
86

Relational Algebra by Way of Adjunctions

JEREMY GIBBONS, University of Oxford, United Kingdom
FRITZ HENGLEIN, University of Copenhagen, Denmark
RALF HINZE, Universität Kaiserslautern, Germany
NICOLAS WU, University of Bristol, United Kingdom

Bulk types such as sets, bags, and lists are monads, and therefore support a notation for database queries
based on comprehensions. This fact is the basis of much work on database query languages. The monadic
structure easily explains most of standard relational algebra—specifically, selections and projections—allowing
for an elegant mathematical foundation for those aspects of database query language design. Most, but not
all: monads do not immediately offer an explanation of relational join or grouping, and hence important
foundations for those crucial aspects of relational algebra are missing. The best they can offer is cartesian
product followed by selection. Adjunctions come to the rescue: like any monad, bulk types also arise from
certain adjunctions; we show that by paying due attention to other important adjunctions, we can elegantly
explain the rest of standard relational algebra. In particular, graded monads provide a mathematical foundation
for indexing and grouping, which leads directly to an efficient implementation, even of joins.

CCS Concepts: • Information systems → Relational database query languages; • Theory of compu-
tation → Categorical semantics; • Software and its engineering→ Semantics;

Additional Key Words and Phrases: SQL, comprehension, adjunction, monad, graded monad.

ACM Reference Format:
Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu. 2018. Relational Algebra by Way of Adjunctions.
Proc. ACM Program. Lang. 2, ICFP, Article 86 (September 2018), 35 pages. https://doi.org/10.1145/3236781

1 INTRODUCTION
Consider the following SQL query, which computes the names and amounts outstanding of cus-
tomers with overdue invoices, by joining separate customer and invoice tables:

SELECT name, amount
FROM customers, invoices
WHERE cid = cust AND due < today

Standard database techniques [Date 2004] translate this query into applications of relational algebra
operations such as projection π, selection σ, and equijoin ▷◁:

πname,amount (σdue<today (customers cid ▷◁cust invoices))

About 25 years ago, several people observed [Buneman et al. 1994; Trinder 1991; Wadler 1992] that
bulk types such as sets and bags (sometimes called ‘multisets’) form monads, and so support a com-
prehension syntax that provides a convenient notation and clear and well-understood mathematical

Authors’ addresses: Jeremy Gibbons, Department of Computer Science, University of Oxford, Oxford, United Kingdom,
jeremy.gibbons@ox.ac.uk; Fritz Henglein, DIKU, University of Copenhagen, Copenhagen, Denmark, henglein@diku.dk;
Ralf Hinze, Fachbereich Informatik, Universität Kaiserslautern, Kaiserslautern, Germany, ralf@cs.uni-kl.de; Nicolas Wu,
Department of Computer Science, University of Bristol, Bristol, United Kingdom, nicolas.wu@bristol.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART86
https://doi.org/10.1145/3236781

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

https://doi.org/10.1145/3236781
https://doi.org/10.1145/3236781

86:2 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

foundations for database queries. Many modern programming languages provide built-in syntax
for such comprehensions, yielding for free an embedded domain-specific language for queries—for
example, in Haskell (writing a lowered dot for record field selection):

[(c.name, i.amount) | c ← customers, i ← invoices, c.cid i.cust, i.due < today]

Comprehensions have been used for many years as a programming construct for collections, dating
back at least to Schwartz’s SETL from the late 1960s [Schwartz et al. 1986] and Darlington’s NPL
from the 1970s [Darlington 1975]. They are the basis of queries in the Kleisli [Wong 2000], LINQ
[Meijer 2007; Syme 2006], and Links [Cheney et al. 2013; Cooper et al. 2006] database languages, and
also feature in proposals for query notations in OQL [Grust and Scholl 1999], XQuery [Fernandez
et al. 2001], and MapReduce-style data analysis [Alexandrov et al. 2015].

However, there is a catch. Monads and monad comprehensions provide no direct way to express
an equijoin; this can only be expressed indirectly, as a cartesian product followed by a selection. This
becomes clear if we desugar the Haskell comprehension notation, yielding something equivalent to
the following:

fmap (λ(c, i) → (c.name, i.amount)) (
filter (λ(c, i) → i.due < today) (
filter (λ(c, i) → c.cid i.cust) (

cp (customers, invoices))))

This amounts to a very inefficient query plan, computing the full cartesian product (via cp) of the
customers and invoices tables before immediately discarding the unmatching pairs—typically the
great majority—via the innermost filter . Of course, there is a much better plan, computing the same
subset of customer/invoice pairs in a more circumspect manner:

fmap (fmap name × fmap amount) (cod (
fmap (id × filter (λi → i.due < today)) (
merge (customers ‘indexBy‘ cid, invoices ‘indexBy‘ cust))))

Here, indexBy groups a collection into an indexed table, and is written as an infix operator; merge
combines two indexed tableswithmatching indices; and cod retrieves the elements—the ‘codomain’—
from an indexed table. The types are something like the following:

indexBy :: Key k ⇒ Bag v → (v → k) → (k → Bag v)
merge :: Key k ⇒ (k → v, k → v ′) → (k → (v, v ′))
cod :: Key k ⇒ (k → Bag v) → Bag v

parametric in the type v of values, but with a qualification Key on the type k of keys—only
certain types are suitable as keys—so that k-indexed tables of v-values are represented by the type
k → Bag v. (We will explain the details later in the paper.)
This alternative program yields a result of type Bag (Bag Name × Bag Amount), and admits

a straightforward linear-time implementation. (Going one step further and flattening the result
to a Bag (Name × Amount) may blow up the size of the result from linear in the input size to
quadratic, so does not admit a linear-time implementation.) However, this program does not directly
correspond to anything that can be written solely in the more accessible comprehension syntax.
Do we have to sacrifice the mathematical elegance of comprehension notation on the altar

of efficient execution? In this paper, we show how to sidestep such an unfortunate dilemma.
Specifically, we reconsider the mathematics that gives rise to the monads of bulk types like sets and
bags—category theory, the “mathematics of mathematics” [Cheng 2015]. The central notion is that
of adjunction, the categorical generalisation of Galois connections and “a concept of fundamental
logical and mathematical importance that is not captured elsewhere in mathematics” [Awodey

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:3

2006, p179]. Adjunctions capture universal properties, which embody essentially all the important
equivalences that justify query transformations—in particular, query optimizations.
For example, the fact that bags are the free commutative monoid on a type of elements is em-

bodied in an adjunction between two categories: the category of commutative monoids and their
homomorphisms, and the category of sets and total functions. The equational properties of bag
homomorphisms such as maps and filters that underlie many query optimizations all arise from
this adjunction.

Of course, we are not the first to argue that adjunctions are a crucial ingredient of programming
language design, even in the more specific domain of query languages; for example, Libkin and
Wong [1997] present an approach “based on turning universal properties of collections into pro-
gramming syntax”. The novelty in this paper is to show that adjunctions induce not only monads
and comprehensions, which explain relational database selections and projections, but also all the
other abstract gadgets needed to complete the explanation of the efficient query plan—in particular,
of the grouping and merging required for linear-time equijoins. One might say that monads give
rise to the accessible point-wise comprehension notation that exemplifies the relational calculus,
whereas the underlying adjunctions give rise to the more flexible point-free combinators of the
relational algebra.

In summary, we revisit the story of how a comprehension-style notation for collection processing
falls out of certain adjunctions, and extend that story to explain how equijoins can also fit into the
picture without sacrificing efficiency. Specifically, our contributions are:

• elaborating how adjunctions underlie collection processing, including the convenient notation
based on comprehensions for expressing queries over collections;
• deriving the equational properties of collection-processing operations from the adjunction
identities;
• extending the operations to support grouping into and merging of indexed collections, and
identifying the relevant adjunctions;
• adapting the comprehension notation to accommodate also equijoins, by translation into
grouping and merging;
• exploiting graded monads as an appropriate abstraction for capturing the finiteness required
for aggregations;
• justifying a body of query transformations that underlie query optimization, by calculation
from the equational properties of collection-processing operations.

We do not claim to present any new query transformations; rather, we see it as a strength that we
explain existing well-known transformations from a new perspective.
The rest of this paper is structured as follows. Section 2 recalls some fundamental concepts

from category theory on which we build, mainly for the purposes of fixing notation. Section 3
builds a simplified version of the relational algebra in which the containers are all finite bags.
We then develop a series of richer models of containers, starting with finite maps in Section 4,
then moving to indexed tables in Section 5; in Section 6 we prove the correctness of a linear-time
implementation of equijoin on indexed tables. We then introduce graded monads in Section 7
as a means of modelling indexed tables with finite domains; this serves as our final model of
databases. With the machinery in place, we show in Section 8 how the transformations used for
query optimization arise naturally from the theory. We conclude in Section 9. Appendix A (in the
online supplementary materials) gives more details of the adjunctions underlying graded monads;
Appendix B provides a prototype implementation in Haskell—intended more as an alternative
specification of behaviour than something to be executed.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:4 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

2 CATEGORY THEORY
The mathematical structures we present as a foundation for relational algebra are rooted in category
theory, so we present a very quick overview of the relevant definitions. A full tutorial is beyond
the scope of this paper, but this section serves to fix notation for those who have some familiarity.
Nevertheless, we hope this provides at least some intuition for readers otherwise new to the
material. For more details, see any standard textbook [Awodey 2006; Pierce 1991]. Conversely, the
categorically adept reader might simply skip this section.

2.1 Categories
A category C consists of a collection of objects and a collection of arrows; each arrow f :A→ B goes
from a source object A to a target object B. For each object A there is an identity arrow id A :A→ A.
Adjacent arrows f :A→ B and g :B→ C compose to form g · f :A→ C. Composition is associative,
with appropriate identity arrows as neutral elements. The hom-set C (A,B) consists of the arrows
in C from A to B. An initial object 0 has a unique arrow from it to any other object. Dually, a final
object 1 has a unique arrow to it from any other.
Think of the objects as ‘types’ and the arrows as ‘functions’ or ‘programs’ from one type to

another. A fundamental instance is the category Set, in which the objects are sets and the arrows
total functions; the initial object 0 = { } is the empty set, and any singleton set 1 = { () } is final. But
we will also consider instances with more structured objects (such as ordered sets, or monoids);
then the arrows are typically structure-preserving mappings (in these cases, monotonic functions
and monoid homomorphisms, respectively). For instance, the category CMon in Section 3 has
commutative monoids M as objects, represented by triples (M, ϵ, ⊗) where M is a set and the
operation ⊗ : M × M → M is associative and commutative with neutral element ϵ : M . Arrows
h : (M1, ϵ1, ⊗1) → (M2, ϵ2, ⊗2) in this category are homomorphisms: functions h :M1 → M2 between
the underlying sets satisfying h ϵ1 = ϵ2 and h (x ⊗1 y) = h x ⊗2 h y. The underlying set of a
commutative monoid is called its carrier, and when the context is clear is often used to refer to the
whole structure, leaving the operation and neutral element implicit.

2.2 Functors
Categories are themselves structured objects; functors are the structure-preserving mappings
between categories. Functor F : C → D from category C to category D maps the objects and
arrows of C to objects and arrows of D , respecting the structure by preserving sources and targets
(F f : F A → F B when f : A → B) and identities and composition (F (id A) = id (F A) and
F (g · f) = F g · F f). There is an identity functor Id, and functors compose G ◦ F; so categories and
functors themselves form a category Cat. For example, functor U : CMon→ Set maps a monoid
to its carrier, and a monoid homomorphism to the underlying function between carriers. When
C and D coincide, we call F an endofunctor. In Set, endofunctors can be seen as parametric type
constructors such as Bag, which maps an object A (a set of elements) to the object Bag A (the set
of finite bags of those elements), and an arrow f : A→ B to the arrow Bag f : Bag A→ Bag B that
applies f to each element of a bag. It is an instructive exercise to verify that Bag indeed respects
structure.

2.3 Natural Transformations
Given two functors F,G : C → D between the same two categories, a natural transformation
ϕ : F →̇ G is a family of arrows ϕ A : F A→ G A in D , one for each object A in C , respecting the
arrow structure of C , in the sense that G f · ϕ A = ϕ B · F f for each f : A→ B (see Figure 1(a)).
A natural transformation between endofunctors in Set is a polymorphic function; for example,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:5

F A G A

F B G B

ϕ A

F f G f

ϕ B

(a)

F A F B

A B

F h

f g

h

(b)

Fig. 1. (a) natural transformation, (b) algebra homomorphism

{-} : Bag →̇ Set is the polymorphic family of functions, one per element type, flattening a bag to its
underlying set by forgetting multiplicity of elements.
Natural transformations can be composed. Given the functors E, F,G : C → D , and natural

transformations ψ : E →̇ F and ϕ : F →̇ G, the vertical composition ϕ · ψ : E →̇ G has components
(ϕ · ψ) A = ϕ A · ψ A. Given the functors F,G : C → D and H,K : D → E , and the natural
transformationsϕ:F→̇G and γ:H→̇K, the horizontal composition γ ϕ:H◦F→̇K◦G has components
(γ ϕ) A = γ (G A) · H (ϕ A) = K (ϕ A) · γ (F A). It is convenient to mix these natural
transformations and functors: the natural transformation H ϕ is given by (H ϕ) A = H (ϕ A), and
γ F is given by (γ F) A = γ (F A).

2.4 Adjunctions
Functors L :D → C and R :C → D form an adjunction L ⊣ R :D → C if the arrows L A→ B in C
are in natural 1-to-1 correspondence with the arrows A→ R B:

⌊-⌋ : C (L A,B) � D (A,R B) : ⌈-⌉

This is ‘natural’ in the sense that there are natural transformations η : Id →̇ R ◦ L, defined so that
η A = ⌊id (L A)⌋ is the correspondent in D of id (L A) in C , and symmetrically ϵ : L ◦ R →̇ Id
with ϵ B = ⌈id (R B)⌉ the correspondent in C of id (R B) in D , subject to the so-called triangle
identities R ϵ · η R = id and ϵ L · L η = id. We call L the ‘left adjoint’, R the ‘right adjoint’, η the
‘unit’, and ϵ the ‘counit’. In diagrams (such as in Figure 2), it is often convenient to draw L and R as
parallel horizontal arrows in opposite directions; then it is conventional to rotate the ⊣ symbol by
90 degrees.
Adjunctions really do model natural correspondences between categories, generalizing Galois

connections from lattice theory; they are generally embedding–retraction pairs. For example, the
product category Set2 has pairs (A,B) of Set-objects A and B as objects and pairs (f , g) : (A,B) →
(C,D) of Set-arrows f : A→ C and g : B→ D as arrows, and the diagonal functor ∆ : Set→ Set2

takes object A and arrow f in Set to (A,A) and (f , f) in Set2; then the adjunction ∆ ⊣ × between
Set2 and Set in Section 3 captures the equivalence between arrows ∆A → (B,C) in Set2 (that
is, pairs of functions with a common domain) and arrows A → B × C in Set (that is, functions
constructing pairs)—an embedding of the pair-forming functions within the function pairs. A more
important example for us is the adjunction Free ⊣ U between CMon and Set in Section 3, capturing
the embedding of a set A as the ‘free’ commutative monoid Free A = (Bag A, ∅,⊎), and the
retraction U (M, ϵ, ⊗) = M of a commutative monoid to its carrier. The 1-to-1 correspondence in
this case is between bag aggregations Free A→ (M, ϵ, ⊗) which are bag homomorphisms to some
commutative monoid, and plain functions A → U M from bag elements into the commutative
monoid. The triangle identities specialize to give all the important properties of aggregations.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:6 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

2.5 Monads
A monad (T,η,µ) consists of an endofunctor T equipped with two natural transformations, unit
η : Id →̇ T and multiplication µ : T ◦ T →̇ T, satisfying three identities: µ · T η = id, µ · η T = id,
and µ · T µ = µ · µ T. The composition of adjoint functors R ◦ L always forms a monad; the unit η
of the monad is the unit of the adjunction, and the multiplication is constructed from the counit as
µ = R ϵ L.

Bulk types such as Bag are monads; η constructs a singleton bag, and µ flattens a bag of bags to
a bag. The Bag monad arises from the adjunction Free ⊣ U discussed above.

2.6 Algebras
An algebra for endofunctor F is a pair (A, f : F A→ A), with A called the carrier of the algebra and
f the action. A homomorphism h between F-algebras (A, f) and (B, g) is an arrow h : A→ B in the
underlying category that is coherent with the actions: h · f = g · F h (see Figure 1(b)). The identity
arrow is a homomorphism, and homomorphisms compose; so F-algebras and their homomorphisms
form a category F-Alg(C).

There is a forgetful functor UF : F-Alg(C) → C discarding the algebraic structure: UF (A, f) = A
and UF (h : (A, f) → (B, g)) = h : A → B. Under mild conditions on F and C (for example,
for polynomial functors F on Set, that is, sums of products), the forgetful functor UF has a left
adjoint FreeF ⊣ UF (see Figure 2(h)). The functor FreeF maps an object A to the free F-algebra
FreeF A, which can be seen as the terms built from signature F on variables A. Similar to the closely
related adjunction Free ⊣ U between CMon and Set above, the adjunction FreeF ⊣ UF states the
1-to-1 correspondence between the homomorphisms FreeF A → (B, g) on the free algebra and
the mappings A → UF (B, g) = A → B on their variables. In the special case that A = 0, the
initial object in the underlying category, FreeF yields the initial F-algebra (µ F, In), and the unique
homomorphism to a target algebra is called a fold. The adjunction is crucial for programming
with algebraic datatypes: these are interpreted as initial algebras, so there is a unique (the empty)
mapping on the set of variables, and therefore a homomorphism is completely determined by
specifying a target algebra.

An algebra for a monad (T,η,µ) (or ‘Eilenberg–Moore algebra’) is an algebra (A, f : T A→ A) for
T considered as an endofunctor, which additionally respects the monadic structure: f · η A = id A
and f · µ A = f · T f . Monad algebras model well-behaved mappings from structured objects; in
particular, algebras for a bulk type such as Bag are the aggregation operations, such as sum and
maximum.

3 RELATIONAL ALGEBRA
By exploiting a small number of fundamental adjunctions between familiar categories of structured
objects, we can build up a collection of mathematical operators that form a basis for relational
algebra. We start in this section with finite bags; in Section 4, we introduce the pointed sets we
need for finite maps; in Section 5, we combine these to yield indexed tables; in Section 6, we define
grouping to indexed tables, and prove that equijoin implemented using grouping agrees with the
naive nested-loop version; finally, in Section 7, we present a modest generalisation of monads
called grading in order to accommodate finiteness. It turns out that a little category theory goes a
surprisingly long way: everything we need arises from the handful of adjunctions in Figure 2. This
is intellectually satisfying. But more than that: the adjunctions not only give us the appropriate
structures, they also provide precisely the equational laws needed for typical query optimization,
as we discuss in Section 8.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:7

Set Set0 Set⊥

∆

0
⊥

1

∆

∆ : A 7→ ∗
0 : ∗ 7→ { }
1 : ∗ 7→ {∗}

(a)

Set Set2 Set⊥

∆

+

⊥

×

∆

∆ : A 7→ (A,A)
+ : (A,B) 7→ A + B
× : (A,B) 7→ A × B

(b)

Set∗ Set⊥

U

L

L : A 7→ (A ∪ {∗}, ∗)
U : (A, a) 7→ A

(c)

Set Set⊥

(-)P

-×P

(- × P) : (f : A→ B) 7→ (f × P : A × P → B × P)
(-)P : (f : A→ B) 7→ ((f ·) : AP → BP)

(d)

Rel Rel⊥

P×-

-×P

(- × P) : (R : A↔ B) 7→ (R × P : A × P ↔ B × P)
(P × -) : (R : A↔ B) 7→ (P × R : P × A↔ P × B)

(e)

CMon Set⊥

U

Free

Free : A 7→ (Bag A, ∅,⊎)
U : (M, ϵ, ⊗) 7→ M

(f)

Rel Set⊥

E

J

J : (f : A→ B) 7→ {(a, f a) | a ∈ A}
E : (R : A↔ B) 7→

λX ⊆ A.{b ∈ B | ∃a ∈ X . a R b}

(g)

F-Alg(C) C⊥

UF

FreeF

FreeF : A 7→ “terms of sign. F
with vars A”

UF : (A, f) 7→ A

(h)

Fig. 2. The adjunctions underlying relational algebra

As a first approximation, a database table is a finite bag of values—a bag rather than a set or a list,
as we wish to preserve the multiplicity of elements but ignore any ordering. Preserving multiplicity
is important for non-idempotent aggregations, such as summing a collection of numbers:

sum (fmap amount (filter (λi → i.due < today) invoices))

With sets rather than bags as the bulk datatype, the query simply doesn’t work: coincidentally
duplicate amounts are incorrectly discarded.
The values contained in a relational database are typically records, but we do not wish to limit

attention to this particular class of types. The reason is simple: intermediate tables often contain
non-record values; for instance, in the example above, the argument to sum is a bag of monetary
values; and the running example in the introduction yielded a bag of pairs of bags as the final
result. The operations of the relational algebra enjoy straightforward implementations in terms of
bags—Figure 3 summarizes the notation, with full definitions to follow.
The function single takes a single element to a singleton bag, and ⊎ is bag union. We use bag

brackets as a shorthand to define bags by listing their elements, instead of using single and ⊎; so
*a, b, b+ = single a ⊎ single b ⊎ single b is the bag that contains a once and b twice. Even though
the bag model of database tables is rather naive, exploring the theory of bags in more depth is still
useful: it will pay dividends later when we discuss more sophisticated models.

Most of the operations and their accompanying properties arise out of the adjunction

CMon Set⊥

U

Free

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:8 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

table of V values Bag V
empty table ∅

singleton table single
union of tables ⊎

cartesian product of tables ×

neutral element *()+

projection πf Bag f
selection σp filter p
aggregation in monoidM reduce M

Fig. 3. Relational algebra operators, implemented in terms of bags

between the category CMon of commutative monoids and their homomorphisms and the category
Set of sets and total functions (Figure 2(f)). Very briefly, the forgetful functor Umaps a commutative
monoidM = (M, ϵ, ⊗) to its carrier setM , and a homomorphism h : (M1, ϵ1, ⊗1) → (M2, ϵ2, ⊗2) to its
underlying function h :M1 → M2 on the carriers; the algebraic structure is forgotten. Its left adjoint
Free takes a set A to Free A = (Bag A, ∅,⊎), the so-called free commutative monoid on A, and lifts a
function f on elements to homomorphism Bag f on bags. Adjointness means that homomorphisms
of type Free A→ M are in 1-to-1 correspondence with functions of type A→ U M, where A is a
set andM is a commutative monoid. (To be precise, there is a 1-to-1 correspondence classically;
in a constructive setting, one would have to take the usual care over what is meant by ‘equals’,
perhaps assuming decidable equality on A [Carette 2018].) This bijection is natural in A and M. Let
us now investigate what this tells us about the operations of relational algebra.

Monoid operations. First of all, we record that (Bag A, ∅,⊎) is a commutative monoid. The empty
bag and bag union

∅ : Bag A
(⊎) : Bag A × Bag A→ Bag A

satisfy the required laws:

∅ ⊎ s = s = s ⊎ ∅ (1a)
(s ⊎ t) ⊎ u = s ⊎ (t ⊎ u) (1b)
s ⊎ t = t ⊎ s . (1c)

Projections. The type of finite bags is functorial in the elements, as it can be written as a compo-
sition of two functors, Bag = U ◦ Free; so mapping over bags satisfies the two functor laws.

Bag id = id (2a)
Bag (g · f) = Bag g · Bag f (2b)

The functor Free maps a function to a homomorphism; Bag inherits this property (since U acts as
the identity on arrows).

Bag f ∅ = ∅ (3a)
Bag f *a+ = *f a+ (3b)
Bag f (s ⊎ t) = Bag f s ⊎ Bag f t (3c)

These three equations fully determine Bag f . In the special case that the elements of the bag are
records, and function f is a record projection (preserving some fields and discarding others), then
Bag f can be seen as projecting some columns out of a database table. But the functorial action
is more general than this: the bag elements need not be records, and the function f may perform
some non-trivial computation on each element rather than merely a projection.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:9

Aggregations. The adjunction Free ⊣ U captures a 1-to-1 correspondence between homomor-
phisms of type Free A→ M in CMon and functions of type A→ U M in Set. Setting M := Free A,
the correspondent in Set of the identity homomorphism id (Free A) is

single A : A→ U (Free A) ,

which maps an element to a singleton bag; single is the unit of the adjunction. We also write
single A a as *a+. Conversely, setting A :=U M, the correspondent in CMon of the identity function
id (U M) is

reduce M : Free (U M) → M ,

which is the unique homomorphism from the free commutative monoid on the carrier of M to the
commutative monoid M itself that takes the singleton *a+ to a; this is the counit of the adjunction.
Using the units, we can capture the 1-to-1 correspondence as an equivalence:

h = reduce M · Free f ⇐⇒ U h · single A = f , (4)

for all homomorphisms h : Free A → M and functions f : A → U M. In other words, a
homomorphism from the free commutative monoid is uniquely determined by its behaviour on
singleton bags. The homomorphism h is sometimes called the extension of f .

Turning to the properties, reduce M for monoidM = (M, ϵ, ⊗) is a homomorphism:

reduce M ∅ = ϵ (5a)
reduce M *a+ = a (5b)
reduce M (s ⊎ t) = reduce M s ⊗ reduce M t . (5c)

Furthermore, single and reduce are natural transformations:

U (Free f) · single A = single B · f (6a)
h · reduce M = reduce N · Free (U h) , (6b)

for all functions f : A → B and homomorphisms h : M → N. Equation (6a) is the point-free
presentation of (3b).

Simple examples of homomorphisms from the free commutative monoid are aggregations such
as counting and conjoining.

aggregation monoid on singletons

count (N, 0,+) *a+ 7→ 1
sum (Z, 0,+) *a+ 7→ a
max (Z,minBound,max) *a+ 7→ a
min (Z,maxBound,min) *a+ 7→ a
all (B, True,∧) *a+ 7→ a
any (B, False,∨) *a+ 7→ a

The last four operations target monoids that are also idempotent, so these would continue to work
if bags were replaced by sets—unlike the first two operations.
Strictly speaking, a homomorphism such as h = reduce (N, 0,+) is an arrow in CMon, and we

ought to write ‘U h’ for the corresponding function in Set; but in the remainder of the paper we
will often abuse notation by omitting the U.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:10 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

Selection. A restriction or selection, here called filter , is a further example of a homomorphism
from the free commutative monoid. A filter can be seen as the intersection of a finite bag with an
arbitrary set represented by its B-valued characteristic function.

filter : (A→ B) → (Bag A→ Bag A)
filter p = reduce (Free A) · Bag (guard p)
guard : (A→ B) → (A→ Bag A)
guard p a = if p a then *a+ else ∅

In other words, filter p is the extension of guard p. The latter function can be neatly written using
a guarded bag comprehension: guard p = λa → *a | p a+, which motivates the choice of name.
Turning to the properties, filter p is a homomorphism and a dinatural transformation (7d).

filter p ∅ = ∅ (7a)
filter p *a+ = guard p a (7b)
filter p (s ⊎ t) = filter p s ⊎ filter p t (7c)
filter p · Bag f = Bag f · filter (p · f) (7d)

Monad operations. The functor Bag = U ◦ Free is furthermore a monad: the composition of a
right adjoint with its left adjoint always yields a monad. The unit η of the monad is single; the
multiplication µ, which takes a bag of bags to its union, is constructed from the counit by

union A : Bag (Bag A) → Bag A
union A = U (reduce (Free A))

By construction, single and union satisfy the monad laws:
union A · Bag (single A) = id (Bag A) (8a)
union A · single (Bag A) = id (Bag A) (8b)
union A · Bag (union A) = union A · union (Bag A) (8c)

The fact that Bag is a monad justifies the use of bag comprehensions, as these can be desugared
into applications of the monad operations (together with a ‘zero’) [Wadler 1992]:

*e | + = η e (9a)
*e | b+ = if b then η e else ∅ (9b)
*e | p ← m+ = Bag (λp → e) m (9c)
*e | q, q′+ = µ * *e | q′+ | q+ (9d)

In particular, one can show by induction that the functorial action of Bag distributes over the
comprehension syntax:

Bag f * e | q+ = *f e | q+ (10)

Cartesian product. The unit type 1 and the product bifunctor × turn the category of sets into a
so-called symmetric monoidal category: 1 is the neutral element of × up to a natural isomorphism,
and × is associative and commutative up to natural isomorphisms. These two structures arise from
the two adjunctions (Figure 2(a)(b)).

Set0 Set⊥

1

∆

Set2 Set⊥

×

∆

Very briefly, ∆ is overloaded to denote the diagonal functor Set → Setk for any k, taking each
object A and arrow f to k copies of the same; arrows in the one-object, one-arrow category Set0

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:11

are in 1-to-1 correspondence with functions to a singleton set (there is precisely one of each), and
pairs of functions with a common domain are in 1-to-1 correspondence with functions constructing
pairs.

The functor Bag has strength, a broadcast operation of type A×Bag B→ Bag (A×B). Moreover,
Bag can be extended to a lax monoidal functor (‘lax’ because unit and × are one-way mappings
rather than isomorphisms):

unit : Bag 1 -- really 1→ Bag 1
unit = *()+
(×) : Bag A × Bag B→ Bag (A × B)
s × t = *(a, b) | a← s, b ← t+

The unit bag and cartesian product satisfy:

s × unit � s � unit × s (11a)
s × (t × u) � (s × t) × u (11b)
s × t � t × s (11c)

(the notation is a bit loose: a � b denotes equality modulo the respective canonical isomorphism α,
that is, Bag α a = b), so we also say that Bag is a commutative or symmetric monoidal monad; in
particular,

*(a, b) | a← s, b ← t+ = *(a, b) | b ← t, a← s+ (12)

A lax-monoidal functor with strength is also known as an applicative functor or idiom [McBride
and Paterson 2008].
We have introduced the cartesian product of bags mainly for completeness. It is expensive to

compute, so should generally be avoided in favour of joins. To do so is difficult with mere bags of
values, which are a rather naive model of database tables; to implement joins efficiently, we require
indexed tables. These are modelled by finite maps, which are based on the notion of a pointed set,
to which we turn next.

4 POINTED SETS
A pointed set (A, a) is a set A with a distinguished point or base element a ∈ A. We may write
nullA or simply null for the point of A. Let (A, nullA) and (B, nullB) be pointed sets; a total function
f : A→ B is point-preserving if f nullA = nullB. Pointed sets and point-preserving functions form
the category Set∗, which is equivalent to the category of sets and partial functions.

Let A be a set, and let (B, nullB) be a pointed set. The domain of the function f : A→ (B, nullB)
is the set of all arguments that are mapped to non-nullB values:

dom f = {a ∈ A | f a , nullB } (13)

(In general, a function between pointed sets will have an infinite domain; in Section 4 we focus on
finite maps, which by definition have finite domain.)

To add a base point to an arbitrary set, we can use lifting (called Maybe in Haskell, and option
in ML). Indeed, the Maybe monad (1 + -) arises as the composition U ◦ L, where

Set∗ Set⊥

U

L

is the adjunction between the category of pointed sets and point-preserving functions and the
category of sets and total functions (Figure 2(c)). Very briefly, the forgetful functor U maps (A, a)
to A and a point-preserving function to its underlying function. Its left adjoint L lifts a set A

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:12 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

to (Maybe A,Nothing) and lifts a function on A to the obvious point-preserving function. The
adjunction L ⊣ U tells us a lot about the structure of Set∗: since left adjoints preserve initial objects,
0 � L 0 = (Maybe 0,Nothing) � (1, ()), the pointed set (1, ()) is initial in Set∗; it is is also final, as
right adjoints preserve final objects. Right adjoints furthermore preserve products, so

0 � (1, ())
1 � (1, ())

(A, nullA) × (B, nullB) � (A × B, (nullA, nullB))

Some types have an obvious point. For example, the empty bag is a canonical choice for bags,
and more generally the neutral element for any monoid. Thus we can turn Bag into a functor
Bag∗ : Set→ Set∗:

Bag∗ A = (Bag A, ∅)

Bag∗ f = Bag f

Property (3a) shows that Bag f is point-preserving. Indeed, almost all the bag operations preserve
points: union ⊎ (1a); projection Bag f (3a); selection filter p (7a); aggregation reduce M (5a),
assuming that the neutral element of a monoid is its point; and cartesian product ×, since ∅ × ∅ = ∅.
The only notable exceptions are single and hence unit. This implies that Bag∗ is not a monoidal
functor, only a so-called semi-monoidal functor between the semi-monoidal categories (Set,×) and
(Set∗,×) (‘semi-monoidal’ meaning lacking the unit)—this will be important later.

Finite Maps. Let K be a set, and let V be a pointed set. A map of typeMap K V is a total function
from K to V ; a finite map of type Map∗ K V is a map that yields nullV for all but finitely many
arguments. Finite maps are also known as key-value maps, association lists, and dictionaries; they
are more appropriate for modelling databases than possibly infinite maps are, because the latter
cannot in general be aggregated.

Map∗ K V = { s : K→ V | dom s is finite }

We can turnMap∗ K into an endofunctor over the category Set∗ of pointed sets and point-preserving
functions.

Map∗ K V = (Map K V , λk → nullV)

Map∗ K f = λs → f · s

The point is the empty map, which sends all its arguments to nullV . The functorial action on
arrows is just post-composition, which is point-preserving when f is, as it sends λk → nullV to
λk → nullW for f : V → W . We record thatMap∗ K satisfies the functor laws:

Map∗ K id = id (14a)
Map∗ K (g · f) = Map∗ K g · Map∗ K f (14b)

It is important to note that Map∗ K f does not necessarily preserve the domain of its argument
map: it acts as a filter if f sends any non-null values to null. For example,

Map∗ K (λv → if bad v then null else v) s

filters out the ‘bad’ values in s. The codomain of a finite map is defined

cod : Map∗ K V → Bag∗ V
cod s = *s k | k ← dom s + .

(Note that cod yields a finite bag, whereas dom returns a set.)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:13

Laws of exponents. The finite map functor satisfies a number of properties which are commonly
known as the ‘laws of exponents’ (write Map∗ K V as VK to see why).

Map∗ 0 V � 1 (15a)
Map∗ 1 V � V (15b)
Map∗ (K1 + K2) V � Map∗ K1 V ×Map∗ K2 V : (▽) (15c)
curry :Map∗ (K1 × K2) V � Map∗ K1 (Map∗ K2 V) : curry◦ (15d)

The isomorphisms are natural in the type V of values. For unrestricted functions, they are conse-
quences of the currying adjunction (- × P) ⊣ (-)P (Figure 2(d)). Property (15d) follows directly from
this adjunction, and Property (15b) follows from currying and A × 1 � A, the fact that product is
monoidal.

Properties (15a) and (15c) are also a consequence of currying, but indirectly: this adjunction can
be used to form yet another one, namely that (X (-))op ⊣ X (-) , which swaps the arguments of a
binary function. Since X (-) is right adjoint and contravariant, it takes 0 to 1 and + to ×, and the
properties follow.

All of these properties inform the way we can use maps in practice. For example, the penultimate
isomorphism (15c) expresses that two functions with the same target type can be represented by a
single function from the sum (coproduct) of their source types (‘case analysis’).

s ▽ t = λk → case k of { Inl a→ s a; Inr b → t b }

The last isomorphism (15d) captures ‘currying’: a function of two arguments can be treated as a
function of the first argument whose values are functions of the second argument.

curry◦ s = λ(k1, k2) → (s k1) k2

We have to show that the isomorphisms are still valid when restricted to finite maps. For (15a)
and (15b) this is trivial. The domain of s ▽ t and curry◦ s are given by

dom (s ▽ t) = { Inl a | a← dom s } ∪ { Inr b | b ← dom t }

dom (curry◦ s) = { (k1, k2) | k1 ← dom s, k2 ← dom (s k1) }

Clearly, dom (s ▽ t) is finite if and only if both dom s and dom t are [Connelly and Morris 1995,
Proposition 1.1]. Likewise, curry◦ s is a finite map if and only if s and each partial application of s
is finite [Connelly and Morris 1995, Proposition 1.3]. It remains to verify that the isomorphisms
are also point-preserving. For (15a) and (15b) this is again immediate. For (15c) this follows from
null · Inl = null and null · Inr = null. Finally, for (15d) we calculate

curry◦ null
= { definition of curry◦ }
λ(k1, k2) → (null k1) k2
= { definition of null for finite maps }
λ(k1, k2) → null k2
= { definition of null for finite maps }
λ(k1, k2) → null
= { definition of null for finite maps }
null

These isomorphisms are important, as they can be used to implement finite maps generically for
finite sums and finite products [Hinze 2000]. Since the isomorphisms are effectively turned into
equalities, the mappings back and forth are constant-time operations.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:14 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

Union. The ‘laws of exponents’ come in two flavours: the laws above vary the key type and keep
the value type fixed; the laws below fix the key type and vary the value type—the unit type 1 is
clearly pointed.

empty : 1 � Map∗ K 1 (15e)
merge :Map∗ K V1 ×Map∗ K V2 � Map∗ K (V1 × V2) (15f)

The last isomorphism is natural in V1 and V2. It implements the merge or union of two finite maps.

empty : Map∗ K 1 -- really 1→ Map∗ K 1
empty = λk → ()

merge : Map∗ K V1 ×Map∗ K V2 → Map∗ K (V1 × V2)
merge (s, t) = λk → (s k, t k)

Again we have to check that the isomorphisms are still valid when restricted to finite maps.

dom empty = { }

dom (merge (s, t)) = dom s ∪ dom t

The unique arrow to 1 is certainly finite (empty = null). Clearly, merge (s, t) is a finite map if (and
indeed, only if) both s and t are. Furthermore, the isomorphisms are point-preserving. For (15e)
this is trivial. For (15f) this follows from fst · null = null and snd · null = null.

These two definitions turnMap∗ K into a strong monoidal functor over Set∗. (We use the ‘strong’
in ‘strong monoidal functor’ to indicate that the maps 1→ F 1 for unit and F A × F B→ F (A × B)
for product are isomorphisms. To minimize confusion, we use ‘lax monoidal functor with strength’
to indicate the existence of tensorial strength, a broadcast operation of type A × F B→ F (A × B),
and avoid the ambiguous term ‘strong lax monoidal functor’.) The empty finite map and the merge
operation satisfy:

merge (s, empty) � s � merge (empty, s) (16a)
merge (s,merge (t, u)) � merge (merge (s, t), u) (16b)
merge (s, t) � merge (t, s) (16c)

(again, � means equality modulo the respective canonical isomorphism). However,Map∗ K is not
an applicative functor, because it does not support a strength operation of type A ×Map∗ K B→
Map∗ K (A × B): the resulting map would in general not be finite. In particular, we cannot define
the pure operation of applicative functors in terms of the unit, ie pure a = Map∗ K (λ() → a) unit,
because λ() → a is not point-preserving.

5 INDEXED TABLES
An indexed table is a finite map from keys (indices) to finite bags of values.

Table K V = Map∗ K (Bag∗ V)

Note that Table K is just the composition of Map∗ K and Bag∗. Since these are both semi-monoidal
functors, and since semi-monoidal functors compose, Table K : Set∗ → Set∗ is a semi-monoidal
functor too.
Figure 4 summarizes the operations on tables; full definitions follow. We use the monoidal

structure ofMap∗ K to lift operations on bags to operations on tables: the lifted version of the unary
bag function f is Map∗ K f ; the lifted version of the binary bag function g is Map∗ K g · merge.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:15

K-indexed table of V values Table K V
empty table empty
singleton table (k, v) k 7→ *v+
union of tables Map∗ K (⊎) · merge
projection πf Map∗ K (Bag∗ f)
selection σp Map∗ K (filter p)
aggregation in monoidM Map∗ K (reduce M)
natural join Map∗ K (×) · merge

Fig. 4. Relational algebra operators, implemented in terms of indexed tables

Indexing. Relations are in 1-to-1 correspondence with set-valued functions. This correspondence
is captured by the adjunction

Rel Set⊥

E

J

between the category of sets and relations and the category of sets and total functions (Figure 2(g)).
Very briefly, the functor J embeds Set into Rel, viewing functions as relations. Its right adjoint is
the existential image functor E, which sends a set to its powerset and a relation R to the function
λX → {b ∈ B | ∃a ∈ X . a R b }. Now, the 1-to-1 correspondence Set (K × V) � Map K (Set V)
remains valid if restricted to finite sets and finite maps, and furthermore if finite sets are replaced
by finite bags:

ix : Bag∗ (K × V) � Map∗ K (Bag∗ V) : ix◦ (17)

The isomorphism is natural in V . The operation ix can be seen as providing a view or an indexing
structure on a table (given as a bag of key-value pairs). It is defined

ix s = λk → *v | (k′, v) ← s, k k′ +

The domain of ix s is given by

dom (ix s) = {k | (k, v) ← s }

Clearly, ix sends a finite bag to a finite map, which in turn maps each key to a finite bag. The
isomorphism is point-preserving, as the empty bag is sent to the empty map. With care and an
appropriate choice of representation, ix can be made to run in linear time [Henglein and Hinze
2013].

A useful derived isomorphism is relational currying:

Table (K1 × K2) V � Table K1 (K2 × V) (18)

which allows us to shift a key into and out of an index. The proof is straightforward:

Table (K1 × K2) V
= { definition of Table }
Map∗ (K1 × K2) (Bag∗ V)
� { currying (15d) }
Map∗ K1 (Map∗ K2 (Bag∗ V))
� { indexing (17) }
Map∗ K1 (Bag∗ (K2 × V))
= { definition of Table }
Table K1 (K2 × V)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:16 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

Consequently, the isomorphism is given by the composition Map∗ K1 ix◦ · curry. As an aside,
equation (18) is related to the adjunction

Rel Rel⊥

P×-

-×P

(Figure 2(e)), capturing the fact that the relation types (A × P) ↔ B and A ↔ (P × B) are both
essentially the powerset of A × P × B; this shows that Rel is a closed monoidal category—but note
that × is not the categorical product in Rel, and that Rel is not cartesian closed.

6 EQUIJOIN BY INDEXING
The ‘index by’ or ‘group by’ operation

indexBy : Bag∗ V × (V → K) → Map∗ K (Bag∗ V)
s ‘indexBy‘ f = ix (Bag∗ (f △ id) s)

is the crux to an efficient implementation of joins: the equijoin

(▷◁) :: Eq k ⇒ (a→ k) → (b → k) → Bag a→ Bag b → Bag (a, b)
x f ▷◁g y = * (a, b) | a← x, b ← y, f a g b +

can be computed by indexing x and y by their keys, merging these two indexed tables, performing
small cartesian products at each key—thus far, a full outer-join—then extracting the elements from
the table:

x f ▷◁g y = elems (Map∗ (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g)))

where
elems : Table K V → Bag∗ V
elems = µ · cod = Bag∗ snd · ix

◦

Of course, a properly engineered database engine should not recompute an index each time a table
is accessed: it should memoise the index, and maintain the cached index as the table changes.

In this section, we prove the equality

* (a, b) | a← x, b ← y, f a g b +
= elems (Map∗ K (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g)))

demonstrating the correctness of the grouping implementation of the equijoin x f ▷◁g y. For
convenience, we recall the types

Map∗ K V = K→ V
Table K V = Map∗ K (Bag∗ V)

(Bag∗ and Map∗ specifically denote finite bags and maps, but finiteness is not relevant for this
proof), and functions

(×) : Bag∗ A × Bag∗ B→ Bag∗ (A × B)
filter : (A→ B) → (Bag∗ A→ Bag∗ A)
indexBy : Bag∗ V × (V → K) → Table K V
merge : Map∗ K V1 ×Map∗ K V2 → Map∗ K (V1 × V2)
elems : Table K V → Bag∗ V

We use the following lemmas, each of which is easy to prove:
(1) elems is a post-inverse of indexBy:

elems (x ‘indexBy‘ f) = x

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:17

(2) lookup in an indexed table is a filter:
(x ‘indexBy‘ f) k = filter (λa→ k f a) x

(3) independent filters promote through cartesian product:
filter (λ(a, b) → p a ∧ q b) (x × y) = filter p x × filter q y

(4) lookup in merged indices is a pair of lookups:
merge (x, y) k = (x k, y k)

(5) functoriality of Map∗ K:

Map∗ K g f = g · f

We have
* (a, b) | a← x, b ← y, f a g b +
= elems (Map∗ K (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g)))

⇐⇒ { elems and indexBy (1) }
elems (* (a, b) | a← x, b ← y, f a g b + ‘indexBy‘(f · fst))
= elems (Map∗ K (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g)))

⇐= { Leibniz }
* (a, b) | a← x, b ← y, f a g b + ‘indexBy‘(f · fst)
= Map∗ K (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g))

⇐⇒ { function equality: (f = g) ⇔ (∀a . f a = g a) }
∀k . (* (a, b) | a← x, b ← y, f a g b + ‘indexBy‘(f · fst)) k
= (Map∗ K (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g))) k

so it suffices to prove the latter equation. We have, for arbitrary k:
(* (a, b) | a← x, b ← y, f a g b + ‘indexBy‘(f · fst)) k
= { lookup in table (2) }
filter (λ(a, b) → f a k) * (a, b) | a← x, b ← y, f a g b +
= { comprehensions }
filter (λ(a, b) → f a k) (filter (λ(a, b) → f a g b) (x × y))
= { filter composition }
filter (λ(a, b) → (f a k) ∧ (f a g b)) (x × y)
= { equality an equivalence relation }
filter (λ(a, b) → (f a k) ∧ (g b k)) (x × y)
= { independent filters (3) }
filter (λa→ f a k) x × filter (λb → g b k) y
= { lookup in table (2) }
(x ‘indexBy‘ f) k × (y ‘indexBy‘ g) k
= { lookup in merged indices (4) }
(×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g) k)
= { functoriality of maps (5) }
(Map∗ K (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g))) k

As it stands, this implementation is efficient up to a point. Provided that the predicates used for
selection, the functions used for projection, and the equality comparisons used for grouping and
joining all take constant time, it takes time linear in the number of tuples in the input to compute a
query involving selection, projection, and join. The result is a bag of pairs of bags, as in Section 1;
it is important to note that one cannot in general multiply out the pairs of bags to make one big
bag of pairs in linear time, because the resulting bag may have more than linearly many tuples.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:18 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

When the predicates and comparisons are more expensive, such as on unbounded strings, then
one needs something like discrimination-based techniques [Henglein and Larsen 2010] in order to
retain the linear time guarantee.

7 GRADED MONADS
Let us take stock of where we have got to. We model database tables by some collection type. It is
important for that collection type to form a monad, because only monads support the convenient
comprehension syntax for queries; we started off simply with Bag V . We elaborated this to tables
Map K (Bag∗ V), in order to support grouping and indexing for efficient joins. We had to restrict
these to finite tables Table K V = Map∗ K (Bag∗ V), in order also to accommodate aggregation.
But sadly, although maps and tables form monads, finite maps and tables do not, for the same
reason that they are only semi-monoidal and not fully monoidal: the units for the map and table
monads, of type V → Map K V and V → Map K (Bag∗ V) respectively, yield constant functions
that represent infinite tables (at least, when the key type K is unbounded).
Fortunately, there is a way to enjoy both finiteness and the monadic structure. This is to use

graded monads [Fujii et al. 2016], also sometimes called ‘indexed monads’ [Orchard et al. 2014] or
‘parametric monads’ [Katsumata 2014]—that is, to consider Table K as a family of endofunctors for
various K that collectively act like a monad, rather than actually being a single monad for all or for
a fixed K.
Formally, an M-graded monad (T,η,µ) over a monoid (M, ϵ, ⊗) is an indexed family of endo-

functors Tm for m :M , with natural transformations η : Id →̇ Tϵ and µm,n : Tm ◦ Tn →̇ Tm⊗n satisfying
indexed versions of the three coherence equations of ordinary monads:

µm,ϵ · Tm η = id (19a)
µϵ,n · η Tn = id (19b)
µm,n⊗p · Tm µn,p = µm⊗n,p · µm,n Tp (19c)

A familiar example involves the monoid (N, 1,×) of naturals under multiplication, and the family
Vectorn of functors representing vectors of length n; the unit η A : A → Vector1 A constructs a
singleton vector, and the multiplication µm,n A : Vectorm (Vectorn A) → Vectorm×n A flattens a
rectangular vector of vectors into one long vector of elements.

We want the related monoid (K∗, ⟨ ⟩, ;) of finite sequences of finite key types K, under the empty
sequence ⟨ ⟩ and sequence concatenation (;). (We could instead take finite bags of key types, if we
wanted to consider the column order of a table not to be significant.) To be concrete, let Π :K∗ → K
denote the cartesian product Π Ks of a finite sequence Ks : K∗ of finite key types. Then (T,η,µ)
is a monad graded over (K∗, ⟨ ⟩, ;), where the carrier TKs V = Table (Π Ks) V is finite maps from
Ks to V , the unit η V : V → T⟨ ⟩ V constructs a singleton finite map on the empty sequence of key
types, and µKs,Ks′ V : TKs (TKs′ V) → TKs;Ks′ V is relational uncurrying (18).

How do graded monads fit into the adjunction story? At first sight, it does not look promising. An
ordinary monad is necessarily an endofunctor on a category C , arising as it does from an adjunction
between two categories. An M-graded monad, on the other hand, is a functor T : M × C → C
(viewing monoidM as a discrete category M), or equivalently T :M → C C ; neither of these is an
endofunctor, so neither can arise directly from an adjunction.
Nevertheless, there is an adjunction story to graded monads, albeit under a layer of disguise.

A strict action of monoid M = (M, ϵ, ⊗) on category D is a family Am of endofunctors on D for
m :M , such that Aϵ = Id and Am⊗n = Am ◦ An; it is a special case of an M-graded monad in which
the η and µ are identities. Then anM-graded monad in category C factorises into an adjunction
L ⊣ R : C → D and a strict M-action on D [Fujii et al. 2016; Street 1972]. Indeed, each graded

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:19

[e |] = return e
[e | b] = if b then return e else mzero
[e | p ← m] = liftM (λp → e) m
[e | q, r] = mult [[e | r] | q]
[e | (q | r), s] = liftM (λ(vq, vr) → [e | s]) (mzip [vq | q] [vr | r])
[e | q, then group by b using f , r]

= liftM (λys → case (fmap vq1 ys, ..., fmap vqn ys) of vq → [e | r])
(f (λvq → b) [vq | q])

Fig. 5. Definition by translation of Haskell’s generalised comprehensions

monad gives rise to a whole family of such factorisations, with two canonical such—a ‘least’ one
and a ‘greatest’ one. Conversely, any strictM-action on a category D can be transferred over an
adjunction L ⊣ R : C → D to yield an M-graded monad on C . An ordinary monad T arising from
adjunction L ⊣ R is a graded monad over the trivial singleton monoid; in that case, the canonical
factorisations reduce to the Kleisli and Eilenberg–Moore adjunctions for the monad, and conversely,
T coincides with the transfer of the identity monad (the trivial strict action of the trivial singleton
monoid) over L ⊣ R. The constructions are given in full by Fujii et al. [2016]; the details do not add
any more insight beyond the above, so we skip them here, although for completeness we summarize
them in Appendix A.

In Section 6 we had the characterisation
x f ▷◁g y = * (a, b) | a← x, b ← y, f a g b +

= elems (Map∗ (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g)))

of equijoin in terms of indexed tables. The linear execution time of the latter combinator version is
appealing; but it is a shame to have had to give up on the comprehension notation of the former
in order to obtain it. On the face of it, this sacrifice seems inevitable: the combinator version is
heterogeneous, involving different monads Bag∗ and Table K as the input and output of indexBy,
whereas traditional comprehension notation is homogeneous.

Nevertheless, it is possible to generalise the comprehension notation to support heterogeneity
with grouping [Peyton Jones and Wadler 2007] and merging [Plasmeijer and van Eekelen 1995], as
has been done in the Glasgow Haskell Compiler [Giorgidze et al. 2011b; Glasgow 2015]. Haskell’s
generalised comprehension for a monad M is defined by translation, as shown in Figure 5. In a
nutshell, the translation is as follows. The first four clauses precisely match our properties of bag
comprehensions (9a)–(9d) in Section 3: mult and return are the multiplication µ and unit η of the
monad M , liftM its functorial action, and mzero the neutral element of the monoid—in particular,
mzero = ∅ for M = Bag∗.
In the fifth and sixth clauses, vq denotes the tuple of variables bound by qualifiers q, and vqi

projects out the ith component from this tuple; and similarly for vr and r . In the fifth clause, the
monad M is assumed to support an appropriate ‘zip’ function

mzip ::M a→ M b → M (a, b)

For example, with M = List, a suitable instantiation is mzip = zip; so the comprehension

[a + b + c | (a, b) ← [(1, 3), (2, 4)] | c ← [5, 6]]

desugars to

liftM (λ((a, b), c) → a + b + c) (zip [(a, b) | (a, b) ← [(1, 3), (2, 4)]] [c | c ← [5, 6]])

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:20 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

and hence evaluates to [9, 12]. More interestingly, with M = Table K, an appropriate instantiation
is mzip = merge.
In the sixth clause, the argument f is required to have type (a→ K) → M a→ N (F a), where

N is a (possibly different) monad, and F some functor; note that this introduces heterogeneity into
the comprehension. This translation [Peyton Jones and Wadler 2007] is particularly ingenious, in
that the variables vq bound by qualifiers q and used in key expression b are rebound by the case
expression for the scope containing e and r . For example, GHC provides a function

groupWith :: Ord b ⇒ (a→ b) → [a]→ [[a]]

such that groupWith k xs which categorizes the elements of a list xs according to k, groups them
by category, and sorts the groups; then the comprehension

[(head c, sum n) | (c, n) ← [(’a’, 3), (’b’, 4), (’a’, 5)],
then group by c using groupWith]

desugars to

liftM (λys → case (fmap fst ys, fmap snd ys) of (c, n) → [(head c, sum n) |])
(groupWith (λ(c, n) → c) [(c, n) | (c, n) ← [(’a’, 3), (’b’, 4), (’a’, 5)]])

and hence evaluates to [(’a’, 8), (’b’, 4)] (note that c and n are bound initially to characters and
integers, and then rebound to lists of such). For the purposes of this paper, we will use indexBy for
f , thereby instantiating both M and F to Bag∗ and N to Table K.

(In GHC [Glasgow 2015], the choice of mzip function is specified indirectly by way of a subclass
MonadZip of Monad, whereas the grouping function f is specified directly.) The full translation of
the extended comprehension notation is discussed in more detail by its designers [Giorgidze et al.
2011a,b; Peyton Jones and Wadler 2007] and, in this particular context, in a related paper [Gibbons
2016]. Others have designed embedded query DSLs with grouping and aggregation [Suzuki et al.
2016], but not as far as we know in terms of comprehensions.

With these extensions, we can write the equijoin x f ▷◁g y in Haskell as follows:

elems [cp a b | a← x, then group by f using indexBy
| b ← y, then group by g using indexBy]

—note how the variable a is bound first to an element of x by the qualifier a← x, and used as such
in the key expression f ; but rebound to a finite bag of such elements by the grouping function
indexBy, and used as such in the term cp a b. The example query from Section 1 turns out as
follows:

reduce
[cp name amount
| (cid, name) ← customers, then group by cid using indexBy
| (iid, cust, due, amount) ← invoices, due < today, then group by cust using indexBy
]

So graded monads are really a small generalisation of ordinary monads, and enjoy generalisations
of the same properties. Crucially, they still support the same comprehension notation, satisfying
the same equational properties. In particular, the translation of grouping and zipping comprehen-
sions in Figure 5 works as well for graded monads as for ungraded ones, and for heterogeneous
comprehensions (where grouping takes an M A-collection to a nested N (F A) collection) as for
homogeneous ones (where M , N , and F coincide). We do not repeat and renumber all the previous
comprehension properties here; but it is important to note that subsequent appeals to properties

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:21

about ‘comprehensions’ (for example, in Section 8 below) depend implicitly on their definition for
graded monads.

8 QUERY TRANSFORMATION
The classical System R approach to database query optimization [Selinger et al. 1979] is based on
enumerating a number of extensionally equivalent expressions for an input query, estimating the
execution cost of each of them, and then generating code for the best one. Many of the equivalences
between query expressions amount to algebraic properties of the various operators, which in turn
arise from the adjunctions we have explored above. We discuss some of the most important such
equivalences in what follows. As a reminder, the relational algebra operators have the following
specifications:

πf = Bag f
σp = filter p
x f ▷◁g y = * (a, b) | a← x, b ← y, f a g b +

(although equijoin has the more efficient implementation discussed in Section 6).
We do not cover equivalences that depend on data invariants, such as functional dependencies,

nor how to use statistics on the actual data in the tables in order to choose among equivalent
queries; both aspects depend on information outside our model, and “whereof one cannot speak,
thereof one must be silent”.

8.1 High-School Algebra
Tarski’s high-school algebra identities [Burris and Lee 1993; Fiore et al. 2006] are the eleven basic laws
of the positive naturals that one typically learns at school: addition is associative and commutative;
multiplication is associative and commutative with neutral element 1; multiplication distributes
over addition; exponentiation promotes through addition (x ↑ (y + z) = (x ↑ y) × (x ↑ z)) and
distributes over multiplication ((x × y) ↑ z = (x ↑ z) × (y ↑ z)); exponentiation is a right action
of the monoid of multiplication (x ↑ (y × z) = (x ↑ y) ↑ z and x ↑ 1 = x); and 1 is a left zero of
exponentiation.
But the positive naturals are not the only model of this equational theory; another model

is given by (Set,⊎,×,→, {∗}), which arises from sets under disjoint union, cartesian product,
function spaces, and singletons. So too are finite non-empty sets under the same operations; and
set cardinality is a theory morphism from finite non-empty sets to the positive naturals (that is, it
preserves all the laws). These properties of sets fall out of the adjunctions in Figure 2(a),(b) yielding
sums, products, and singletons.

To show that multiplication distributes through addition, we use the Yoneda Embedding, which
states that

B � A⇐⇒ C (A, -) � C (B, -)

One can see the Yoneda Embedding as a high-level reasoning principle of indirect proof ; in the
special case of ordered sets, it becomes

(b = a) ⇐⇒ (∀c . (a ⩽ c) ⇔ (b ⩽ c))

We can use the Yoneda Embedding to show that L (A1 + A2) � L A1 + L A2 whenever we have an
adjunction L ⊣ R—it suffices to show Set (L (A1 + A2),X) � Set (L A1 + L A2,X) for arbitrary X ,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:22 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

and so we calculate:

Set (L (A1 + A2),X)
� { L ⊣ R }
Set (A1 + A2,R X)
� { + ⊣ ∆ }
Set (A1,R X) × Set (A2,R X)
� { L ⊣ R }
Set (L A1,X) × Set (L A2,X)
� { + ⊣ ∆ }
Set (L A1 + L A2,X)

Since - × B is a left adjoint, this gives us the special case (A1 + A2) × B � A1 × B + A2 × B of
distributing a product over a sum.

8.2 Projections
Relational projections πi are a special case of the functorial action F i of the functor F representing
database tables (whether that functor be Bag, Bag∗, or Table K), reading i as both the names of
some columns and the function that extracts those fields from a single record. Equivalences for
projections are therefore special cases of the functor laws. For example, assuming columns i are a
subset of columns j, then field extraction i subsumes j (that is, i · j = i), and so

πi · πj
= { projections as functorial action }
Bag i · Bag j
= { functors preserve composition (2b) }
Bag (i · j)
= { subsumption: i · j = i }
Bag i
= { projection as functorial action }
πi

8.3 Selections
We represent the relational selection σp as filter p, reading p as a predicate, that is, a B-valued
function. We can simplify and combine filters as follows, where false, true, and conjunction are
lifted to predicates.

filter false s = ∅ (20a)
filter true s = s (20b)
filter (p ∧ q) s = filter p (filter q s) (20c)

All of these equalities are easy to show, since filter p, constant functions and the identity are all
homomorphisms, and two homomorphisms from Free A are equal iff they coincide on singleton
bags (4). In particular, the last equality shows that consecutive selections can be fused.

The property that filter p is a dinatural transformation (7d) shows how to commute a selection
σp and a projection πi, when predicate p depends only on columns i: then as boolean predicates,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:23

p · i = p, and so

σp · πi
= { selections and projections }
filter p · Bag i
= { dinaturality (7d) }
Bag i · filter (p · i)
= { subsumption: p · i = p }
Bag i · filter p
= { selections and projections }
πi · σp

8.4 Aggregations
Selection σp = reduce (Free A) · Bag (guard p) is a particular homomorphism; aggregations more
generally are also of this form, as we saw in Section 3, and enjoy similar properties, for similar
reasons. For example, a homomorphism h = reduce M · Bag f for monoid M = (M, ϵ, ⊗) can
always absorb a projection:

h · πi
= { homomorphism, projection }
reduce M · Bag f · Bag i
= { functor composition (2b) }
reduce M · Bag (f · i)

and a selection:

h · σp
= { selection }
h · reduce (Free A) · Bag (guard p)
= { h : Free A→ M, naturality (6b) }
reduce M · Bag h · Bag (guard p)
= { functor composition (2b) }
reduce M · Bag (h · guard p)
= { guard }
reduce M · Bag (λa→ h (if p a then * a + else ∅))
= { homomorphisms: h * a + = f a (5b), h ∅ = ϵ (5a) }
reduce M · Bag (λa→ if p a then f a else ϵ)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:24 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

8.5 Comprehensions
The monad laws justify certain manipulations of monad comprehensions. For example, associativity
of qualifier sequencing follows from associativity of monad multiplication µ:

* e | (q, q′), q′′ +
= { sequencing of qualifiers (9d) }
µ * *e | q′′+ | q, q′ +
= { sequencing of qualifiers (9d) again }
µ (µ * * * e | q′′+ | q′+ | q+)
= { associativity (8c): µ · µ = µ · Bag µ }
µ (Bag µ * * * e | q′′+ | q′+ | q+)
= { functors over comprehension (10) }
µ * µ * *e | q′′+ | q′+ | q +
= { sequencing of qualifiers (9d) }
µ * *e | q′, q′′+ | q +
= { sequencing of qualifiers (9d) again }

* e | q, (q′, q′′) +

(Indeed, this implication is an equivalence [Wadler 1992].) The above shows how to flatten an inner
comprehension nested in the term part of an outer comprehension; for one nested in the qualifier
part, we have:

* e | p ← *e′ | q + +
= { generators (9c) }
Bag (λp → e) * e′ | q +
= { functors over comprehension (10) }

* (λp → e) e′ | q +

8.6 Joins
Join order optimization is one of the most powerful optimization techniques, even though it is
known to be insufficient for generating worst-case optimal join implementations [Ngo et al. 2012].
It can be shown that extending merge from binary to n-ary functions, combined with the generic
trie implementation of ix based on (15a)–(15d) [Henglein and Hinze 2013] and symbolic Cartesian
product constructors, yields worst-case optimal joins that dramatically outperform conventional
query processors on cyclic join queries, specifically triangle queries, also in practice [Henglein and
Larsen 2010].

Cartesian product and equijoin are associative and commutative (up to canonical isomorphisms),
and so queries involving two or more joins offer many opportunities for rearranging the query in
order to improve performance. The pivotal observation is the efficient implementation of equijoin:

x f ▷◁g y = * (a, b) | a← x, b ← y, f a g b +
= elems (Map∗ K (×) (merge (x ‘indexBy‘ f , y ‘indexBy‘ g)))

as discussed in Section 6.
The comprehension version is much easier to manipulate than the combinator-style one. For

example, here is the proof that join is commutative, up to the isomorphism swap (a, b) = (b, a) on

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:25

pairs:

x f ▷◁g y
= { equijoin as comprehension }

* (a, b) | a← x, b ← y, f a g b +
= { Bag is a commutative monad (12) }

* (a, b) | b ← y, a← x, f a g b +
= { swap; is symmetric }

* swap (b, a) | b ← y, a← x, g b f a +
= { functors over comprehension (10) }
Bag swap * (b, a) | b ← y, a← x, g b f a +
= { equijoin as comprehension }
Bag swap (y g▷◁f x)

Similarly, join is associative, up to the nested pair isomorphism assoc ((a, b), c) = (a, (b, c)):

(x f ▷◁g y) g ·snd ▷◁h z
= { equijoin as comprehension }

* ((a, b), c) | (a, b) ← * (a, b) | a← x, b ← y, f a g b+, c ← z, g b h c +
= { comprehensions }

* ((a, b), c) | a← x, b ← y, f a g b, c ← z, g b h c +
= { assoc; c not free in f , g }

* assoc (a, (b, c)) | a← x, b ← y, c ← z, g b h c, f a g b +
= { functors over comprehension (10) }
Bag assoc * (a, (b, c)) | a← x, b ← y, c ← z, g b h c, f a g b +
= { equijoin as comprehension }
Bag assoc (x f ▷◁g ·fst (y g▷◁h z))

8.7 Combining Joins with Other Operations
A projection πi×j can be promoted through an equijoin f ▷◁g if it is compatible with the join criterion,
that is, if there exist f ′, g′ such that (f a g b) ⇔ (f ′ (i a) g′ (j b)):

πi×j (x f ▷◁g y)
= { projection, equijoin }
Bag (i × j) * (a, b) | a← x, b ← y, f a g b +
= { functors over comprehension (10) }

* (i × j) (a, b) | a← x, b ← y, f a g b +
= { product }

* (i a, j b) | a← x, b ← y, f a g b +
= { compatibility }

* (i a, j b) | a← x, b ← y, f ′ (i a) g′ (j b) +
= { functors }

* (a′, b′) | a′ ← Bag i x, b′ ← Bag j y, f ′ a′ g′ b′ +
= { projection, equijoin }
(πi x) f ′▷◁g′ (πj y)

Similarly, if a selection σp after a join uses a predicate p that can be factorised to act independently
on the components of the pair—that is, there exist q, r with p (a, b) = q a ∧ r b with b not free in

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:26 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

q a and a not free in r b—then the selection can be promoted through the join:

σp (x f ▷◁g y)
= { selection, equijoin }

* (a, b) | (a, b) ← * (a, b) | a← x, b ← y, f a g b+, p (a, b) +
= { factorising predicate }

* (a, b) | (a, b) ← * (a, b) | a← x, b ← y, f a g b+, q a ∧ r b +
= { comprehensions }

* (a, b) | a← x, b ← y, f a g b, q a, r b +
= { b is not free in q a }

* (a, b) | a← x, q a, b ← y, r b, f a g b +
= { comprehensions }

* (a, b) | a← *a | a← x, q a+, b ← *b | b ← y, r b+, f a g b +
= { selection, equijoin }
σq x f ▷◁g σr y

To sum up, not only do adjunctions provide the structures required for database operations, but
they also give rise to the properties we need for optimizations.

9 CONCLUSION
Comprehensions as a notation for queries, generalizable to various kinds of collection monad, have
for decades been a staple of programming interfaces to data. Monads enjoy rich mathematical
structure, deriving from category theory, and manifesting as a body of equivalences that provides a
basis for many query optimizations. However, the monadic structure alone does not provide a good
story about joins in queries; and reducing joins to cartesian products leads to extremely inefficient
implementations. Efficient implementations—taking time linear in the size of the input—require a
different explanation. We have presented such an explanation; it is just as rich and elegant as the
naive monadic story, being similarly based on a few simple adjunctions.

Our construction depends crucially on the interplay between multiple monads. Bags are a sweet
spot for expressivity of queries: lists would preserve too many distinctions, in terms of ordering
of results—so denying some opportunities for query optimization, in particular for joins. On the
other hand, sets collapse too many distinctions, in terms of multiplicity of elements—thereby
denying non-idempotent aggregations such as count and sum. But bags alone are insufficient for
representing the indexing and merging that is necessary for an efficient implementation of joins;
for that, we also need maps. And for maps to be aggregatable, they need to be finite. And finally,
since finite maps are not a plain monad, we had to introduce the refined notion of graded monads.
This necessary interplay between heterogeneous monads has the unfortunate consequence

that we can no longer write a query involving a join as a traditional comprehension, because
these can only be homogeneous. Nevertheless, as we showed in Section 7, recent extensions to
Haskell’s comprehension notation to support grouping [Peyton Jones andWadler 2007] andmerging
[Plasmeijer and van Eekelen 1995] support the necessary heterogeneity that allows us to express
equijoins efficiently in the comprehension notation.

This means that we do not have to resort to the combinator style just to get efficient implementa-
tion of joins; comprehensions still suffice as a surface syntax. Nevertheless, the combinator style is
arguably more appropriate as an intermediate representation; database management systems tradi-
tionally translate input queries from the comprehension style (‘relational calculus’) to combinator
style (‘relational algebra’) in preparation for query optimization (although it is possible to carry
out the query transformations directly in the comprehension style, as for example Cheney et al.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:27

[2013] do). And conversely, it is possible to reconstruct joins from queries written in the ordinary
comprehension style, albeit at the cost of considerable analysis.
The investigations presented here are a first step towards a greater goal. We have shown that

adjunctions give rise to all the combinators needed to give a rigorous explanation of the selections,
projections, and joins of relational algebra, providing both the basis for an efficient implementation
and the justification for the body of transformations needed in query optimization.We are optimistic
that these constructions might form a firm foundation for an intermediate representation for
implementing database connection frameworks such as Microsoft’s LINQ [Meijer 2007; Syme 2006].
In general, this work lends evidence to the argument that expressive type systems (here, notably the
use of type classes for datatype-generic programming) are important for accommodating embedded
domain-specific languages.

ACKNOWLEDGEMENTS
We are grateful to the members of IFIP Working Groups 2.1 on Algorithmic Languages and Calculi
and 2.11 on Program Generation for valuable discussions about this work at meetings; special
thanks are due to Sam Lindley, Conor McBride, and Jacques Carette. We also thank the anonymous
reviewers of earlier versions for their helpful comments. This work has been funded by UK EPSRC
project Unifying Theories of Generic Programming (grant number EP/J010995/1) and Innovation
Fund Denmark project HIPERFIT (grant number 10-092299).

REFERENCES
Alexander Alexandrov, Andreas Kunft, Asterios Katsifodimos, Felix Schüler, Lauritz Thamsen, Odej Kao, Tobias Herb,

and Volker Markl. 2015. Implicit Parallelism through Deep Language Embedding. In SIGMOD record. ACM, 47–61.
https://doi.org/10.1145/2723372.2750543

Steve Awodey. 2006. Category Theory. Oxford University Press.
Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong. 1994. Comprehension Syntax. SIGMOD Record

23, 1 (1994), 87–96. https://doi.org/10.1145/181550.181564
Stanley Burris and Simon Lee. 1993. Tarski’s High School Identities. Amer. Math. Monthly 100, 3 (March 1993), 231–236.
Jacques Carette. 2018. Email correspondence. (May 2018). Personal communication.
James Cheney, Sam Lindley, and Philip Wadler. 2013. A Practical Theory of Language-Integrated Query. In International

Conference on Functional Programming, Greg Morrisett and Tarmo Uustalu (Eds.). ACM, 403–416. https://doi.org/10.
1145/2500365.2500586

Eugenia Cheng. 2015. Cakes, Custard, and Category Theory. Profile Books.
Richard H. Connelly and F. Lockwood Morris. 1995. A Generalization of the Trie Data Structure. Mathematical Structures in

Computer Science 5, 3 (September 1995), 381–418. https://doi.org/10.1017/S0960129500000803
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming without Tiers. In Formal

Methods for Components and Objects (Lecture Notes in Computer Science), Vol. 4709. Springer, 266–296. https://doi.org/10.
1007/978-3-540-74792-5_12

John Darlington. 1975. Application of Program Transformation to Program Synthesis. In IRIA Symposium on Proving and
Improving Programs. Arc-et-Senans, France, 133–144.

Christopher J. Date. 2004. An Introduction to Database Systems (8th ed.). Pearson.
Mary Fernandez, Jerome Simeon, and Philip Wadler. 2001. A Semi-Monad for Semi-Structured Data. In International

Conference on Database Theory (Lecture Notes in Computer Science), Jan Van den Bussche and Victor Vianu (Eds.),
Vol. 1973. Springer, 263–300. https://doi.org/10.1007/3-540-44503-X_18

Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. 2006. Remarks on Isomorphisms in Typed Lambda Calculi with Empty
and Sum Types. Annals of Pure and Applied Logic 141, 1-2 (2006), 35–50. https://doi.org/10.1016/j.apal.2005.09.001

Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. 2016. Towards a Formal Theory of Graded Monads. In Foundations
of Software Science and Computation Structures (Lecture Notes in Computer Science). Springer-Verlag, 513–530. https:
//doi.org/10.1007/978-3-662-49630-5_30

Jeremy Gibbons. 2016. Comprehending Ringads. In A List of Successes that can Change the World (Lecture Notes in
Computer Science), Sam Lindley, Conor McBride, Don Sannella, and Phil Trinder (Eds.), Vol. 9600. Springer, 132–151.
https://doi.org/10.1007/978-3-319-30936-1_7

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

https://doi.org/10.1145/2723372.2750543
https://doi.org/10.1145/181550.181564
https://doi.org/10.1145/2500365.2500586
https://doi.org/10.1145/2500365.2500586
https://doi.org/10.1017/S0960129500000803
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/3-540-44503-X_18
https://doi.org/10.1016/j.apal.2005.09.001
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-319-30936-1_7

86:28 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

George Giorgidze, Torsten Grust, Tom Schreiber, and Jeroen Weijers. 2011a. Haskell Boards the Ferry: Database-Supported
Program Execution for Haskell. In Implementation and Application of Functional Languages (Lecture Notes in Computer
Science), Jurriaan Hage andMarco T.Morazán (Eds.), Vol. 6647. Springer, 1–18. https://doi.org/10.1007/978-3-642-24276-2_
1

George Giorgidze, Torsten Grust, Nils Schweinsberg, and Jeroen Weijers. 2011b. Bringing Back Monad Comprehensions. In
Haskell Symposium. ACM, 13–22. https://doi.org/10.1145/2034675.2034678

Glasgow 2015. Glasgow Haskell Compiler Users’ Guide, Version 7.10.1. https://downloads.haskell.org/~ghc/7.10.1/docs/html/
users_guide/index.html.

Torsten Grust and Marc H. Scholl. 1999. How to Comprehend Queries Functionally. Journal of Intelligent Information
Systems 12, 2-3 (1999), 191–218. https://doi.org/10.1023/A:1008705026446

Fritz Henglein and Ralf Hinze. 2013. Distributive Sorting and Searching: From Generic Discrimination to Generic Tries. In
Asian Symposium on Programming Languages and Systems (Lecture Notes in Computer Science), Chung-chieh Shan (Ed.),
Vol. 8301. Springer, 315–332. https://doi.org/10.1007/978-3-319-03542-0_23

Fritz Henglein and Ken Friis Larsen. 2010. Generic Multiset Programming with Discrimination-Based Joins and Sym-
bolic Cartesian Products. Higher-Order and Symbolic Computation 23, 3 (2010), 337–370. https://doi.org/10.1007/
s10990-011-9078-8

Ralf Hinze. 2000. Generalizing Generalized Tries. Journal of Functional Programming 10, 4 (2000), 327–351. https:
//doi.org/10.1017/S0956796800003713

Ralf Hinze. 2003. Fun with Phantom Types. In The Fun of Programming, Jeremy Gibbons and Oege de Moor (Eds.). Palgrave
Macmillan, 245–262.

Shin-ya Katsumata. 2014. Parametric Effect Monads and Semantics of Effect Systems. In Principles of Programming Languages.
ACM, 633–645. https://doi.org/10.1145/2535838.2535846

Leonid Libkin and Limsoon Wong. 1997. Query Languages for Bags and Aggregate Functions. J. Comput. System Sci. 55, 2
(1997), 241–272. https://doi.org/10.1006/jcss.1997.1523

Conor McBride and Ross Paterson. 2008. Functional Pearl: Applicative Programming with Effects. Journal of Functional
Programming 18, 1 (2008), 1–13. https://doi.org/10.1017/S0956796807006326

Erik Meijer. 2007. Confessions of a Used Programming Language Salesman. In Object-Oriented Programming: Systems,
Languages and Applications. ACM, 677–694. https://doi.org/10.1145/1297027.1297078

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-Case Optimal Join Algorithms. In Principles of Database
Systems. ACM, 37–48. https://doi.org/10.1145/2213556.2213565

Dominic A. Orchard, Tomas Petricek, and Alan Mycroft. 2014. The Semantic Marriage of Monads and Effects. CoRR
abs/1401.5391 (2014).

Simon Peyton Jones and Philip Wadler. 2007. Comprehensive Comprehensions. In Haskell Workshop. ACM, 61–72. https:
//doi.org/10.1145/1291201.1291209

Benjamin C. Pierce. 1991. Basic Category Theory for Computer Scientists. MIT Press.
Rinus Plasmeijer and Marko van Eekelen. 1995. Concurrent Clean Language Report (Version 1.0). Technical Report. University

of Nijmegen. ftp://ftp.science.ru.nl/pub/Clean/old/Clean10/doc/refman.ps.gz.
Jacob T. Schwartz, Robert B. K. Dewar, Ed Dubinsky, and Edmond Schonberg. 1986. Programming with Sets: An Introduction

to SETL. Springer, New York.
Patricia Griffiths Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and Thomas G. Price. 1979.

Access Path Selection in a Relational Database Management System. In SIGMOD record. ACM, 23–34. https://doi.org/10.
1145/582095.582099

Ross Street. 1972. Two Constructions on Lax Functors. Cahiers de Topologie et Géométrie Différentielle Catégoriques 13, 3
(1972), 217–264. http://eudml.org/doc/91107

Kenichi Suzuki, Oleg Kiselyov, and Yukiyoshi Kameyama. 2016. Finally, Safely-Extensible and Efficient Language-Integrated
Query. In Partial Evaluation and Program Manipulation, Martin Erwig and Tiark Rompf (Eds.). ACM, 37–48. https:
//doi.org/10.1145/2847538.2847542

Don Syme. 2006. Leveraging .NET Meta-programming Components from F#: Integrated Queries and Interoperable Hetero-
geneous Execution. In ML Workshop. ACM, New York, NY, USA, 43–54. https://doi.org/10.1145/1159876.1159884

Philip W. Trinder. 1991. Comprehensions, a Query Notation for DBPLs. In Database Programming Languages. 55–68.
Philip Wadler. 1992. Comprehending Monads. Mathematical Structures in Computer Science 2, 4 (1992), 461–493. https:

//doi.org/10.1017/S0960129500001560
Limsoon Wong. 2000. Kleisli, a Functional Query System. Journal of Functional Programming 10, 1 (2000), 19–56.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

https://doi.org/10.1007/978-3-642-24276-2_1
https://doi.org/10.1007/978-3-642-24276-2_1
https://doi.org/10.1145/2034675.2034678
https://downloads.haskell.org/~ghc/7.10.1/docs/html/users_guide/index.html
https://downloads.haskell.org/~ghc/7.10.1/docs/html/users_guide/index.html
https://doi.org/10.1023/A:1008705026446
https://doi.org/10.1007/978-3-319-03542-0_23
https://doi.org/10.1007/s10990-011-9078-8
https://doi.org/10.1007/s10990-011-9078-8
https://doi.org/10.1017/S0956796800003713
https://doi.org/10.1017/S0956796800003713
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1006/jcss.1997.1523
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/1297027.1297078
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1145/1291201.1291209
https://doi.org/10.1145/1291201.1291209
ftp://ftp.science.ru.nl/pub/Clean/old/Clean10/doc/refman.ps.gz
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
http://eudml.org/doc/91107
https://doi.org/10.1145/2847538.2847542
https://doi.org/10.1145/2847538.2847542
https://doi.org/10.1145/1159876.1159884
https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1017/S0960129500001560

Relational Algebra by Way of Adjunctions 86:29

A GRADED MONADS FROM ADJUNCTIONS
In this appendix, we outline a special case of Street’s constructions [Street 1972], showing the
connection between graded monads, strict actions, and adjunctions. This connection is due to Fujii
et al. [2016]. We include it here for completeness.
AnM-graded monad (T,η,µ) over a monoidM = (M, ϵ, ⊗) in category C is an indexed family

of endofunctors Tm for m :M , with natural transformations η : Id →̇ Tϵ and µm,n : Tm ◦ Tn →̇ Tm⊗n
such that the following diagrams commute:

Tm Tm ◦ Tϵ

Tm

Tm η

µm,ϵ

Tϵ ◦ Tm Tm

Tm

µϵ,m

η Tm Tm ◦ Tn ◦ Tp Tm ◦ Tn⊗p

Tm⊗n ◦ Tp Tm⊗n⊗p

Tm µn,p

µm,n Tp µm,n⊗p

µm⊗n,p

A strictM-action in C is anM-graded monad for which η and µm,n are identities. (Equivalently,
a strictM-action in C is a functor A : M → Cat such that A∗ = C , where Cat is the category of
functors and natural transformations, and treating monoid M as a category M with one object
∗. An M-graded monad in C is similarly a lax functor T : M → Cat—that is, a generalisation of
functors in which the coherence of identity and composition is given by arrows rather than being
equalities.)

We will show that adjunctions L ⊣ R :C → D determine a relationship between strictM-actions
A on D andM-graded monads T on C : we can transfer an A across L ⊣ R to yield T; and conversely,
given T, we can construct D , an adjunction L ⊣ R, and an A whose transfer across L ⊣ R coincides
with T.

Given an adjunction L ⊣ R :C → D , and a strictM-action A on D , we defineM-graded monad T
on C as follows. We define the family of endofunctors by Tm = R◦Am ◦L. The unit η is just the unit

η : Id →̇ R ◦ L = R ◦ Aϵ ◦ L = Tϵ

of the adjunction. The multiplications are derived from the counit ϵ of the adjunction by

µm,n = R Am ϵ An L : Tm ◦ Tn = R ◦ Am ◦ L ◦ R ◦ An ◦ L →̇ R ◦ Am ◦ An ◦ L = Tm⊗n

One can view the T so constructed as the transfer of A along L ⊣ R; it is straightforward to check
that it does indeed satisfy the conditions to be a graded monad.
Conversely, given anM-graded monad T on C , can we construct a category D , an adjunction

L ⊣ R : C → D , and a strict M-action A on D such that the transfer of A along L ⊣ R coincides
with T? Street [1972] showed that there is in fact a whole category of such constructions, with two
canonical such: an ‘initial’ one and a ‘final’ one. We show the latter here.
We are given a monoid M = (M, ϵ, ⊗) and an M-graded monad T on C . A (second) way of

viewingM as a category M ′ is as a discrete category (the objects are the elements of M , and the
only arrows are identity arrows), but as a strict monoidal category to capture the monoidal structure.
We define a category C T as follows. The objects are pairs (F, f) consisting of a functor F :M ′ → C
and a family of arrows fm,n : Tm (F n) → F (m ⊗ n) such that the first two diagrams below commute.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:30 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

F m Tϵ (F m)

F m

η (F m)

fϵ,m

Tm Tn (F p) Tm (F (n ⊗ p))

Tm⊗n (F p) F (m ⊗ n ⊗ p)

Tm fn,p

µm,n (F p) fm,n⊗p

fm⊗n,p

Tm (F n) Tm (G n)

F (m ⊗ n) G (m ⊗ n)

Tm (k n)

fm,n gm,n

k (m⊗n)

The arrows k : (F, f) → (G, g) are natural transformations k : F →̇ G such that the third diagram
above commutes. We define functors L : C → C T,R : C T → C by

L F = (m 7→ Tm F, (m, n) 7→ µm,n F) R (F, f) = F ϵ
L (k : F→ G) = Tm k : Tm F→ Tm G R (k : (F, f) → (G, g)) = k ϵ : F ϵ → G ϵ

One may straightforwardly verify that this gives rise to an adjunction L ⊣ R, with unit η F :F→ Tϵ F,
and counit ϵ (G, g) = m 7→ gm,ϵ : Tm (G ϵ) → G m. Then we define functor T̂ : M → Cat by
T̂∗ = C T and T̂ (p : ∗ → ∗) : C T → C T with

T̂ p (F, f) = (n 7→ F (n ⊗ p), (m, n) 7→ fm,n⊗p)
T̂ p (k : (F, f) → (G, g)) = n 7→ k (np) : F (n ⊗ p) → G (n ⊗ p)

Again, one may verify that T̂ is a strict M-action on C T, and that the transfer of T̂ along L ⊣ R
coincides with T.
In fact, this is all a generalisation of the case for ordinary monads. When M = {∗}, the trivial

monoid, thenM-graded monad T reduces to an ordinary monad, and C T to the Eilenberg–Moore
category for T mentioned in Section 2. The transfer of any monad V on D over an adjunction
L ⊣ R : C → D yields a monad R ◦ V ◦ L on C . In particular, a strictM-action is simply the identity
monad Id, and the transfer of Id over L ⊣ R yields monad R ◦ Id ◦ L = R ◦ L.

B A PROTOTYPE IMPLEMENTATION
In this appendix, we present a prototype implementation in Haskell of the categorical constructions
presented in the paper. Our goal is not only to show that the theory translates elegantly into an
implementation, but also to outline some of the design decisions that need to be made.

B.1 Bags
For simplicity, we represent bags by lists; equality should be taken up to permutations.

newtype Bag a = Bag {elements :: [a] }
deriving (Functor,Monad)

We want Bag to be an instance of Functor , so that we can use fmap, and of Monad, so that we can
use bag comprehensions; we adopt the list instances of these two classes.

The empty bag and bag union are also defined in terms of the empty list and concatenation:

∅ :: Bag a
∅ = Bag []
(⊎) :: Bag a→ Bag a→ Bag a
x ⊎ y = Bag (elements x ++ elements y)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:31

B.2 Commutative Monoids
For aggregations, we require a type class representing monoids.

class Monoid m where
ϵ ::m
(⊗) ::m→ m→ m
-- ⊗ should be associative, and ϵ its neutral element

(The only way to express the laws in standard Haskell is by comments.) Commutative monoids
are monoids in which ⊗ is additionally commutative; the class CMonoid has no more methods, but
imposes an extra law.

class Monoid m⇒ CMonoid m
-- ⊗ should be commutative

Bags are obviously a commutative monoid:

instance Monoid (Bag a) where
ϵ = ∅

(⊗) = (⊎)

instance CMonoid (Bag a)

We can reduce a bag whose elements are drawn from a commutative monoid:

reduceBag :: CMonoid m⇒ Bag m→ m
reduceBag = foldr (⊗) ϵ · elements

(Note that the target monoid is determined implicitly from its carrier m.) For example, filtering a
bag by a predicate is a reduction:

filter :: (a→ B) → Bag a→ Bag a
filter p = reduceBag · fmap (guard p)
where guard p a = if p a then return a else ∅

B.3 Pointed Sets
We use a type class as an interface to pointed sets, with the usual provisos: we can use the same
name null for all base points, but a given type can be pointed in at most one way. (We use null for
the point, and rename to isNil the standard Haskell function null :: [a]→ B that tests for an empty
list.)

class Pointed a where
null :: a
isNull :: a→ B -- is the argument null?

instance Pointed () where
null = ()
isNull () = True

instance (Pointed a, Pointed b) ⇒ Pointed (a, b) where
null = (null, null)
isNull (a, b) = isNull a ∧ isNull b

instance Pointed (Bag a) where
null = ∅
isNull = isNil · elements

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:32 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

class (Functor (Map k)) ⇒ Key k where
data Map k :: ∗ → ∗
empty :: (Pointed v) ⇒ Map k v
isEmpty :: (Pointed v) ⇒ Map k v → B
single :: (Pointed v) ⇒ (k, v) → Map k v
merge :: (Map k v1,Map k v2) → Map k (v1, v2)
merge◦ :: Map k (v1, v2) → (Map k v1,Map k v2)
merge◦ x = (fmap fst x, fmap snd x)
dom :: (Pointed v) ⇒ Map k v → Bag k
cod :: Pointed v ⇒ Map k v → Bag v
cod t = reduce (fmap return t)
lookup :: Map k v → (k → v)
ix :: Bag (k, v) → Map k (Bag v)
ix◦ :: Map k (Bag v) → Bag (k, v)
reduce :: (Pointed v,CMonoid v) ⇒ Map k v → v
reduce = reduceBag · cod

Fig. 6. Declaration of finite maps

We have added an explicit test for nullness; an alternative design would have been to omit the
isNull method, and assume an Eq type constraint instead, so that we could simply compare with
null.
Some types have an obvious base point. To add a base point to an arbitrary type, we can use

Haskell’s Maybe.

instance Pointed (Maybe a) where
null = Nothing
isNull (Just) = False
isNull Nothing = True

B.4 Finite Maps
We will capture finite maps datatype-generically, following Hinze [2000], so we start by identifying
suitable key types. Note that the two type arguments K and V ofMap K V have different status:
finite maps should be functorial in the parameter V , but K is instead a type index or phantom type
[Hinze 2003].

The type class Key shown in Figure 6 sets out the requirements on a type K for it to be a suitable
key type. The associated type constructorMap K is then determined by K; note the Functor class
context. The methods reduce and cod are interdefinable, so any instance need only define one of
these two methods; and there is a default definition for merge◦. For simplicity, we have defined
dom to yield a bag, so we don’t have to provide a separate datatype of sets.
We have not included an insert operation, as it is asymmetric—it is not clear what it should do

for unit keys. But we could assemble an insertion operation using single and merge:

insert (k, v) t = fmap first (single (k, v) ‘merge‘ t)

where
first :: (Pointed a) ⇒ (a, a) → a
first (a, b) = if isNull a then b else a

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:33

instance Key () where -- unit type
newtype Map () v = Lone v
empty = Lone null
isEmpty (Lone v) = isNull v
single ((), v) = Lone v
merge (Lone v1, Lone v2) = Lone (v1, v2)
dom (Lone v) = * () | not (isNull v) +
cod (Lone v) = *v | not (isNull v) +
lookup (Lone v) () = v
ix kvs = Lone (fmap snd kvs)
ix◦ (Lone vs) = fmap (λv → ((), v)) vs

instance Functor (Map ()) where
fmap f (Lone v) = Lone (f v)

instance Key Word16 where -- constant types
newtype Map Word16 v = A (Array Word16 v)
empty = A (accumArray (curry snd) null (0, 216 − 1) [])
isEmpty (A a) = all isNull (elems a)
single (k, v) = A (accumArray (curry snd) null (0, 216 − 1) [(k, v)])
merge (A a,A b) = A (listArray (0, 216 − 1) (zip (elems a) (elems b)))
dom (A a) = *k | (k, v) ← assocs a, not (isNull v) +
cod (A a) = *v | (k, v) ← assocs a, not (isNull v) +
lookup (A a) k = a ! k
ix kvs = A (accumArray (λxs x → Bag (x : elements xs)) ∅ (0, 216 − 1)

(elements kvs))
ix◦ (A a) = * (k, v) | (k, vs) ← assocs a, v ← elements vs +

instance Functor (Map Word16) where
fmap f (A a) = A (fmap f a)

Fig. 7. Datatype-generic implementation of finite maps for polynomial key types (first part)

Polynomial types are all suitable as keys. We build up the instances inductively, using the ‘laws
of exponents’. The code is shown in Figure 7. We start with the unit type (); the associated type
instanceMap () indicates that finite maps from the unit type are singletons, and the domain and
codomain are either empty or a singleton, depending on whether or not the single element is null.
We also cover the constant typeWord16 = {0 . . 216 − 1 }; finite maps from bounded naturals are just
arrays. The sum of two Key types is again a Key type; finite maps from a sum are pairs of finite
maps. The product of two Key types is again a Key type; finite maps from a product are finite maps
to finite maps. For the latter, we require finite maps to pointed types to be themselves pointed:

instance (Key k, Pointed v) ⇒ Pointed (Map k v) where
null = empty
isNull = isEmpty

From these four components we can induce key instances for more interesting types, such as strings
and dates.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

86:34 Jeremy Gibbons, Fritz Henglein, Ralf Hinze, and Nicolas Wu

instance (Key k1,Key k2) ⇒ Key (Either k1 k2) where -- sum types
newtype Map (Either k1 k2) v = Pair (Map k1 v,Map k2 v)
empty = Pair (empty, empty)
isEmpty (Pair (t1, t2)) = isEmpty t1 ∧ isEmpty t2
single (Left k1, v) = Pair (single (k1, v), empty)
single (Right k2, v) = Pair (empty, single (k2, v))
merge (Pair (t1, t2), Pair (u1, u2)) = Pair (merge (t1, u1),merge (t2, u2))
dom (Pair (t1, t2)) = fmap Left (dom t1) ⊎ fmap Right (dom t2)
cod (Pair (t1, t2)) = cod t1 ⊎ cod t2
lookup (Pair (t1, t2)) (Left k1) = lookup t1 k1
lookup (Pair (t1, t2)) (Right k2) = lookup t2 k2
ix kvs = Pair (ix (fmap (λ(Left k1, v) → (k1, v)) kvs),

ix (fmap (λ(Right k2, v) → (k2, v)) kvs))
ix◦ (Pair (t1, t2)) = fmap (λ(k1, v) → (Left k1, v)) (ix◦ t1) ⊎

fmap (λ(k2, v) → (Right k2, v)) (ix◦ t2)
instance (Functor (Map k1), Functor (Map k2)) ⇒ Functor (Map (Either k1 k2)) where
fmap f (Pair (t1, t2)) = Pair (fmap f t1, fmap f t2)

instance (Key k1,Key k2) ⇒ Key (k1, k2) where -- product types
newtype Map (k1, k2) v = Comp (Map k1 (Map k2 v))
empty = Comp empty
isEmpty (Comp t) = isEmpty t
single ((k1, k2), v) = Comp (single (k1, single (k2, v)))
merge (Comp t1,Comp t2) = Comp (fmap merge (merge (t1, t2)))
dom (Comp t) = ix◦ (fmap dom t)
cod (Comp t) = reduce (fmap cod t)
lookup (Comp t) (k1, k2) = lookup (lookup t k1) k2
ix kvs = Comp (fmap ix (ix (fmap assoc kvs)))
ix◦ (Comp t1) = fmap assoc◦ (ix◦ (fmap ix◦ t1))

instance (Functor (Map k1), Functor (Map k2)) ⇒ Functor (Map (k1, k2)) where
fmap f (Comp t) = Comp (fmap (fmap f) t)

Fig. 7. Datatype-generic implementation of finite maps for polynomial key types (continued)

B.5 Example
Now we can implement the example from Section 1. Supposing record types for the Customer and
Invoice tables:

data Customer = C {cid :: Identifier, name :: Name }
data Invoice = I { iid :: Identifier, cust :: Identifier, due :: Date, amount :: Amount }

then the query can be implemented by:

example :: Bag Customer → Bag Invoice → Bag (Bag Name,Bag Amount)
example cs is =
fmap (pair (fmap name, fmap amount)) (cod

(fmap (pair (id,filter ((<today) · due))) (merge (cs ‘indexBy‘ cid, is ‘indexBy‘ cust))))
where pair (f , g) (a, b) = (f a, g b)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

Relational Algebra by Way of Adjunctions 86:35

(Recall that indexBy was defined in terms of ix
s ‘indexBy‘ f = ix (fmap (f △ id) s)

in Section 5.) So with inputs
customers :: Bag Customer
customers = * C 101 "sam",C 102 "max",C 103 "pat" +
invoices :: Bag Invoice
invoices = * I 201 101 20160921 20, I 202 101 20160316 15, I 203 103 20160520 10 +
today :: Date
today = 20160919

we get
reduceBag (fmap cp (example customers invoices)) = * ("sam", 15), ("pat", 10) +

where cp (x, y) = * (a, b) | a← x, b ← y+.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 86. Publication date: September 2018.

	Abstract
	1 Introduction
	2 Category Theory
	2.1 Categories
	2.2 Functors
	2.3 Natural Transformations
	2.4 Adjunctions
	2.5 Monads
	2.6 Algebras

	3 Relational Algebra
	4 Pointed Sets
	5 Indexed Tables
	6 Equijoin by Indexing
	7 Graded Monads
	8 Query Transformation
	8.1 High-School Algebra
	8.2 Projections
	8.3 Selections
	8.4 Aggregations
	8.5 Comprehensions
	8.6 Joins
	8.7 Combining Joins with Other Operations

	9 Conclusion
	References
	A Graded Monads from Adjunctions
	B A Prototype Implementation
	B.1 Bags
	B.2 Commutative Monoids
	B.3 Pointed Sets
	B.4 Finite Maps
	B.5 Example

