UNIVERSITY OF

OXFORD

Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(Joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
DBPL, October 2015

1. Summary

e bulk types (sets, bags, lists) are monads
e monads have nice mathematical foundations via adjunctions
e monads support comprehensions

e comprehension syntax provides a query notation

customer:name; invoice:amount
j customer customers;

Invoice INvoices;
customer:cid invoice:customer;
iInvoice:due < today

e monad structure explains selection, projection

e less obvious how to explain join

2. Galois connections

Relating monotonic functions between two ordered sets:

A; < ? B; Vv meansf b<a (O bwvga
\/

For example,

inj k
2 2N
R; r ? Z; 7 Ly < ? Ly <
~_ 7 ~_ 7
floor k

“Change of coordinates” can sometimes simplify reasoning; eg rhs gives
n k<mQO n<m Kk, and multiplication is easier to reason about than
rounding division.

3. Category theory from ordered sets

A category C consists of
e aset jCjof objects,
e aset C X;Y ofarrows X Y'Y foreach X;Y :jCj,
e identity arrows idx : X ¥ X for each X
e compositionf g:X ¥ Z of compatible arrowsg:X ¥ Yandf:Y ¥ Z,
e such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set A; < is a degenerate category, with objects A and a
unique arrow a ¥ b iff a <b.

— /= @ /1 /A _—A _ _—

2 1 0] 1 2

Many categorical concepts are generalisations from ordered sets.

proviso. ..

4. Concrete categories

Ordered sets are a concrete category: roughly,
e the objects are sets with additional structure
e the arrows are structure-preserving mappings

Many useful categories are of this form.
For example, the category CMon has commutative monoids M; ;e as
objects, and homomorphisms h: M; ;e ¥ M% :¢e’ asarrows:

h m n hm hn

h e el

Trivially, category Set has sets as objects, and total functions as arrows.

5. Functors

Categories are themselves structured objects...

A functor F:C ¥ D is an operation on both objects and arrows, preserving
the structure: Ff:FX " FY whenf: X T Y, and

F idx Idg x
Ff g Ff Fg

For example, forgetful functor U: CMon ? Set:
U M; ;e M
Uh: M; ;¢ ¥ M% ;¢ h:M I M
Conversely, Free : Set ¥ CMon generates the free commutative monoid

(ie bags) on a set of elements:

Free A Bag A]; -
Free f:A 1 B map f :Bag A ¥ Bag B

6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C; D, and functorsL:D ¥ Cand R:C ¥ D, adjunction

C ? D means b-c:CLX:Y *D X;RY :d-e

A familiar example is given by currying:

VRN
Set 7? Set with curry :Set X P;Y ~ Set X;YP :curry

~_ 7

- P

hence definitions and properties of apply uncurry idye :Y? P TY

Relational Algebra by Way of Adjunctions

7. Products and coproducts

LN FN
Set ? Set?! ? Set

~_ 7 >~ 7
with

fork :Set?® A: B:C *Set A°AB C - fork
junc :Set A B;C > Set? A;B: C :junc

hence

dup fork ida.a :Set A;A A
fst:snd fork idg c:Set® B;C : B:C

give tupling and projection. Dually for sums and injections, and generally
for any arity—even zero.

8. Free commutative monoids

Adjunctions often capture embedding/projection pairs:

Free

RN
CMon ? Set with b-c : CMon Free A; M: e
~_ 7 > Set A;U M; ;¢ - d-e

U

Unit and counit:

single A bidgree aAC:A ¥ U Free A
reduce M didye :Free UM T M --forM M: e

whence, forh:Free A * Mandf:A T UM M,
h reduceM Freef (O Uh singleA f

le 1-to-1 correspondence between homomorphisms from
the free commutative monoid (bags) and their behaviour on singletons.

9. Aggregation

Aggregations are bag homomorphisms:

aggregation | monoid action on singletons
count N; O; (aj » 1
sum R; O; laj , a
max Z;minBound; max laf , a
min Z;maxBound;min laf , a
all B; True; ™ lal , a
any B; False; lal , a

Selection is a homomorphism, to bags, using action

guard: A1
guard p a

B ¥ BagA ¥ Bag A
If pathen lafelse 3

Laws about selections follow from laws of homomorphisms
(and of coproducts, sinceB 1 1).

10. Monads

Bags form a monad Bag; union;single with

Bag U Free
union : Bag Bag A I Bag A
single : A ¥ Bag A

which justifies the use of comprehension notation [f abja x;b gal.
In fact, for any adjunction L a R between C and D, we get a monad

T: on D, where

T R L
A RdidaelL: T TA T TA

A bidac A TTA

11. Maps

Database indexes are essentially maps Map KV~ VX. Maps - K from K
form a monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents arise from this adjunction, and from those for
products and coproducts:

Map O V 71

Map 1V 'V

Map Ki; Ky V 2 MapKi V. Map Ky V

Map K1 Ky V 7 Map K; Map Ky V

Map K 1 71

Map K Vi1 Vo 7 MapKV; MapK Vs,:merge

12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

J

/\
Rel ? Set

~_ 7

E
where Jembeds, and ER: A ¥ SetB forR: A B.

Moreover, the correspondence remains valid for bags:
index:Bag K V 7~ MapK BagV
Together, index and merge give efficient relational joins:

Xt gy flatten Map K cp merge groupBy f x;groupBy gy

groupBy: V I K T BagV Y Map K BagV
flatten :Map K BagV Y BagV

13. Pointed sets and finite maps

Model finite maps Map not as partial functions, but total functions to a
pointed codomain A;a , i.e. a set A with a distinguished element a: A.

Pointed sets and point-preserving functions form a category Set .
There is an adjunction to Set, via

Maybe

PN
Set ? Set

~_ 7

U

where Maybe A > 1 A adds a point,and U A;a A discards it.

In particular, Bag A; ; is a pointed set. Moreover, Bag f is
point-preserving, so we get a functor Bag :Set ¥ Set .

Indexing remains an isomorphism:

index:Bag K V ?Map K Bag V

14. Graded monads

A catch: finite maps aren’t a monad, because
a k Ta:A Y MapKA
in general yields an infinite map.

However, finite maps are a graded monad : for monoid M; ;e

X:Tm Th X T Th X
XX BTT.X

satisfying the usual laws. These too arise from adjunctions .

We use the monoid K; ;1 of finite key types under product.

15. Conclusions

e monad comprehensions for database queries
e structure arising from adjunctions

e equivalences from universal properties

e fitting in relational joins, via indexing

e to do: calculating query optimisations

Thanks to EPSRC Unifying Theories of Generic Programming for funding.

