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Abstract. Bidirectional transformations (bx) have primarily been modeled as
pure functions, and do not account for the possibility of the side-effects that are
available in most programming languages. Recently several formulations of bx
that use monads to account for effects have been proposed, both among practi-
tioners and in academic research. The combination of bx with effects turns out to
be surprisingly subtle, leading to problems with some of these proposals and in-
creasing the complexity of others. This paper reviews the proposals for monadic
lenses to date, and offers some improved definitions, paying particular attention
to the obstacles to naively adding monadic effects to existing definitions of pure
bx such as lenses and symmetric lenses, and the subtleties of equivalence of sym-
metric bidirectional transformations in the presence of effects.

1 Introduction

Programming with multiple concrete representations of the same conceptual informa-
tion is a commonplace, and challenging, problem. It is commonplace because data is
everywhere, and not all of it is relevant or appropriate for every task: for example, one
may want to work with only a subset of one’s full email account on a mobile phone or
other low-bandwidth device. It is challenging because the most direct approach to map-
ping data across sources A and B is to write separate functions, one mapping to B and
one to A, following some (not always explicit) specification of what it means for an A
value and a B value to be consistent. Keeping these transformations coherent with each
other, and with the specification, is a considerable maintenance burden, yet it remains
the main approach found in practice.

Over the past decade, a number of promising proposals for easing programming
such bidirectional transformations have emerged, including lenses [6], bx based on
consistency relations [14], symmetric lenses [8], and a number of variants and exten-
sions (e.g. [12, 9]). Most of these proposals consist of an interface with pure functions
and some equational laws that characterize good behavior; the interaction of bidirec-
tionality with other effects has received comparatively little attention.

Some programmers and researchers have already proposed ways to combine elenses
and monadic effects [4, 12]. Recently, we have proposed symmetric notions of bidirec-
tional computation based on entangled state monads [3, 1] and coalgebras [2]. As a
result, there are now several alternative proposals for bidirectional transformations with
effects, and the relationships among them are not well understood.
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In this paper we summarize and compare the existing proposals, offer some new
alternatives, and attempt to provide general and useful definitions of “monadic lenses”
and “symmetric monadic lenses”. Perhaps surprisingly, it appears challenging even to
define the composition of lenses in the presence of effects, especially in the symmetric
case. We first review the definition of pure lenses and two prior proposals for extending
them with monadic effects. These definitions have some limitations, and we propose a
new definition of monadic lens that overcomes them.

Next we consider the symmetric case. The effectful bx and coalgebraic bx in our
previous work are symmetric, but their definitions rely on relatively heavyweight ma-
chinery (monad transformers and morphisms, coalgebra). It seems natural to ask whether
just adding monadic effects to symmetric lenses in the style of Hofmann et al. would
also work. We show that, as for asymmetric lenses, adding monadic effects to sym-
metric lenses is challenging, and give examples illustrating the problems with the most
obvious generalization. We then briefly discuss our recent work on symmetric forms
of bx with monadic effects [3, 1, 2]. Defining composition for these approaches also
turns out to be tricky, and our definition of monadic lenses arose out of exploring this
space. The essence of composition of symmetric monadic bx, we now believe, can be
presented most easily in terms of monadic lenses, by considering spans, an approach
also advocated (in the pure case) by Johnson and Rosebrugh [9].

Symmetric pure bx need to be equipped with a notion of equivalence, to abstract
away inessential differences of representation of their “state” or “complement” spaces.
As noted by Hofmann et al. [8] and Johnson and Rosebrugh [9], isomorphism of state
spaces is unsatisfactory, and there are competing proposals for equivalence of sym-
metric lenses and spans. In the case of spans of monadic lenses, the right notion of
equivalence seem even less obvious. We compare three, increasingly coarse, equiva-
lences of spans based on isomorphism (following [1]), span equivalence (following [9],
and bisimulation (following [8, 2]). In addition, we show a (we think surprising) result:
in the pure case, span equivalence and bisimulation equivalence coincide.

In this paper we employ Haskell-like notation to describe and compare formalisms,
with a few conventions: we write function composition f · g with a centred dot, and
use a lowered dot for field lookup x.f , in contrast to Haskell’s notation f x. Through-
out the paper, we introduce a number of different representations of lenses, and rather
than pedantically disambiguating them all, we freely redefine identifiers as we go. We
assume familiarity with common uses of monads in Haskell to encapsulate effects (fol-
lowing Wadler [17]), and with the do-notation (following Wadler’s monad comprehen-
sions [16]).

2 Asymmetric monadic lenses

Recall that a lens [6, 7] is a pair of functions, usually called get and put:

data α β = Lens {get :: α → β ,put :: α → β → α }

satisfying (at least) the following well-behavedness laws:

(GetPut) put a (get a) = a
(PutGet) get (put a b) = b
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The idea is that a lens of type S V maintains a source of type S, providing a view of
type V onto it; the well-behavedness laws capture the intuition that the view faithfully
reflects the source: if we “get” a b from a source a and then “put” the same b value back
into a, this leaves a unchanged; and if we “put” a b into a source a and then “get” from
the result, we get b itself. Lenses have been investigated extensively; see for example
Foster et al. [7] for a recent tutorial overview. For the purposes of this paper, we just
recall the definition of composition of lenses:

(;) :: (α β )→ (β γ)→ (α γ)
l1 ; l2 = Lens (l2.get · l1.get) (λa c→ l1.put a (l2.put (l1.get a) c))

which preserves well-behavedness. Finally, lenses are often equipped with a create
function

data α β = Lens {get :: α → β ,put :: α → β → α,create :: β → α }

satisfying an additional law:

(CreateGet) get (create b) = b

2.1 A naive approach

As a first attempt, consider simply adding a monadic effect µ to the result types of get
and put.

data [α  0 β ]µ = MLens0 {mget :: α → µ β ,mput :: α → β → µ α }

Such an approach has been considered and discussed in some recent Haskell libraries
and online discussions [4]. A natural question arises immediately: what laws should a
lens l :: [S 0 V]M satisfy? The following generalizations of the laws appear natural:

(MGetPut0) do {b← mget a;mput a b} = return a
(MPutGet0) do {a′← mput a b;mget a′}= do {a′← mput a b;return b}

that is, if we “get” b from a and then “put” the same b value back into a, this has the
same effect as just returning a (and doing nothing else), and if we “put” a value b and
then “get” the result, this has the same effect as just returning b after doing the “put”.
The obvious generalization of composition from the pure case for these operations is:

(;) :: [α  0 β ]µ → [β  0 γ]µ → [α  0 γ]µ
l1 ; l2 = MLens0 (λa→ do {b← l1.mget a; l2.mget b})

(λa c→ do {b← l1.mget a;b′← l2.mput b c; l1.mput a b′})

This proposal has at least two apparent problems. First, the (MGetPut0) law ap-
pears to sharply constrain mget: indeed, if mget a has an irreversible side-effect then
(MGetPut) cannot hold. This suggests that mget must either be pure, or have side-
effects that are reversible by mput, ruling out behaviors such as performing I/O during
mget. Second, it appears difficult to compose these structures in a way that preserves
the laws, unless we again make fairly draconian assumptions about µ . In order to show
(MGetPut0) for the composition l1 ; l2, it seems necessary to be able to commute l2.mget
with l1.mget and we also need to know that doing l1.mget twice is the same as doing it
just once. Likewise, to show (MPutGet0) we need to commute l2.mget with l1.mput.
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2.2 Monadic put-lenses

Pacheco et al. [12] proposed a variant of lenses called monadic putback-oriented lenses.
For the purposes of this paper, the putback-orientation of their approach is irrelevant:
we focus on their use of monads, and we provide a slightly simplified version of their
definition:

data [α  1 β ]µ = MLens1 {mget :: α → β ,mput :: α → β → µ α }

(The main difference from their version is that we remove the Maybe type constructors
from the return type of mget and the first argument of mput.) Pacheco et al. state laws
for these monadic lenses. First, they assume that the monad µ has a monad membership
operation

(∈) :: α → µ α → Bool

satisfying the following two laws:

(∈-ID) x ∈ return x ⇔ True
(∈->>=) y ∈ (m>>= f )⇔∃x . x ∈ m ∧ y ∈ (f x)

Then the laws for MLens1 (taken from [12] Prop. 3, p49) are as follows:

(MGetPut1) v = mget s =⇒ mput s v = return s
(MPutGet1) s′ ∈ mput s v′ =⇒ v′ = mget s′

(In the first law we correct an apparent typo in the original paper, as well as removing
the Just constructors from both laws.) By making mget pure, this definition avoids the
immediate problems with composition discussed above, and Pacheco et al. outline a
proof that their laws are preserved by composition. However, it is not obvious how to
generalize their approach beyond monads that admit a sensible ∈ operation.

Many interesting monads do have a sensible ∈ operation (e.g. Maybe, [ ]). Pacheco
et al. suggest that ∈ can be defined for any monad as x ∈m≡ (∃h : hm = x), where h is
what they call a ‘(polymorphic) algebra‘ for m, that is, a polymorphic function h ::m a→
a. However, this definition doesn’t appear satisfactory for monads such as IO, for which
there is no such (pure) function: the (∈-ID) law can never hold in this case. It is not clear
that we can define a useful ∈ operation directly for IO either: given that m :: IO s could
ultimately return any a-value, it seems safe (if perhaps overly conservative) to define
x∈m= True for any x and m. This satisfies the∈ laws (at least, if we make a simplifying
assumption that all types are inhabited), and indeed, it seems to be the only thing we
could write in Haskell that would satisfy the laws, since we have no way of looking
inside the monadic computation m :: IO s to find out what its eventual return value is.
But then the (MPutGet1) law, whose precondition is always true, forces the view space
to be trivial. These complications suggest, at least, that it would be advantageous to find
a definition of monadic lenses that makes sense (and is preserved under composition)
for any monad.



Reflections on monadic lenses 5

2.3 Monadic lenses

We propose the following definition of monadic lens:

Definition 2.1 (monadic lens). A monadic lens from source type S to view type V in
which the put operation may have effects from monad M (or ‘M-lens from S to V’), is
represented by the type [S V]M , where

data [α  β ]µ = MLens {mget :: α → β ,mput :: α → β → µ α }

(dropping the µ from the return type of mget, compared to the definition in Section 2.1).
We say that M-lens l is well-behaved if it satisfies

(MGetPut) do {l.mput s (l.mget s)}= return s
(MPutGet) do {s′← l.mput s v;k s′ (l.mget s′)}= do {s′← l.mput s v;k s′ v}♦

Note that in (MPutGet), we use a continuation k :: β → α → µ γ to quantify over all
possible subsequent computations in which s′ and l.mget s′ might appear. In fact, using
the laws of monads and simply-typed lambda calculus we can prove this law from just
the special case k = λb a→ return (b,a), so in the sequel when we prove (MPutGet)
we may just prove this case while using the strong form freely in the proof.

The ordinary asymmetric lenses are exactly the monadic lenses over µ = Id; the
laws then specialise to the standard equational laws.

Definition 2.2. We can also define an operation that lifts a pure lens to a monadic lens:

lens2mlens :: Monad µ ⇒ α β → [α  β ]µ
lens2mlens l = MLens (l.get) (λa b→ return (l.put a b)) ♦

Lemma 2.3. If l :: Lens α β is well-behaved, then so is lens2mlens l. ♦

Example 2.4. To illustrate, some simple pure lenses include:

idLens :: α α

idLens = Lens (λa→ a) (λ a→ a)
fstLens :: (α,β ) α

fstLens = MLens fst (λ (s1,s2) s′1→ (s′1,s2))

sndLens :: (α,β ) β

sndLens = Lens snd (λ (s1,s2) s′2→ (s1,s′2))

Many more examples of pure lenses are to be found in the literature [6, 7], all of which
lift to well-behaved monadic lenses. ♦

As more interesting examples, we present asymmetric versions of the partial and
logging lenses presented by Abou-Saleh et al. [1]. Pure lenses (as usually defined) are
total, which means that get must be surjective and put must be defined for all source
and view pairs. One way to accommodate partiality is to adjust the return type of get
to Maybe b or give put the return type Maybe a to allow for failure if we attempt to
put a b-value that is not in the range of get. In either case, the laws need to be adjusted
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somehow. Monadic lenses allow for partiality without requiring such an ad hoc change.
A trivial example is

constMLens :: b→ [a b]Maybe
constMLens b = MLens (const b) (λa b′→ if b b′ then Just a else Nothing)

which is well-behaved (since both sides of (MPutGet) fail if the view is changed to a
value different from b). Of course, this example also illustrates that the mget function
of a monadic lens need not be surjective.

As a more interesting example, consider:

absLens :: [Int Int]Maybe
absLens = MLens abs

(λa b→ if b<0 then Nothing else Just (if a<0 then−b else b))

In the get direction, this lens maps a source number to its absolute value; in the reverse
direction, it fails if the view b is negative, otherwise uses the sign of the previous source
a to determine the sign of the updated source.

The following logging lens takes a pure lens l and, whenever the source value a
changes, records the previous a value.

logLens :: Eq α ⇒ α β → [α  β ]Writer α

logLens l = MLens (l.get) (λa b→
let a′ = l.put a b in do {if a 6 a′ then tell a else return ();return a′}

We presented a number of more involved examples of effectful bx in [1]; all of them
can be reformulated as monadic lenses.

Next, we consider composition of monadic lenses.

(;) :: Monad µ ⇒ [a b]µ → [b c]µ → [a c]µ
l1 ; l2 = MLens (l2.mget · l1.mget) mput where

mput a c = do {b← l2.mput (l1.mget a) c; l1.mput a b}

Note that we consider only the simple case in which the lenses share a common monad
µ . Composing lenses with effects in different monads would require determining how
to compose the monads, which is nontrivial [11, 10].

Theorem 2.5. If l1 :: [A B]M and l2 :: [B C]M are well-behaved, then so is l1 ; l2.
♦

Initialization In practical use, it is usually also necessary to equip lenses with an initial-
ization mechanism. Indeed, as already mentioned, Pacheco et al.’s monadic put-lenses
make the α argument optional (using Maybe), to allow for initialization when only a β

is available; we chose to exclude this from our version of monadic lenses above.
We propose the following alternative:

data [α  β ]µ = MLens {mget :: α → β ,mput :: α → β → µ α,mcreate :: β → µ α }
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and we consider such initializable monadic lenses to be well-behaved when they satisfy
the following additional law:

(MCreateGet) do {a← mcreate b;k a (mget a)}= do {a← mcreate b;k a b}

As with (MPutGet), this property follows from the special case k= λx y→ return (x,y),
and we will use this fact freely.

This approach, in our view, helps keep the (GetPut) and (PutGet) laws simple
and clear, and avoids the need to wrap mput’s first argument in Just whenever it is
called. Moreover, the mcreate operation of the composition of two lenses is easy to
define: it is just the Kleisli composition λc→ do {b← l2.mcreate c; l1.mcreate b} of
the mcreate operations of the two lenses being composed (in reverse order). The proof
of (MCreateGet) for l1 ; l2 is similar to that for (MPutGet).

When the distinction is important, we use the term full for well-behaved lenses
equipped with a create operation. It is easy to show that the source and view types of a
full lens must either both be empty or both non-empty, and that the get operation of a
full lens is surjective.

3 Symmetric monadic lenses and spans

Hofmann et al. [8] proposed symmetric lenses that use a complement to store (at least)
the information that is not present in both views.

data α
γ←→β = SLens {putR :: (α,γ)→ (β ,γ),putL :: (β ,γ)→ (α,γ),missing :: γ }

Informally, putR turns an α into a β , modifying a complement γ as it goes, and sym-
metrically for putL; and missing is an initial complement, to get the ball rolling. Well-
behavedness for symmetric lenses amounts to the following equational laws:

(PutRL) let (b,c′) = sl.putR (a,c) in sl.putL (b,c′)
= let (b,c′) = sl.putR (a,c) in (a,c′)

(PutLR) let (a,c′) = sl.putL (b,c) in sl.putR (a,c′)
= let (a,c′) = sl.putL (b,c) in (b,c′)

Furthermore, the composition of two symmetric lenses preserves well-behavedness, and
can be defined as follows:

(;) :: (α
σ1←→β )→ (β

σ2←→ γ)→ (α
(σ1,σ2)←→ γ)

l1 ; l2 = SLens putR putL (l1.missing, l2.missing) where
putR (a,(s1,s2)) = let (b,s′1) = putR (a,s1)

(c,s′2) = putR (b,s2)
in (c,(s′1,s

′
2))

putL (c,(s1,s2)) = let (b,s′2) = putL (c,s2)
(a,s′1) = putL (b,s1)

in (a,(s′1,s
′
2))

We can define an identity symmetric lens as follows:
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idSLens :: X
()←→X

idSLens = SLens id id ()

It is natural to wonder if symmetric lens composition satisfies identity and associativity
laws making symmetric lenses into a category. This is complicated by the fact that the
complement types of the composition idSLens;sl and of sl differ, so it is not even type-
correct to ask whether idSLens;sl and sl are equal. To make it possible to relate the
behavior of symmetric lenses with different complement types, Hofmann et al. defined
equivalence of symmetric lenses as follows:

Definition 3.1. Suppose r⊆C1×C2. Then f ∼r g means that for all c1,c2,x, if (c1,c2)∈
r and (y,c′1) = f (x,c1) and (y′,c′2) = g (y,c2), then y = y′ and (c′1,c

′
2) ∈ r. ♦

Definition 3.2 (Symmetric lens equivalence). Two symmetric lenses sl1 ::SLens C1 X Y
and sl2 :: SLens C2 X Y are considered equivalent (sl1 ≡sl sl2) if there is a relation
r ⊆ C1×C2 such that

1. (sl1.missing,sl2.missing) ∈ r,
2. sl1.putR ∼r sl2.putR, and
3. sl1.putL ∼r sl2.putL. ♦

Hofmann et al.show that≡sl is an equivalence relation; moreover it is sufficiently strong
to validate identity, associativity and congruence laws:

Theorem 3.3 ([8]). If sl1 :: X
C1←→ Y and sl2 :: Y

C2←→ Z are well-behaved, then so is
sl1 ; sl2. In addition, composition satisfies the laws:

(Identity) sl ; idSLens≡sl sl≡sl idSLens ; sl
(Assoc) sl1 ; (sl2 ; sl3)≡sl (sl1 ; sl2) ; sl3
(Cong) sl1 ≡sl sl′1 ∧ sl2 ≡sl sl′2 =⇒ sl1 ; sl2 ≡sl sl′1 ; sl′2 ♦

3.1 Naive monadic symmetric lenses

We now consider an obvious monadic generalisation of symmetric lenses, in which the
putL and putR functions are allowed to have effects in some monad M:

Definition 3.4. A monadic symmetric lens from A to B with complement type C and
effects M consists of two functions converting A to B and vice versa, each also operat-
ing on C and possibly having effects in M, and a complement value missing used for
initialisation:

data [α
γ←→β ]µ = SMLens {mputR :: (α,γ)→ µ (β ,γ),

mputL :: (β ,γ)→ µ (α,γ),
missing :: γ }

Such a lens sl is called well-behaved if:

(PutRLM) do {(b,c′)← sl.mputR (a,c);sl.mputL (b,c′)}
= do {(b,c′)← sl.mputR (a,c);return (a,c′)}

(PutLRM) do {(a,c′)← sl.mputL (b,c);sl.mputR (a,c′)}
= do {(a,c′)← sl.mputL (b,c);return (b,c′)} ♦
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The above monadic generalisation of symmetric lenses appears natural, but it turns
out to have some idiosyncrasies, similar to those of the naive version of monadic lenses
we considered in Section 2.1.

Composition and well-behavedness Consider the following candidate definition of
composition for monadic symmetric lenses:

(;) :: Monad µ ⇒ [α
σ1←→β ]µ → [β

σ2←→ γ]µ → [α
(σ1,σ2)←→ γ]µ

sl1 ; sl2 = SMLens putR putL missing where
putR (a,(s1,s2)) = do {(b,s′1)← sl1.mputR (a,s1);

(c,s′2)← sl2.mputR (b,s2);
return (c,(s′1,s

′
2))}

putL (c,(s1,s2)) = do {(b,s′2)← sl2.mputL (c,s2);
(a,s′1)← sl1.mputL (b,s1);
return (a,(s′1,s

′
2))}

missing = (sl1.missing,sl2.missing)

which seems to be the obvious generalisation of pure symmetric lens composition to
the monadic case. However, it does not always preserve well-behavedness.

Example 3.5. Consider the following construction:

setBool :: Bool→ [()
()←→ ()]State Bool

setBool b = SMLens m m () where m = do {set b;return ((),())}

The lens setBool True has no effect on the complement or values, but sets the state
to True. Both setBool True and setBool False are well-behaved, but their composi-
tion (in either direction) is not: (PutRLM) fails for setBool True;setBool False because
setBool True and setBool False share a single Bool state value. ♦

Proposition 3.6. setBool b is well-behaved for b ∈ {True,False}, but setBool True ;
setBool False is not well-behaved. ♦

Composition does preserve well-behavedness for monads satisfying a suitable com-
mutativity property, but this rules out many interesting monads, such as State and IO.
Hence, we consider a third formulation.

3.2 Entangled state monads

The types of the mputR and mputL operations of symmetric lenses can be seen (modulo
mild reordering) as stateful operations in the state monad State γ α = γ→ (α,γ), where
the state γ = C. Inspired by this observation (which we later realized was also antici-
pated by Hofmann et al.), we considered generalising these operations and their laws to
an arbitrary monad in a sequence of papers [3, 1, 2]. In our initial workshop paper, we
proposed the following definition:

data [α −�−� β ]µ = SetBX {getL :: µ α,setL :: α → µ (),
getR :: µ β ,setR :: β → µ ()}
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subject to a subset of the State monad laws [13], such as:

(GetLSetL) do {a← getL;setL a}= return ()
(SetLGetL) do {setL a;getL} = do {setL a;return a}

This presentation makes clear that bidirectionality can be viewed as a state effect in
which two “views” of some common state are entangled. That is, rather than storing a
pair of views, each independently variable, they are entangled, in the sense that a change
to either may also change the other. Accordingly, the entangled state monad operations
do not satisfy all of the usual laws of state: for example, the setL and setR operations do
not commute.

However, one difficulty with the entangled state monad formalism is that, as dis-
cussed in Section 2.1, effectful get operations cause problems for composition. It turned
out to be nontrivial to define a satisfactory notion of composition, even for the well-
behaved special case where µ = StateT σ ν for some ν (here StateT is the state monad
transformer, i.e. StateT σ ν α =σλ to ν (α,σ)). We formulated the definition of monadic
lenses given earlier in this paper in the process of exploring this design space.

3.3 Spans of monadic lenses

Hofmann et al. [8] showed that a symmetric lens is equivalent to a span of two ordinary
lenses, and later work by Johnson and Rosebrugh [9] investigated such spans of lenses
in greater depth. Accordingly, we propose the following definition:

Definition 3.7. A span of monadic lenses (“M-lens span”) is a pair of M-lenses having
the same source:

type [α  σ  β ]µ = Span {left :: [σ  α]µ ,right :: [σ  β ]µ }

We say that an M-lens span is well-behaved if both of its components are. ♦

We first note that we can extend either leg of a span with a monadic lens (preserving
well-behavedness if the arguments are well-behaved):

(/) :: Monad µ ⇒ [α1 α2]µ → [α1  σ  β ]µ → [α2  σ  β ]µ
ml/ sp = Span (sp.left ; ml) (sp.right)
(.) :: Monad µ ⇒ [α  σ  β1]µ → [β1 β2]µ → [α  σ  β2]µ
sp.ml = Span sp.left (sp.right ; ml)

To define composition, the basic idea is as follows. Given two spans [A  S1 B]M
and [B  S2 C]M with a common type B “in the middle”, we want to form a single
span from A to C. The obvious thing to try is to form a pullback of the two monadic
lenses from S1 and S2 to the common type B, obtaining a span from some common state
type S to the state types S1 and S2, and composing with the outer legs. [JRC: TODO:
Diagram] However, the category of monadic lenses doesn’t have pullbacks (as Johnson
and Rosebrugh note, this is already the case for ordinary lenses). Instead, we construct
the appropriate span as follows.
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(on) :: Monad µ ⇒ [σ1 β ]µ → [σ2 β ]µ → [σ1  (σ1onσ2) σ2]µ
l1 on l2 = Span (MLens fst putL createL) (MLens snd putR createR) where

putL ( ,s2) s′1 = do {s′2← l2.mput s2 (l1.mget s′1);return (s′1,s
′
2)}

createL s1 = do {s′2← l2.mcreate (l1.mget s1);return (s1,s′2)}
putR (s1, ) s′2 = do {s′1← l1.mput s1 (l2.mget s′2);return (s′1,s

′
2)}

createR s1 = do {s′1← l1.mcreate (l2.mget s2);return (s′1,s2)}

where we write S1onS2 for the type of consistent state pairs {(s1,s2)∈ S1×S2 | l1.mget (s1)=
l2.mget (s2)}. In the absence of dependent types, we represent this type as (S1,S2) in
Haskell, and we need to check that the mput and mcreate operations respect the consis-
tency invariant.

Lemma 3.8. If ml1 :: [σ1 β ]µ and ml2 :: [σ2 β ]µ are well-behaved then so is ml1on
ml2 :: [σ1  (σ1onσ2) σ2]µ . ♦

Note that (MPutGet) and (MCreateGet) hold by construction and do not need the
corresponding properties for l1 and l2, but these properties are needed to show that
consistency is established by mcreate and preserved by mput.

We can now define composition as follows:

(;) :: Monad µ ⇒ [α  σ1 β ]µ → [β  σ2 γ]µ → [α  σ1onσ2 γ]µ
sp1 ; sp2 = sp1.left / (sp1.righton sp2.left). sp2.right

The well-behavedness of the composition of two well-behaved spans is immediate
because / and . preserve well-behavedness of their arguments:

Theorem 3.9. If sp1 :: [α  σ1 β ]µ and sp2 :: [β  σ2 γ]µ are well-behaved spans
of monadic lenses, then their composition sp1 ; sp2 is well-behaved. ♦

Given a span of monadic lenses sp :: [A  S B]M , we can construct a symmetric

lens sl :: [A
Maybe S←→ B]M as follows:

span2smlens (left,right) = SMLens mputR mputL Nothing where
mputR (a,Just s) = do {s′← left.mput s a;return (right.mget s′,Just s′)}
mputR (a,Nothing) = do {s′← left.mcreate a;return (right.mget s′,Just s′)}
mputL = ... -- dual

Essentially, these operations use the span’s mput and mget operations to update one side
and obtain the new view value for the other side, and use create operations to build the
initial S state if the complement is Nothing.

Well-behavedness is preserved by the conversion from monadic lens spans to SMLens,
for arbitrary monads M:

Theorem 3.10. If sp :: [A  S B]M is well-behaved, then span2smlens sp is also well-
behaved. ♦

Given sl :: [A C←→B]M , let S⊆ A×B×C be the set of consistent triples (a,b,c), that
is, those for which sl.mputR (a,c) = return (b,c) and sl.mputL (b,c) = return (a,c). We
construct sp :: [A  S B]M by



12 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

smlens2span sl = Span (MLens getL putL createL) (MLens getR putR createR) where
getL (a,b,c) = a
putL (a,b,c) a′ = do {(b′,c′)← sl.mputR (a′,c);return (a′,b′,c′)}
createL a = do {(b,c)← sl.mputR (a,sl.missing);return (a,b,c)}
getR (a,b,c) = b
putR (a,b,c) b′ = do {(a′,c′)← sl.mputL (b′,c);return (a′,b′,c′)}
createR b = do {(a,c)← sl.mputL (b,sl.missing);return (a,b,c)}

However, smlens2span may not preserve well-behavedness even for commutative
monads such as Maybe, as the following counterexample illustrates:

Example 3.11. Consider the following monadic symmetric lens construction:

fail :: [()
()←→ ()]Maybe

fail = SMLens Nothing Nothing ()

This is well-behaved but smlens2span fail is not; each leg of the induced span is of
the following form:

failMLens :: MLens Maybe () ()
failMLens = MLens id (λ () ()→ Nothing) (λ ()→ Nothing)

which cannot satisfy (MGetPut). ♦

For pure symmetric lenses, smlens2span does preserve well-behavedness.

Theorem 3.12. If sl :: SMLens Id C A B is well-behaved, then smlens2span sl is also
well-behaved, with state space S consisting of the consistent triples of sl. ♦

To summarize: spans of monadic lenses are closed under composition, and corre-
spond to well-behaved symmetric monadic lenses. However, there are well-behaved
symmetric monadic lenses that do not map to well-behaved spans. It seems to be an in-
teresting open problem to give a direct axiomatization of the symmetric monadic lenses
that are essentially spans of monadic lenses (and are therefore closed under composi-
tion).

4 Equivalence of spans

As mentioned already, Hofmann et al. [8] introduced a bisimulation-like notion of
equivalence for pure symmetric lenses, in order to validate laws such as identity, as-
sociativity and congruence of composition. Johnson and Rosebrugh [9] introduced a
definition of equivalence of spans and compared it with symmetric lens equivalence.
We have considered equivalences based on isomorphism [1] and bisimulation [2]. In
this section we consider and relate these approaches in the context of spans of M-lenses.

Definition 4.1 (Isomorphism Equivalence). Two M-lens spans sp1 :: [A  S1  B]M
and sp2 :: [A  S2 B]M are isomorphic (sp≡i sp′) if there is an isomorphism h ::S1→
S2 on their state spaces such that h ; sp2.left = sp1.left and h ; sp2.right = sp1.right. ♦
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Note that any isomorphism h :: S1→ S2 can be made into a (monadic) lens; we omit an
explicit conversion.

We consider a second definition of equivalence, inspired by Johnson and Rose-
brugh [9], which we call span equivalence:

Definition 4.2 (Span Equivalence). Two M-lens spans sp1 :: [A  S1 B]M and sp2 ::
[A  S2 B]M are related by y if there is a full lens h :: S1 S2 such that h ; sp2.left =
sp1.left and h ;sp2.right = sp1.right. The equivalence relation≡s is the least equivalence
relation containing y. ♦

One important consideration (emphasized by Johnson and Rosebrugh) is the need to
avoid making all compatible spans equivalent to the “trivial” span [A  /0 B]M . To
avoid this problem, they imposed conditions on h: its get function must be surjective
and split, meaning that there exists a function c such that h.get · c = id. We chose in-
stead to require h to be a full lens. This is actually slightly stronger than Johnson and
Rosebrugh’s definition (at least from a constructive perspective), because h is equipped
with a specific choice of c = create satisfying h.get · c = id (the (CreateGet) law)..

We have defined span equivalence as the reflexive, symmetric, transitive closure of
y. Interestingly, any span equivalence is witnessed by a pure span of lenses between
the respective state spaces.

Theorem 4.3. Given sp1 :: [A  S1 B]M and sp2 :: [A  S2 B]M , if sp1 ≡s sp2 then
there exists sp :: S1  S S2 such that sp.left ; sp1.left = sp.right ; sp2.left and sp.left ;
sp1.right = sp.right ; sp2.right. ♦

Thus, span equivalence is a doubly appropriate name for ≡s: it is an equivalence of
spans witnessed by a (pure) span.

Finally, we consider a third notion of equivalence, inspired by the natural bisimula-
tion equivalence for coalgebraic bx [2]:

Definition 4.4 (Base map). Given M-lenses l1 :: [S1 V]M and l2 :: [S2 V]M , we say
that h : S1→ S2 is a base map from l1 to l2 if

l1.mget s = l2.mget (h s)
do {s← l1.mput s v;return (h s)} = l2.mput (h s) v
do {s← l1.mcreate v;return (h s)}= l2.mcreate v

Similarly, given two M-lens spans sp1 :: [A  S1  B]M and sp2 :: [A  S2  B]M we
say that h :: S1→ S2 is a base map from sp1 to sp2 if h is a base map from sp1 to sp2.left
and from sp1.right to sp2.right. ♦

Definition 4.5 (Bisimulation equivalence). A bisimulation of M-lens spans sp1 :: [A  
S1  B]M and sp2 :: [A  S2  B]M is a M-lens span sp :: [A  R B]M where R ⊆
S1×S2 and fst is a base map from sp to sp1 and snd is a base map sp from to sp2. We
write sp1 ≡b sp2 when there is a bisimulation of spans sp1 and sp2. ♦

Proposition 4.6. Each of the relations≡i,≡s and≡b are equivalence relations on com-
patible spans of M-lenses and satisfy (Identity), (Assoc) and (Cong). ♦

Theorem 4.7. sp1 ≡i sp2 implies sp1 ≡s sp2, but not the converse. ♦
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Proof. The forward direction is obvious; for the reverse direction, consider

h :: Bool ()
h = Lens (\ → ()) (λa ()→ a) (λ ()→ True)
sp1 :: [()  () ()]µ
sp1 = Span idMLens idMLens
sp2 = (h ; sp1.left,h ; sp2.right)

Clearly sp1 ≡s sp2 by definition and all three structures are well-behaved, but h is not
an isomorphism: any k :: () Bool must satisfy k.get () = True or k.get () = False, so
(h ; k).get = k.get ·h.get cannot be the identity function. ut

Theorem 4.8. Given sp1 :: [A  S1  B]M,sp2 :: [A  S2  B]M , if sp1 ≡s sp2 then
sp1 ≡b sp2. ♦

Proof. For the forward direction, it suffices to show that a single sp1 y sp2 step im-
plies sp1 ≡b sp2, which is straightforward by taking R to be the set of pairs {(s1,s2) |
l1.get s1 = s2}, and construct an appropriate span sp : A  R B. Since bisimulation
equivalence is transitive, it follows that sp1 ≡s sp2 implies sp1 ≡b sp2 as well. ut

In the pure case, we can also show a (surprising) converse:

Theorem 4.9. Given sp1 ::A  S1 B,sp2 ::A  S2 B, if sp1 ≡b sp2 then sp1 ≡s sp2.
♦

Proof. Given R and a span sp :: A  R B constituting a bisimulation sp1 ≡b sp2, it
suffices to construct a span sp′ = (l,r) :: S1  R S2 satisfying l ; sp1.left = r ; sp2.left
and l ; sp1.right = r ; sp2.right. ut

We leave it as an open question to determine whether ≡b is equivalent to ≡s for
spans of monadic lenses, or whether an analogous result to Theorem 4.9 carries over to
symmetric lenses.

5 Conclusions

Lenses are a popular and powerful abstraction for bidirectional transformations. Al-
though they are most often studied in their conventional, pure form, practical applica-
tions of lenses typically grapple with side-effects, including exceptions, state, and user
interaction. Some recent proposals for extending lenses with monadic effects have been
made and our proposal for (asymmetric) monadic lenses improves on them because it is
closed under composition for arbtrary monads. Furthermore, we investigated the sym-
metric case, and showed that spans of monadic lenses are closed under composition,
while the obvious generalization of pure symmetric lenses to incorporate monadic ef-
fects is not closed under composition. Finally, we presented three notions of equivalence
for spans of monadic lenses, related them, and proved a new (and perhaps surprising)
result.



Reflections on monadic lenses 15

Although some of these ideas are present in recent papers [8, 9, 3, 1, 2], this paper
reflects our desire to clarify these ideas and expose them in their clearest form — a de-
sire that is strongly influenced by Wadler’s work on a wide variety of related topics [16,
11, 17], and by our interactions with him as a colleague. We hope that this presentation
will not just be an interesting curiosity but will also help inspire further research and
appreciation of bidirectional programming with effects.
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A Proofs for Section 2

Theorem 2.5. If l1 :: [A B]M and l2 :: [B C]M are well-behaved, then so is l1 ; l2.
♦

Proof. Suppose l1 and l2 are well-behaved, and let l = l1 ; l2. We reason as follows for
(MGetPut):

do {l.mput a (l.mget a)}
= [[ definition ]]

do {b← l2.mput (l1.mget a) (l2.mget (l1.mget a)); l1.mput a b}
= [[ (MGetPut) ]]

do {b← return (l1.mget a); l1.mput a b}
= [[ monad unit ]]

do {l1.mput a (l1.mget a)}
= [[ (MGetPut) ]]

return a

For (MPutGet), the proof is as follows:

do {a′← l.mput a c;return (a′, l.mget a′)}
= [[ Definition ]]

do {b← l2.mput (l1.mget a) c;
a′← l1.mput a b;
return (a′, l2.mget (l1.mget a′))}

= [[ (MPutGet) ]]
do {b← l2.mput (l1.mget a) c;

a′← l1.mput a b;
return (a′, l2.mget b)}

= [[ (MPutGet) ]]
do {b← l2.mput (l1.mget a) c;

a′← l1.mput a b;
return (a′,c)}

= [[ definition ]]
do {a′← l.mput a c;return (a′,c)} ut

B Proofs for Section 3

Proposition 3.6. setBool b is well-behaved for b ∈ {True,False}, but setBool True ;
setBool False is not well-behaved. ♦

For the first part:

Proof. Let sl = setBool x. We consider (PutRLM), and (PutLRM) is symmetric.

do {(b,c′)← (setBool x).mputR ((),());(setBool x).mputL (b,c′)}
= [[ Definition ]]
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do {(b,c′)← do {set x;return ((),())};set x;return ((),c′)}
= [[ monad associativity ]]

do {set x;(b,c′)← return ((),());set x;return ((),c′)}
= [[ commutativity of return ]]

do {set x;set x;(b,c′)← return ((),());return ((),c′)}
= [[ labelSS ]]

do {set x;(b,c′)← return ((),());return ((),c′)}
= [[ monad associativity ]]

do {(b,c′)← do {set x;return ((),())};return ((),c′)}
= [[ Definition ]]

do {(b,c′)← (setBool x).mputR ((),());return ((),c′)}

For the second part, taking sl = setBool True ; setBool False, we proceed as follows:

do {(c,s′)← sl.mputR (a,s);sl.mputL (c,s′)}
= [[ let s = (s1,s2) and s′ = (s′′′1 ,s

′′′
2 ); definition ]]

do {(b,s′1)← (setBool True).mputR (a,s1);
(c,s′2)← (setBool False).mputR (b,s2);
(c′,(s′′1 ,s

′′
2))← return (c,(s′1,s

′
2));

(b′,s′′′2 )← (setBool False).mputL (c′,s′′2);
(a′,s′′′2 )← (setBool True).mputL (b′,s′′1);
return (c,(s′′′1 ,s

′′′
2 ))}

= [[ monad unit ]]
do {(b,s′1)← (setBool True).mputR (a,s1);

(c,s′2)← (setBool False).mputR (b,s2);
(b′,s′′′2 )← (setBool False).mputL (c′,s′2);
(a′,s′′′2 )← (setBool True).mputL (b′,s′1);
return (c,(s′′′1 ,s

′′′
2 ))}

= [[ (PutRLM) for setBool False ]]
do {(b,s′1)← (setBool True).mputR (a,s1);

(c,s′2)← (setBool False).mputR (b,s2);
(b′,s′′′2 )← return (b,s′2);
(a′,s′′′2 )← (setBool False).mputL (b′,s′1);
return (c,(s′′′1 ,s

′′′
2 ))}

= [[ monad unit ]]
do {(b,s′1)← (setBool True).mputR (a,s1);

(c,s′2)← (setBool False).mputR (b,s2);
(a′,s′′′2 )← (setBool True).mputL (b,s′1);
return (c,(s′′′1 ,s

′
2))}

However, we cannot simplify this any further. Moreover, it should be clear that the
shared state will be True after this operation is performed. Considering the other side of
the desired equation:

do {(c,s′)← sl.mputR (a,s);sl.mputL (c,s′′)}
= [[ let s = (s1,s2) and s′ = (s′′′1 ,s

′′′
2 ); Definition ]]

do {(b,s′1)← (setBool True).mputR (a,s1);
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(c,s′2)← (setBool False).mputR (b,s2);
(c′,(s′′1 ,s

′′
2))← return (c,(s′1,s

′
2));

return (c′,(s′′1 ,s
′′
2))}

= [[ Monad unit ]]
do {(b,s′1)← (setBool True).mputR (a,s1);

(c,s′2)← (setBool False).mputR (b,s2);
return (c,(s′1,s

′
2))}

it should be clear that the shared state will be False after this operation is performed.
Therefore, (PutRLM) is not satisfied by sl. ut

Lemma 3.8. If ml1 :: [σ1 β ]µ and ml2 :: [σ2 β ]µ are well-behaved then so is ml1on
ml2 :: [σ1  (σ1onσ2) σ2]µ . ♦

Proof. It suffices to consider the two lenses l1 =MLens fst putL createL and l2 =MLens snd putR createR
in isolation. Moreover, the two cases are completely symmetric, so we only show the
first.

For (MGetPut), we show:

do {l1.mput (s1,s2) (l1.mget (s1,s2))}
= [[ definition ]]

do {putL (s1,s2) (fst (s1,s2))}
= [[ definition of putL and fst ]]

do {s′2← right.mput s2 (left.mget s1)}
= [[ (s1,s2) consistent ]]

do {s′2← right.mput s2 (right.mget s2)}
= [[ (MGetPut) ]]

return s

The proof for (MPutGet) does not: [JG: does not what?]

do {(s′1,s′2)← l1.mput (s1,s2) v;return ((s′1,s
′
2), l1.mget (s′1,s

′
2))}

= [[ definition ]]
do {(s′1,s′2)← putR (s1,s2) v;return ((s′1,s

′
2), fst (s′1,s

′
2))}

= [[ definition ]]
do {s′′2 ← ml2.mput s2 (ml1.mget v);(s′1,s

′
2)← return (v,s′′2);return ((s′1,s

′
2), fst (s′1,s

′
2))}

= [[ definition of fst ]]
do {s′′2 ← ml2.mput s2 (ml1.mget v);(s′1,s

′
2)← return (v,s′′2);return ((s′1,s

′
2),s

′
1)

= [[ monad laws ]]
do {s′′2 ← ml2.mput s2 (ml1.mget v);(s′1,s

′
2)← return (v,s′′2);return ((s′1,s

′
2),v)}

= [[ definition ]]
do {(s′1,s′2)← putL (s1,s2) v;return ((s′1,s

′
2),v)}

= [[ definition ]]
do {(s′1,s′2)← l1.mput (s1,s2) v;return ((s′1,s

′
2),v)}

The proof for (MCreateGet) is similar.
Finally, we show that putL :: (σ1onσ2)→ σ1 → µ (σ1onσ2), and in particular, that

it maintains the consistency invariant on the state space σ1onσ2. Assume that (s1,s2) ::
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σ1onσ2 and s′1 :: σ1 are given. Thus, ml1.mget s1 = ml2.mget s2. We must show that any
value returned by putL also satisfies this consistency criterion. By definition,

putL (s1,s2) s′1 = do {s′2← ml2.mput s2 (ml1.mget s′1);return (s′1,s
′
2)}

By (MPutGet), any s′2 resulting from ml2.mput s2 (ml1.mget s′1) will satisfy ml2.mget s′2 =
ml1.mget s′1. The proof that createL :: σ1→ µ (σ1onσ2) is similar, but simpler. ut

Theorem 3.10. If sp :: [A  S B]M is well-behaved, then span2smlens sp is also well-
behaved. ♦

Proof. Let sl= span2smlens sp. We need to show that the laws (PutRLM) and (PutLRM)
hold. We show (PutRLM), and (PutLRM) is symmetric.

[JRC: TODO: Need to update this] We need to show that

do {(b′,mc′)← sl.mputR (a,mc);sl.mputL (b′,mc′)}
=

do {(b′,mc′)← sl.mputR (a,mc);return (a,mc′)}

There are two cases, depending on whether the initial state mc is Nothing or Just c for
some c.

If mc = Nothing then we reason as follows:

do {(b′,mc′)← sl.mputR (a,Nothing);sl.mputL (b′,mc′)}
= [[ Definition ]]

do {s′← sp.left.mcreate a;(b′,mc′)← (sp.right.mget s′,Just s′);sl.mputL (b′,mc′)}
= [[ monad unit ]]

do {s′← sp.left.mcreate a;sl.mputL (sp.right.mget s′,Just s′)}
= [[ definition ]]

do {s′← sp.left.mcreate a;s′′← sp.right.mput s′ (sp.right.mget s′);return (sp.left.mget s′′,Just s′′)}
= [[ (MGetPut) ]]

do {s′← sp.left.mcreate a;s′′← return s′;return (sp.left.mget s′′,Just s′′)}
= [[ monad unit ]]

do {s′← sp.left.mcreate a;return (sp.left.mget s′,Just s′)}
= [[ labelMCreateGet ]]

do {s′← sp.left.mcreate a;return (a,Just s′)}
= [[ monad unit ]]

do {s′← sp.left.mcreate a;(b′,mc′)← (sp.right.get s′,Just s′);return (a,mc′)−}
= [[ Definition ]]

do {(b′,mc′)← sl.mputR (a,Nothing);return (a,mc′)}

If mc = Just c then we reason as follows:

do {(b′,mc′)← sl.mputR (a,Just s);sl.mputL (b′,mc′)}
= [[ Definition ]]

do {s′← sp.left.mput s a;(b′,mc′)← (sp.right.mget s′,Just s′);sl.mputL (b′,mc′)}
= [[ monad unit ]]

do {s′← sp.left.mput s a;sl.mputL (sp.right.mget s′,Just s′)}
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= [[ definition ]]
do {s′← sp.left.mput s a;s′′← sp.right.mput s′ (sp.right.mget s′);return (sp.left.mget s′′,Just s′′)}

= [[ (MGetPut) ]]
do {s′← sp.left.mput s a;s′′← return s′;return (sp.left.mget s′′,Just s′′)}

= [[ monad unit ]]
do {s′← sp.left.mput s a;return (sp.left.mget s′,Just s′)}

= [[ (MPutGet) ]]
do {s′← sp.left.mput s a;return (a,Just s′)}

= [[ monad unit ]]
do {s′← sp.left.mput s a;(b′,mc′)← (sp.right.get s′,Just s′);return (a,mc′)}

= [[ Definition ]]
do {(b′,mc′)← sl.mputR (a,Just c);return (a,mc′)}

ut
ut

Theorem 3.12. If sl :: SMLens Id C A B is well-behaved, then smlens2span sl is also
well-behaved, with state space S consisting of the consistent triples of sl. ♦

Proof. First we show that, given a symmetric lens sl, the operations of sp= smlens2span sl
preserve consistency of the state. Assume (a,b,c) is consistent. To show that sp.left.mput (a,b,c) a′

is consistent for any a′, we have to show that (a′,b′,c′) is consistent, where a′ is arbi-
trary and (b′,c′) = sl.mputR (a′,c). For one half of consistency, we have:

sl.mputL (b′,c′)
= [[ sl.mputR (a′,c) = (b′,c′), and (PutRLM) ]]
(a′,c′)

and then for the other half:

sl.mputR (a′,c′)
= [[ above, and (PutLRM) ]]
(b′,c′)

as required. The proof that sp.right.mput (a,b,c) b′ is consistent is dual. [JRC: This is
the part that’s non-obvious how to generalize for T other than Id!]

We will now show that smlens2span sl is a well-behaved span for any symmetric
lens sl. For (MGetPut), we proceed as follows:

sl.left.mput (a,b,c) (sl.left.mget (a,b,c))
= [[ Definition ]]

do {(b′,c′)← sl.mputR (a,c);return (a,b′,c′)}
= [[ Consistency of (a,b,c) ]]

do {(b′,c′)← return (b,c);return (a,b′,c′)}
= [[ monad unit ]]

return (a,b,c)

For (MPutGet), we have:

do {s′← sl.left.put (a,b,c) a′;return (sl.left.mget s′,s′)}
= [[ Definition ]]
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do {(b′,c′)← sl.mputR (a′,c);s′← return (a′,b′,c′);return (sl.left.mget s′,s′)}
= [[ monad unit ]]

do {(b′,c′)← sl.mputR (a′,c);return (sl.left.mget (a′,b′,c′),(a′,b′,c′))}
= [[ Definition ]]

do {(b′,c′)← sl.mputR (a′,c);return (a′,(a′,b′,c′))}
= [[ monad unit ]]

do {(b′,c′)← sl.mputR (a′,c);s′← return (a′,b′,c′);return (a′,s′)}
= [[ Definition ]]

do {s′← sl.left.put (a,b,c) a′;return (a′,s′)}

The proof for (MCreateGet) is similar. For (MPutGet), we have:

do {s← sl.left.create a;return (sl.left.mget s,s)}
= [[ Definition ]]

do {(b′,c′)← sl.mputR (a′,c);s′← return (a′,b′,c′);return (sl.left.mget s′,s′)}
= [[ monad unit ]]

do {(b′,c′)← sl.mputR (a′,c);return (sl.left.mget (a′,b′,c′),(a′,b′,c′))}
= [[ Definition ]]

do {(b′,c′)← sl.mputR (a′,c);return (a′,(a′,b′,c′))}
= [[ monad unit ]]

do {(b′,c′)← sl.mputR (a′,c);s′← return (a′,b′,c′);return (a′,s′)}
= [[ Definition ]]

do {s← sl.left.create a;return (a,s)} ut

C Proofs for Section 4

Lemma C.1. Suppose l1 ::A B and l2 ::C B are pure lenses. Then (l1on l2).left ; l1 =
(l1 on l2).right ; l2. ♦

Proof. We show that each component of (l1on l2).left ; l1 equals the corresponding com-
ponent of (l1 on l2).right ; l2.

For get:

(l1 on l2).left ; l1).get (a,c)
= [[ Definition ]]

l1.get (l1 on l2).left.get (a,c))
= [[ Definition ]]

l1.get a
= [[ Consistency ]]

l2.get c
= [[ Definition ]]

l2.get (l1 on l2).right.get (a,c))
= [[ Definition ]]
(l1 on l2).right ; l2).get (a,c)

For put:
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(l1 on l2).left ; l1).put (a,c) b
= [[ Definition ]]
(l1 on l2).left.put (a,c) (l1.put ((l1 on l2).get (a,c)) b)

= [[ Definition ]]
(l1 on l2).left.put (a,c) (l1.put a b)

= [[ Definition ]]
let a′ = l1.put a b in
let c′ = l2.put c (l1.get a′) in (a′,c′)

= [[ inline let ]]
(l1.put a b, l2.put c (l1.get (l1.put a b)))

= [[ (PutGet) ]]
(l1.put a b, l2.put c b)

= [[ reverse above steps ]]
(l1 on l2).right ; l2).put (a,c) b

Finally, for create:

(l1 on l2).left ; l1).create b
= [[ Definition ]]
(l1 on l2).left.create (l1.create b)

= [[ Definition ]]
let c = l2.create (l1.get (l1.create b)) in (l1.create b,c)

= [[ (CreateGet) ]]
let c = l2.create b in (l1.create b,c)

= [[ Inline let ]]
(l1.create b, l2.create b)

= [[ reverse above steps ]]
(l1 on l2).right ; l2).create b

ut

Theorem 4.3. Given sp1 :: [A  S1 B]M and sp2 :: [A  S2 B]M , if sp1 ≡s sp2 then
there exists a pure span sp :: S1  S S2 such that sp.left ; sp1.left = sp.right ; sp2.left
and sp.left ; sp1.right = sp.right ; sp2.right. ♦

Proof. Let sp1 and sp2 be given such that sp1 ≡s sp2. The proof is by induction on the
length of the sequence of y steps linking sp1 to sp2.

If sp1 = sp2 then the result si immediate. If sp1 y sp2 then we can complete a
span between S1 and S2 using identity lenses. For the inductive case, suppose that the
result holds for sequences of up to n y steps, and suppose sp1 ≡s sp2‘ holds bn n
y or y steps. There are two cases, depending on the direction of the first step. If
sp1 x sp 3 ≡s sp2 then by induction we must have a pure span sp between S3 and S2
and sp1 x sp 3 holds by virtue of a lens h :: S3→ S1, so we can simply compose h with
sp.left to obtain the required span between S1 and S2. Otherwise, if sp1 y sp 3 ≡s sp2
then by induction we must have a pure span sp between S3 and S2 and we must have
a lens h :: S1λ to S3, so we use Lemma C.1 to form a span sp′ :: S1  S1onS3 S3 and
extend sp′.right with sp.right to form the required span between S1 and S3. ut
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Theorem 4.8. Given sp1 :: [A  S1  B]M,sp2 :: [A  S2  B]M , if sp1 ≡s sp2 then
sp1 ≡b sp2. ♦

Proof. We give the details for the case sp1 y sp2. First, write (l1,r1)= sp1 and (l2,r2)=
sp2, and suppose l :: S1 S2 is a lens satisfying l1 = l ; l2 and r1 = l ; r2.

We need to define a bisimulation consisting of a set R ⊆ S1× S2 and a span sp =
(l0,r0) :: [A  R B]M such that fst maps R to S1 and snd maps sp to sp2. We take
R = {(s1,s2) | s2 = l.get (s1)} and proceed as follows:

l0 :: [R A]M
l0.mget (s1,s2) = l1.mget s1
l0.mput (s1,s2) a = do {s1← l1.mput s1 a;return (s1, l ·get s1)}
l0.mcreate a = do {s1← l1.mcreate a;return (s1, l ·get s1)}
r0 :: [R B]M
r0.mget (s1,s2) = r1.mget s1
r0.mput (s1,s2) b = do {s1← r1.mput s1 b;return (s1, l ·get s1)}
r0.mcreate b = do {s1← r1.mcreate a;return (s1, l ·get s1)}

We must now show that l0 and r0 are well-behaved (full) lenses, and that the projections
fst and snd map sp = (l0,r0) to sp1 and sp2 respectively.

We first show that l0 is well-behaved; the reasoning for r0 is symmetric. For (MGetPut)
we have:

l0.mput (s1,s2) (l0.mget (s1,s2))
= [[ Definition ]]

do {s′1← l1.mput s1 (l1.mget s1);return (s′1, l ·get s′1)}
= [[ labelMPutGet ]]

do {s′1← return s1;return (s′1, l ·get s′1)}
= [[ Monad unit ]]

return (s1, l ·get s1)
= [[ s2 = l ·get s1 ]]

return (s1,s2)

For (MPutGet) we have:

do {(s′′1 ,s′′2)← l0.mput (s1,s2) a;return ((s′′1 ,s
′′
2), l0.mget (s′′1 ,s

′′
2))}

= [[ Definition ]]
do {s′1← l1.mput s1 a;(s′′1 ,s

′′
2)← return (s′1, l ·get s′1);return ((s′′1 ,s

′′
2), l1.mget s′1)}

= [[ Monad unit ]]
do {s′1← l1.mput s1 a;return ((s′1, l ·get s′1), l1.mget s′1)}

= [[ (MPutGet) ]]
do {s′1← l1.mput s1 a;return ((s′1, l ·get s′1),a)}

= [[ Monad unit ]]
do {s′1← l1.mput s1 a;(s′′1 ,s

′′
2)← return (s′1, l ·get s′1);return ((s′′1 ,s

′′
2),a)}

= [[ Definition ]]
do {(s′′1 ,s′′2)← l0.mput (s1,s2) a;return ((s′′1 ,s

′′
2),a)}

Finally, for (MCreateGet) we have:
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do {(s1,s2)← l0.mcreate a;return ((s1,s2), l0.mget (s1,s2))}
= [[ Definition ]]

do {s′1← l1.mcreate a;(s1,s2)← return (s′1, l ·get s′1);return ((s1,s2), l1.mget s1)}
= [[ Monad unit ]]

do {s′1← l1.mcreate a;return ((s′1, l ·get s′1), l1.mget s′1)}
= [[ (MPutGet) ]]

do {s′1← l1.mcreate a;return ((s′1, l ·get s′1),a)}
= [[ Monad unit ]]

do {s′1← l1.mcreate a;(s1,s2)← return (s′1, l ·get s′1);return ((s1,s2),a)}
= [[ Definition ]]

do {(s1,s2)← l0.mcreate a;return ((s1,s2),a)}

Next, we show that fst maps (l0,R) to (l1,S1) and snd maps (l0,R) to (l2,S2). More-
over, it is easy to show that fst maps (l0,R) to (l1,S1) by unfolding definitions and easy
applications of monad laws. To show that snd maps (l0,R) to (l2,S2), we need to ver-
ify the following three equations that show that snd commutes with mget, mput and
mcreate:

l0.mget (s1,s2) = l2.mget s2
do {(s′1,s′2)← l0.mput (s1,s2) a;return s′2}= l2.mput s2 a
do {(s1,s2)← l0.mcreate a;return s2} = l2.mcreate a

For the mget equation:

notice that since | (s1,s2) ∈ R |,we have
l0.mget (s1,s2)

= [[ Definition ]]
l2.mget s2

= [[ (s1,s2) ∈ R means s2 = l ·get s1 ]]
l2.mget (l ·get s1)

= [[ Definition of lens composition ]]
(l ; l2).mget s1

= [[ l ; l2 = l1 ]]
l1.mget s1

For the mput equation:

do {(s′1,s′2)← l0.mput (s1,s2) a;return s′2}
= [[ Definition ]]

do {s′′1 ← l1.mput s1 a;(s′1,s
′
2)← return (s′′1 , l ·get s′′1);return s′2}

= [[ Monad laws ]]
do {s′′1 ← l1.mput s1 a;return (l ·get s′′1)}

= [[ l ; l2 = l1 ]]
do {s′′1 ← (l ; l2).mput s1 a;return (l ·get s′′1)}

= [[ Definition ]]
do {s′′2 ← l2.mput (l.get s1) a;s′′1 ← return (l.put s′′2 s1);return (l ·get s′′1)}

= [[ Monad laws ]]
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do {s′′2 ← l2.mput (l.get s1) a;return (l ·get (l.put s′′2 s1))}
= [[ (PutGet) ]]

do {s′′2 ← l2.mput (l.get s1) a;return s′′2 }
= [[ (s1,s2) ∈ R so l.get s1 = s2 ]]

do {s′′2 ← l2.mput s2 a;return s′′2 }
= [[ Monad laws ]]

l2.mput s2 v

For the mcreate equation:

do {(s1,s2)← l0.mcreate a;return s′2}
= [[ Definition ]]

do {s′1← l1.mcreate a;(s1,s2)← return (s′1, l.get s′1);return s2}
= [[ Monad laws ]]

do {s′1← l1.mcreate a;return (l.get s′1)}
= [[ l ; l2 = l1 ]]

do {s′1← (l ; l2).mcreate a;return (l.get s′1)}
= [[ Definition ]]

do {s′2← l2.mcreate a;s′1← return l.create s′2;return (l.get s′1)}
= [[ Monad laws ]]

do {s′2← l2.mcreate a;return (l.get (l.create s′2))}
= [[ (CreateGet) ]]

do {s′2← l2.mcreate a;return s′2}
= [[ Monad laws ]]

l2.mcreate a

Similar reasoning suffices to show that fst maps (r0,R) to (r1,S1) and snd maps (r0,R)
to (r2,S2), so we can conclude that R and (l,r) constitute a bisimulation between sp1
and sp2, that is, sp1 ≡b sp2. ut

Theorem 4.9. Given sp1 ::A  S1 B,sp2 ::A  S2 B, if sp1 ≡b sp2 then sp1 ≡s sp2.
♦

Proof. For convenience, we again write sp1 = (l1,r1) and sp2 = (l2,r2). We are given
R and a span sp ::A  R B constituting a bisimulation sp1 ≡b sp2. For later reference,
we list the properties that must hold by virtue of this bisimulation for any (s1,s2) ∈ R:

l0.get (s1,s2) = l1.get s1 l0.get (s1,s2) = l2.get s2
fst (l0.put (s1,s2) a) = l1.put s1 a snd (l0.put (s1,s2) a) = l2.put s2 a
fst (l0.create a) = l1.create s1 snd (l0.create a) = l2.create a
r0.get (s1,s2) = r1.get s1 r0.get (s1,s2) = r2.get s2
fst (r0.put (s1,s2) b) = r1.put s1 b snd (r0.put (s1,s2) b) = r2.put s2 b
fst (r0.create b) = r1.create s1 snd (r0.create b) = r2.create b

In addition, it follows that:

l0.put (s1,s2) a = (l1.put s1 a, l2.put s2 a) ∈ R
r0.put (s1,s2) b = (r1.put s1 b,r2.put s2 b) ∈ R
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l0.create a = (l1.create a, l2.create a) ∈ R
r0.create b = (r1.create b,r2.create b) ∈ R

which also implies the following ‘twist’ equations:

r1.get (l1.put s1 a) = r0.get (l1.put s1 a, l2.put s2 a) = r2.get (l2.put s2 a)
l1.get (r1.put s1 b) = l0.get (r1.put s1 b,r2.put s2 b) = l2.get (r2.put s2 b)
r1.get (l1.create a) = r0.get (l1.create a, l2.create a) = r2.get (l2.create a)
l1.get (r1.create a) = l0.get (r1.create a,r2.create a) = l2.get (r2.create a)

It suffices to construct a span (l,r) :: S1  R S2 satisfying l ; l1 = r ; l2 and l ; r1 =
r ; r2. Define l and r as follows:

l.get = fst r.get = snd
l.put (s1,s2) s′1 = l0.put (s1,s2) (l1.get s′1) r.put (s1,s2) s′2 = l0.put (s1,s2) (l2.get s′2)
l.create s1 = l0.create (l1.get s1) r.create s2 = l0.create (l2.get s2)

Notice that by construction l :: R S1 and r :: R S2, that is, since we have used l0
and r0 to define l and r, we do not need to do any more work to check that the pairs
produced by create and put remain in R. Notice also that l and r only use the lenses l1
and l2, not r1 and r2; we will show nevertheless that they satisfy the required properties.

First, to show that l ; l1 = r ; l2, we proceed as follows for each operation. For get:

(l ; l1).get (s1,s2)
= [[ definition ]]

l1.get (l.get (s1,s2))
= [[ definition of l.get = fst, fst commutes with get ]]

l0.get (s1,s2)
= [[ reverse reasoning ]]
(r ; l2).get (s1,s2)

For put, we have:

(l ; l1).put (s1,s2) a
= [[ Definition ]]

l.put (s1,s2) (l1.put s1 a)
= [[ Definition ]]

l0.put (s1,s2) (l1.get (l1.put s1 a))
= [[ (PutGet) for l1 ]]

l0.put (s1,s2) a
= [[ (PutGet) for l2 ]]

l0.put (s1,s2) (l2.get (l2.put s2 a))
= [[ Definition ]]

r.put (s1,s2) (l2.put s2 a)
= [[ Definition ]]
(r ; l2).put (s1,s2) a

Finally, for create we have:
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(l ; l1).create a
= [[ Definition ]]

l.create (l1.create a)
= [[ Definition ]]

l0.create (l1.get (l1.create a))
= [[ (CreateGet) for l1 ]]

l0.create a
= [[ (CreateGet) for l2 ]]

l0.create (l2.get (l2.create a))
= [[ Definition ]]

r.create (l2.create a)
= [[ Definition ]]
(r ; l2).create a

Next, we show that l ; r1 = r ; r2. For get:

(l ; r1).get (s1,s2)
= [[ Definition ]]

r1.get (l.get (s1,s2))
= [[ definition of l.get = fst, fst commutes with r1.get ]]

r0.get (s1,s2)
= [[ reverse above reasoning ]]
(r ; r2).get (s1,s2)

For put, we have:

(l ; r1).put (s1,s2) b
= [[ Definition ]]

l.put (s1,s2) (r1.put s1 b)
= [[ Definition ]]

l0.put (s1,s2) (l1.get (r1.put s1 b))
= [[ Do the twist ]]

l0.put (s1,s2) (l2.get (r2.put s2 b))
= [[ Definition ]]

r.put (s1,s2) (r2.put s2 b)
= [[ Definition ]]
(r ; r2).put (s1,s2) b

Finally, for create we have:

(l ; r1).create b
= [[ Definition ]]

l.create (r1.create b)
= [[ Definition ]]

l0.create (l1.get (r1.create b))
= [[ Do the twist ]]

l0.create (l2.get (r2.create b))
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= [[ Definition ]]
r.create (r2.create b)

= [[ Definition ]]
(r ; r2).create b

We must also show that l and r are well-behaved full lenses. To show that l is well-
behaved, we proceed as follows. For (GetPut):

l.get (l.put (s1,s2) s′1)
= [[ Definition ]]

fst (l0.put (s1,s2) (l1.get s′1))
= [[ fst commutes with put ]]

l1.put s1 (l1.get s′1))
= [[ (GetPut) for l1 ]]

s′1

For (PutGet):

l.put (s1,s2) (l.get (s1,s2))
= [[ Definition ]]

l0.put (s1,s2) (l1.get s1)
= [[ Eta-expansion for pairs ]]
(fst (l0.put (s1,s2) (l1.get s1)),snd (l0.put (s1,s2) (l1.get s1)))

= [[ fst, snd commutes with put ]]
(l1.put s1 (l1.get s1), l2.put s2 (l1.get s1))

= [[ l1.get s1 = l2.get s2 ]]
(l1.put s1 (l1.get s1), l2.put s2 (l2.get s2))

= [[ (PutGet) for l1, l2 ]]
(s1,s2)

For (CreateGet):

l.create (l.get (s1,s2))
= [[ Definition ]]

l0.create (l1.get s1)
= [[ Eta-expansion for pairs ]]
(fst (l0.create (l1.get s1)),snd (l0.create (l1.get s1)))

= [[ fst, snd commutes with put ]]
(l1.create (l1.get s1), l1.create (l1.get s1))

= [[ l1.get s1 = l2.get s2 ]]
(l1.create (l1.get s1), l1.create (l12.get s2))

= [[ (CreateGet) ]]
(s1,s2)

Finally, notice that l and r are defined symmetrically so essentially the same reasoning
shows r is well-behaved.

To conclude, sp = (l,r) constitutes a span of lenses witnessing that sp1 ≡s sp2. ut


