
FOCLASA 2008

A Relative Timed Semantics for BPMN

Peter Y. H. Wong and Jeremy Gibbons 1,2

Computing Laboratory, University of Oxford, United Kingdom

Abstract

We describe a relative-timed semantic model for Business Process Modelling Nota-
tion (BPMN). We define the semantics in the language of Communicating Sequen-
tial Processes (CSP). This model augments our untimed model by introducing the
notion of relative time in the form of delays chosen non-deterministically from a
range. By using CSP as the semantic domain, we exploit its refinement to show
some properties relating the timed semantics and BPMN’s untimed process seman-
tics. Our timed semantics allows behavioural properties of BPMN diagrams to be
mechanically verified via automatic model-checking provided by the FDR tool.

Key words: business process, compatibility, CSP, refinement,
timed semantics, verification, workflow

1 Introduction

Modelling of business processes and workflows is an important area in software
engineering. Business Process Modelling Notation (BPMN) allows developers
to take a process-oriented approach to modelling of systems. In our previ-
ous work [11] we have given an untimed process semantics in the language
of CSP [10] to a subset of BPMN. However, due to the lack of a notion of
time, this semantics is not able to precisely model activities running concur-
rently when temporality becomes a factor; this is particularly important when
specifying business collaboration where the coordination of one business par-
ticipant depends on the execution order of another participant’s activities. For
example, Figure 1 shows a simple business collaboration between participants
pl and p2. Clearly the temporal order of tasks C and D could affect the
execution of this collaboration.

The rest of this paper is structured as follows. Section 2 gives an intro-
duction to BPMN. Section 3 gives an overview of our syntactic description

1 This work is supported by a grant from Microsoft Research. The authors are grateful to
Bill Roscoe for his insightful advice on responsiveness during this work.
2 Email: {peter.wong,jeremy.gibbons}@comlab.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Wong and Gibbons

Fig. 1. A simple business collaboration

of BPMN. Section 4 describes briefly our relative timed semantics. In Sec-
tion 5 we show some properties relating the timed and untimed modes based
on CSP refinements, and revisit the example to show how the relative-timed
model may be used to verify compatibility between participants. We conclude
this paper with a comparison with related work. We assume readers have basic
knowledge of the mathematical notations Z [14] and CSP [10]. The complete
formal definition of the timed model may be found in our longer paper [12].

2 BPMN

States in our subset of BPMN, shown in Figure 2, can either be pools, tasks,
subprocesses, multiple instances or control gateways, each linked by a normal
sequence, an exception sequence flow, or a message flow. A normal sequence
flow can be either incoming to or outgoing from a state and have associ-
ated guards; an exception sequence flow, depicted by the states labelled task*,
bpmn*, task** and bpmn**, represents an occurrence of error within the state.
While sequence flows represent control flows within individual local diagrams,
message flows represent unidirectional communication between states in dif-
ferent local diagrams. A global diagram hence is a collection of local diagrams
connected via message flows.

In Figure 2, there are two types of start state, start and stime. A start
state models the start of the business process in the current scope by initiating
its outgoing transition; It has no incoming transition and only one outgoing
transition. The stime state is a variant start state and it initiates its outgoing
transition when a specified duration has elapsed. There are also two types of
intermediate state, itime and imessage. An itime state is a delay event; after
its incoming transition is triggered, the delay event waits for the specified du-
ration before initiating its outgoing transition. An imessage state is a message
event; after its incoming transition is triggered, the message event waits until
a specified message has arrived before initiating its outgoing transition. Both

2

Wong and Gibbons

Fig. 2. States of BPMN diagram

types of state have a maximum of one incoming transition and one outgoing
transition.

There are two types of end state end and abort. An end state models the
successful termination of an instance of the business process in the current
scope by initialisation of its incoming transition; it has only one incoming
transition with no outgoing transition. The abort state is a variant end state;
it models an unsuccessful termination, usually an error of an instance of the
business process in the current scope.

Our subset of BPMN contains two types of decision state, xgate and agate.
Each of them has one or more incoming sequence flows and one or more
outgoing sequence flows. An xgate state is an exclusive gateway, accepting
one of its incoming flows and taking one of its outgoing flows; the semantics of
this gateway type can be described as an exclusive choice and a simple merge.
An agate state is a parallel gateway, which waits for all of its incoming flows
before initialising all of its outgoing flows.

A task state describes an atomic activity, and has exactly one incoming and
one outgoing transition. It takes a unique name for identifying the activity.
In the environment of the timed semantic model, each atomic task must takes
a positive amount of time to complete. A bpmn state describes a subprocess
state. It is a business process by itself and so it models a flow of BPMN states.
In this paper, we assume all our subprocess states are expanded [8], this means
we model the internal bebaviours of of the subprocesses. The state labelled
bpmn in Figure 2 depicts a collapsed subprocess state where all internal details
are hidden; this state has exactly one incoming and one outgoing transition.

Also in Figure 2 there are graphical notations labelled task*, bpmn*, task**,
bpmn**, task*** and bpmn***, which depict a task state and a subprocess
state with an exception sequence flow. There are three types of exception
associated with task and subprocess states in our subset of BPMN states. Both
states task* and bpmn* are examples of states with an ierror exception flow
that models an interruption due to an error within the task or subprocess state;

3

Wong and Gibbons

the states task** and bpmn** are examples of states with a timed exception
flow, and model an interruption due to an elapse of the specified duration; the
states task*** and bpmn*** are examples of states with a message exception
flow, and model an interruption upon receiving the specified message. Each
task and subprocess state can have a maximum of one timed exception flow,
although it may have multiple error and message exception flows.

Each task and subprocess may also be defined as multiple instances. There
are two types of multiple instances in BPMN: the miseq state type represents
serial multiple instances, where the specified task is repeated in sequence; in
the mipar state type the specified task is repeated in parallel. The types
miseqs and mipars are their subprocess counterparts.

The graphical notation pool in Figure 2 forms the outermost container for
each local diagram, representing a single business process; only one execution
instance is allowed at any one time. Each local diagram contained in a pool
can also be a participant within a business collaboration (global diagram)
involving multiple business processes. While sequence flows are restricted to
an individual pool, message flows represent communications between pools.
Our earlier example of a collaboration in Figure 1 illustrates message flow
interaction between activities across BPMN pools.

3 Abstract Syntax

In this section we describe the abstract syntax of BPMN using Z notation [14].
For reasons of space, we have omitted certain schema and function definitions
and have only concentrated the definition of a smaller subset of the BPMN
states than shown in Section 2; readers may refer to our longer paper [12] for
their full definitions.

We first introduce some maximal sets of values to represent constructs such
as lines, task and subprocess name, defined as Z’s basic types:

[CName,PName,Task ,Line,Channel ,Guard ,Msg]

We then derive subtypes BName and PLName, InMsg , OutMsg , EndMsg and
LastMsg axiomatically,

InMsg ,OutMsg ,EndMsg ,LastMsg : P Msg
BName,PLName : P PName

〈InMsg ,OutMsg ,EndMsg ,LastMsg〉 partition Msg
〈BName,PLName〉 partition PName

The sequence of sets 〈S1 . . Sn〉 partitions some set T iff⋃
S1 . . Sn = T ∧ (∀ i , j : 1 . . n • Si ∩ Sj = ∅)

In this paper we will only consider the semantics of BPMN timed events

4

Wong and Gibbons

describing time cycles (duration) and not absolute time stamps. We define
schema type Time to record each duration; this schema models a strictly
positive subset of the six-dimensional space of the XML schema data type
duration [15].

Time =̂ [year ,month, day , hour ,minute, second : N]

Each type of state shown in Figure 2 is defined using the free type Type where
each of its constructors describes a particular type of state. For example, the
type of an atomic task state is defined by task t where t is a unique name that
identifies that task state. Below is the partial definition.

Type ::= start | stime〈〈Time〉〉 | end〈〈N〉〉 | abort〈〈N〉〉 | task〈〈Task〉〉 |
xgate | bpmn〈〈BName〉〉 | miseq〈〈Task × N〉〉

According to the BPMN specification [8], each state type has other associated
attributes describing its properties; our syntactic definition has included only
some of these attributes. For example, the number of loops of a sequence mul-
tiple instance state type is recorded by the natural number in the constructor
function miseq . In this paper we call both sequence flows and exception flows
‘transitions’; states are linked by transition lines representing flows of control,
which may have associated guards. We give the type of a sequence flow or an
exception flow, and a message flow by the following schema definitions.

Trans =̂ [guard : Guard ; line : Line]
Mgeflow =̂ [msg : Msg ; chn : Channel]

Each state records the type of its content, its transitions and message flows.
Here we show a partial definition of the schema State, omitting the inclusion
of schema components for message flows for reasons of space.

State =̂ [type : Type; in, out , error : P Trans ; loop : N; ran : Range]

Each atomic task state also specifies a delay range, min . .max , of type Range;
the actual delay will be chosen non-deterministically from this range.

Range =̂ [min,max : Time | min ≤T max]

Each BPMN diagram encapsulated by a pool is a local diagram and rep-
resents an individual business participant in a collaboration, built up from a
well-configured finite set of well-formed states [12]. While we associate each
local diagram with a unique name, a global diagram, representing a business
collaboration, is built up from a finite set of names, each associates with its
local diagram; we also associate each global diagram with a unique name.

5

Wong and Gibbons

4 Timed Semantics

We define a timed semantic function which takes a syntactic description of
a global diagram, describing a collaboration, and returns the CSP process
that models the timed behaviour of that diagram. That is, the function takes
one or more pool states, each encapsulating a local diagram representing an
individual participant within a business collaboration, and returns a parallel
composition of processes each corresponding to the timed behaviour of one of
the individual participants.

For each local diagram, the relative-timed semantics is the partial inter-
leaving of two processes defined by an enactment and a coordination function.
The enactment function returns the parallel composition of processes, each
corresponding to the untimed aspect of a state of the local diagram; this is
essentially our untimed semantics of local diagrams [11]. The coordination
function returns a single process for coordinating that diagram’s timed be-
haviour; it essentially implements a variant of two-phase functioning approach
adopted by coordination languages like Linda [6]. Our timed model permits
automatic translation, requiring no user interaction. We will now give a brief
overview of the coordination function; again for reasons of space we only
present function types accompained with informal descriptions. The complete
formal definition of both the enactment and coordination functions may be
found in our longer paper [12].

Informally the coordination process carries out the following steps: branch
out and enact all untimed events and gateways until the BPMN process has
reached time stablility; order all immediate active BPMN states, which are
also timed by definition, in some sequence 〈t1 . . tn〉 according to their shortest
delay; enact all the time ready states according to their timing information;
then remove the enacted states from the sequence. The process implements
these steps repeatedly until the enactment terminates.

We define the function clock to implement the coordination, where TimeState
is set of timed BPMN states, function allstates recursively returns a set of
states contained in a local diagram, including those contained within the di-
agram’s subprocess states, and begin returns the set of start states of a local
diagram.

clock : PName 7→ Local 7→ Process

∀ p : PName; l : Local •
clock p l =

2 i :
⋃
{ s : begin p l • αtrans s .out } •

let os = (µ s : states∼(l p) | i ∈ αtrans s .in) in
if os ∈ {t : TimeState | t ∈ allstates p l }
then i → (stable (timer p l) p l ∅ { os })
else i → (stable (timer p l) p l { os } ∅)

6

Wong and Gibbons

This function takes the name of the diagram of type PName and its specifi-
cation environment (a mapping between diagram/subprocess names and their
set of states) of type Local , and returns a process, which first triggers the
outgoing transition of one of the start states, determined by the enactment.
The process then behaves as defined by the function stable.

stable : (P State 7→ Process) 7→ PName 7→ Local 7→
P State 7→ P State 7→ Process

The function stable is a higher order function; it takes some function f and a
set of active states, and returns a process, which recursively enacts all untimed
active states until the local diagram is time-stable i.e. when all active states
of a local diagram are timed. It then behaves as defined by the function f ; in
the definition of clock , f is the function timer .

timer : PName 7→ Local 7→ P State 7→ P State 7→ P State 7→ Process

Generally the function timer takes the diagram’s name and specification envi-
ronment, a set of timed states that are active before the previous time stability
(initially empty), a set of timed states that have delayed their enactment non-
determinisistically (initially empty), and a set of timed states that are active
during the current time stability; it orders the set of currently active timed
states according to their timing information. Informally the ordering process
carries out the following two steps:

• creates a subset of active timed states that has the shortest delay, we denote
these states as time ready [12];

• subtracts the shortest delay from the delay of all timed states that are not
time ready to represent that at least that amount of time has passed.

It then behaves as defined by the function trun over the set of time ready
states and the set of active but not time ready states.

trun : PName 7→ Local 7→ P State 7→ P State 7→ Process

The function trun returns a process that recursively enacts a subset of the
currently active timed states within a given BPMN process that are time
ready. Coordinating time ready states is achieved by partially interleaving
the execution process returned by the function trun ′ with the recording process
returned by the recording function record , where the function trun ′ enacts all
the time ready states and at the end of each state enactment, the execution
process communiates coordination events to the recording process depending
on whether the state has terminated, been cancelled, been interrupted or
been delayed, while the function record receives these coordination events and
recalculates the current state of the local diagram.

7

Wong and Gibbons

trun ′ : PName 7→ Local 7→ P State 7→ Process
record : PName 7→ Local 7→ P State 7→ P State 7→ P State 7→ Process

The function trun ′ takes the diagram’s name, specification environment and its
set of time ready states, and returns a process that interleaves the enactment
of a set of processes, corresponding to its set of time ready state. These pro-
cesses terminate if either their corresponding states terminate, are cancelled,
or are delayed. For each of these situations, the process will communicate a
corresponding coordination event to the recording process, defined by record .
After all the interleaved processes terminate, the function trun ′ terminates
and behaves like the process run(A) = 2 a : A • a → run(A), over the same
set of coordination events, so that if any subsequent coordination contains the
same time ready states due to cycle, this process will not cause blocking.

The function record takes the diagram’s name, specification environment,
its set of time ready states and set of active timed states, and returns a process
that repeatedly waits for coordination events from the execution process and
recalculates the set of active states accordingly. The following describes the
function informally:

• if all time ready states have delayed their enactments, record re-calculates
these states so that the states, of which the delay range has the shortest
upper bound, are to be enacted;

• if all time ready states have either been enacted or delayed, then this com-
pletes a cycle of timed coordination, and the process then behaves as defined
by stable and proceeds with the next cycle;

• if there exist time ready states that have not been enacted or delayed, record
waits for coordination events from the execution process.

A complete definition of the semantic function may be found in our longer
paper [12].

5 Analysis

The following are some results of the timed model. We say a diagram is timed
if it contains timing information and untimed otherwise; every timed diagram
is a timed variant of another untimed diagram, i.e. an untimed diagram
augmented with timing information. Below is an intuitive property about
timed variation.

Proposition 5.1 Untimed Invariance. For any untimed local diagram,
there exists an (infinite) set of timed variant diagrams such that all of the
diagram in the set is failures-equivalent under the untimed semantics.

The CSP behaviour models traces (T), stable failures (F) and failures-
divergences (N) admit refinement orderings based upon reverse containment [10].
A behavioural specification R can be expressed by constructing the “least” –

8

Wong and Gibbons

that is, the most non-deterministic – process satisfying it, called the charac-
teristic process PR. Any process Q that satisfies specification R has to refine
PR, denoted by PR v Q . One common behavioural property for any process
might be deadlock freedom. A local diagram is deadlock free when all its
process instances are complete. We define the process DF to specify a dead-
lock freedom specification for local diagrams where events fin.n and aborts .n
denote successful execution and interruption respectively [12].

DF = (u i : Σ \ {|fin, aborts|} • i → DF)

u (u n : N • fin.n → Skip) u (u n : N • aborts .n → Stop)

Definition 5.2 A local diagram is deadlock free iff the process corresponding
to the diagram’s behaviour failures-refines DF .

One of the results of using a common semantic domain for both timed and
untimed models is that we can transfer certain behavioural properties from
the untimed to the timed world. We achieve this by showing for any timed
variation of any local diagram, the timed coordination process is a responsive
plug-in [9] to the enactment process. Informally process Q is a responsive
plug-in to P if Q is prepared to cooperate with the pattern set out by P for
their shared interface. We now formally present Reed et al.’s definition of
the binary relation RespondsTo over CSP processes using the stable failures
model.

Definition 5.3 For any processes P and Q where there exists a set J of
shared events, Q RespondsTo P iff for all traces s ∈ seq(αP ∪ αQ) and event
sets X

(s � αP ,X) ∈ failures(P) ∧ (initials(P/s) ∩ JX) \ X 6= ∅
⇒ (s � αQ , (initials(P/s) ∩ JX) \ X) /∈ failures(Q)

where initials(P/s) is the set of possible events for P after trace s and AX is
a set of events A ∪ {X }; X denotes successful termination in CSP.

Proposition 5.4 Responsiveness. For any local diagram p under the rel-
ative timed model where its enactment and coordination are modelled by pro-
cesses E and T respectively, T RespondsTo E.

Proof. (Sketch.) We proceed by considering each of the functions which
define the coordination process, and show that for any local diagram p, if
there is a set of states which may be performed by p’s enactment after some
process instance, then the coordination of p must cooperate in at least one
of those states. We do this by showing that if the process defined by each
function cooperates with p’s enactment, the the sequential composition of
them also cooperates with p’s enactment. 2

A direct consequence of Proposition 5.4 is that deadlock freedom is pre-
served from the untimed to the timed setting.

9

Wong and Gibbons

Proposition 5.5 Deadlock Freedom Preservation. For any process P,
modelling the behaviour of an untimed local diagram, and for any process Q
modelling the behaviour of a timed variant of that diagram,

DF vF P ⇒ DF vF Q

We say a behavioural property is time-independent if the following holds.

Definition 5.6 Time Independence. A behavioural specification process
S is time-independent with respect to some untimed local diagram, whose
behaviour is given by process P iff for any process Q modelling the behaviour
of a timed variant of that diagram,

S vF P ⇒ S vF Q

As a consequence of Propositions 5.4 and 5.5 and refinements over T , we
can generalise time-independent specifications by the following result.

Proposition 5.7 A specification process S is time-independent with respect
to some untimed local diagram whose behaviour is given by the process P iff

S vF P ⇔ traces(S) ⊇ traces(P) ∧ deadlocks(S) ⊇ deadlocks(P)

where traces(P) is the set of possible traces of process P and deadlocks(P) is
the set of traces on which P can deadlock.

Now we revisit the example given in Figure 1, which shows a global diagram
describing a collaboration between participants p1 and p2. While p1 performs
task A then task B , p2 performs tasks C and D in an interleaving manner.
We write M 1 and M 2 to denote the processes corresponding to the untimed
behaviour of p1 and p2 respectively. Here we only show the definition of
M 2. First, we define I 2 = { start , as , c, d , aj , end } to index the processes
corresponding to the states in the participant p2. By applying the untimed
semantic function to the syntactic description of p2, we obtain the process
corresponding to it. Here the events init .x denote incoming transitions of
state x , starts .t denote the initialisation of tasks t and msg .a.b.m denote
message flows from state a to b with message m. The set αP is the set of
possible events performed by P .

M 2 = M 2′ \ {|init |}
M 2′ = let C = (2 e : (αM 2′ \ { fin.2 }) • e → C) 2 fin.2 → Skip

in (‖ i : I 2 • αP2(i) ◦ P2(i)) |[αM 2′]| C

where for each i in I 2, process P2(i) defines the behaviour of state i . Below
shows the behaviour of state c.

P2(start) = init .as → fin.2 → Skip

P2(as) = (init .as → (init .c → Skip ||| init .d → Skip) o
9 P2(as))

10

Wong and Gibbons

2 fin.2 → Skip

P2(c) = (init .c → msg .a.c.mi → starts .c → msg .c.a.md → init .aj1 → P2(c))

2 fin.2 → Skip

P2(d) = (init .d → msg .d .b.mi → starts .d → msg .b.d .md → init .aj2 → P2(d))

2 fin.2 → Skip

P2(aj) = ((init .aj1 → Skip ||| init .aj2 → Skip) o
9 init .end → P2(aj))

2 fin.2 → Skip

P2(end) = init .end → fin.2 → Skip

Their collaboration hence is the parallel composition of processes M 1 and M 2.

UC = (M 1[αM 1 || αM 2]M 2) \ {|msg |}

CSP’s failures refinement allows us to verify the behaviour modelled by a
BPMN diagram against another BPMN diagram, specifying the intended be-
haviour. We can describe such intended behaviour of the collaboration by
defining a behavioural specification as the BPMN diagram s1 in Figure 3. We

Fig. 3. Specifying the intended behaviour of collaboration between p1 and p2

write Spec to denote the process that models the untimed behaviour of s1,
and can ask the refinement checker FDR [3] to check the following refinement
assertion.

Spec vF UC(1)

This assertion tells us that the behaviour of the collaboration satisfies the
specification Spec. According to our earlier work on compatibility [11] we can
say participants p1 and p2 are compatible with respect to the collaboration.

Now let’s suppose tasks A, B and D have a delay range from 30 minutes
to 1 hour and task C has a delay range from 45 minutes to 1 hour and
15 minutes. We define the timed behaviour of the collaboration by defining
the process corresponding to individual participant’s coordination using the
coordination function [12]. For example, Process C2 defines the coordination
of participant p2.

C2 = init .as → (init .c → Skip ||| init .d → Skip) o
9 C21

C21 = ((starts .d → init .aj2 → starts .c → init .aj1 → C23) u C22)
C22 = (starts .c → init .aj1 → Skip ||| starts .d → init .aj2 → Skip) o

9 C23

C23 = init .end → fin.2 → Skip

and so we have process T2 defining the relative-timed semantics of participant
p2. Similarly we can define the process T1 corresponding to p1. The timed

11

Wong and Gibbons

semantics of their collaboration can hence be described by process TC .

T2 = (M 2′ |[αM 2′ ∩ αC2]| C2) \ {|init |}
TC = (T1[αT1 || αT2]T2) \ {|msg |}

A similar check to the refinement assertion (1) can be made on TC against
Spec.

Spec vF TC

When we ask FDR to check this assertion the counterexample (〈starts .a〉, Σ)
is given. This tells us that the collaboration deadlocks after participant p1
performed task A. A more detailed analysis reveals that after starting task
A, participant p1 sent a message to p2’s task C . However, while task C ’s
maximum delay is one minute and fifteen seconds, task D ’s maximum delay is
only one minute. Since delays are chosen internally over a range without the
cooperation of the environment, participant p2 can choose to perform task D
before task C without any agreement with p1.

We can now generalise the notion time-compatibility using CSP’s respon-
siveness.

Definition 5.8 Time-Compatibility. Given some collaboration described
by the CSP process,

C = (‖ i : { 1 . . n } • αTi ◦ Ti) \ M

where n ranges over N and M is the set of events corresponding to the mes-
sage flows between its participants, whose timed behaviour are modelled
by the processes Ti , participant Ti is time-compatible with respect to the
collaboration C iff

∀ j : { 1 . . n } \ { i } • Ti RespondsTo Tj

As for the example above, to confirm p1 and p2 are time-incompatible
with respect to the collaboration in Figure 1, we need also to show their
corresponding processes T1 and T3 are deadlock-free. This can be achieved
by running the following refinement checks on the FDR tool.

DF vF T1 ∧ DF vF T2

One result of the generalisation of compatibility under a relative-timed
semantics is that, since responsiveness is refinement-closed under F [9], time-
compatibility is also refinement-closed.

Proposition 5.9 Given that the participants Pi , where i ranges over some
index set, are time-compatible in some collaboration C , their refinements un-
der F are also time-compatible in C .

12

Wong and Gibbons

However, refinement closure does not capture all possible compatible par-
ticipants within a collaboration. Specifically, for each participant in a col-
laboration there exists a time-compatible class of participants of which any
member may replace it and preserve time-compatibility. This class may be
formalised via the stable failures equivalence. This notion augments our earlier
definitions in the untimed setting [11].

Definition 5.10 Time-Compatible Class. Given some local diagram name
p and its specification l , we define its time-compatible class of participants
cfT (p, l) axiomatically as a set of pairs where each pair specifies a BPMN
diagram by its environment and the name which identifies it.

cfT : (PName × Local) 7→ P(PName × Local)

∀ p : PName; l : Local •
cfT (p, l) =
{ p ′ : PName; l ′ : Local |

(((tsem p l) \ (αprocess p l \mg p l))
vF ((tsem p ′ l ′) \ (αprocess p ′ l ′ \mg p ′ l ′)))

∨ (tsem p ′ l ′ \ (αprocess p ′ l ′ \mg p ′ l ′))
vF (tsem p l \ (αprocess p l \mg p l)) }

where the function mg takes a description of a local diagram and returns a
set of CSP events corresponding to the message flows of that diagram.

This naturally leads to the definition of the characteristic or the most
abstract time-compatible participant with respect to a collaboration.

Definition 5.11 Characteristic Participant. Given the time-compatible
class cp of some participant p, specified in some environment l , for some
collaboration c, the characteristic participant of cp, specified by a pair of
name and the environment, is given by the function charT applied to cp.

charT : P(PName × Local) 7→ (PName × Local)

charT = (λ ps : P(PName × Local) •
(µ(p ′, l ′) : (PName × Local) |

mg p ′ l ′ = αprocess p ′ l ′ ∧ (∀(p, l) : ps •
(tsem p ′ l ′ vF (tsem p l(αprocess p ′ l ′ \mg p ′ l ′))))))

The following result is a direct consequence of Proposition 5.9, and Defi-
nitions 5.10 and 5.11.

Proposition 5.12 If a characteristic participant p of a time-compatible class
cp, specified in some environment l , is time-compatible with respect to some
collaboration c, then all participants in cp are also time-compatible with respect
to c.

13

Wong and Gibbons

6 Related Work and Conclusion

In this paper we introduced a relative-timed semantics for BPMN in CSP to
model and reason about collaborations described in BPMN. We have adopted
a variant of two-phase functioning approach widely used in real-time systems
and coordination languages like Linda [6]. We shown properties relating the
untimed and timed models of BPMN for both local and global diagrams by
using CSP’s notion of responsiveness. We have also illustrated by an example
how to use the timed model to verify compatibility between participants within
a business collaboration.

To the best of our knowledge, this paper describes the first relative-timed
model for a collaborative graphical notation like BPMN. Some attempts have
been made to provide timed models for similar notations such as UML activ-
ity diagrams [4,5,7]. However, neither do their semantics provide the level of
abstraction required to model time explicitly nor do their timed models allow
analyses of collaborations where more than one diagram is under considera-
tion.

As in the untimed settings there exists many approaches in which new
process calculi have been introduced to capture the notion of compatibility
in collaborations and choreographies. Notable works include Carbone et al.’s
End-Point and Glocal Calculi for formalising WS-CDL [2] and Bravetti et al.’s
choreography calculus capturing the notion of choreography conformance [1].
Both these works tackled the problem of ill-formed choreographies, a class of
choreographies of which correct projection is impossible. While the notion of
ill-formed choreographies is similar to our definition of compatibility and the
notion of contract refinement defined by Bravetti et al. [1] bears similarity to
our definition of compatible class, they have defined their choreographies solely
in terms of process calculi with no obvious graphical specification notation that
could be more accessible to domain specialists.

Future work will include the following:

• characterising the class of timed-independent behavioural properties suit-
able for BPMN;

• automating the semantic function, possibly in Haskell as we already have a
representation for BPMN [13];

• applying the timed model to reason about empirical studies against safety
properties [13].

References

[1] Mario Bravetti and Gianluigi Zavattaro. Towards a Unifying Theory for
Choreography Conformance and Contract Compliance. In Proc. of 6th
International Symposium on Software Composition (SC’07), 2007.

[2] Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown,

14

Wong and Gibbons

and Steve Ross-Talbot. A Theoretical Basis of Communication-Centred
Concurrent Programming. Technical report, W3C, 2006.

[3] Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2 User
Manual, 1998. www.fsel.com.

[4] Nicolas Guelfi and Amel Mammar. A Formal Semantics of Timed Activity
Diagrams and its PROMELA Translation. In APSEC05, pages 283–290, 2005.

[5] Hendrik Eshuis. Semantics and Verification of UML Activity Diagrams for
Workflow Modelling. PhD thesis, University of Twente, 2002.

[6] I. Linden, J.-M. Jacquet, K. De Bosschere, and A. Brogi. On the expressiveness
of timed coordination models. Sci. Comput. Program., 61(2):152–187, 2006.

[7] Sea Ling and H. Schmidt. Time petri nets for workflow modelling and analysis.
In Proceedings of 2000 IEEE International Conference on Systems, Man, and
Cybernetics, pages 3039–3044, 2000.

[8] OMG. Business Process Modeling Notation (BPMN) Specification, February
2006. www.bpmn.org.

[9] J. N. Reed, J. E. Sinclair, and A. W. Roscoe. Responsiveness of interoperating
components. Form. Asp. Comput., 16(4):394–411, 2004.

[10] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.

[11] Peter Y. H. Wong and Jeremy Gibbons. A Process Semantics for BPMN, 2007.
Submitted for publication. Extended version available at
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf.

[12] Peter Y. H. Wong and Jeremy Gibbons. A Relative-Timed Semantics for BPMN
(extended version), 2008.
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmntime.pdf.

[13] Peter Y. H. Wong and Jeremy Gibbons. On Specifying and Visualising Long-
Running Empirical Studies, 2008. Submitted for publication.

[14] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

[15] XML Schema Part 2: Datatypes Second Edition, October 2004. http://www.
w3.org/TR/2004/REC-xmlschema-2-20041028/.

15

www.fsel.com
www.bpmn.org
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmnsem.pdf
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmntime.pdf
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

	Introduction
	BPMN
	Abstract Syntax
	Timed Semantics
	Analysis
	Related Work and Conclusion
	References

