
The Essence of the Iterator Pattern
Jeremy Gibbons and Bruno C. d. S. Oliveira

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

{jg,bruno}@comlab.ox.ac.uk

Abstract

The ITERATOR pattern gives a clean interface for element-by-element access to a
collection. Imperative iterations using the pattern have two simultaneous aspects:
mapping and accumulating . Various existing functional iterations model one or other
of these, but not both simultaneously. We argue that McBride and Paterson’s idioms ,
and in particular the corresponding traverse operator, do exactly this, and therefore
capture the essence of the I TERATOR pattern. We present some axioms for traversal,
and illustrate with a simple example, the repmin problem.

Keywords: Iterator, traversal, design pattern, map, fold, monad, idiom.

1. INTRODUCTION

Perhaps the most familiar of the so-called Gang of Four design patterns [5] is the ITERATOR

pattern, which ‘provides a way to access the elements of an aggregate object sequentially without
exposing its underlying representation’. This is achieved by identifying an ITERATOR interface (for
example, presenting operations to initialize an iteration, to access the current element, to advance
to the next element, and to test for completion), that collection objects are expected to implement
— perhaps indirectly, via a subobject. (The Iterator interface has uses beyond the ITERATOR

pattern — for example, for generators — but those uses are not our concern in this paper.)

Just such an interface has been included in the Java and the C# libraries since their inception. C#
has some syntactic sugar (matched in Java in version 1.5) to avoid the need to write the boilerplate
code to manage an iteration over collection elements; we show an example below. This makes
code cleaner and simpler, but gives privileged status to the specific iteration interface chosen, and
entangles the language and its libraries. Recently (in Java 1.5 and C# 2.0), both languages also
introduced generics, giving a kind of parametric polymorphism.

The code below shows a C# method loop that iterates over a collection, counting the elements
but simultaneously interacting with each of them.

public static int loop〈MyObj〉 (IEnumerable〈MyObj〉 coll){
int n = 0;
foreach (MyObj obj in coll){

n = n + 1;
obj .touch ();
}
return n;
}

The method is parametrized by the type MyObj of collection elements; this parameter is
used twice, to constrain the collection coll passed as a parameter, and as a type for the
local variable obj . The collection itself is rather unconstrained; it only has to implement the
IEnumerable〈MyObj〉 interface.

In this paper, we investigate the structure of such iterations over collection elements. We
emphasize that we want to capture both aspects of the method loop and iterations like it: mapping
over the elements, and simultaneously accumulating some measure of those elements. Moreover,

Mathematically-Structured Functional Programming 1

The Essence of the ITERATOR Pattern

we aim to do so holistically, treating the iteration as an abstraction in its own right; this leads us
naturally to a higher-order presentation. Finally, we want to develop an algebra of such iterations,
with combinators for composing them and laws for reasoning about them; this leads us towards
a functional approach. We argue that McBride and Paterson’s idioms [20], and in particular the
corresponding traverse operator, have exactly the right properties.

The rest of this paper is structured as follows. Section 2 reviews a variety of earlier approaches to
capturing the essence of such iterations functionally. Section 3 presents McBride and Paterson’s
notions of idioms and traversals. Our present contribution starts in Section 4, with a more detailed
look at traversals. In Section 5 we propose a collection of laws of traversal, and in Section 6 we
illustrate the use of some of these laws in the context of a simple example, the repmin problem.

2. FUNCTIONAL ITERATION

In this section, we review a number of earlier approaches to capturing the essence of iteration.
In particular, we look at a variety of datatype-generic recursion operators: maps, folds, unfolds,
crushes, and monadic maps. The traversals we discuss in Section 4 generalize all of these.

2.1. Origami

In the origami style of programming [6, 7], the structure of programs is captured by higher-order
recursion operators such as map, fold and unfold . These can be made datatype-generic [8],
parametrized by the shape of the underlying datatype, as shown below.

class Bifunctor s where
bimap :: (a→ b)→ (c → d)→ s a c → s b d

data Fix s a = In{out :: s a (Fix s a)}
map :: Bifunctor s ⇒ (a→ b)→ Fix s a→ Fix s b
map f = In ◦ bimap f (map f) ◦ out

fold :: Bifunctor s ⇒ (s a b → b)→ Fix s a→ b
fold f = f ◦ bimap id (fold f) ◦ out

unfold :: Bifunctor s ⇒ (b → s a b)→ b → Fix s a
unfold f = In ◦ bimap id (unfold f) ◦ f

For a suitable binary type constructor s, the recursive datatype Fix s a is the fixpoint in
the second argument of s for a given type a in the first argument; the constructor In and
destructor out witness the implied isomorphism. The type class Bifunctor captures those binary
type constructors appropriate for determining the shapes of datatypes: the ones with a bimap
operator that essentially locates elements of each of the two type parameters, satisfying the laws

bimap id id = id {- identity -}
bimap (f ◦ h) (g ◦ k) = bimap f g ◦ bimap h k {- composition -}

The recursion pattern map captures iterations that modify each element of a collection
independently; thus, map touch captures the mapping aspect of the C# loop above, but not the
accumulating aspect.

At first glance, it might seem that the datatype-generic fold captures the accumulating aspect;
but the analogy is rather less clear for a non-linear collection. In contrast to the C# program
above, which is sufficiently generic to apply to non-linear collections, a datatype-generic counting
operation defined using fold would need a datatype-generic numeric algebra as the fold body.
Such a thing could be defined polytypically [12, 10], but the fact remains that fold in isolation does
not encapsulate the datatype genericity.

Essential to iteration in the sense we are using the term is linear access to collection elements;
this was the problem with fold . One might consider a datatype-generic operation to yield a linear
sequence of collection elements from possibly non-linear structures, for example by unfold ing to

Mathematically-Structured Functional Programming 2

The Essence of the ITERATOR Pattern

a list. This could be done (though as with the fold problem, it requires additionally a datatype-
generic sequence coalgebra as the unfold body); but even then, this would address only the
accumulating aspect of the C# iteration, and not the mapping aspect — it loses the shape of the
original structure. Moreover, the sequence of elements is not always definable as an unfold [9].

We might also explore the possibility of combining some of these approaches. For example, it
is clear from the definitions above that map is an instance of fold . Moreover, the banana split
theorem [4] states that two folds in parallel on the same data structure can be fused into one.
Therefore, a map and a fold in parallel fuse to a single fold, yielding both a new collection and
an accumulated measure, and might therefore be considered to capture both aspects of the
C# iteration. However, we feel that this is an unsatisfactory solution: it may indeed simulate or
implement the same behaviour, but it is no longer manifest that the shape of the resulting collection
is related to that of the original.

2.2. Crush

Meertens [21] generalized APL’s ‘reduce’ to a crush operation, 〈〈⊕〉〉 :: t a→ a for binary operator
(⊕) :: a → a → a with a unit, polytypically over the structure of a regular functor t . For example,
〈〈+〉〉 polytypically sums a collection of numbers. For projections, composition, sum and fixpoint,
there is an obvious thing to do, so the only ingredients that need to be provided are the binary
operator (for products) and a constant (for units). Crush captures the accumulating aspect of the
C# iteration above, accumulating elements independently of the shape of the data structure, but
not the mapping aspect.

2.3. Monadic map

Haskell’s standard prelude defines a monadic map for lists, which lifts the standard map on lists
to the Kleisli category:

mapM :: Monad m⇒ (a→ m b)→ ([a]→ m [b])

Fokkinga [3] showed how to generalize this from lists to an arbitrary regular functor, polytypically.
Several authors [23, 25, 13, 26, 18] have observed that monadic map is a promising model of
iteration. Monadic maps are very close to the idiomatic traversals that we propose as the essence
of imperative iterations; indeed, for monadic idioms, traversal reduces exactly to monadic map.
However, we argue that monadic maps do not capture accumulating iterations as nicely as they
might. Moreover, it is well-known [16, 17] that monads do not compose in general, whereas idioms
do; this will give us a richer algebra of traversals. Finally, monadic maps stumble over products,
for which there are two reasonable but symmetric definitions, coinciding when the monad is
commutative. This stumbling block forces either a bias to left or right, or a restricted focus on
commutative monads, or an additional complicating parametrization; in contrast, idioms generally
have no such problem, and in fact turn it into a virtue.

Closely related to monadic maps are operations like Haskell’s sequence function

sequence :: Monad m⇒ [m a]→ m [a]

and its polytypic generalization to arbitrary datatypes. Indeed, sequence and mapM are
interdefinable:

mapM f = sequence ◦map f

Most writers on monadic maps have investigated such an operation; Moggi et al. [25] call it
passive traversal, Meertens [22] calls it functor pulling, and Pardo [26] and others have called
it a distributive law. McBride and Paterson introduce the function dist playing the same role, but
as we shall see, more generally.

Mathematically-Structured Functional Programming 3

The Essence of the ITERATOR Pattern

3. IDIOMS

McBride and Paterson [20] recently introduced the notion of an idiom or applicative functor as a
generalization of monads. (‘Idiom’ was the name McBride originally chose, but he and Paterson
now favour the less evocative term ‘applicative functor’. We prefer the original term, not least
because it lends itself nicely to adjectival uses, as in ‘idiomatic traversal’.) Monads [24, 29]
allow the expression of effectful computations within a purely functional language, but they do
so by encouraging an imperative [27] programming style; in fact, Haskell’s monadic do notation
is explicitly designed to give an imperative feel. Since idioms generalize monads, they provide
the same access to effectful computations; but they encourage a more applicative programming
style, and so fit better within the functional programming milieu. Moreover, as we shall see, idioms
strictly generalize monads; they provide features beyond those of monads. This will be important
to us in capturing a wider variety of iterations, and in providing a richer algebra of those iterations.

Idioms are captured in Haskell by the following type class. (In contrast to McBride and Paterson,
but without loss of generality, we make make Idiom a subclass of Functor .)

class Functor m⇒ Idiom m where
pure :: a→ m a
(~) :: m (a→ b)→ m a→ m b

Informally, pure lifts ordinary values into the idiomatic world, and ~ provides an idiomatic flavour
of function application. We make the convention that ~ associates to the left, just like ordinary
function application.

In addition to those of the Functor class, idioms are expected to satisfy the following laws.

pure id ~ u = u {- identity -}
pure (◦) ~ u ~ v ~ w = u ~ (v ~ w) {- composition -}
pure f ~ pure x = pure (f x) {- homomorphism -}
u ~ pure x = pure (λf → f x) ~ u {- interchange -}

These two collections of laws are together sufficient to allow any expression built from the idiom
operators to be rewritten into a canonical form, consisting of a pure function applied to a series of
idiomatic arguments: pure f ~u1 ~ ...~un. (In case the reader feels the need for some intuition for
these laws, we refer them forwards to the stream Naperian idiom discussed in Section 3.2 below.)

3.1. Monadic idioms

Idioms generalize monads; every monad induces an idiom, with the following operations.

instance Monad m⇒ Idiom m where
pure a = do {return a}
mf ~ mx = do {f ← mf ; x ← mx ; return (f x)}

(Taken literally as a Haskell declaration, this code yields overlapping instances; consider it
therefore as a statement of intent instead.) The pure operator for a monadic idiom is just the
return of the monad; idiomatic application ~ is monadic application, here with the effects of the
function preceding those of the argument. There is another, completely symmetric, definition, with
the effects of the argument before those of the function (see Section 4.3). We leave the reader to
verify that the monad laws entail the idiom laws.

One of McBride and Paterson’s motivating examples of an idiom arises from the environment
monad, for which pure and ~ turn out to be the K and S combinators, respectively.

newtype Env e a = Env{unEnv :: e→ a}

Mathematically-Structured Functional Programming 4

The Essence of the ITERATOR Pattern

3.2. Naperian idioms

The ‘bind’ operation of a monad allows the result of one computation to affect the choice and
ordering of effects of subsequent operations. Idioms in general provide no such possibility; indeed,
as we have seen, every expression built just from the idiom combinators is equivalent to a pure
function applied to a series of idiomatic arguments, and so the sequencing of any effects is fixed.
This is reminiscent of Jay’s shapely operations [15], which separate statically-analysable shape
from dynamically-determined contents. Static shape suggests another class of idioms, exemplified
by the stream functor.

data Stream a = SCons a (Stream a)
instance Idiom Stream where

pure a = srepeat a
mf ~ mx = szipWith ($) mf mx

srepeat :: a→ Stream a
srepeat x = xs where xs = SCons x xs

szipWith :: (a→ b → c)→ Stream a→ Stream b → Stream c
szipWith f (SCons x xs) (SCons y ys) = SCons (f x y) (szipWith f xs ys)

The pure operator lifts a value to a stream, with infinitely many copies of that value; idiomatic
application is a pointwise ‘zip with apply’, taking a stream of functions and a stream of arguments
to a stream of results. We find this idiom is the most accessible one for providing some intuition for
the idiom laws. Computations within the stream idiom tend to perform a transposition of results;
there appears to be some connection with what Kühne [19] calls the transfold operator.

A similar construction works for any fixed-shape datatype: pairs, vectors of length n, matrices
of fixed size, infinite binary trees, and so on. (Peter Hancock calls such a datatype Naperian,
because it supports a notion of logarithm. That is, datatype t is Naperian if t a ' ap ' p → a
for some type p of positions, called the logarithm log t of t . Then t 1 ' 1p ' 1, so the shape is
fixed, and familiar properties of logarithms arise — for example, log (t ◦ u) ' log t × log u.
Naperian functors turn out to be equivalent to environment monads, with the logarithm as
environment.) We therefore expect some further connection with data-parallel and numerically
intensive computation, in the style of Jay’s language FISh [14], but we leave the investigation of
that connection for future work.

3.3. Monoidal idioms

Idioms strictly generalize monads; there are idioms that do not arise from monads. A third family of
idioms, this time non-monadic, arises from constant functors with monoidal targets. McBride and
Paterson call these phantom idioms, because the resulting type is a phantom type (as opposed
to a container type of some kind). Any monoid (∅,⊕) induces an idiom, where the pure operator
yields the unit of the monoid and application uses the binary operator.

newtype K b a = K{unK :: b}
instance Monoid b ⇒ Idiom (K b) where

pure = K ∅
x ~ y = K (unK x ⊕ unK y)

Computations within this idiom accumulate some measure: for the monoid of integers with
addition, they count or sum; for the monoid of lists with concatenation, they collect some trace
of values; for the monoid of booleans with disjunction, they encapsulate linear searches; and so
on. (Note that sequences of one kind or another form idioms in three different ways: monadic, with
cartesian product; Naperian, with zip; monoidal, with concatenation.)

Mathematically-Structured Functional Programming 5

The Essence of the ITERATOR Pattern

3.4. Combining idioms

Like monads, idioms are closed under products; so two independent idiomatic effects can
generally be fused into one, their product.

data Prod m n a = Prod{pfst :: m a, psnd :: n a}
fork :: (a→ m b)→ (a→ n b)→ a→ Prod m n b
fork f g a = Prod (f a) (g a)
instance (Idiom m, Idiom n)⇒ Idiom (Prod m n) where

pure x = Prod (pure x) (pure x)
mf ~ mx = Prod (pfst mf ~ pfst mx) (psnd mf ~ psnd mx)

Unlike monads in general, idioms are also closed under composition; so two sequentially-
dependent idiomatic effects can generally be fused into one, their composition.

data Comp m n a = Comp{unComp :: m (n a)}
instance (Idiom m, Idiom n)⇒ Idiom (Comp m n) where

pure x = Comp (pure (pure x))
mf ~ mx = Comp (pure (~) ~ unComp mf ~ unComp mx)

We will see examples of both of these combinations in Section 4.1.

3.5. Idiomatic traversal

Two of the three motivating examples McBride and Paterson provide for idiomatic computations,
sequencing a list of monadic effects and transposing a matrix, are instances of a general scheme
they call traversal. This involves iterating over the elements of a data structure, in the style of a
‘map’, but interpreting certain function applications within the idiom.

traverseList :: Idiom m⇒ (a→ m b)→ [a]→ m [b]
traverseList f [] = pure []
traverseList f (x : xs) = pure (:) ~ f x ~ traverseList f xs

A special case is for the identity function, when traversal distributes the data structure over the
idiomatic structure:

distList :: Idiom m⇒ [m a]→ m [a]
distList = traverseList id

The ‘map within the idiom’ pattern of traversal for lists generalizes to any (finite) functorial data
structure, even non-regular ones. We capture this via a type class of Traversable data structures
(again, unlike McBride and Paterson, but without loss of generality, we subclass Functor):

class Functor t ⇒ Traversable t where
traverse :: Idiom m⇒ (a→ m b)→ t a→ m (t b)
dist :: Idiom m⇒ t (m a)→ m (t a)
traverse f = dist ◦ fmap f
dist = traverse id

Although traverse and dist are interdefinable (intuitively, dist is to traverse as monadic join µ is to
bind >>=), so only one needs to be given, defining traverse and inheriting dist is usually simpler
and more efficient than vice versa.

data Tree a = Leaf a | Bin (Tree a) (Tree a)
instance Traversable Tree where

traverse f (Leaf a) = pure Leaf ~ f a
traverse f (Bin t u) = pure Bin ~ traverse f t ~ traverse f u

Mathematically-Structured Functional Programming 6

The Essence of the ITERATOR Pattern

McBride and Paterson propose a special syntax involving ‘idiomatic brackets’, which would have
the effect of inserting the occurrences of pure and ~ implicitly; apart from these brackets, the
definition then looks exactly like a definition of fmap. This definition could be derived automatically
[11], or given polytypically once and for all, assuming some universal representation of datatypes
such as sums and products [10] or regular functors [7]:

class Bifunctor s ⇒ Bitraversable s where
bidist :: Idiom m⇒ s (m a) (m b)→ m (s a b)

instance Bitraversable s ⇒ Traversable (Fix s) where
traverse f = fold (fmap In ◦ bidist ◦ bimap f id)

When m is specialized to the identity idiom, traversal reduces to the functorial map over lists.

newtype Id a = Id{unId :: a}
instance Idiom Id where

pure a = Id a
mf ~ mx = Id ((unId mf) (unId mx))

In the case of a monadic idiom, traversal specializes to monadic map, and has the same uses. In
fact, traversal is really just a slight generalization of monadic map: generalizing in the sense that
it applies also to non-monadic idioms. We consider this an interesting insight, because it reveals
that monadic map does not require the full power of a monad; in particular, it does not require the
bind or join operators, which are unavailable in idioms in general.

For a Naperian idiom, traversal transposes results. For example, interpreted in the pair Naperian
idiom, traverseList id unzips a list of pairs into a pair of lists.

For a monoidal idiom, traversal accumulates values. For example, interpreted in the integer
monoidal idiom, traversal accumulates a sum of integer measures of the elements.

tsum :: (a→ Int)→ [a]→ Int
tsum f = unK ◦ traverseList (K ◦ f)

4. TRAVERSALS AS ITERATORS

In this section, we show some representative examples of ITERATORs over data structures, and
capture them using traverse.

4.1. Shape and contents

As well as being parametrically polymorphic in the collection elements, the generic traversal above
is parametrized along two further dimensions: the datatype being traversed, and the idiom in which
the traversal is interpreted. Specializing the latter to the lists-as-monoid idiom yields a generic
contents operation:

contents :: Traversable t ⇒ t a→ [a]
contents = unK ◦ traverse (K ◦ single)
single :: a→ [a]
single a = [a]

This contents operation is in turn the basis for many other generic operations, including non-
monoidal ones such as indexing; it yields one half of Jay’s decomposition of datatypes into
shape and contents [15]. The other half is obtained simply by a map, which is to say, a traversal
interpreted in the identity idiom:

shape :: Traversable t ⇒ t a→ t ()
shape = unId ◦ traverse (Id ◦ bang)

Mathematically-Structured Functional Programming 7

The Essence of the ITERATOR Pattern

bang :: a→ ()
bang = const ()

Of course, it is trivial to combine these two traversals to obtain both halves of the decomposition
as a single function, but doing this by tupling in the obvious way entails two traversals over the
data structure. Is it possible to fuse the two traversals into one? The product of idioms allows
exactly this, yielding the decomposition of a data structure into shape and contents in a single
pass:

decompose′ :: Traversable t ⇒ t a→ Prod Id (K [a]) (t ())
decompose′ = traverse (fork (Id ◦ bang) (K ◦ single))

It is then a simple matter of removing the tags for the product of idioms and the idioms themselves:

decompose :: Traversable t ⇒ t a→ (t (), [a])
decompose = getPair ◦ decompose′

getPair :: Prod Id (K b) a→ (a, b)
getPair xy = (unId (pfst xy), unK (psnd xy))

Jay [25] gives a similar decomposition, but using a customized combination of monads; we believe
the above approach is simpler.

A similar benefit can be found in the reassembly of a full data structure from separate shape and
contents. This is a stateful operation, where the state consists of the contents to be inserted;
but it is also a partial operation, because the number of elements provided may not agree with
the number of positions in the shape. We therefore make use of both the State monad and the
Maybe monad; but this time, we form their composition rather than their product. (As it happens,
the composition of the State and Maybe monads in this way forms another monad, but that is not
the case for monads in general.)

The central operation is the partial stateful function that strips the first element off the list of
contents, if this list is non-empty:

takeHead :: State [a] (Maybe a)
takeHead = do {xs ← get ; case xs of

[] → return Nothing
(y : ys)→ do {put ys; return (Just y)}}

This is a composite idiomatic value, using the composition of the two monadic idioms State [a]
and Maybe; traversal using this operation returns a stateful function for the whole data structure.

reassemble′ :: Traversable t ⇒ t ()→ State [a] (Maybe (t a))
reassemble′ = unComp ◦ traverse (λ()→ Comp takeHead)

Now it is simply a matter of running this stateful function, and checking that the contents are
entirely consumed.

reassemble :: Traversable t ⇒ (t (), [a])→ Maybe (t a)
reassemble (x , ys) = allGone (runState (reassemble′ x) ys)
allGone :: (Maybe (t a), [a])→ Maybe (t a)
allGone (mt , []) = mt
allGone (mt , (:)) = Nothing

4.2. Collection and dispersal

We have found it convenient to consider special cases of effectful traversals in which the mapping
aspect is independent of the accumulation, and vice versa.

Mathematically-Structured Functional Programming 8

The Essence of the ITERATOR Pattern

collect :: (Traversable t , Idiom m)⇒ (a→ m ())→ (a→ b)→ t a→ m (t b)
collect f g = traverse (λa→ pure (λ()→ g a) ~ f a)
disperse :: (Traversable t , Idiom m)⇒ m b → (a→ b → c)→ t a→ m (t c)
disperse mb g = traverse (λa→ pure (g a) ~ mb)

The first of these traversals accumulates elements effectfully, but modifies those elements purely
and independently of this accumulation. The C# iteration in Section 1 is an example, using the
idiom of the State monad to capture the counting:

loop :: Traversable t ⇒ (a→ b)→ t a→ State Int (t b)
loop touch = collect (λa→ do {n← get ; put (n + 1)}) touch

The second kind of traversal modifies elements purely but dependent on the state, evolving this
state independently of the elements. An example of this is a kind of converse of counting, labelling
every element with its position in order of traversal.

label :: Traversable t ⇒ t a→ State Int (t (a, Int))
label = disperse step (,)
step :: State Int Int
step = do {n← get ; put (n + 1); return n}

4.3. Backwards traversal

Unlike the case with pure maps, the order in which elements are visited in an effectful traversal
is significant; in particular, iterating through the elements backwards is observably different from
iterating forwards. We can capture this reversal quite elegantly as an idiom adapter :

newtype Backwards m a = Backwards{runBackwards :: m a}
instance Idiom m⇒ Idiom (Backwards m) where

pure = Backwards ◦ pure
f ~ x = Backwards (pure (flip ($)) ~ runBackwards x ~ runBackwards f)

Informally, Backwards m is an idiom if m is, but any effects happen in reverse; this provides the
symmetric ‘backwards’ embedding of monads into idioms referred to in Section 3.1.

Such an adapter can be parcelled up existentially:

data IAdapter m = ∀g. Idiom (g m)⇒ IAdapter (∀a. m a→ g m a) (∀a. g m a→ m a)
backwards :: Idiom m⇒ IAdapter m
backwards = IAdapter Backwards runBackwards

and used in a parametrized traversal, for example to label backwards:

ptraverse :: (Idiom m, Traversable t)⇒ IAdapter m→ (a→ m b)→ t a→ m (t b)
ptraverse (IAdapter wrap unwrap) f = unwrap ◦ traverse (wrap ◦ f)
lebal = ptraverse backwards (λa→ step)

Of course, there is a trivial forwards adapter too.

5. LAWS OF TRAVERSE

The traverse operator is ad-hoc datatype-generic: the type class Traversable determines its
signature, but one must provide a definition of dist or traverse independently for each datatype
that implements Traversable. In line with other instances of ad-hoc datatype-genericity such as
Functor and Monad , we should consider also what properties the definition ought to enjoy.

Mathematically-Structured Functional Programming 9

The Essence of the ITERATOR Pattern

5.1. Free theorems

The free theorem [28] arising from the type of dist is

dist ◦ fmap (fmap k) = fmap (fmap k) ◦ dist

As corollaries, we get the following two free theorems of traverse:

traverse (g ◦ h) = traverse g ◦ fmap h
traverse (fmap k ◦ f) = fmap (fmap k) ◦ traverse f

These laws are not constraints on the implementation of dist and traverse; they follow
automatically from their types.

5.2. Composition

We have seen that idioms compose: there is an identity idiom Id and, for any two idioms m and n,
a composite idiom Comp m n. We impose on implementations of dist the constraint of respecting
this compositional structure. Specifically, the distributor dist respects the identity idiom:

dist ◦ fmap Id = Id

and the composition of idioms:

dist ◦ fmap Comp = Comp ◦ fmap dist ◦ dist

As corollaries, we get analogous properties of traverse.

traverse (Id ◦ f) = Id ◦ fmap f
traverse (Comp ◦ fmap f ◦ g) = Comp ◦ fmap (traverse f) ◦ traverse g

Both of these consequences have interesting interpretations. The first says that traverse
interpreted in the identity idiom is essentially just fmap, as mentioned in Section 3.5. The second
provides a fusion rule for traversals, whereby two consecutive traversals can be fused into one.

5.3. Naturality

We also impose the constraint that the distributor dist is natural in the idiom, as follows. An
idiom transformation φ :: m a → n a from idiom m to idiom n is a polymorphic function (natural
transformation) that respects the idiom structure:

φ (purem a) = puren a
φ (mf ~m mx) = φ mf ~n φ mx

(Here, the idiom operators are subscripted by the idiom for clarity.)

Then dist must satisfy the following naturality property: for idiom transformation φ,

distn ◦ fmap φ = φ ◦ distm

One consequence of this naturality property is a ‘purity law’:

traverse pure = pure

This follows, as the reader may easily verify, from the observation that purem ◦ unId is an idiom
transformation from idiom Id to idiom m. This is an entirely reasonable property of traversal; one
might say that it imposes a constraint of shape preservation. (But there is more to it than shape
preservation: a traversal of pairs that flips the two halves necessarily ‘preserves shape’, but breaks
this law.) For example, consider the following definition of traverse on binary trees, in which the
two children are swapped on traversal:

Mathematically-Structured Functional Programming 10

The Essence of the ITERATOR Pattern

instance Traversable Tree where
traverse f (Leaf a) = pure Leaf ~ f a
traverse f (Bin t u) = pure Bin ~ traverse f u ~ traverse f t

With this definition, traverse pure = pure ◦ mirror , where mirror reverses a tree, and so the
purity law does not hold; this is because the corresponding definition of dist is not natural in
the idiom. Similarly, a definition with two copies of traverse f t and none of traverse f u makes
traverse pure purely return a tree in which every right child has been overwritten with its left
sibling. Both definitions are perfectly well-typed, but (according to our constraints) invalid.

On the other hand, the following definition, in which the traversals of the two children are swapped,
but the Bin operator is flipped to compensate, is blameless. The purity law still applies, and the
corresponding distributor is natural in the idiom; the effect of the reversal is that elements of the
tree are traversed ‘from right to left’.

instance Traversable Tree where
traverse f (Leaf a) = pure Leaf ~ f a
traverse f (Bin t u) = pure (flip Bin) ~ traverse f u ~ traverse f t

We consider this to be a reasonable, if rather odd, definition of traverse.

5.4. Composition of monadic traversals

Another consequence of naturality is a fusion law specific to monadic traversals. The natural form
of composition for monadic computations is called Kleisli composition:

(•) :: Monad m⇒ (b → m c)→ (a→ m b)→ (a→ m c)
(f • g) x = do {y ← g x ; z ← f y ; return z }

The monad m is commutative if, for all mx and my ,

do {x ← mx ; y ← my ; return (x , y)} = do {y ← my ; x ← mx ; return (x , y)}

When interpreted in the idiom of a commutative monad m, traversals with f :: b → m c and
g :: a→ m b fuse:

traverse f • traverse g = traverse (f • g)

This follows from the fact that µ ◦ unComp forms an idiom transformation from Comp m m to m,
for a commutative monad m with join operator µ.

This fusion law for the Kleisli composition of monadic traversals shows the benefits of the more
general idiomatic traversals quite nicely. Note that the corresponding more general fusion law for
idioms in Section 5.2 allows two different idioms rather than just one; moreover, there are no side
conditions concerning commutativity. The only advantage of the monadic law is that there is just
one level of monad on both sides of the equation; in contrast, the idiomatic law has two levels of
idiom, because there is no analogue of the µ operator of a monad for collapsing two levels to one.

We conjecture that the monadic traversal fusion law also holds even if m is not commutative,
provided that f and g themselves commute (f •g = g • f); but this no longer follows from naturality
of the distributor in any simple way, and it imposes the alternative constraint that the three types
a, b, c are equal.

5.5. No duplication

Another constraint we impose upon a definition of traverse is that it should visit each element
precisely once. For example, we consider this definition of traverse on lists to be bogus, because
it visits each element twice.

Mathematically-Structured Functional Programming 11

The Essence of the ITERATOR Pattern

instance Traversable [] where
traverse f [] = pure []
traverse f (x : xs) = pure (const (:)) ~ f x ~ f x ~ traverse f xs

Note that this definition satisfies the purity law above; but we would still like to rule it out.

This axiom is harder to formalize, and we do not yet have a nice theoretical treatment of it. One
way of proceeding is in terms of indexing. We require that the function labels returns an initial
segment of the natural numbers, where

labels :: Traversable t ⇒ t a→ [Int]
labels t = contents $ fmap snd $ fst $ runState (label t) 0

and label is as defined in Section 4.2. The bogus definition of traverse on lists given above is
betrayed by the fact that we get instead labels "abc" = [1, 1, 3, 3, 5, 5].

6. EXAMPLE

As a small example of fusion of traversals, we will consider the familiar repmin problem [2]. The
problem here is to take a binary tree of integers, compute the minimum element, then replace
every element of the tree by that minimum — but to do so in a single traversal rather than the
obvious two. Our point here is not the circularity for which the problem was originally introduced,
but simply an illustration of the two kinds of traversal (mapping and accumulating) and their fusion.

Flushed with our success at capturing different kinds of traversal idiomatically, we might try
computing the minimum in a monoidal idiom,

newtype Min a = Min{unMin :: a}
instance (Ord a, Bounded a)⇒ Monoid (Min a) where
∅ = Min maxBound
x ⊕ y = Min (unMin x ‘min‘ unMin y)

tmin1 :: (Ord a, Bounded a)⇒ a→ K (Min a) a
tmin1 = K ◦Min

and replacing in the idiom of the environment monad.

trep1 :: a→ Env b b
trep1 = λa→ Env id

These two combine elegantly (modulo the type isomorphisms):

trepmin1 :: (Ord a, Bounded a)⇒ Tree a→ Tree a
trepmin1 t = unEnv (traverse trep1 t) (unMin $ unK $ traverse tmin1 t)

However, the two traversals do not fuse: the first traversal computes the minimum and discards
the tree, which then needs to be reintroduced for the second traversal.

(Notice that this program is generic in the data structure traversed; the only constraint is that it
should be Traversable.

grepmin1 :: (Ord a, Bounded a, Traversable t)⇒ t a→ t a
grepmin1 t = unEnv (traverse trep1 t) (unMin $ unK $ traverse tmin1 t)

The same observation will apply to all versions of the program in this section; but to avoid carrying
the Traversable t context around, we will specialize to Tree.)

Apparently the traversal that computes the minimum ought to retain and return the tree as well;
this suggests using the idiom of the State monad. The state records the minimum element; the
first traversal updates this state, and the second traversal reads from it.

Mathematically-Structured Functional Programming 12

The Essence of the ITERATOR Pattern

tmin2 :: Ord a⇒ a→ State a a
tmin2 a = do {b ← get ; put (min a b); return a}
trep2 :: a→ State a a
trep2 a = get

Again, these compose.

trepmin2 :: (Ord a, Bounded a)⇒ Tree a→ Tree a
trepmin2 t = fst $ runState ((traverse trep2 • traverse tmin2) t) maxBound

But when we try to apply the fusion law for monadic traversals, we are forced to admit that the
State monad is the epitome of a non-commutative monad, and in particular that the two stateful
operations tmin2 and trep2 do not commute; therefore, the two traversals do not fuse.

There is a simple way to make the two stateful operations commute, and that is by giving them
separate parts of the state on which to act. The following implementation uses a pair as the state;
the first component is where the minimum element is accumulated, and the second component
holds what is copied across the tree.

tmin3 :: Ord a⇒ a→ State (a, b) a
tmin3 a = do {(a′, b)← get ; put (min a a′, b); return a}
trep3 :: a→ State (a, b) b
trep3 a = do {(a′, b)← get ; return b}

Of course, the whole point of the exercise is that the two parts of the state should interact; but
with lazy evaluation we can use the standard circular programming trick [2] to tie the two together,
outside the traversal.

trepmin3 :: (Ord a, Bounded a)⇒ Tree a→ Tree a
trepmin3 t = let (u, (m,)) = runState iteration (maxBound , m) in u

where iteration = (traverse trep3 • traverse tmin3) t

Now, although the State monad is not commutative, the two stateful operations tmin3 and trep3
commute (because they do not interfere), and the two traversals may be fused into one.

trepmin′
3 :: (Ord a, Bounded a)⇒ Tree a→ Tree a

trepmin′
3 t = let (u, (m,)) = runState iteration (maxBound , m) in u

where iteration = traverse (trep3 • tmin3) t

Modifying the stateful operations in this way to keep them from interfering is not scalable, and it
is not clear whether this trick is possible in general anyway. Fortunately, idioms provide a much
simpler means of fusion. Using the same single-component stateful operations tmin2 and trep2
as above, but dispensing with Kleisli composition, we get the following composition of traversals.

trepmin4 :: (Ord a, Bounded a)⇒ Tree a→ Tree a
trepmin4 t = let (sf , m) = runState iteration maxBound in fst (runState sf m)

where iteration = fmap (traverse trep2) (traverse tmin2 t)

Kleisli composition has the effect of flattening two levels into one; here we have to deal with both
levels separately, hence the two occurrences of runState. The payback is that fusion of idiomatic
traversals applies without side conditions!

trepmin′
4 :: (Ord a, Bounded a)⇒ Tree a→ Tree a

trepmin′
4 t = let (sf , m) = runState iteration maxBound in fst (runState sf m)

where iteration = unComp $ traverse (Comp ◦ fmap trep2 ◦ tmin2) t

Note that the Kleisli composition of two monadic computations imposes the constraint that both
computations are in the same monad; in our example above, both computing the minimum

Mathematically-Structured Functional Programming 13

The Essence of the ITERATOR Pattern

and distributing the result use the State monad. However, these two monadic computations are
actually rather different in structure, and use different aspects of the State monad: the first writes,
whereas the second reads. We could capture this observation directly by using two different
monads, each tailored for its particular use.

tmin5 :: (Ord a, Bounded a)⇒ a→Writer (Min a) a
tmin5 a = do {tell (Min a); return a}
trep5 :: a→ Reader a a
trep5 a = ask

The use of two different monads like this rules out Kleisli composition. However, idiomatic
composition handles two different idioms (and hence two different monads) with aplomb.

trepmin5 :: (Ord a, Bounded a)⇒ Tree a→ Tree a
trepmin5 t = let (r , m) = runWriter iteration in runReader r (unMin m)

where iteration = fmap (traverse trep5) (traverse tmin5 t)

These two traversals fuse in exactly the same way as before.

trepmin′
5 :: (Ord a, Bounded a)⇒ Tree a→ Tree a

trepmin′
5 t = let (r , m) = runWriter iteration in runReader r (unMin m)

where iteration = unComp $ traverse (Comp ◦ fmap trep5 ◦ tmin5) t

7. CONCLUSIONS

We have argued that idiomatic traversals capture the essence of imperative loops — both mapping
and accumulating aspects. We have stated some properties of traversals and shown a few
examples, but we are conscious that more work needs to be done in both of these areas.

This work grew out of an earlier discussion of the relationship between design patterns and
higher-order datatype-generic programs [8]. Preliminary versions of that paper argued that pure
datatype-generic maps are the functional analogue of the ITERATOR design pattern. It was partly
while reflecting on that argument — and its omission of imperative aspects — that we came to the
(more refined) position presented here. Note that idiomatic traversals, and even pure maps, are
more general than object-oriented ITERATORs in at least one sense: it is trivial with our approach to
change the type of the collection elements with a traversal, whereas with a less holistic approach
one is left worrying about the state of a partially-complete type-changing traversal.

As future work, we are exploring properties and generalizations of the specialized traversals
collect and disperse. We also hope to investigate the categorical structure of dist further: naturality
in the idiom appears to be related to Beck’s distributive laws [1], and ‘no duplication’ to linear type
theories.

8. ACKNOWLEDGEMENTS

We are grateful to the members of IFIP WG2.1, the Algebra of Programming research group
at Oxford, the Datatype-Generic Programming project at Oxford and Nottingham, and the
anonymous MSFP referees, whose valuable comments have improved this paper considerably.
Thanks are due especially to Conor McBride and Ross Paterson, without whose elegant work
on idioms this would never have happened. As well as the clear debt we owe to [20], we thank
McBride for pointing us to Hancock’s notion of Naperian functors, and Paterson for the observation
that dist should be natural in the idiom.

REFERENCES

[1] J. Beck. Distributive laws. In B. Eckmann, editor, LNM 80: Seminar on Triples and
Categorical Homology Theory, pages 119–140, 1969.

Mathematically-Structured Functional Programming 14

The Essence of the ITERATOR Pattern

[2] R. S. Bird. Using circular programs to eliminate multiple traversals of data. Acta Informatica,
21:239–250, 1984.

[3] M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Department INF, Universiteit
Twente, June 1994.

[4] M. M. Fokkinga. Tupling and mutumorphisms. The Squiggolist, 1(4):81–82, June 1990.
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
[6] J. Gibbons. Calculating functional programs. In R. Backhouse, R. Crole, and J. Gibbons,

editors, LNCS 2297: Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction, pages 148–203. 2002.

[7] J. Gibbons. Origami programming. In J. Gibbons and O. de Moor, editors, The Fun of
Programming, Cornerstones in Computing, pages 41–60. Palgrave, 2003.

[8] J. Gibbons. Design patterns as higher-order datatype-generic programs. Submitted for
publication, June 2006.

[9] J. Gibbons, G. Hutton, and T. Altenkirch. When is a function a fold or an unfold? Electronic
Notes in Theoretical Computer Science, 44(1), Apr. 2001. Coalgebraic Methods in Computer
Science.

[10] R. Hinze and J. Jeuring. Generic Haskell: Practice and theory. In R. Backhouse and
J. Gibbons, editors, LNCS 2793: Summer School on Generic Programming, pages 1–56,
2003.

[11] R. Hinze and S. Peyton Jones. Derivable type classes. In International Conference on
Functional Programming, 2000.

[12] P. Jansson and J. Jeuring. PolyP – a polytypic programming language extension. In
Principles of Programming Languages, pages 470–482, 1997.

[13] P. Jansson and J. Jeuring. Polytypic data conversion programs. Science of Computer
Programming, 43(1):35–75, 2002.

[14] B. Jay and P. Steckler. The functional imperative: Shape! In C. Hankin, editor, LNCS 1381:
European Symposium on Programming, pages 139–53, Lisbon, Portugal, 1998.

[15] C. B. Jay. A semantics for shape. Science of Computer Programming, 25:251–283, 1995.
[16] M. P. Jones and L. Duponcheel. Composing monads. Technical Report RR-1004,

Department of Computer Science, Yale, Dec. 1993.
[17] D. J. King and P. Wadler. Combining monads. In J. Launchbury and P. M. Sansom, editors,

Functional Programming, Glasgow 1992. Springer, 1993.
[18] O. Kiselyov and R. Lämmel. Haskell’s Overlooked Object System. Draft; submitted for

publication, 2005.
[19] T. Kühne. Internal iteration externalized. In R. Guerraoui, editor, LNCS 1628: ECOOP,

pages 329–350, 1999.
[20] C. McBride and R. Paterson. Applicative programming with effects. Journal of Functional

Programming, To appear.
[21] L. Meertens. Calculate polytypically! In H. Kuchen and S. D. Swierstra, editors, LNCS 1140:

Programming Language Implementation and Logic Programming, pages 1–16, 1996.
[22] L. Meertens. Functor pulling. In R. Backhouse and T. Sheard, editors, Workshop on Generic

Programming, Marstrand, Sweden, June 1998.
[23] E. Meijer and J. Jeuring. Merging monads and folds for functional programming. In J. Jeuring

and E. Meijer, editors, LNCS 925: Advanced Functional Programming, 1995.
[24] E. Moggi. Notions of computation and monads. Information and Computation, 93(1), 1991.
[25] E. Moggi, G. Bellè, and C. B. Jay. Monads, shapely functors and traversals. In M. Hoffman,

D. Pavlovic, and P. Rosolini, editors, Category Theory in Computer Science, 1999.
[26] A. Pardo. Combining datatypes and effects. In Advanced Functional Programming, 2005.
[27] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Principles of

Programming Languages, pages 71–84, 1993.
[28] P. Wadler. Theorems for free! In Functional Programming Languages and Computer

Architecture, pages 347–359. ACM, 1989.
[29] P. Wadler. Monads for functional programming. In M. Broy, editor, Program Design Calculi:

Proceedings of the Marktoberdorf Summer School, 1992.

Mathematically-Structured Functional Programming 15

