

Relational Algebra by Way of Adjunctions

Jeremy Gibbons (joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu) DBPL, October 2015

1. Summary

- bulk types (sets, bags, lists) are *monads*
- monads have nice *mathematical foundations* via *adjunctions*
- monads support comprehensions
- comprehension syntax provides a *query* notation

[(customer.name, invoice.amount)
| customer ← customers,
invoice ← invoices,
customer.cid = invoice.customer,
invoice.due ≤ today]

- monad structure explains *selection*, *projection*
- less obvious how to explain *join*

2. Galois connections

Relating monotonic functions between two ordered sets:

For example,

"Change of coordinates" can sometimes simplify reasoning; eg rhs gives $n \times k \leq m \iff n \leq m \div k$, and multiplication is easier to reason about than rounding division.

3. Category theory from ordered sets

A category **C** consists of

- a set* **|C**| of *objects*,
- a set^{*} C(X, Y) of arrows $X \to Y$ for each X, Y : |C|,
- *identity* arrows $id_X : X \to X$ for each X
- *composition* $f \cdot g: X \to Z$ of compatible arrows $g: X \to Y$ and $f: Y \to Z$,

• such that composition is associative, with identities as units. Think of a directed graph, with vertices as objects and paths as arrows. An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

Many categorical concepts are generalisations from ordered sets.

4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are sets with additional structure
- the arrows are *structure-preserving mappings*

Many useful categories are of this form.

For example, the category **CMon** has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

 $h(m \otimes n) = h m \oplus h n$ $h \epsilon = \epsilon'$

Trivially, category **Set** has sets as objects, and total functions as arrows.

5. Functors

Categories are themselves structured objects...

A *functor* $F : C \to D$ is an operation on both objects and arrows, preserving the structure: $F f : F X \to F Y$ when $f : X \to Y$, and

 $F id_X = id_{FX}$ F (f \cdot g) = F f \cdot F g

For example, *forgetful* functor U : CMon → Set:

$$\begin{array}{l} \mathsf{U} \ (M,\otimes,\varepsilon) &= M \\ \mathsf{U} \ (h:(M,\otimes,\varepsilon) \to (M',\oplus,\varepsilon')) = h: M \to M' \end{array}$$

Conversely, Free : Set \rightarrow CMon generates the *free* commutative monoid (ie bags) on a set of elements:

Free
$$A = (Bag A, \uplus, \emptyset)$$

Free $(f : A \rightarrow B) = map f : Bag A \rightarrow Bag B$

6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections. Given categories C, D, and functors $L : D \rightarrow C$ and $R : C \rightarrow D$, adjunction

$$\mathbf{C} \stackrel{\mathsf{L}}{\underset{\mathsf{R}}{\longrightarrow}} \mathbf{D} \qquad \text{means}^* \ \lfloor - \rfloor : \mathbf{C}(\mathsf{L} X, Y) \simeq \mathbf{D}(X, \mathsf{R} Y) : \lceil - \rceil$$

A familiar example is given by *currying*:

with *curry* : **Set**(
$$X \times P, Y$$
) \simeq **Set**(X, Y^P) : *curry*°

hence definitions and properties of *apply* = *uncurry* id_{Y^P} : $Y^P \times P \rightarrow Y$

7. Products and coproducts

with

fork : Set²(
$$\Delta A$$
, (B, C)) \simeq Set(A, B \times C) : *fork*°
junc° : Set(A + B, C) \simeq Set²((A, B), ΔC) : *junc*

hence

$$dup = fork \ id_{A,A} : \mathbf{Set}(A, A \times A)$$

(fst, snd) = fork[°] \ id_{B \times C} : \mathbf{Set}^2(\Delta(B, C), (B, C))

give tupling and projection. Dually for sums and injections, and generally for any arity—even zero.

8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

Unit and counit:

single $A = \lfloor id_{\operatorname{Free} A} \rfloor : A \to \bigcup (\operatorname{Free} A)$ reduce $M = \lfloor id_M \rfloor$: Free $(\bigcup M) \to M$ -- for $M = (M, \otimes, \epsilon)$

whence, for *h*: Free $A \rightarrow M$ and $f: A \rightarrow U M = M$,

 $h = reduce M \cdot Free f \iff U h \cdot single A = f$

ie 1-to-1 correspondence between homomorphisms from the free commutative monoid (bags) and their behaviour on singletons.

9. Aggregation

Aggregations are bag homomorphisms:

aggregation	monoid	action on singletons
count	$(\mathbb{N}, 0, +)$	$(a) \mapsto 1$
sum	$(\mathbb{R}, 0, +)$	$(a) \mapsto a$
тах	$(\mathbb{Z}, minBound, max)$	$(a) \mapsto a$
min	$(\mathbb{Z}, maxBound, min)$	$(a) \mapsto a$
all	$(\mathbb{B}, True, \wedge)$	$(a) \mapsto a$
any	$(\mathbb{B}, False, \vee)$	$(a) \mapsto a$

Selection is a homomorphism, to bags, using action

guard : $(A \rightarrow \mathbb{B}) \rightarrow \text{Bag } A \rightarrow \text{Bag } A$ *guard* $p \ a = \text{if } p \ a \text{ then } a \leq a \leq \emptyset$

Laws about selections follow from laws of homomorphisms (and of coproducts, since $\mathbb{B} = 1 + 1$).

10. Monads

Bags form a monad (Bag, union, single) with

Bag = $U \cdot Free$ *union* : Bag (Bag A) \rightarrow Bag A*single* : $A \rightarrow$ Bag A

which justifies the use of comprehension notation $(f a b \mid a \leftarrow x, b \leftarrow g a)$.

In fact, for any adjunction $L \dashv R$ between **C** and **D**, we get a monad (T, μ, η) on **D**, where

 $T = R \cdot L$ $\mu A = R [id_A] L: T (T A) \rightarrow T A$ $\eta A = \lfloor id_A \rfloor \qquad : A \rightarrow T A$

11. Maps

Database indexes are essentially maps Map $K V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* arise from this adjunction, and from those for products and coproducts:

 $\begin{array}{ll} \operatorname{Map} 0 \ V &\simeq 1 \\ \operatorname{Map} 1 \ V &\simeq V \\ \operatorname{Map} (K_1 + K_2) \ V \simeq \operatorname{Map} K_1 \ V \times \operatorname{Map} K_2 \ V \\ \operatorname{Map} (K_1 \times K_2) \ V \simeq \operatorname{Map} K_1 \ (\operatorname{Map} K_2 \ V) \\ \operatorname{Map} K 1 &\simeq 1 \\ \operatorname{Map} K (V_1 \times V_2) \simeq \operatorname{Map} K \ V_1 \times \operatorname{Map} K \ V_2 : merge \end{array}$

12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

where J embeds, and $E R : A \rightarrow Set B$ for $R : A \sim B$.

Moreover, the correspondence remains valid for bags:

index : Bag $(K \times V) \simeq Map K$ (Bag V)

Together, *index* and *merge* give efficient relational joins:

 $x_f \bowtie_g y = flatten (Map K cp (merge (groupBy f x, groupBy g y)))$ $groupBy: (V \rightarrow K) \rightarrow Bag V \rightarrow Map K (Bag V)$ $flatten : Map K (Bag V) \rightarrow Bag V$

13. Pointed sets and finite maps

Model *finite maps* Map_* not as partial functions, but *total* functions to a *pointed* codomain (*A*, *a*), i.e. a set *A* with a distinguished element *a* : *A*.

Pointed sets and point-preserving functions form a category Set_* . There is an adjunction to Set, via

where Maybe $A \simeq 1 + A$ adds a point, and U(A, a) = A discards it. In particular, (Bag A, \emptyset) is a pointed set. Moreover, Bag f is point-preserving, so we get a functor Bag_{*} : Set \rightarrow Set_{*}.

Indexing remains an isomorphism:

 $index: Bag_* (K \times V) \simeq Map_* K (Bag_* V)$

14. Graded monads

A catch: finite maps aren't a monad, because

 $\eta a = \lambda k \rightarrow a : A \rightarrow Map K A$

in general yields an infinite map.

However, finite maps are a *graded monad*^{*}: for monoid (M, \otimes, ϵ) ,

 $\mu X : \mathsf{T}_m (\mathsf{T}_n X) \to \mathsf{T}_{m \otimes n} X$ $\eta X : X \to \mathsf{T}_{\epsilon} X$

satisfying the usual laws. These too arise from adjunctions^{*}. We use the monoid $(\mathbb{K}, \times, 1)$ of finite key types under product.

15. Conclusions

- monad comprehensions for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing
- to do: calculating query optimisations

Thanks to EPSRC Unifying Theories of Generic Programming for funding.