
Phases in Software Architecture
(architectural pearl)

Jeremy Gibbons
jeremy.gibbons@cs.ox.ac.uk

University of Oxford
Oxford, UK

Donnacha Oisín Kidney
mail@doisinkidney.com
Imperial College London

London, UK

Tom Schrijvers
tom.schrijvers@kuleuven.be

KU Leuven
Leuven, BE

Nicolas Wu
n.wu@imperial.ac.uk

Imperial College London
London, UK

Abstract
The large-scale structure of executing a computation can
often be thought of as being separated into distinct phases.
But the most natural form in which to specify that computa-
tion may well have a different and conflicting structure. For
example, the computation might consist of gathering data
from some locations, processing it, then distributing the re-
sults back to the same locations; it may be executed in three
phases—gather, process, distribute—but mostly conveniently
specified orthogonally—by location.We have recently shown
that this multi-phase structure can be expressed as a novel
applicative functor (also known as an idiom, or lax monoidal
functor). Here we summarize the idea from the perspective
of software architecture. At the end, we speculate about
applications to choreography and multi-tier architecture.

CCS Concepts: • Software and its engineering→ Soft-
ware system structures;Abstraction,modeling andmod-
ularity; Correctness; Functional languages; Control struc-
tures; Patterns; • Theory of computation→ Control prim-
itives; Program reasoning.

Keywords: traversal, applicative functor, fusion, phase sep-
aration, choreography, multi-tier

ACM Reference Format:
Jeremy Gibbons, Donnacha Oisín Kidney, Tom Schrijvers, and Nico-
las Wu. 2023. Phases in Software Architecture: (architectural pearl).
In Proceedings of the 1st ACM SIGPLAN International Workshop
on Functional Software Architecture (FUNARCH ’23), September 8,
2023, Seattle, WA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3609025.3609479

For the purpose of Open Access, the authors have applied a CC BY public
copyright licence to any Author AcceptedManuscript (AAM) version arising
from this submission.
FUNARCH ’23, September 8, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0297-6/23/09.
https://doi.org/10.1145/3609025.3609479

1 Introduction
Consider the problem of sorting the elements of a tree. Given
a tree datatype:
data Tree a = Node a (Forest a)
type Forest a = [Tree a]

and an input tree as on the left below:

3 1 1

5

4 9

2

1 1 3

4

2 5

9

the problem is to extract the elements [3, 1, 4, 1, 5, 9, 2] of
the tree through an in-order traversal, sort this list to obtain
[1, 1, 2, 3, 4, 5, 9], then replace the elements in the new or-
der to get the tree on the right. The problem is admittedly
artificial as stated, but it was introduced by Bird [1] as an
abstraction of compilation tasks like traversing an abstract
syntax tree once in order to gather declarations, resolve any
forward references, then distribute the results back over the
tree.
Of course, the problem can be solved directly by a pro-

gram following that description: traverse the tree to get a
list, sort the list, traverse the tree again to distribute the list.
And indeed, operationally that may be what should happen.
However, the two traversals have the same structure, and it
is clumsy to have to specify this structure twice. Bird’s argu-
ment was that lazy evaluation (in particular, letrec) allows
one to express the program with a single traversal of the
tree, by fusing the two traversals into one. One may argue
about whether Bird’s solution actually leads dynamically
to a single traversal of the tree, but that argument is not
our concern here: it is clear that Bird’s program statically
describes only a single traversal.
In response to Bird’s paper, Pettorossi [13, 14] showed

that laziness and circularity are not actually needed: higher-
order lambda abstraction suffices. We have shown [7] that
in fact Bird’s and Pettorossi’s solutions are really essentially

https://orcid.org/0000-0002-8426-9917
https://orcid.org/0000-0003-4952-7359
https://orcid.org/0000-0001-8771-5559
https://orcid.org/0000-0002-4161-985X
https://doi.org/10.1145/3609025.3609479
https://doi.org/10.1145/3609025.3609479
https://doi.org/10.1145/3609025.3609479

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Jeremy Gibbons, Donnacha Oisín Kidney, Tom Schrijvers, and Nicolas Wu

the same. One may view them both as specifying a multi-
phase computation (gather, process, distribute) then execut-
ing it. Bird uses laziness to delay certain evaluation until it is
needed; Pettorossi constructs a closure before applying it to
the needed value. We explicate the multi-phase computation
that is the essence of both solutions.
Concretely, we define a type Phases m a parametrized by

a type m of effects and a return type a, representing a multi-
phase computationwith effect inm and returning an a. When
m is an Applicative functor [10], so too is Phases m. There
are functions

phase :: Applicative m⇒ Int → m a→ Phases m a
runPhases :: Applicative m⇒ Phases m a→ m a

to inject a computation in one phase of a multi-phase com-
putation, and to sequence the phases. Sorting a tree uses
the effects State [a] to act on a state consisting of the list of
elements:

sortTree :: Ord a⇒ Tree a→ Tree a
sortTree t = evalState (runPhases (sortTreeAux t)) []

sortTreeAux :: Ord a⇒ Tree a→ Phases (State [a]) (Tree a)
sortTreeAux t
= phase 1 (traverse (λx → push x) t) ∗›
phase 2 (modify sort) ∗›
phase 3 (traverse (λx → pop) t)

(here, evalState :: State s a→ (s→ a) is a standard function
for the State monad). The traversal in phase 1 gathers ele-
ments; phase 2 sorts the list, without touching the tree; the
traversal in phase 3 distributes the elements back over the
tree. Crucially, the specifications of actions in different phases
commute, even when their executions do not; after all, “do
X now and Y later” is equivalent to “do Y later and X now”.
So we can permute the phases to bring the two traversals
together:

sortTreeAux t
= phase 2 (modify sort) ∗›
phase 1 (traverse (λx → push x) t) ∗›
phase 3 (traverse (λx → pop) t)

and then fuse the two traversals into one:

sortTreeAux t
= phase 2 (modify sort) ∗›
traverse (λx → phase 1 (push x) ∗› phase 3 pop) t

which has manifestly only a single traversal. The details are
in the paper [7].

Our purpose in this short note is to raise awareness of the
multi-phase construction, in the hope that it can be a useful
functional software architecture technique. We can merely
sketch the ideas here, but the full details are in the paper.

2 Applicative programming with effects
Moggi [11] and Wadler [18] famously showed that effectful
programs could be written in a pure functional language
using monads. McBride and Paterson [10] showed later that
the slightly less powerful abstraction of applicative functors
often suffice, with some advantages. We will use the latter:

class Functor m⇒ Applicative mwhere
pure :: a→ m a
(‹∗›) ::m (a→ b) → m a→ m b

(subject to some laws, omitted for brevity). Thus, plain values
can be lifted to pure computations, and one can sequence
two computations and combine their results. From this we
can derive combination by pairing:

(⊗) :: Applicative m⇒ m a→ m b→ m (a, b)
xs ⊗ ys = pure (,) ‹∗› xs ‹∗› ys

(here, (,) :: a → b → (a, b) is curried pairing) and biased
sequencing, discarding the result from the first computation:

(∗›) :: Applicative m⇒ m a→ m b→ m b
xs ∗› ys = fmap snd (xs ⊗ ys)

both of which we will use later.
Applicative traversal is “the essence of the Iterator design

pattern” [6], capturing computations that iterate over a data
structure, in a predetermined order, processing each element
in turn and collecting effects as they go:

class Functor t ⇒ Traversable t where
traverse :: Applicative m⇒ (a→ m b) → t a→ m (t b)

(again, subject to some omitted laws). For example, here are
left-to-right list traversal and in-order tree traversal:

instance Traversable []where
traverse f [] = pure []
traverse f (x : xs) = pure (:) ‹∗› f x ‹∗› traverse f xs

instance Traversable Tree where
traverse f (Node x ts) = pure Node ‹∗› f x ‹∗›

traverse (traverse f) ts

Now consider the composition traverse f t ∗› traverse g t
of two traversals, discarding the results of the first, and simi-
larly a single traversal traverse (λx → f x ∗› g x) t with the
composition of the two bodies. In general, these cannot be
equal: the former performs all f -effects before any g-effects,
while the latter interleaves them. If the class of effects were
commutative, the interleaving would not matter; but that
condition is very restrictive. Happily, commutativity of the
whole class of effects is not necessary; it suffices for f -effects
to commute with g-effects:

f x ⊗ g y = fmap twist (g y ⊗ f x)

where twist (x, y) = (y, x). That is, running f then g and
pairing the results is the same as running g then f and flip-
pairing the results. The proof is in the paper [7].

Phases in Software Architecture FUNARCH ’23, September 8, 2023, Seattle, WA, USA

3 Two phases
It turns out that two-phase computation can be captured
precisely by what is known as Day convolution [4]:
data Day m n awhere

Day :: (a→ b→ c) → m a→ n b→ Day m n c

(perhaps not surprising, given that Day convolution and ap-
plicative functors are deeply connected [15]). Thus,Day f xs ys
represents a two-phase computation, with subcomputation
xs happening in phase one generating effects in m, and ys in
phase two generating effects in n, packaged up with a func-
tion f to combine the results from the two phases. Moreover,
Day m n is an applicative functor when m and n both are:
instance (Applicative m,Applicative n) ⇒

Applicative (Day m n)where
pure x = Day (curry fst) (pure x) (pure ())
Day f xs ys ‹∗› Day g zs ws = Day h (xs ⊗ zs) (ys ⊗ ws)
where h (x, z) (y,w) = (f x y) (g z w)

(here, curry fst :: a→ () → a is half of the right unit isomor-
phism of products). We can inject into either phase, using
and discarding a trivial computation for the other phase:
phase1 :: (Applicative m,Applicative n) ⇒ m a→ Day m n a
phase1 xs = Day (curry fst) xs (pure ())

phase2 :: (Applicative m,Applicative n) ⇒ n a→ Day m n a
phase2 ys = Day (curry snd) (pure ()) ys

When the two classes of effects coincide, we can combine the
two phases, running one after the other and post-processing
the results:
runDay :: Applicative m⇒ Day m m a→ m a
runDay (Day f xs ys) = pure f ‹∗› xs ‹∗› ys
Crucially for us, computations in different phases commute:
phase1 xs ⊗ phase2 ys = fmap twist (phase2 ys ⊗ phase1 xs)

For example, we can send a two-part greeting in separate
phases:
⟩⟩⟩ runDay (phase1 (putStr "Hello ") ∗›

phase2 (putStr "World"))
Hello World
It doesn’t matter if we specify those two phases in the oppo-
site order:
⟩⟩⟩ runDay (phase2 (putStr "World") ∗›

phase1 (putStr "Hello "))

Hello World
We can even interleave the specification of fragments from
different phases:
⟩⟩⟩ runDay (phase1 (putStr "Hel") ∗›

phase2 (putStr "World") ∗›
phase1 (putStr "lo "))

Hello World

4 Multiple phases
We now generalize from two-phase computations to multiple
(zero or more) phases [5]:

data Phases m awhere
Pure :: a→ Phases m a
Link :: (a→ b→ c) → m a→ Phases m b→ Phases m c

Here, Pure produces a chain with no effectful phases, and
Link adds one more effectful phase to the chain. It is essen-
tially a homogeneous iteration of Day convolution (Link
constructs the Day convolution of f with Phases f), just as
lists are essentially a homogeneous iteration of pairing (with
cons pairing a list head with a tail). There is a single initial
value as the base case; each additional link in the chain adds
a combining function and a collection of values; and the
types are all compatible “in the obvious way”.
We implement an Applicative instance that zips together

chains: composing xs and ys should mean “in phase 1, exe-
cute phase 1 of xs and then phase 1 of ys; in phase 2, execute
phase 2 of xs then phase 2 of ys” and so on. To implement this,
we need the underlying effect m itself to be an Applicative
and not just a Functor :

instance Applicative m⇒ Applicative (Phases m)where
pure x = Pure x
Pure f ‹∗› xs = fmap f xs
fs ‹∗› Pure x = fmap (λf → f x) fs
Link f xs ys ‹∗› Link g zs ws = Link h (xs ⊗ zs) (ys ⊗ ws)
where h (x, z) (y,w) = (f x y) (g z w)

(Note that the same Phases m datatype is also the carrier
of the free applicative induced by functor m [2]. Informally,
this is defined in such a way that composition concatenates
chains rather than zipping them, assuming only the weaker
Functor condition on m.)
We can inject into any phase:

now :: Applicative m⇒ m a→ Phases m a
now xs = Link (curry fst) xs (Pure ())

later :: Applicative m⇒ Phases m a→ Phases m a
later xs = Link (curry snd) (pure ()) xs

phase :: Applicative m⇒ Int → m a→ Phases m a
phase 1 = now
phase i = later ◦ phase (i − 1)

and sequence together the phases:

runPhases :: Applicative m⇒ Phases m a→ m a
runPhases (Pure x) = pure x
runPhases (Link f xs ys) = pure f ‹∗› xs ‹∗› runPhases ys

And again, computations in different phases commute:

phase i xs ⊗ phase j ys = fmap twist (phase j ys ⊗ phase i xs)

provided i , j.

FUNARCH ’23, September 8, 2023, Seattle, WA, USA Jeremy Gibbons, Donnacha Oisín Kidney, Tom Schrijvers, and Nicolas Wu

5 Examples
We have seen the outline of the tree-sorting example already.
The remaining details are that push x and pop manipulate
the list stored in the state:

push :: a→ State [a] ()
push x = modify (x:)

pop :: State [a] a
pop = do {x : xs← get; put xs; return x }

(here, get, put, and modify are more standard functions for
the State monad).

5.1 Repmin
A related example, also from Bird’s paper [1] and also ad-
dressed by Pettorossi [13], is to replace every element of a
tree with the minimum element in the tree. Bird solves the
problem with a circular lazy program, computing both the
minimum and the new tree in a single pass; Pettorossi uses
a higher-order abstraction, computing the minimum and a
function from a value to a constant tree, then applies the
latter to the former. We [7] show a single traversal yielding
a two-phase computation

repminAux :: Tree Int → Day WInt RInt (Tree Int)
repminAux
= traverse (λx → phase1 (tellMin x) ∗› phase2 askMin)

where WInt is the Writer monad on minimizing Ints:

typeWInt = Writer (Min Int)

tellMin :: Int → WInt ()
tellMin x = tell (Min x)

and RInt is the Reader monad on the same type:

type RInt = Reader (Min Int)

askMin :: RInt Int
askMin = fmap getMin ask

This core is common to Bird’s and Pettorossi’s solutions;
their difference is in how to extract the two phases. (Because
two different classes of effect are involved, runDay isn’t ap-
plicable.) Bird unwraps the writer and reader computation
in parallel:

parWR :: Day (Writer s) (Reader s) a→ a
parWR (Day f xs ys)
= let ((x, s), y) = (runWriter xs, runReader ys s)
in f x y

repminRSB :: Tree Int → Tree Int
repminRSB t = parWR (repminAux t)

Note that parWR is circular, with s appearing on both sides
of the local declaration, so the let must have letrec seman-
tics. In contrast, Pettorossi unwraps the writer and reader
computations sequentially:

seqWR :: Day (Writer s) (Reader s) a→ a
seqWR (Day f xs ys) = let (x, s) = runWriter xs

y = runReader ys s
in f x y

repminADP :: Tree Int → Tree Int
repminADP t = seqWR (repminAux t)

Now there is no circularity, and a plain non-recursive let
suffices. Moreover, in a lazy language, clearly parWR and
seqWR are equal, and so too therefore are repminRSB and
repminADP.

5.2 Breadth-first traversal
A third example concerns breadth-first traversal of trees.
Depth-first traversal is straightforward, because it is obvi-
ously compositional with respect to the tree structure:

dft :: Applicative m⇒ (a→ m b) → Tree a→ m (Tree b)
dft f (Node x ts) = pure Node ‹∗› f x ‹∗› traverse (dft f) ts

(this definition is equivalent to the Traversable instance shown
in Section 2). To obtain breadth-first traversal, it suffices to
schedule the visits to different levels in different phases, us-
ing now and later :

bft ′ :: Applicative m⇒
(a→ m b) → Tree a→ Phases m (Tree b)

bft ′ f (Node x ts)
= pure Node ‹∗› now (f x) ‹∗› later (traverse (bft ′ f) ts)

The root label x is processed ‘now’; a multi-phase computa-
tion is constructed for each child in ts, zipped together by
levels using traverse on lists, then postponed until one phase
‘later’. To obtain something of the right type for Traversable,
we just have to flatten the phases:

bft :: Applicative m⇒ (a→ m b) → Tree a→ m (Tree b)
bft f = runPhases ◦ bft ′ f

In particular, we can relabel a tree in breadth-first order,
needing neither queues [12] nor cyclicity and laziness [9]:

bfl :: Tree a→ [b] → Tree b
bfl t xs = evalState (bft (λx → pop) t) xs

6 Discussion
Nearly fifty years ago, Jackson’s influential book [8] argued
that programs are clearest when they follow the structure of
the data they consume and produce; and consequently, that
the knottiest problems in software architecture are when
these structures clash. A rather canonical instance of that
phenomenon is provided by breadth-first traversal, which
very much goes “against the grain” of the tree structure.
We expect that there are other thorny problems in software
architecture that may be susceptible to this multi-phase ap-
proach.

Phases in Software Architecture FUNARCH ’23, September 8, 2023, Seattle, WA, USA

The tree-sorting and repmin examples are different in
kind to breadth-first traversal. Although we used Phases for
tree-sorting, it is similar to repmin in the sense that the
number of phases is statically determined (three for sorting,
two for repmin), whereas for breadth-first traversal it is only
dynamically known (determined by the depth of the tree).
We likewise expect that this fixed collection of execution
phases, naturally specified in a different order than they are
executed, is a recurring pattern in software architecture.
In particular, we conjecture that process choreography is

one such example. In choreographic programming, a single
global program specifies a distributed system; end-point pro-
jection translates this to separate local programs for each
node of the system. Recent work [16] has demonstrated that
this translation can be captured in terms of free monads. Per-
haps it can also fruitfully be expressed using Phases: all the
applications we have described here involve phases indexed
by natural numbers, which have an inherent ordering, but
there seems to be no reason not to allow a computation to
be split into fragments indexed instead by location. Similarly,
we conjecture that a multi-tier application architecture [3]
can be modelled as a Phases computation indexed by tier (for
example, presentation layer, logic layer, data layer).

Our Phases type is homogeneous; one might wonder (and
indeed, one reviewer asked) about a heterogeneous general-
ization. Formally, that would be no more general: the compo-
sition (or even the Day convolution) of distinct Applicatives
is again Applicative, so any heterogeneous application can
always be upcast to a homogeneous one. We can already get
a glimpse of that in the repmin example: the ‘min’ phase uses
only the Writer effect, and the ‘rep’ phase only the Reader
effect. Since there are only two static phases in this example,
we could get away with Day convolution, which can be het-
erogeneous. If we had instead a dynamic multi-phase compu-
tation, with some phases using Reader and notWriter , some
Writer and not Reader , they could still all be expressed homo-
geneously in the combined effect Day (Writer s) (Reader s).

As a final thought: in retrospect, maybe “staging” wasn’t
the best choice of term to use in the original paper [7]. That
term has a specific technical meaning in program generation
[17]: an earlier phase generates code that is not analysed or
executed until a later phase. Our meaning here is less specific:
an earlier phase generates some computation (which could
be an actual function, but in our approach is a data structure
that represents a function) which is executed in a later phase;
but all the analysis happens up front.

Acknowledgments
This extended abstract is a summary of previously published
work [7]; no new results are presented here, only some very
preliminary thoughts about the relevance to software archi-
tecture. The Phases construction and its applicative instance,
and the corresponding definition of breadth-first traversal,
are due originally to Easterly [5].

References
[1] Richard S. Bird. 1984. Using Circular Programs to Eliminate Multiple

Traversals of Data. Acta Informatica 21 (1984), 239–250. https://doi.
org/10.1007/BF00264249

[2] Paolo Capriotti and Ambrus Kaposi. 2014. Free Applicative Functors.
InMathematically Structured Functional Programming (EPTCS, Vol. 153).
2–30. https://doi.org/10.4204/EPTCS.153.2

[3] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006.
Links: Web Programming Without Tiers. In Formal Methods for Com-
ponents and Objects (LNCS, Vol. 4709). Springer, 266–296. https:
//doi.org/10.1007/978-3-540-74792-5_12

[4] Brian Day. 1970. On Closed Categories of Functors. In Reports of the
Midwest Category Seminar IV (Lecture Notes in Mathematics, Vol. 137).
Springer-Verlag, 1–38. https://doi.org/10.1007/BFb0060438

[5] Noah Easterly. 2019. Functions and Newtype Wrappers for Traversing
Trees: rampion/tree-traversals. https://github.com/rampion/tree-
traversals.

[6] Jeremy Gibbons and Bruno César dos Santos Oliveira. 2009. The
Essence of the Iterator Pattern. JFP 19, 3,4 (2009), 377–402. https:
//doi.org/10.1017/S0956796809007291

[7] Jeremy Gibbons, Donnacha Oisín Kidney, Tom Schrijvers, and Nicolas
Wu. 2022. Breadth-First Traversal Via Staging. In Mathematics of
Program Construction (LNCS, Vol. 13544). Springer, 1–33. https://doi.
org/10.1007/978-3-031-16912-0_1

[8] Michael A. Jackson. 1975. Principles of Program Design. Academic
Press.

[9] Geraint Jones and Jeremy Gibbons. 1993. Linear-time Breadth-first Tree
Algorithms: An Exercise in the Arithmetic of Folds and Zips. Working
Paper 705 WIN-2. IFIP WG2.1. http://www.cs.ox.ac.uk/publications/
publication2363-abstract.html

[10] Conor McBride and Ross Paterson. 2008. Applicative Program-
ming with Effects. JFP 18, 1 (2008), 1–13. https://doi.org/10.1017/
S0956796807006326

[11] Eugenio Moggi. 1991. Notions of Computation and Monads. Informa-
tion and Computation 93, 1 (1991), 55–92. https://doi.org/10.1016/0890-
5401(91)90052-4

[12] Chris Okasaki. 2000. Breadth-First Numbering: Lessons from a Small
Exercise in AlgorithmDesign. In International Conference on Functional
Programming. ACM, 131–136. https://doi.org/10.1145/351240.351253

[13] Alberto Pettorossi and Andrzej Skowron. 1987. Higher Order Gener-
alization in Program Derivation. In Theory and Practice of Software
Development (LNCS, Vol. 250). Springer, 182–196. https://doi.org/10.
1007/BFb0014981

[14] Alberto Pettorossi and Andrzej Skowron. 1989. The Lambda Abstrac-
tion Strategy for Program Derivation. Fundamenta Informaticae XII
(1989), 541–562. https://doi.org/10.3233/FI-1989-12407

[15] Exequiel Rivas and Mauro Jaskelioff. 2017. Notions of Compu-
tation as Monoids. JFP 27 (2017), e21. https://doi.org/10.1017/
S0956796817000132

[16] Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor:
Functional Choreographic Programming for All (Functional Pearl).
arXiv:2303.00924 [cs.PL]

[17] Walid Taha. 2003. A Gentle Introduction to Multi-stage Programming.
In Domain-Specific Program Generation (LNCS, Vol. 3016). Springer,
30–50. https://doi.org/10.1007/978-3-540-25935-0_3

[18] Philip Wadler. 1992. Monads for Functional Programming. In Program
Design Calculi: Proceedings of the Marktoberdorf Summer School (NATO
ASI Series F, Vol. 118). Springer, 233–264. https://doi.org/10.1007/978-
3-662-02880-3_8

Received 2023-06-01; accepted 2023-06-28

https://doi.org/10.1007/BF00264249
https://doi.org/10.1007/BF00264249
https://doi.org/10.4204/EPTCS.153.2
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/BFb0060438
https://github.com/rampion/tree-traversals
https://github.com/rampion/tree-traversals
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1007/978-3-031-16912-0_1
https://doi.org/10.1007/978-3-031-16912-0_1
http://www.cs.ox.ac.uk/publications/publication2363-abstract.html
http://www.cs.ox.ac.uk/publications/publication2363-abstract.html
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/351240.351253
https://doi.org/10.1007/BFb0014981
https://doi.org/10.1007/BFb0014981
https://doi.org/10.3233/FI-1989-12407
https://doi.org/10.1017/S0956796817000132
https://doi.org/10.1017/S0956796817000132
https://arxiv.org/abs/2303.00924
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8

	Abstract
	1 Introduction
	2 Applicative programming with effects
	3 Two phases
	4 Multiple phases
	5 Examples
	5.1 Repmin
	5.2 Breadth-first traversal

	6 Discussion
	Acknowledgments
	References

