Diagrammatic Reasoning about Probability and Nondeterminism

1 Effectful programming

Programs with nondeterministic choice:
(tea \square coffee) \square beer
with axioms:

$$
\begin{array}{ll}
m \square m & =m \\
m \square n & =n \square m \\
m \square(n \square p) & =(m \square n) \square p
\end{array}
$$

Also, composition $\gg=$ distributes leftwards over choice:
$(m \square n) \gg k=(m \gg k) \square(n \gg k)$
A semantic model in terms of finite sets.

3 Combining effects

Union of signatures and equations, plus interaction:

$$
m \triangleleft w \triangleright(n \square p)=(m \triangleleft w \triangleright n) \square(m \triangleleft w \triangleright p)
$$

Say you win when your coin matches die roll:
sixcoin $=\operatorname{six} \gg \lambda c .($ coin $\gg \lambda a .(a=c))$
coinsix $=$ coin $\gg \lambda \lambda .(\operatorname{six} \gg=\lambda c .(a=c))$
where you choose coin $=$ True \square False.
Order of play makes a difference!

A model as finite convex-closed sets of distributions.

5 A geometric model

... as finite convex sets of points (polygons) in hyperspace.

Consider programs over three
outcomes x, y, z,

modelled as convex polygons in triangle $x y z$,

with $\triangleleft \triangleright$ as weighted sum, \square as convex union.

7 Distributivities, geometrically

The desirable distributivity holds:

$$
(x \square y) \triangleleft^{2} / 3 \triangleright z=\left(x \triangleleft^{2} / 3 \triangleright z\right) \square\left(y \triangleleft^{2} / 3 \triangleright z\right)
$$

... and the undesirable one does not:

$$
\left(x \triangleleft^{1} / 3 \triangleright y\right) \square z \neq(x \square z) \triangleleft^{1} / 3 \triangleright(y \square z)
$$

2 Probabilistic programming

Similarly, programs with probabilistic choice:

$$
\text { six }=\text { True } \triangleleft^{1} / 6 \triangleright \text { False }
$$

with axioms (where $w \in[0,1]$ and $\bar{w}=1-w$):

$$
\begin{array}{ll}
m \triangleleft 0 \triangleright n & =n \\
m \triangleleft w \triangleright m & =m \\
m \triangleleft w \triangleright n & =n \triangleleft \bar{w} \triangleright m \\
m \triangleleft w \triangleright(n \triangleleft x \triangleright p)= & (m \triangleleft y \triangleright n) \triangleleft z \triangleright p \\
& \Longleftarrow w=y \times z \wedge \bar{z}=\bar{w} \times \bar{x} \\
(m \triangleleft w \triangleright n) \gg k & =(m \gg k) \triangleleft w \triangleright(n \gg=k)
\end{array}
$$

A semantic model as finite probability distributions.

4 Distributivity is tricky

$\triangleleft \triangleright$ distributes over \square, but not vice-versa:

$$
m \square(n \triangleleft w \triangleright p) \neq(m \square n) \triangleleft w \triangleright(m \square p)
$$

Asserting both distributivities collapses the theory. \gg distributes leftwards over $\triangleleft \triangleright$, but rightwards

$$
\begin{aligned}
m & \gg\left(\lambda a .(k a) \triangleleft w \triangleright\left(k^{\prime} a\right)\right) \\
& =(m \gg k) \triangleleft w \triangleright\left(m \gg=k^{\prime}\right)
\end{aligned}
$$

entails the unwanted distributivity above.
(This law holds only for deterministic m.)

How can we get some intuition for these properties?

6 Morphing

Generally, $\triangleleft \triangleright$ as pointwise weighted sum of polygons:

It suffices to take closure of projections of n from each vertex of m-or vice versa.

8 Barycentric algebra

Composition is convex union of pointwise images:

A barycentric algebra $(A, \triangleleft \triangleright)$ satisfies the four axioms of Panel 2. Homomorphisms are affine functions:

$$
h(m \triangleleft w \triangleright n)=(h m) \triangleleft w \triangleright(h n)
$$

Convex polygons form a barycentric algebra.

