellCorrector implements Action {
public void apply (Paragraph p) {

p.setBody (correct (p.getBody ())) ;
}
public String correct (String s) {

return s.toLowerCase () ;
}
}

(For simplicity, we have provided only a dummy implementation of spelling correction; a real implementation
would be beyond the scope of this example.)

11.3 Visitors

The Visitor pattern represents traversals over the composite structure—in this case, a Visitor provides
methods to visit a Paragraph and a Section.

public interface Visitor {
void visitParagraph (Paragraph p) ;
void visitSection (Section s) ;
}

(As with our instantiation of the Internal Iterator pattern, we have restricted attention to visitors that
operate by means of side-effects, rather than directly returning a result; there are alternative designs.)

For example, a PrintVisitor implements the Visitor interface to assemble a string array, with one string
for each section title and for each paragraph body, all indented appropriately to reflect the hierarchical
structure.

31

import java.util .Enumeration ;
import java.util .Vector ;

public class PrintVisitor implements Visitor {
protected String indent = "" ;
protected Vector〈String〉 lines = new Vector〈String〉 () ;

public String [] getResult () {
String [] ss = new String [0] ;
ss = lines.toArray (ss) ;
return ss ;

}
public void visitParagraph (Paragraph p) {

lines.addElement (indent + p.getBody ()) ;
}
public void visitSection (Section s) {

String currentIndent = indent ;
lines.addElement (indent + s.getTitle ()) ;
for (Enumeration〈Component〉 e = s.getChildren () ; e.hasMoreElements ();) {

indent = currentIndent + " " ;
e.nextElement ().accept (this) ;

}
indent = currentIndent ;

}
}

11.4 Builders

The Builder interface represents the structured variant of the Builder pattern, in which each part is added
as a child of an existing part in the product being assembled. The addPart methods each return a part
identifier (an integer), to be used to identify the parent of a subsequent part. The process is intended to be
initialized by specifying a negative number as the ‘parent’ of the first part to be added, which will then form
the root of the document hierarchy.

public interface Builder {
int addParagraph (String body , int parent) throws InvalidBuilderId ;
int addSection (String title, int parent) throws InvalidBuilderId ;
}

Here is a simple Exception class for when things go wrong—for example, when attempting to create a
second root, when passing in an unrecognized parent identifier, or when attempting to add a child to a
Paragraph node.

public class InvalidBuilderId extends Exception {
public InvalidBuilderId (String reason) {

super (reason) ;
}
}

The class ComponentBuilder provides the most obvious implementation of the Builder interface; its
getProduct method yields a Component as the final product. The assembly process makes use of a HashMap
from node identifiers to document components.

import java.util .AbstractMap ;
import java.util .HashMap ;

32

public class ComponentBuilder implements Builder {
protected int nextId = 0 ;
protected AbstractMap〈Integer , Component〉 cs = new HashMap〈Integer , Component〉 () ;
public int addParagraph (String body , int pId) throws InvalidBuilderId {

return addComponent (new Paragraph (body), pId) ;
}
public int addSection (String title, int pId) throws InvalidBuilderId {

return addComponent (new Section (title), pId) ;
}
public Component getProduct () {

return cs.get (0) ;
}
protected int addComponent (Component c, int pId) throws InvalidBuilderId {

if (pId < 0) { // root component
if (cs.isEmpty ()) {

cs.put (nextId , c) ;
return nextId++ ;
}
else

throw new InvalidBuilderId ("Duplicate root") ;
} else { // non-root

Component parent = (Component) cs.get (pId) ;
if (parent == null) {

throw new InvalidBuilderId ("Non-existent parent") ;
} else {

if (parent instanceof Paragraph) {
throw new InvalidBuilderId ("Adding child to paragraph") ;

} else {
Section s = (Section) parent ;
s.addComponent (c) ;
cs.put (nextId , c) ;
return nextId++ ;

}
}

}
}
}

The PrintBuilder implementation of the Builder interface is the only class with a non-obvious imple-
mentation. It constructs on the fly the printed representation (a String []) of a Component . In order to do
so, it needs to retain some of the tree structure. This is done by maintaining, for each Component stored,
the unique identifier of its right-most child (or its own identifier, if it has no children). This is stored in the
last field of the corresponding Record in the vector records. This vector itself is stored in the order the lines
will be returned, that is, a preorder traversal. When adding a new Component , it should be placed after the
rightmost descendent of its immediate parent, and this is located by following the path of last references.
Note that devising this implementation requires considerable insight and ingenuity; in contrast, the HODGP
Computing Builder discussed in Section 6.4 arises completely mechanically.

import java.util .Vector ;

public class PrintBuilder implements Builder {
protected class Record {

public int id ;
public int last ;
public String line ;

33

public String indent ;
public Record (int id , int last , String line, String indent) {

this.id = id ;
this.last = last ;
this.line = line ;
this.indent = indent ;

}
}
protected Vector〈Record〉 records = new Vector〈Record〉 () ;
protected Record recordAt (int i) {

return records.elementAt (i) ;
}
protected int find (int id , int start) {

while (start < records.size () && recordAt (start).id != id)
start++ ;

if (start < records.size ())
return start ;

else
return− 1 ;

}
protected int nextId = 0 ;

protected SpellCorrector c = new SpellCorrector () ;

public int addParagraph (String body , int pid) throws InvalidBuilderId {
return addComponent (c.correct (body), pid) ;

}
public int addSection (String title, int pid) throws InvalidBuilderId {

return addComponent (title, pid) ;
}
public String [] getProduct () {

String [] ss = new String [records.size ()] ;
for (int i = 0 ; i < ss.length ; i++)

ss [i] = recordAt (i).indent + recordAt (i).line ;
return ss ;

}
protected int addComponent (String s, int pId) throws InvalidBuilderId {

if (pId < 0) { // root component
if (records.isEmpty ()) {

records.addElement (new Record (nextId , nextId , s, "")) ;
return nextId++ ;
}
else

throw new InvalidBuilderId ("Duplicate root") ;
} else { // non-root

int x = find (pId , 0) ;
Record r = recordAt (x) ;
String indent = r .indent ;
if (x == − 1) {

throw new InvalidBuilderId ("Non-existent parent") ;
} else {

int y = x ; // ids [x] = ids [y] = pid
while (r .id != r .last) {

y = x ;

34

x = find (r .last , x) ;
r = recordAt (x) ;

} // lasts [y] = lasts [x] = ids [x]
records.insertElementAt (new Record (nextId , nextId , s, indent + " "), x + 1) ;
recordAt (y).last = nextId ; // lasts [y] = lasts [x + 1] = nextId
return nextId++ ;
}

}
}
}

11.5 A program

Finally, here is a simple application, providing a main method. Depending on whether the argument on
the command line is "building" or "computing", the application either uses the ordinary (‘building’)
implementation of the Builder interface to construct a document, then prints it with a Visitor , or it uses
the computing implementation of the Builder to construct the printed representation directly—the output
is identical in either case.

public abstract class Main {
protected static void build (Builder b) {

try {
int rootId = b.addSection ("Doc",−1) ;
int sectId = b.addSection ("Sec 1", rootId) ;
int subsId = b.addSection ("Subsec 1.1", sectId) ;
int id = b.addParagraph ("Para 1.1.1", subsId) ;
id = b.addParagraph ("Para 1.1.2", subsId) ;
subsId = b.addSection ("Subsec 1.2", sectId) ;
id = b.addParagraph ("Para 1.2.1", subsId) ;
id = b.addParagraph ("Para 1.2.2", subsId) ;
sectId = b.addSection ("Sec 2", rootId) ;
subsId = b.addSection ("Subsec 2.1", sectId) ;
id = b.addParagraph ("Para 2.1.1", subsId) ;
id = b.addParagraph ("Para 2.1.2", subsId) ;
subsId = b.addSection ("Subsec 2.2", sectId) ;
id = b.addParagraph ("Para 2.2.1", subsId) ;
id = b.addParagraph ("Para 2.2.2", subsId) ;

} catch (InvalidBuilderId e) {
System.out .println ("Exception: " + e) ;

}
}
protected static void usage () {

System.err .println ("java Main {building|computing}") ;
}
public static void main (String [] args) {

String [] lines = new String [0] ;
if (args == null ∨ args.length != 1) {

usage () ; System.exit (1) ;
}
if (args [0].equals ("building")) { // build then compute

ComponentBuilder b = new ComponentBuilder () ;
build (b) ;
Component root = b.getProduct () ;

35

root .getIterator ().iterate (new SpellCorrector ()) ;
PrintVisitor pv = new PrintVisitor () ;
root .accept (pv) ;
lines = pv .getResult () ;

} else if (args [0].equals ("computing")) { // computing builder
PrintBuilder b = new PrintBuilder () ;
build (b) ;
lines = b.getProduct () ;

} else {
usage () ; System.exit (1) ;

}
for (int i = 0 ; i < lines.length ; i++)

System.out .println (lines [i]) ;
}
}

36

