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1. Introduction

Probabilistic and nondeterministic choice are two standard exam-
ples of computational effect, and it is important for some problems
to be able to use them in combination—for example, to model prob-
abilistic systems that depend on nondeterministic inputs. However,
the algebraic properties that characterise their interaction are tricky
to get right (and we have ourselves got them wrong in the past [2]).
We outline the problem, and present a technique for diagrammatic
reasoning about their properties.

2. Algebraic effects

In order to express computational effects in a pure functional lan-
guage, we need some way of separating the syntactic specification
of an effectful computation from the semantic considerations in-
volved in executing that computation. One way of doing that is via
algebraic effects and effect handlers [6, 7].

An algebraic effect is a syntactic constructor for terms repre-
senting computations. For example, if we wanted to introduce the
computational effect of nondeterminism into a pure program, we
could do so by defining an algebraic effect [, a binary constructor
on terms, so that (1 0 2) O 3 represents a nested nondeterministic
choice between three outcomes 1,2, 3. One can think of the result-
ing terms as binary trees, with pure values at the leaves and choices
at the branches. One might assert some axioms, stating that certain
distinctions between terms are irrelevant. For example, we might
assert that [J is associative; then we would treat 1 (J (2 0 3) as an
equivalent term—that is, we quotient the set of terms by the equiv-
alence induced by the axioms, and we take equality only up to this
equivalence (i.e., the terms are effectively lists). We might addition-
ally assert commutativity and idempotence; then the terms denote
finite sets. An algebraic theory consists of a collection of operators
(such as [J) and axioms (such as associativity, commutativity, and
idempotence); a model of the theory is a carrier set with implemen-
tations of the operators that satisfy the axioms; an effect handler is
a function that interprets a term in a model.

Composition of effectful computations, written >=, is a mat-
ter of substituting subsequent subterms for the leaves of the initial
term. For example, if computation m = 4 [J 7 has two possible out-
comes, and continuation k x = x [0 (x+ 1) yields two more out-
comes for a given input, then their composition m >=k is the term
(40O5) 0O (7 O 8) with four outcomes, obtained by substituting k 4
for 4 and k 7 for 7 in m. Nondeterministic choice is called an alge-
braic effect because composition distributes over it from the right:
(mOn)>=k=(m>=k) O (n>=k).

Finitely supported probability distributions are a model of an-
other algebraic theory, with an indexed family of binary operators
<ap; the idea is that m <w > n represents the computation that be-
haves like m with probability w € 0..1 and like n with probability
w = 1—w. So a weighted coin toss is coin w = True <w False.
For axioms, we have two identity laws m<O>n=nand m<l>n=
m, idempotence m <Aw >m = m, quasi-commutativity m<a4wp>n =
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n<4dwbm, quasi-associativity m<dwp (n<dx>p) = (m<y>n)<zbp
where w = yz A Z = WX, and algebraicity again: mawd>n>=k =
(m>==k)aw> (n>=k).

3. Combining effects

Algebraic theories combine very naturally: one simply unions the
signatures and axioms, perhaps adding some additional axioms to
describe how the effects interact. Finding a model of the composite
theory is not so simple, however; it is not in general a combination
of models of the parts. The combination of probability and nonde-
terminism is a case in point; it has received much study [3-5, 8, 9],
and the ‘right answer’ is still by no means settled.

Let us consider the composition of two programs, one proba-
bilistic (coin w) and one nondeterministic (arb = True [ False). We
execute these one after the other, and compare the boolean results:

coinarb w = coinw == Ac.(arb>=Aa.(a = c))

arbcoin w = arb>=Aa.(coinw == Ac.(a = c))
It’s a two-player game, in which your opponent or fate (coin) tosses
a coin, and you (arb) get to a coin one arbitrarily, and you win
if they agree. It clearly makes a difference who plays first! With
coinarb, fate plays first, and you have complete freedom—to win,
to lose, or to leave it up to the coin, or to its opposite; but with
arbcoin, you play first, and you cannot guarantee to win or to lose.
If we stipulate that <> distributes over [,

m<awp (nOp) = (m<wen) O (m<aw>p)
then these consequences come out algebraically:

coinarb = coin w [J False [J True (J coin w
arbcoin = coinw O coin w

Distributivity means that terms involving both [J and <> can be
normalized into nondeterministic choices of probabilistic choices
of values. This suggests that sets of distributions might be a model
of the combined theory. However, this turns out not to work [8].
In fact, it is a consequence of idempotence of <> and distributivity
over [J that the semantics must be convex closed [1]—if any two
distributions m,n are possible outcomes, then so is any convex
combination m <w>n of them—and indeed, convex-closed sets of
finitely supported distributions do provide a model [3].

Should [J also distribute over <>? It seems not. This does
not appear to accord with computational intuitions (although some
authors disagree [9]); more importantly, with both directions of
distributivity, the distinction between [J and <> collapses [1].

In previous work [2], we asserted that >>= distributes over <>
in both directions—from the right, as above, but also from the left:

m>=Ax. (kx)<wp (Ix) = (m>=k)dw> (m>=I)
This is indeed a theorem of the model of programs with <> alone,
namely probability distributions. But we were wrong to assert it as
an axiom of <>; in conjunction with distributivity of <> over O,
one can conclude the other direction of distributivity, making the
theory collapse:
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Figure 1. (a) three points x,y,z; (b) point x< /3> y; (c) triangle xyz; (d) line x O y; (e) illustrating (x (Jy) <%3>z = (x<%3>z) O (y<%3>2);

(f) illustrating (x<'/30y) Oz# (xOz2)<Y3>(yO2)

m O (n<dwip)
= [ idempotence |
(mawp>m) O (n<wp>p)
= [ mOn=arb>=Ab.ifbthenmelsen |
arb>= Ab.if b then mawr>m else n<w>p
= [ promoting if through <> ]
arb>=Ab. (if b then m else n) <w> (if b then m else p)
= [ assuming >>= distributes through <> from the left ]
(arb>=Ab.if b then m else n) <wi (arb>=
= [ folding Os back ] Ab.if b then m else p)
(mQOn)<aw>(mdp)
Which is to say, the question of what should be the desirable laws
relating [J and <> is a tricky one. In the remainder of this extended
abstract, we present a diagrammatic reasoning technique that might
have prevented us from making our earlier mistake.

4. Diagrammatic reasoning

We outline a geometric model, motivated by [3, Chapter 6], of the
combined theory of probabilistic and nondeterministic choice from
the previous section: idempotence, commutativity, associativity,
and algebraicity of [J; identity, idempotence, quasi-commutativity,
quasi-associativity, and algebraicity of <i>; and distributivity of <>
over [J. For simplicity, we focus on computations over values x,y,z
from a three-valued type. We associate these three points with the
basis vectors of a 3-dimensional space, as in Figure 1(a).

A pure computation x always returning the same single value
is represented by the single point x in Figure 1(a). A computation
exploiting probability but not nondeterminism is still deterministic,
so is still represented by a single point, but now a convex combi-
nation of the basis vectors. For example, x < !/3 1>y is represented
by the single point !/3 of the way from y to x (that way around), as
in Figure 1(b); there is a bijection between distributions over x,y,z
and points in the intersection of the plane x +y+z = 1 with the
positive octant (the shaded triangle xyz in Figure 1(c)).

A computation exploiting nondeterminism is represented by a
set of points; but as we have seen, idempotence of <> and its
distributivity over [J together imply convex closure, and so it must
be a convex set of points. For example, x (] y is represented by the
entire straight line from x to y in Figure 1(d).

In general, computations are represented by convex polygons
within the bounded plane xyz. A pure value is represented by one
of the three vertices. A nondeterministic choice m [J n is the con-
vex closure of the union of the polygons m and n. A probabilistic
choice m<w>n is the set of all pointwise convex combinations
{a<dw>b|a € m,b € n} of pairs of points a,b from m and n
(which is necessarily convex closed). For composition m >=k,
each vertex a of convex polygon m is a convex combination of the
bases x,y,z, and contributes the same convex combination of their
images k x, k y, k z under k; then m >=k itself is the convex closure
of these contributions over all a.

PPS 2016

It is not difficult to check that these definitions of [J, <>, and
>>= satisfy the individual axioms of nondeterminism and of proba-
bility. As for distributivity of <> over [, consider Figure 1(e). On
the left, x [J y is the base of the triangle (as shown in Figure 1(d));
the convex combination a<2/3 >z of each point a on this base with
z yields the line shown in the figure. On the right, x<12/3 >z and
y<?/31>z are the two points in the figure, and their convex closure
is the same line as on the left. A similar argument holds for any
weight and any convex polygons, not just for values.

Conversely, consider Figure 1(f), which illustrates the undesir-
able opposite distributivity. On the left, the point x< /3>y is shown
on the base of the triangle, and the line is the (J of that and z.
On the right, x [ z and y [J z are the two upper edges of the tri-
angle, and their pointwise convex combination is the entire shaded
parallelogram; these two are clearly not equal. Intuitively, this law
would duplicate a nondeterministic choice, expanding the possible
outcomes.

5. Conclusion

As discussed, combining probability and nondeterminism in a func-
tional program is by no means a straightforward endeavour. The
model of convex sets of distributions does, however, admit a pleas-
ing diagrammatic interpretation of such computations. Diagram-
matic arguments, consisting of points, lines and convex polygons,
offer a quick visual method for verifying (or disproving) program
equations. As such, they form a useful complementary technique to
add to the reasoning programmer’s arsenal.
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