Patterns in Datatype-Generic Programming

Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
jeremy.gibbons@comlab.ox.ac.uk

Abstract. Generic programming consists of increasing the expressive-
ness of programs by allowing a wider variety of kinds of parameter than
is usual. The most popular instance of this scheme is the C++ Standard
Template Library. Datatype-generic programming is another instance,
in which the parameters take the form of datatypes. We argue that
datatype-generic programming is sufficient to express essentially all the
genericity found in the Standard Template Library, and to capture the ab-
stractions motivating many design patterns. Moreover, datatype-generic
programming is a precisely-defined notion with a rigorous mathemati-
cal foundation, in contrast to generic programming in general and the
C++ template mechanism in particular, and thereby offers the prospect
of better static checking and a greater ability to reason about generic
programs. This paper describes work in progress.

1 Introduction

Generic programming [28,19] is a matter of making programs more adaptable
by making them more general. In particular, it consists of allowing a wider vari-
ety of entities as parameters than is available in more traditional programming
languages.

The most popular instantiation of generic programming today is through
the C++ Standard Template Library (STL). The STL is basically a collection of
container classes and generic algorithms operating over those classes. The STL
is, as the name suggests, implemented in terms of C++’s template mechanism,
and thereby lies both its flexibility and its intractability.

Datatype-generic programming (DGP) is another instantiation of the idea of
generic programming. DGP allows programs to be parameterized by a datatype
or type functor. DGP stands and builds on the formal foundations of category
theory and the Algebra of Programming movement [8,7,10], and the language
technology of Generic Haskell [22,12].

In this paper, we argue that DGP is sufficient to express essentially all the
genericity found in the STL. In particular, we claim that various programming
idioms that can at present only be expressed informally as design patterns [17]
could be captured formally as datatype-generic programs. Moreover, because
DGP is a precisely-defined notion with a rigorous mathematical foundation, in
contrast to generic programming in general and the C++ template mechanism

2 Jeremy Gibbons

in particular, this observation offers the prospect of better static checking of and
a greater ability to reason about generic programs than is possible with other
approaches.

This paper describes work in progress — in fact, it describes work largely in
the future. The United Kingdom’s Engineering and Physical Sciences Research
Council is funding a project called Datatype Generic Programming, starting
around September 2003. The work described in this paper will constitute about a
third of that project; a second strand, coordinated by Roland Backhouse at Not-
tingham, is looking at more of the underlying theory, including logical relations
for modular specifications, higher-order naturality properties, and termination
through well-foundedness; the remainder of the project consists of an integrative
case study.

The rest of this paper is structured as follows. Section 2 describes the prin-
ciples underlying the C++ Standard Template Library. Section 3 motivates and
defines Datatype-Generic Programming, and explains how it differs from a num-
ber of similar approaches to genericity. Section 4 discusses the Design Patterns
movement, and presents our case for the superiority of datatype genericity over
informal prose for capturing patterns. Section 5 concludes by outlining our future
plans for the DGP project.

2 Principles Underlying the STL

The STL [6] is structured around four underlying notions: container types, itera-
tors, algorithms, and function objects. These notions are grouped into a hierarchy
(in fact, a directed acyclic graph) of concepts, representing different abstractions
and their relationships. The library is implemented using the C++ template
mechanism, which is the only means of writing generic programs in C++. This
section briefly analyzes these six principles, from a functional programmer’s point
of view.

2.1 The C++ Template Mechanism

The C++ template mechanism provides a means for classes and functions to be
parametrized by types and (integral, enumerated or pointer) values. This allows
the programmer to express certain kinds of abstraction that otherwise would
not be available. A typical example of a function parametrized by a type is the
function swap below:

template(class T')
void swap(T& a, T& b) {T c=a;a=0b;b=c¢;}

main() {
int 9 = 3,9 = 4; swap{int) (i1, i2);
double d; = 3.5, dy = 4.5; swap(double)(d;, dz);
}

Patterns in Datatype-Generic Programming 3

The same function template is instantiated at two different types to yield two
different functions. Container classes form typical examples of parametrization
of a class by a type; the example below shows the outline of a Vector class
parametrized by size and by element type.

template(class T,int size)
class Vector {private : T values[size];...};

main() {

Vector(int, 3) v;

Vector(Vector (double, 100), 100) matriz;
}

The same class template is instantiated three times, to yield a one-dimensional
vector of three integers and a two-dimensional 100-by-100 matrix of doubles.

A template is to all intents and purposes a macro; little is or can be done with
it until the parameters are instantiated, but the instantiations that this yields
are normal code and can be checked, compiled and optimized in the usual way. In
fact, the decision about which template instantiations are necessary can only be
made when the complete program is available, namely at link time, and typically
the linker has to call the compiler to generate the necessary instantiations.

The C++ template mechanism is really a special-purpose, meta-programming
technique, rather than a general-purpose generic-programming technique. Meta-
programming consists of writing programs in one language that generate or oth-
erwise manipulate programs written in another language. The C++ template
mechanism is a matter of meta-programming rather than programming because
templated code is not actually ‘real code’ at all: it cannot be type-checked, com-
piled, or otherwise manipulated until the template parameter is instantiated.
Some errors in templated code, such as syntax errors, can be caught before
instantiation, but they are in the minority; static checking of templates is essen-
tially impossible. Thus, a class template is not a formal construct with its own
semantics — it is one of the ingredients from which such a formal entity can be
constructed, but until the remaining ingredients are provided it is merely a tex-
tual macro. In a programming language that offers such a template mechanism
as its only support for generic programming, there is no hope for a calculus of
generic programs: at best there can be a calculus of their specific instances.

The template mechanism is a special-purpose, as opposed to general-purpose,
meta-programming technique, because only limited kinds of compile-time com-
putation can be performed. Actually, the mechanism provides surprising expres-
sive power: Unruh [38] demonstrated the disquieting possibility of a program
whose compilation yields the prime numbers as error messages, Czarnecki and
Eisenecker [13] show the Turing-completeness of the template mechanism by
implementing a rudimentary LISP interpreter as a template meta-program, and
Alexandrescu [4] presents a tour-de-force of unexpected applications of tem-
plates. But even if technically template meta-programming has great expres-
siveness, it is pragmatically not a convenient tool for generating programs; ap-
plications of the technique feel like tricks rather than general principles. Ev-

4 Jeremy Gibbons

erything computable is expressible, albeit sometimes in unnatural ways. A true
general-purpose meta-programming language would support ‘programs as data’
as first-class citizens, and simple and obvious (as opposed to ‘surprising’) tech-
niques for manipulating such programs [35].

There are several consequences of the fact that templated code is a meta-
program rather than (a fragment of) a pure program. They all boil down to the
fact that separate compilation of the templated code is essentially impossible; it
isn’t real code until it is instantiated. Therefore:

— templated code must be distributed in source rather than binary form, which
might be undesirable (for example, for intellectual property reasons);

— static error checking is in general precluded, and any errors are revealed
only at instantiation time; moreover, error reports are typically verbose and
unhelpful, because they relate to the consequences of a misuse rather than
the misuse itself;

— there is a problem of ‘code bloat’, because different instantiations of the same
templated code yield different units of binary code.

There is work being done to circumvent these problems by resorting to partial
evaluation [39], but there is no immediate sign of a full resolution.

2.2 Container Types

A container type is a type of data structures whose purpose is to contain elements
of another type, and to provide access to those elements. Examples include
arrays, sequences, sets, associative mappings, and so on.

To a functional programmer, this looks like a polymorphic datatype; for ex-
ample,

data List o = Nil | Cons « (List «)

A data structure of type List « for some « will indeed contain elements of type
a, and will (through pattern-matching, for example) provide access to them.
Such polymorphic datatypes can be given a formal semantics via the categorical
notion of a functor [10], an operation simultaneously on types (taking a type «
to the type List) and functions (taking a function of type o — (3 to the map
function of type List « — List [3).

However, that response is a little too simple. Certainly, some polymorphic
datatypes and some functors correspond to container types, but not all do. For
example, consider the polymorphic type

data Transformer a = Trans (o — «)

(The natural way to define this type in Haskell [34] is with a type synonym
rather than a datatype declaration, but we’ve chosen the latter to make the
point clearer.) There is no obvious sense in which a data structure of type
Transformer « ‘contains’ elements of type a. Hoogendijk and de Moor [24] have
shown that one wants to restrict attention to the functors with a membership

Patterns in Datatype-Generic Programming 5

operation. Technically, in their relational setting, the membership of a functor
F is the largest lax natural transformation from F to Id, the identity functor;
informally, membership is a non-deterministic mapping selecting an arbitrary
element from a container data structure. Some functors, such as Transformer,
have no membership operation, and so do not correspond to container types
according to this definition.

2.3 Iterators

The essence of the STL is the notion of an iterator, which is essentially an abstrac-
tion of a pointer. The elements of a container data structure are made accessible
by providing iterators over them; the container typically provides operations
begin() and end() to yield pointers to the first element and to ‘one step beyond’
the last element.

Basic iterators may be compared for equality, dereferenced and incremented.
But there are many different varieties of iterator: input iterators may be deref-
erenced only as R-values (for reading), and output iterators only as L-values (for
writing); forward iterators may be deferenced in both ways, and may also be
copied (so that multiple elements of a data structure may be accessed at once);
bidirectional iterators may also be decremented; and random-access iterators
allow amortized constant-time access to arbitrary elements.

Despite the name, iterators in the STL do not express exactly the same idea as
the ITERATOR design pattern, although they have the same intent of ‘providing a
way to access the elements of an aggregate object sequentially without exposing
its underlying representation’ [17]. In fact, the proposed design in [17] is fairly
close to an STL input iterator: an existing collection may be traversed from
beginning to end, but the identities of the elements in the collection cannot be
changed (although their state may be).

What all these varieties of iterator have in common, though, is that they
point to individual elements of the data structure. This is inevitable given an
imperative paradigm: as Austern [6] puts it, ‘The moving finger writes, and
having writ, moves on’, and although under more refined iterator abstractions
the moving finger may rewrite, and may move backwards as well as forwards, it
is still a finger pointing at a single element of the data structure.

One functional analogue of iterators for traversing a data structure is the
map operator that arises as the functorial action on element functions, acting on
each element independently. More generally, one could point to monadic maps
[15], which act on the elements one by one, using the monad to thread some
‘state’ through the computation.

However, lazy functional programmers are liberated by the availability of
‘new kinds of glue’ [26] for composing units of code, and have other options too.
For example, they may use lists to achieve a similar separation of concerns: the
interface between a collection data structure and its elements is via a list of these
elements. The analogue to the distinction between input and output iterators
(R-values and L-values) is the provision of one function to yield the contents of a

6 Jeremy Gibbons

data structure as a list of elements, and another to generate a new data structure
from a given list of elements.

This functional insight reveals a rather serious omission in the STL approach,
namely that it only allows the programmer to manipulate a data structure in
terms of its elements. This is a very small window through which to view the
data structure itself. A map ignores the shape of a data structure, manipu-
lating the elements but leaving the shape unchanged; iterator-style access also
(deliberately) ignores the shape, flattening it to a list. Neither is adequate for
capturing problems that exploit the shape of the data, such as pretty-printers,
structure editors, transformation engines and so on. A more general framework
is obtained by providing folds to consume data structures and unfolds to gener-
ate them [18] — indeed, the contents and generate functions mentioned above
are instances of folds and unfolds respectively, and a map is both a fold and an
unfold.

2.4 Concepts

We noted in the previous section that the essence of the STL is a hierarchy
of varieties of iterator. In the STL, the members of this hierarchy are called
concepts. Roughly speaking, a concept is a set of requirements on a type (in terms
of the operations that are available, the laws they satisfy, and the asymptotic
complexities in time and space); equivalently, a concept can be thought of as the
set of all types satisfying those requirements.

Concepts are not part of C++; they are merely an artifact of the sTL. An
STL reference manual [6] can do no more than to describe a concept in prose.
Consequently, it is a matter of informal argument rather than formal reasoning
whether a given type is or is not a model of a particular concept. This is a
problem for users of the STL, because it is easy to make mistakes by using an
inappropriate type in a particular context: the compiler cannot in general check
the validity of a particular use, and tracking down errors can be tricky. There
have been some valiant attempts to address this problem by programming idioms
[36, 31] or static analysis [21], but ultimately the language seems to be a part of
the problem here rather than a part of the solution.

The solution seems obvious to the Haskell programmer: use type classes [29].
A type class captures a set of requirements on a type, or equivalently it de-
scribes the set of types that satisfy those requirements. (Type classes are more
than just interfaces: they can provide default implementations of operations
too, and type class inference amounts to automatic selection of an implementa-
tion.) Type classes are only an approximation to the notion of a concept in the
STL sense, because they can capture only the signatures of operations and not
their extensional (laws) or intensional (complexity) semantics. However, they are
statically checkable within the language, which is at least a step forwards: C++
concepts cannot even capture signatures formally. The Haskell collection class
library Edison [11, 33] uses type classes formally in the same way that STL uses
concepts informally.

Patterns in Datatype-Generic Programming 7

2.5 Algorithms and Function Objects

The bulk of the STL, and indeed its whole raison d’étre, is the family of generic
algorithms over container types made possible by the notion of an iterator. These
algorithms are general-purpose operations such as searching, sorting, comparing,
copying, permuting, and so on. Iterators decouple the algorithms from the con-
tainer types on which they operate: the algorithm is described in terms of an
abstract iterator interface, and is then applicable to any container type on which
an appropriate iterator is available.

There is no new insight provided by the algorithms per se; they arise as a
natural consequence of the abstractions provided (whether informally as concepts
or formally as type classes) to access the elements of container types. In the STL,
algorithms are represented as function templates, parametrized by models of the
appropriate iterator concept. To a Haskell programmer, algorithms in this sense
correspond to functions with types qualified by a type class.

The remaining principle on which the STL is built is that of a function object
(sometimes called a ‘functor’, but in a different sense that the functors of cat-
egory theory). Function objects are used to encapsulate function parameters to
algorithms; typical uses are for parametrizing a search function by a predicate
indicating what to search for, or a sorting procedure by an ordering.

Function objects also yield no new insight to the functional programmer.
In the sTL, a function object is represented as an object with a single method
which performs the function. This is essentially an instance of the STRATEGY
design pattern [17]. To a functional programmer, of course, function objects are
unnecessary: functions are first-class citizens of the language, and a function can
be passed as a parameter directly.

3 Datatype Genericity

We propose a new paradigm for generic programming, which we have called
datatype-generic programming (DGP). The essence of DGP is the parametrization
of values (for example, of functions) by a datatype. We use the term ‘datatype’
here in the sense discussed in Section 2.2: a container type, or more formally a
functor with a membership operation. For example, ‘List’ is a datatype, whereas
“4nt’ is merely a type.

(Since a datatype is one type parametrized by another — ‘lists of s, for some
type a’ — and a datatype-generic program is a program parametrized in turn by
such a type-parametrized type, we toyed briefly with the idea of describing our
proposal as for a ‘type-parametrized—type —parametrized theory of programming,
or TPTPTP for short. But we decided that was a bit of a mouthful.)

3.1 An Example of DGP

Consider for example the parametrically polymorphic programs maplist,

8 Jeremy Gibbons

maplist :: (¢ —) — List o — List 3
maplist [Nil = Nil
maplist f (Cons a) = Cons (f a) (maplist | z)

and (for the appropriate definition of the Tree datatype) maptree,

maptree :: (o —) — Tree o — Tree [
maptree f (Tip o) = Tip (f a)
maptree f (Bin x y) = Bin (maptree f x) (maptree f y)

Both of these programs are already quite generic, in the sense that a single piece
of code captures many different specific instances. However, the two programs
are themselves clearly related, and a DGP language would allow their common
features to be captured in a single definition map:

map(Unit) () =()
map(Const a) x =z
map(+) f g (Inl w) = Inl (f u)
map(+) f g (Inr v) = Inr (g v)
map(x) f g (u,v) = (f u,gv)

This single definition is parametrized by a datatype; in this case it is defined by
structural induction over a grammar of datatypes. The two parametrically poly-
morphic programs are of course instances of this one datatype-generic program:
maplist = map(List) and maptree = map(Tree).

At first glance, this looks rather like a generic algorithm that could have come
from the STL, and indeed in this case that is a valid analogy to make: map-like
operations can be expressed in the STL. However, the crucial difference is that
DGP allows a program to exploit the shape of the data on which it operates. For
example, one could write datatype-generic functions to encode a data structure
as a bit string and to decode the bit string to regenerate the data structure
[27]: the shape of the data structure is related to the walue of the bitstring.
A more sophisticated example involves Huet’s ‘Zipper’ [25] for efficiently but
purely functionally representing a tree with a cursor position; different types of
tree require different types of zipper, and it is possible [1, 23] to write datatype-
generic operations on the zipper: here, the shape of one data structure determines
the shape of an auxilliary data structure in a rather complicated fashion. Neither
of these examples are possible with the STL.

3.2 Isn’t This Just...?

As argued above, the parametrization of programs by datatypes is not the same
as generic programming in the STL sense. The latter allows abstraction from the
shape of data, but not exploitation of the shape of data. Indeed, this is why we
chose a new term ‘DGP’ instead of simply using ‘GP’: we would prefer the latter
term, but feel that it has already been appropriated for a more specific use than
we would like. (For example, one often sees definitions such as ‘Generic program-
ming is a methodology for program design and implementation that separates

Patterns in Datatype-Generic Programming 9

data structures and algorithms through the use of abstract requirement specifi-
cations’ [37, p19]. We feel that such definitions reduce generic programming to
good old-fashioned abstraction.)

DGP is not the same thing as meta-programming in general, and template
meta-programming in particular. Meta-programming is a matter of writing pro-
grams that generate or otherwise manipulate other programs. For example, C++
template meta-programs yield ordinary C++ code when instantiated (at least
notionally, although the code so generated is typically never seen); they are not
ordinary C++ programs in their own right. A meta-program for a given pro-
gramming language is typically not a program written in that language, but one
written in a meta-language that generates the object program when instanti-
ated or executed. In contrast, a datatype-generic program is a program in its
own right, written in (perhaps an enrichment of) the language of the object
program.

Neither is DGP the same thing as polymorphism, in any technical sense we
know. It is clearly not the same thing as ordinary parametric polymorphism,
which allows one to write a single program that can manipulate both lists of
integers and lists of characters, but does not allow one to write a single program
that manipulates both lists of integers and trees of integers. We also believe
(but have yet to study this in depth) that DGP is not the same thing as higher-
order parametric polymorphism either, because in general the programs are not
parametric in the functor parameter: if they were, they might manipulate the
shape of data but could not compute with it, as with the encoding and decoding
example cited above.

Nor is it the same thing as dependently typed programming [5], which is a
matter of parametrizing types by values rather than values by types. Dependent
types are very general and powerful, because they allow the types of values
in the program to depend on other values computed by that program; but by
the same token they rule out the possibility of most static checking. (A class
template parametrized by a value rather than a type bears some resemblance to
type dependent on a value, but in C++ the actual template parameters must
be statically determined for instantiation at compile time, whereas dependent
type theory requires no such separation of stages.) It would be interesting to try
to develop a calculus of dependently typed programming, but that is a different
project altogether, and a much harder one too.

Finally, DGP is not simply Generic Haskell [12], although the datatype-generic
program for map we showed above is essentially a Generic Haskell program. The
Generic Haskell project is concentrating on the design and implementation of a
language that supports DGP, but is not directly addressing the problem of devel-
oping a calculus of such programs. Our project has strong connections with the
Generic Haskell project, and we are looking forward to making contributions to
the design based on our theory-driven insights, as the language is making con-
tributions to the theory by posing the question of how it may be used. However,
Generic Haskell is just one possible implementation technique for DGP.

10 Jeremy Gibbons

4 Patterns of Software

A design pattern ‘systematically names, motivates, and explains a general design
that addresses a recurring design problem in object-oriented systems’ [17]. The
intention is to capture best practice and experience in software design in order
to facilitate the education of novices in what constitutes good designs, and the
communication between experts about those good designs. The software patterns
movement is based on the work of Christopher Alexander, who for over thirty
years has been leading a similar movement in architecture [3, 2].

It could be argued that many of the patterns in [17] are idioms for mimicking
DGP in languages that do not properly support such a feature. Because of the
lack of proper language support, a pattern can generally do no better than to
motivate, describe and exemplify an idiom: it can refer indirectly to the idiom,
but not present the idiom directly as a formal construction. For example, the
ITERATOR pattern shows how an algorithm that traverses the elements of a col-
lection type can be decoupled from the collection itself, and so can work with
new and unforeseen collection types; but for each such collection type an appro-
priate new ITERATOR class must be written. (The programmer may be assisted
by the library, as in Java [20], or the language, as in Cf [14], but still has to write
something for each new collection type.) A language that supported DGP would
allow the expression of a single datatype-generic program directly applicable to
an arbitrary collection type: perhaps a function to yield the elements as a lazy
list, or a map operation to transform each element of a collection.

The situation is no better with the STL than with design patterns. We argued
above that iterators in the STL sense are more general than the ITERATOR pat-
tern. Nevertheless, C++ provides no support for defining the iterator concept,
so it too can only be referred to indirectly; and again, for every new collection
type an appropriate implementation of the concept must be provided.

As another example, the VISITOR pattern [17] allows one to decouple a mul-
tivariant datatype (such as abstract syntax trees for a programming language)
from the specific traversals to be performed over that datatype (such as type
checking, pretty printing, and so on), allowing new traversals to be added with-
out modifying and recompiling each of the datatype variants. However, each new
datatype entails a new class of VISITOR, implemented according to the pattern.
A DGP language would allow one to write a single datatype-generic traversal
operator (such as a fold) once and for all multivariant datatypes.

(Alexandrescu [4] does present a ‘nearly generic’ definition of the VISITOR
pattern using clever template meta-programming, but it relies on C++ macros,
and still requires the foresight in designing the class hierarchy to insert a call to
this macro in every class in the hierarchy that might be visited.)

It is sometimes said that patterns cannot be automated; anything that can be
captured completely formally is too restricted to be a proper pattern. Alexander
describes a pattern as giving ‘the core of the solution to [a] problem, in such a
way that you can use this solution a million times over, without ever doing it
the same way twice’ [3]; Gamma et al. state that ‘design patterns are not about
designs such as linked lists and hash tables that can be encoded in classes and

Patterns in Datatype-Generic Programming 11

reused as is’ [17]. We are sympathetic to the desire to ensure that patternity
does not become a synonym for ‘a good idea’, but do not feel that that means
we should give up on attempts to formalize patterns.

Alexander, in his foreword to Gabriel’s book [16], hopes that the software
patterns movement will yield ‘programs which make you gasp because of their
beauty’. We think that’s a goal worth aiming for, however optimistically. We have
yet to see a meta-programming framework that supports beautiful programming
(although we confess to being impressed by the intricate possibilities of template
meta-programming demonstrated by [4]), but we have high hopes that datatype-
generic programs could be breathtakingly beautiful.

5 Future Plans

The DGP project is due to start around September 2003; the work outlined in this
paper constitutes about a third of the total. One of the initial aims of this strand
will be an investigation into the relationships between generic programming (as
exhibited in libraries like the STL), structural and behavioural design patterns
(as described by [17]), and the mathematics of program construction (epitomized
by Hoogendijk and de Moor’s categorical characterization of datatypes [24]).

In the short term, we intend to use the insights gained from this investiga-
tion to prototype a datatype-generic collection library in Generic Haskell [12]
(perhaps as a refinement of Okasaki’s Edison library [33]). This will allow us to
replace type-unsafe meta-programming with type-safe and statically checkable
datatype-generic programming. Ultimately, however, we hope to be able to ap-
ply these insights to programming in more traditional object-oriented languages,
perhaps by compilation from a dedicated DGP language.

But the real purpose of the project will be to generalize theories of program
calculation such as Bird and de Moor’s relational ‘algebra of programming’ [10],
to make it more applicable to deriving the kinds of programs that users of the
STL write. This will link with Backhouse’s strand of the DGP project, which is
looking at more theoretical aspects of datatype genericity: higher-order natural-
ity properties, logical relations, and so on. We intend to build on this work to
develop a calculus for generic programming.

More tangentially, we have been intrigued by similarities between some of
the more esoteric techniques for template meta-programming [13,4] and some
surprising possibilities for computing with type classes in Haskell [32,30,9]. Tt
isn’t clear yet whether those similarities are a coincidence or evidence of some
deeper correspondence; in the light of our arguments in this paper that type
classes are the Haskell analogue of STL concepts, we suspect there may be some
deep connection here.

6 Acknowledgements

The help of the following people and organizations is gratefully acknowledged:

12

Jeremy Gibbons

Roland Backhouse, Graham Hutton, Ralf Hinze and Johan Jeuring, for their
contributions to the DGP grant proposal;
Richard Bird, for inspiring and encouraging this line of enquiry;

Tim Sheard, for his elegant definition of generic programming;
EPSRC grant GR/S27078/01, for financial support.

References

o

10.
11.

12.

13.

14.
15.

16.

17.

18.

19.

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives
of containers. In Martin Hofmann, editor, LNCS 2701: Typed Lambda Calculi and
Applications, pages 16-30. Springer-Verlag, 2003.

. Christopher Alexander. The Nature of Order. Oxford University Press, To appear

in 2003.

Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press,
1977.

Andrei Alexandrescu. Modern C++ Design. Addison-Wesley, 2001.

Lennart Augustsson. Cayenne: A language with dependent types. SIGPLAN
Notices, 34(1):239-250, 1999.

Matthew H. Austern. Generic Programming and the STL. Addison-Wesley, 1999.
R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and
J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, and
G. Scollo, editors, Proceedings of the 2nd Conference on Algebraic Methodology and
Software Technology, AMAST’91, pages 303-326. Springer-Verlag, Workshops in
Computing, 1992.

R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der Woude.
Relational catamorphisms. In Bernhard Moller, editor, Proceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programs from Specifications,
pages 287-318. Elsevier Science Publishers B.V., 1991.

Roland Backhouse and Jeremy Gibbons. Programming with type classes. Presen-
tation at WG2.1#55, Bolivia, January 2001.

Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.
Andrew Bromage. Haskell Foundation Library. www.sourceforge.net/projects/
hf1/, 2002.

Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Loh, and Jan de Wit. The Generic
Haskell user’s guide. Technical Report UU-CS-2001-26, Universiteit Utrecht, 2001.
Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools and Applications. Addison-Wesley, 2000.

Peter Drayton, Ben Albahari, and Ted Neward. CY in a Nutshell. O’Reilly, 2002.
Maarten Fokkinga. Monadic maps and folds for arbitrary datatypes. Dept INF,
Univ Twente, June 1994.

Richard P. Gabriel. Patterns of Software: Tales from the Software Community.
Oxford University Press, 1996.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Jeremy Gibbons. Origami programming. In Jeremy Gibbons and Oege de Moor,
editors, The Fun of Programming. Palgrave, 2003.

Jeremy Gibbons and Johan Jeuring, editors. Generic Programming. Kluwer Aca-
demic Publishers, 2003.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Patterns in Datatype-Generic Programming 13

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification Second Edition. Addison-Wesley, Boston, Mass., 2000.

Douglas Gregor and Sybille Schupp. Making the usage of STL safe. In Gibbons
and Jeuring [19].

Ralf Hinze. Polytypic values possess polykinded types. Science of Computer Pro-
gramming, 43:129-159, 2002. Earlier version appears in LNCS 1837: Mathematics
of Program Construction, 2000.

Ralf Hinze and Johan Jeuring. Weaving a web. Journal of Functional Programming,
11(6):681-689, 2001.

Paul Hoogendijk and Oege de Moor. Container types categorically. Journal of
Functional Programming, 10(2):191-225, 2000.

Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549-554,
September 1997.

John Hughes. Why functional programming matters. Computer Journal, 1989.
Patrik Jansson and Johan Jeuring. Polytypic data conversion programs. Science
of Computer Programming, 43(1):35-72, 2002.

Mehdi Jazayeri, Riidiger G. K. Loos, and David R. Musser, editors. Generic Pro-
gramming. Springer-Verlag, 2000.

Mark P. Jones. Qualified Types: Theory and Practice. DPhil thesis, University of
Oxford, 1992.

Conor McBride. Faking it: Simulating dependent types in Haskell. Journal of
Functional Programming, 12(4&5):375-392, 2002.

Brian McNamara and Yannis Smaragdakis. Static interfaces in C++. In First
Workshop on C++ Template Programming, October 2000.

Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sperber.
Functional logic overloading. In Symposium on Principles of Programming Lan-
guages, pages 233-244, 2002.

Chris Okasaki. An overview of Edison. Haskell Workshop, 2000.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell.
In Haskell Workshop, 2002.

Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric poly-
morphism in C++4. In First Workshop on C++ Template Programming, October
2000.

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library.
Addison-Wesley, 2002.

Erwin Unruh. Prime number computation. ANSI X3J16-94-0075/ISO WG21-462,
1994.

Todd Veldhuizen. Five compilation models for C4++ templates. In First Workshop
on C++ Template Programming, October 2000.

