Diagrammatic Reasoning about Probability and Nondeterminism

Effectful programming

Programs with nondeterministic choice:

 $(tea \square coffee) \square beer$

with axioms:

```
m \square m = m
m \Box n = n \Box m
m \Box (n \Box p) = (m \Box n) \Box p
```

Also, composition \gg distributes leftwards over choice:

 $(m \Box n) \gg k = (m \gg k) \Box (n \gg k)$

A semantic model in terms of finite sets.

Probabilistic programming 2

Similarly, programs with probabilistic choice: $six = True \triangleleft \frac{1}{6} \triangleright False$ with axioms (where $w \in [0, 1]$ and $\bar{w} = 1 - w$): $m \triangleleft 0 \triangleright n$ = n $m \triangleleft w \triangleright m = m$ $m \triangleleft w \triangleright n \qquad = n \triangleleft \bar{w} \triangleright m$ $m \triangleleft w \triangleright (n \triangleleft x \triangleright p) = (m \triangleleft y \triangleright n) \triangleleft z \triangleright p$ $\iff w = y \times z \land \bar{z} = \bar{w} \times \bar{x}$ $(m \triangleleft w \triangleright n) \gg k = (m \gg k) \triangleleft w \triangleright (n \gg k)$ A semantic model as finite probability distributions.

Combining effects 3

Union of signatures and equations, plus interaction: $m \triangleleft w \triangleright (n \Box p) = (m \triangleleft w \triangleright n) \Box (m \triangleleft w \triangleright p)$ Say you win when your coin matches die roll: $sixcoin = six \gg \lambda c. (coin \gg \lambda a. (a = c))$ $coinsix = coin \gg \lambda a. (six \gg \lambda c. (a = c))$

where you choose $coin = True \square False$. Order of play makes a difference!

A model as finite convex-closed sets of distributions.

Distributivity is tricky 4

 $\triangleleft \triangleright$ distributes over \Box , but not vice-versa: $m \Box (n \triangleleft w \triangleright p) \neq (m \Box n) \triangleleft w \triangleright (m \Box p)$ Asserting both distributivities collapses the theory. \gg distributes leftwards over $\triangleleft \triangleright$, but rightwards $m \gg (\lambda a. (k a) \triangleleft w \triangleright (k' a))$ $= (m \gg k) \triangleleft w \triangleright (m \gg k')$ entails the unwanted distributivity above.

(This law holds only for deterministic *m*.)

How can we get some intuition for these properties?

A geometric model

Morphing

Generally, $\triangleleft \triangleright$ as pointwise weighted sum of polygons:

Consider programs over three outcomes *x*, *y*, *z*, modelled as convex polygons in triangle *xyz*,

with $\triangleleft \triangleright$ as weighted sum, □ as convex union.

It suffices to take closure of projections of *n* from each vertex of *m*—or vice versa.

Distributivities, geometrically

The desirable distributivity holds:

 $(x \Box y) \triangleleft^2/_3 \triangleright z = (x \triangleleft^2/_3 \triangleright z) \Box (y \triangleleft^2/_3 \triangleright z)$

Barycentric algebra 8

Composition is convex union of pointwise images:

... and the undesirable one does not:

 $(x \triangleleft^{1}/_{3} \triangleright y) \square z \neq (x \square z) \triangleleft^{1}/_{3} \triangleright (y \square z)$

A barycentric algebra $(A, \triangleleft \triangleright)$ satisfies the four axioms of Panel 2. Homomorphisms are affine functions: $h(m \triangleleft w \triangleright n) = (hm) \triangleleft w \triangleright (hn)$ Convex polygons form a barycentric algebra.

Workshop on Probabilistic Programming Semantics, January 2016 Faris Abou-Saleh, Kwok-Ho Cheung, Jeremy Gibbons Department of Computer Science, University of Oxford http://www.cs.ox.ac.uk/activities/algprog/

