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Abstract

Datatype-generic programming involves parametrizatibprograms by the shape of data, in the
form of type constructors such as ‘list of’. Most approacteslatatype-generic programming are
developed in pure functional programming languages sudtaagell. We argue that the functional
object-oriented language Scala is in many ways a bettecehbiot only does Scala provide equiv-
alents of all the necessary functional programming featseich as parametric polymorphism,
higher-order functions, higher-kinded type operations] #ype- and constructor-classes), but it
also provides the most useful features of object-orierdeduages (such as subtyping, overriding,
traditional single inheritance, and multiple inheritameceghe form of traits). Common Haskell tech-
niques for datatype-generic programming can be convedpiesplicated in Scala, whereas the extra
expressivity provides some important additional benefitserms of extensibility and reuse. We
illustrate this by comparing two simple approaches in Hésgeinting out their limitations and
showing how equivalent approaches in Scala address sorhes# timitations. Finally, we present
three case studies on how to implement in Scala real datagyperic programming approaches from
the literature: Hinze’s ‘Generics for the Masses’, Lamarad Peyton Jones’s ‘Scrap your Boilerplate
with Class’, and Gibbons’s ‘Origami Programming’.

1 Introduction

Datatype-generic programming (DGP) is about writing pamgs that are parametrized by
a datatype, such as lists or trees. This is different froramatric polymorphism, or ‘gener-
ics’ as the term is used by most object-oriented programmparametric polymorphism
abstracts from the ‘integers’ in ‘lists of integers’, whaseDGP abstracts from the ‘lists of’.
There is a large and growing collection of techniques fotingi datatype-generic pro-
grams. Much of the early research on DGP relied on specigdgse languages or lan-
guage extensions such as Charity (Cockett & Fukushima,)1#etyP (Jansson, 2000),
and Generic Haskell (Hinze & Jeuring, 2002). With time, srsh has shifted towards
more lightweight approaches, based on language extensions such as ScraBojlem
plate (Lammel & Peyton Jones, 2003) and Template Haskéikg&l & Peyton Jones,
2002); more recently, DGP techniques have been encapdufatéraries for existing
general-purpose languages, such as Generics for the M&iaes, 2006) for Haskell and
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Adaptive Object-Oriented Programming (Lieberherr, 1986 ++. One key advantage of
the lightweight approaches is that DGP becomes more abéessipotential users, since
no new tool or compiler is required in order to enjoy its basefhdeed, the use of libraries
or simple language extensions rather than completely negukges has greatly promoted
the adoption of DGP.

Despite the rather wide variety of host languages involagté techniques listed above,
the casual observer might be forgiven for concluding, fréwa wealth of proposals for
lightweight generic programming in Haskell (Cheney & Hin2@02; Hinze, 2006; Lammel
& Peyton Jones, 2005; Oliveirt al., 2006; Hinzeet al., 2006; Weirich, 2006; Hinze &
Loh, 2007; Mitchell & Runciman, 2007; Brown & Sampson, 2Da®at ‘Haskell is the
programming language of choice for discriminating datatgeneric programmers’. Our
purpose in this paper is to argue to the contrary; we beliegedlthough Haskell is ‘a fine
tool for many datatype-generic applications’, it is not@&sarily the best choice.

In particular, we argue that the discriminating datatypedgic programmer ought seri-
ously to consider using Scala, a relatively recent languageiding a smooth integration
of the functional and object-oriented paradigms. Scalarsféquivalents for most famil-
iar features cherished by datatype-generic Haskell progrars, suctparametric poly-
morphismhigher-order functionshigher-kinded typesandtype-andconstructor-classes
(Two significant missing features dezy evaluatiorandhigher-ranked type}In addition,
it offers some of the most useful features of object-oridpgramming languages, such
assubtypingoverriding and both single and a form of multipieheritance(via ‘traits’).
We show not only that Haskell techniques for DGP can be cdewdly replicated in
Scala, but also that the extra expressivity provides ingmradditional benefits in terms
of extensibility and reuse. Specifically, intricate constions are often needed to bend the
implicit dictionaries in Haskell's class system to DGP pasps—these convolutions could
mostly be avoided if one had first-class dictionaries. Sgdtaits mechanism provides
such a facility, including the ability to pass them impligitvhere appropriate.

We are not the first to consider DGP in Scala: Moeiral. (2006) presented a translation
into Scala of a Haskell library of ‘origami operators’ (Gials, 2006); we discuss this
translation in depth in Section 9. And of course, it is notllyeaurprising that Scala
should turn out effectively to subsume Haskell, since itsigie is substantially inspired
by functional programming.

We are interested in finding the limitations of the generajppse mechanisms, in order
to point out their weaknesses and to promote their improvenide aim here is not to
compare particular DGP libraries, as was done by Rodrigieal. (2008), but rather
to consider the basic mechanisms used to implement thoseidib. We claim that the
language mechanisms traditionally used for implementit@PDlibraries, namelyype
classegHall et al., 1996) andgeneralized algebraic datatypé§ADTSs) (Peyton Jones
et al, 2006), each have their limitations, and that it might bedreb exploit a different
mechanism incorporating the advantages of both. This peypdores Scala’s object system
as such an alternative mechanism.

We feel that our main contribution is as a call to datatypeegie programmers to look
beyond Haskell, and particularly to look at Scala. Not ordy Scala be used to express
current approaches to DGP; in some ways—in particular, itstopen datatypes, inher-
itance, andmplicits mechanism—it improves upon Haskell. Some of those advastag
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derive from Scala’s mixed-paradigm nature, and so do naoistate back into Haskell;
but others (such as case classes and anonymous case gredysesshall see) would fit
perfectly well into Haskell. We emphasize that we are notigngthat Scala is universally
superior to Haskell. Indeed, as we shall see, Scala too lms Bmitations. Instead, our
purpose is to promote the migration of good ideas from Scaltaskell and vice versa, so
as to improve support for DGP in both languages.

As a secondary contribution, we show that Scala is more ohatiional programming
language than is typically appreciated. Scala tends to ba pemarily as an object-
oriented language that happens to have some functionairésatand so potential users
feel that they have to use it in an object-oriented way. Fangxde, Moorset al. (2006)
claimed to be ‘staying as close to the original work as padssib their translation of the
origami operators, but as we show in Section 9 they still dngeless functional than they
might have done. Scala is also a functional programminguagg that happens to have
object-oriented features; indeed, it offers the best df pairlds, and this paper serves also
as a tutorial in exploiting Scala as a multi-paradigm larggua

The rest of this paper is structured as follows. Section2tbetscene, by reviewing two
straightforward approaches to DGP in Haskell—using reprigion datatypes and type
classes respectively—and pointing out their limitatioBsctions 3 and 4 introduce the
basics of Scala, and those more advanced features of itatypelass system on which
we depend. Our contribution starts in Sections 5 and 6, whliw how to implement
in Scala the two approaches presented in Haskell in Sectiokftér that, three case
studies of the translation of existing DGP libraries intalacare presented: Section 7
discusses an implementation of Hinz&snerics for the Massegpproach (Hinze, 2006);
Section 8 shows a Scala implementatiorsafap your Boilerplate with Claggammel &
Peyton Jones, 2005); and Section 9 presents a more funciteraative to Moor&t al’s
encoding (2006) of th®rigami Programmingoperators (Gibbons, 2003; Gibbons, 2006)
in Scala. Finally, Section 10 compares Haskell and Scalaatfor DGP, and briefly
discusses some of the key ideas of the paper, and Sectiomtludes. Scala code for the
examples is available online (Oliveira, 2009b).

2 Some Limitations of Haskell for Datatype-Generic Programming

To conduct our experiments, we consider two very simple araightforward libraries
for generic programming, using representation datatypestgpe classes respectively.
The purpose here is to discuss the limitations of the two meisms. While there are
various clever tricks and workarounds for dealing with thisiitations, better linguistic
mechanisms would provide support more naturally, and doyawith the need for these
tricks in the first place. We do not intend to have a debate talvbether one structural
view of datatypes is better or worse than another; the isseislentify are pervasive to
most generic programming libraries.

2.1 Generic programming with representation datatypes

A very natural style in which to write a generic programmiitgdry is to base it on a
datatype of type representations (Cheney & Hinze, 2002z&lat al, 2006; Weirich,
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2006), leading to a structural approach similar to that oh&we Haskell. Cheney and
Hinze’'slightweight implementation of generics and dynanfld&D) (Cheney & Hinze,
2002) provides the earliest example of such an approackisgdow to do a kind of
generic programming using only the standard Hindley-Milype system extended with
existential datatypes. The key idea is to use a parametdatatype, with the actual pa-
rameter being (a representation of) the type index; conssran the parameter enforce
consistency between the behaviour and the type index. Eiheaey and Hinze’s proposal,
some Haskell implementations have been extended with GABHish provide additional
convenience that existential datatypes alone lack; we 4TS in this section to illustrate
the approach.

Here is a representation of a family of datatypes based os séiproducts:

data Unit = Unit
dataSumab=Inla|Inrb
dataProd ab=Prod ab

data Rep twhere
RUnit :: Rep Unit
Rint :RepInt

RChar:: Rep Char
RSum::Rep a— Rep b— Rep(Sumab
RProd:: Rep a— Rep b— Rep(Prod ab)

The typedJnit, Sum andProd represent, respectively, the unit type and the binary suin an
binary product type constructors. The datatiRep tprovides the structural representation
of a typet as a sum of products built from the primitive typesit, Int, and Char. For
simplicity of presentation, the treatment of isomorphismisich allows the application of
generic functions to values isomorphic to a sum of produstsmitted here; for the full
details, see elsewhere (Cheney & Hinze, 2002; Weirich, 2006

Generic functions are defined by case analysis on the datafiyfype representations.
For example, here is a definition of generic equality:

equals:vt. Rept—t — t — Bool

equals RUnit _ _=True
equals Rint fo=(t1=t)
equals RChar fttr=(t1 =t2)

equals(RSumrarb t; to = case (ti,tp) of
(Inlx,Inly) — equalsraxy
(Inrx,Inry) — equalsrb x y
- — False
equals(RProd rarb) t; to = case (t1,t2) of
(Prod x yProd X y) — equalsrax XA equalsrby ¥

Equality is vacuous at the unit type, represente@Rbinit, since there is exactly one value
of that type. When the type representatioRIst, the type constraint ensures that the two
values of type being compared are indeed integers, and so the primitivgpadson on
integers is used; and similarly f®@Charand characters. For binary sums, the constructor
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class Total awhere
total::a — Int

instance Total Unitwhere
total = const0

instance Total Intwhere
total = id

instance (Total a Total b) = Total (Prod a b) where
total (Prod x y) = total x+ total y

instance (Total a Total b) = Total (Sum a h where
total (Inl x) = total x
total (Inry) =total y

instance Total a= Total[a] where
total = total o fromList

fromList:: [a] — Sum Unit(Prod a[a])
fromList][] = Inl Unit
fromList(x:xs) = Inr (Prod x x9

Fig. 1. A generic ‘sum’ function, using type classes.

RSunof the representation is applied to representations ofwleesummands, and these
representations are used in the recursive calls; simitarlproducts andRProd

2.2 Generic programming with type classes

An alternative to using datatypes for type representai®ttsuse type classes (Lammel &
Peyton Jones, 2003; Hinze, 2006; Mitchell & Runciman, 2@¥éwn & Sampson, 2009),
since both techniques can be used to defype-indexed functionalbeit with slightly
different properties (Oliveira & Gibbons, 2005). Figureregents a simple definition of a
generic ‘sum’ function using type classes. The clEstal ahas a methotbtal that takes an
argument of typ@ and returns an integer result. There are instances for dédlch sum-of-
products structural types: for the unit type, zero is retdrrior binary products, the results
on the two components are added; for binary sums, the funidiapplied recursively to
the appropriate case; for integers, the integer itselftigned. Instead of specially crafting
an instance specific to lists, the argument is convertedsato-of-products form using
the functionfromList and then subjected to structural casesotdl. The same structural
approach can be taken for other datatypes, avoiding the foeeghecific definitions for
those datatypes.

2.3 Limitations

The two approaches presented in Sections 2.1 and 2.2 atigglyl@imple to understand.
Unfortunately, they are also rather simple-minded, andesdfom some limitations in
terms of both convenience and expressiveness. More iedaisheric programming li-
braries address some of these limitations, but usuallyeatdist of comprehensibility. We
discuss these limitations next, together with some of ttemgits to address them.
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2.3.1 Convenience and readability

Two important considerations of convenience concernin@&Mbrary are how easy it is
to define generic functions, and how easy it is to apply thegfidihg generic functions
with a datatype of type representations is usually stréogivard, since all that is needed is
to use pattern matching on the type representation to int®d definition by cases. Type
classes impose some overhead, since each instance deolaeafuires some additional
code. Furthermore, the use of datatypes and pattern mgtchiarguably more natural
than type classes and dispatching. Nonetheless, the @atimposed by type classes is
tolerable.

Using a generic function based on type representationsresghat the corresponding
value of the type representation is constructed. For exampl compare two pairs of
integers, one needs a third argument representing the pgirs of integers’

testDT= equals(RProd Rint RIn (Prod 3 4) (Prod 4 4)

In contrast, with the type class approach, the explicit toiction of the type representation
is not necessary:

testTC= total (Prod 3 4)

Not having to explicitly construct type representationsuisadvantage of the type class
approach, and provides additional convenience over arpapprbased on representation
datatypes.

The reality. In existing proposals for DGP libraries using datatypesypktrepresenta-

tions, it is common to use type classes to automatically ige@ehe values of the type
representations. There are even some proposals, such zsd@enerics for the Masses
(GM) approach (Hinze, 2006), which do not directly use atyaof type representations,
but encode one using type classes, and also use the samenisattgenerate the values
of the encoded type representations. The basic idea islas/ol

classRepresentable where
rep::Repa

instance Representable Inthere
rep= Rint

instance (Representable,&epresentable)b=- Representablérod a b) where
rep= RProd rep rep

(Here, an LIGD-like approach is used for illustration.) Agueality function that does not
need an explicit value for the type representation is defnabfollows:

eq:: Representable & a — a — Bool
eg=equalsrep

While this design does bring some of the convenience of tigsses into a datatype-based
approach, the fact is thawo different functions for equality are needed: the funceouals
defines the structural generic function, andélaéunction provides a convenient interface
to this generic function. As we shall see in Section 2.3.&)etimes it would be handy to
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have functions that could take an optional argument, legtkia job of generating the value
to the compiler when this argument is omitted. Having twdedéntly-named functions for
the explicit and implicit cases is awkward.

2.3.2 Coexistence of implicit and explicit arguments

Generic Haskell provides a simple mechanism for precisehtrolling which case gets
applied. For instance, using a Generic Haskell genericfomtotal(T) similar to the func-
tion presented in Figure 1, itis possible to emglogal redefinition(Ldh, 2004, Chapter 8)
to overridea case in a particular use of the generic function. With loedgfinitions it is
easy to have one variation that counts the values in a list:

let total(a) = constlin total([a])[1..10]
and another sums the (integer) values in that list:
let total(Int) = id in total({[Int])[1..10]

The total function in Figure 1 sums the integers in a structure. In otdeprovide a
local redefinition to count rather than sum the elements,noigit attempt to provide the
following alternative instance for integers:

instance Total Intwhere
total = constl

However, this instance overlaps with the one already gimeRigure 1. This leads to an
ambiguity in instance selection; Haskell provides no madm for resolving the am-
biguity, and disallows the coexistence of such instandéhaf is needed here is some
explicit mechanism for dictionaries, rather than the imiplmechanism provided by the
class system. GHC's ‘overlapping instances’ flag doesrifi,Hgecause the instances are
duplicated; it is useful only when one instance is more djgethian the other, when it
allows the compiler to select the more specific instance.)

Thereality. Very few generic programming libraries in Haskell providgport for local
redefinitions. In fact, we believe that currently only GM atwlextensible and modular
generics for the mass€éEMGM) extension (Oliveirat al., 2006) provide some support
for this feature, and then only partially—although therausalternative encoding using
a proposed extension to Haskell (Hinze & Ldh, 2009). As Hiif2006) points out, in
the GM approach, a generic counter function can be instadtito behave like a sum-
ming function or a size function. However, this is signifittgiess convenient to use than
the Generic Haskell solution, since two different funciare needed: one for when no
local redefinitions are used, and another to explicitly pghsstype representation argu-
ment with the local redefinition. Worse, first-class gengritctions induce an exponential
growth in the number of combinations. For example, in theads generic function like
everywhergLammel & Peyton Jones, 2003), which in turn takes a gerferiction as
an argument, four different variations would be needed-e&mh combination of allowing
and disallowing local redefinitions fewverywherdtself and for the generic function passed
as an argument.
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In a generic programming approach like the one shown in Eiduit is simply not pos-
sible to have local redefinitions without some forward plagnThere have been some pro-
posals to extend Haskell with a mechanism for choosing @piéat named instancé<ahl
& Scheffczyk, 2001; Dijkstra & Swierstra, 2005), but thesademsions are not widely
implemented. It is possible to use a simple trick to emulat@ed instances, as shown for
example by Loh (2004); however, this still entails sigrafit rewriting, planning ahead,
and some advanced Haskell extensions.

2.3.3 Extensibility

Generic functions are useful because they work ‘out of the fay a newly introduced
datatype. However, it is sometimes desirable to define afgpéwon-generic) behaviour
for the generic function on a particular datatype. For thibappen, the generic function
needs to bextensibleallowing the definition of new cases for particular dat&typg-rom

a generic programming point of view, extensible genericcfioms are essential for the
design of modular generic programming libraries (Hinze &tBa Jones, 2000; Lammel
& Peyton Jones, 2005; Hinze, 2006; Olivedtzal,, 2006). For example, abstract datatypes
such as sets are often represented using a standard atgedietiype like lists or trees, but
a generic function based solely on the algebraic structfitbeorepresentation probably
does not provide an appropriate implementation on the atistrpe. Consider the case of
equality; while structural equality is the right thing to fiw most datatypes, it is wrong for
an abstract datatype of sets represented as lists.

In the simple DGP approach presented in Section 2.1, it ipaossible to extend the
equality generic function in a modular way. In order to adcew ase for sets, one must
add a new constructor to thepdatatype, and provide a special case for equality on sets,
as follows:

newtype Set a= Set[a]
data Rep twhere

RSet: Rep a— Rep(Set a

equals: vt. Rept—t —t — Bool

equals(RSeta=...

On the other hand, in the type-class based approach, theigé&maction can be easily
extended with new cases; all that is needed is to create anstance:

instance Total (Set g where
total (Setxg=...

In essence, approaches based on datatypes of represeniatically do not support
modular extensions, whereas those based on type classes do.

Thereality. Inrecent proposals for DGP libraries, the trend is to use tjpsses: they can
be extended more easily than datatypes, and also they makeséhof generic functions
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guite convenient (see Section 2.1). However, even usingtigssesxtensibilitycan still
be problematic—especially in combination wiitst-class generic functiongs we shall
see in Section 2.3.4. This is the case, for example, for thgnat GM approach, which
does not allow extensible generic functions. To addressetletensibility problems, a
number of clever approaches have been proposed. RepLibi¢i/e2006) uses a mix of
datatypes and type classes to allow extensible generidifunsc the key idea is to use a
standard generic function defined on a datatype of type septations, and use that generic
function as the default for another (type-class-overldadienction that can be extended
with new ad-hoc cases. While the approach achieves its daaipporting an extensible
generic programming library, it does so at the loss of sorability and understandability:
it relies on several non-standard extensions, and it regtlie programmer to write generic
functions in two different styles, namely using datatyped &ype classes. Ultimately, a
programmer needs to understand quite a bit of the mechahtilhe generic programming
library and some advanced Haskell features to use the agpedtectively. The EMGM
approach (Oliveirat al, 2006) addresses the extensibility limitations of the inayGM
proposal requiring only a common extension to Haskell 98nelg, multiple-parameter
type classes; however, writing generic functions in EMGMd @ the original GM) is not
as direct as using a datatype of type representations. ThiealrScrap your Boilerplate
(SyB) approach (Lammel & Peyton Jones, 2003) approach doesupport extensible
generic functions; to address this problem, an alternatipéementation (Lammel & Pey-
ton Jones, 2005) of SyB using type classes has been projosgdiis approach uses many
non-standard extensions and tricks.

A different solution (L6h & Hinze, 2006) to the extensibjliproblem consists of ex-
tending Haskell with open datatypes and open functionss Wuld have some important
advantages, especially from a usability point of view, sitlee natural style of writing a
generic function using pattern matching on the type remtesien would be preserved.
However, to date that extension is not supported by any dempi

2.3.4 First-class generic functions and generic functibsteaction

The SyB approach has shown the utility of first-class gerfarictions for generic traver-
sals and queries. With a datatype of type representatidastraightforward to write such
functions (Hinze, 2003). For example, consider the fumotieerywhere

everywhere (vb. Repb—b—b) - Repa—a—a

It takes as an argument a generic function that transfornaduee\of typeb into another
value of the same type; it also takes a representation of $gpeea and a value of that
type, and returns a value of the same type. In this approashcfass generic functions
are quite simple and natural. However, with the simple tglass approach, it is far from
obvious how to write the type afverywhereThe key problem is thatverywhereneeds
to be applicable tanygeneric function as its first argument. In pseudo-code rttemnded
type is as follows:

everywhere Everywhere a (Vb.gb=b—b)—a—a
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That is,everywhereshould take a generic function defined in an arbitrary tyjpssd as
the first argument. However, Haskell does not support tygeschbstraction, and the type
class constraing b= ... is not valid.

In summary, while a datatype-based approach trivially sujgdirst-class generic func-
tions, a type-class-based approach stumbles over thehfaictype classes cannot be ab-
stracted.

Thereality. There are some generic programming approaches based oclagges that
do not have a problem with first-class generic function®ritingly enough, these show
a strong correlation with the approaches that have a prohlgmextensibility. In other
words, there seems to be a conspicuous relationship beteensibility and first-class
generic functions: having one of these features makes tier t¢ature harder to achieve
(in Haskell, at least).

Using a technique proposed by Hughes (1999), it is possiblentulate type-class
abstraction in Haskell using only existing extensions.sTigichnique has been used in
the ‘SyB with Class’ approach (Lammel & Peyton Jones, 2@0%)low extensible higher-
order generic functions (see Section 8.1 for more detalsjmilar technique is used in
RepLib (Weirich, 2006).

2.3.5 Reuse of generic functions

Generic Haskell providedefault casesa mechanism that allows the reuse of generic
functions (Loh, 2004, Chapter 14). The motivation for tisishat often minor variations
of a generic function are written over and over again. Formgda, consider collecting
variables in some datatype of abstract syntax trees. lkhstiedefining a function generic
in the datatype but specific to the problem of collectingafalés, a more general function
for collecting values (Loh, 2004, Chapter 9) could be reuseerriding the case for the
variable type. In Generic Haskell, this idea can be expreasdollows:

newtype Var =V String

varcollectextends collect
varcollectVar)(V x) = [X]

Neither the datatype nor the type class solutions allowtizrkind of reusability; without
anticipation, it is necessary to duplicate code in creaingriation of the original function.

Thereality. As far as we are aware, this kind of reuse is not addressed yogemeric
programming library in existence, except by an early apgiigaammekt al,, 2000) based
on Haskell records that achieves reuse between algebraplojtang record updates. Un-
fortunately, although the current implementation of tyf@sses in most Haskell compilers
is based on records, the updating feature is not availablgpe classes.

Reuse of generic functions is akin to inheritance, and itniewn how to encode in-
heritance in functional languages (Cook, 1989). So, in theb should be possible to
adapt existing generic programming libraries to achieigkind of reuse via inheritance;
however, any encoding introduces its own cost in terms oilisa Another alternative
is to create a more general generic function that is pardmadtby functions covering
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the different cases; but this requires anticipation, anélanahe interface of the generic
function more complex.

2.3.6 Exotic types

DGP techniques are applicable to some exotic types, suchtatydes with higher-kinded
type arguments and nested datatypes (Hinze, 2000). Onegpéxafrthe former is the type
of generalized rose trees:

data GRose f a= GFork a(f (GRose f @)

The type constructoGRoseis parametrized by a higher-kinded arguménbDatatype-
based approaches to DGP comfortably support type repeggard for such types, and
corresponding cases for generic functions:

data Rep twhere

RGRose (Va. Rep a— Rep(f a)) — Rep a— Rep(GRose f &

equals:vt. Rept—t —t — Bool

equals(RGRose f a(GFork x xg (GForky yg =
equals ax y\ equals(f (RGRose f g xsys

One small inconvenience with the datatype-based apprsabiai it is not possible to use
nested patterns suchB&Rose RList:dhe first argument of thRGRos&onstructor is not
a valid pattern, since it is not fully applied to the right noen of arguments. Nevertheless,
there is a workaround that allows emulation of such nestéene (Hinze & Loh, 2009).

With type-class-based approaches, support for datatype&Rosedoes not work so
smoothly. Recent versions of some Haskell compilers suppoursive dictionaries in type
classes, and accept the following code:

instance (Total a Total (f (GRose f §)) = Total (GRose f awhere
total (GFork x x9 = total x+ total xs

but this requires allowing undecidable type class instan@iadeed, in older versions of
some compilers, it used to be the case that such an instandd lgad to non-termination
of the type checker (Hinze & Peyton Jones, 2000).)

A theoretically more appealing solution, suggested by Bliard Peyton Jones (2000),
would be to allowpolymorphic predicateén the constraints. With such a feature, the
following instance would be valid:

instance (Va. Total a= Total (f a), Total @) = Total (GRose f awhere
total (GFork x xg = total x+ total xs

The reality. As shown by the recent comparison of generic programminguies in
Haskell (Rodrigueet al,, 2008), exotic features such as datatypes with higherddrygpe
arguments and nested datatypes are not a problem for masizapies that use a datatype
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Datatypes Type classes

Convenience:
Defining generic functions
Using generic functions
Implicit explicit parametrization
Extensibility
First-class generic functions
Reuse of generic functions
Exotic types

eCeOOce
Oceoces=
N

S
w

Fig. 2. Evaluation of the Haskell mechanisms for DGP. Key:'good’, ©="sufficient’, O="poor’
support. Notes: 1) datatypes only allow explicit paranzetion; 2) type classes only allow implicit
parametrization; 3) datatypes with higher-kinded typeuargnts can be accommodated using
undecidable instances.

of type representations. However, none of the approachsdban type classes is fully
capable of handling such exotic types. The limitations pktglasses are to blame.

2.4 Discussion

Type classes and datatypes provide two alternative mesinarior DGP, but neither mech-
anism is clearly superior to the other. Figure 2 shows thdetaifs between the two
mechanisms. Datatypes provide a very natural and convernanto define new generic
functions, but they also require every value to be expicitnstructed by the programmer;
this makes generic functions harder to use. Datatypes nhaasy to support first-class
generic functions, and they can be used to construct typeseptations for higher-kinded
types; however, achieving extensibility is difficult. Typlasses are convenient when it
comes to using generic functions, since dictionaries atenaatically inferred by the
compiler, but they provide a somewhat less natural syntaddfining generic functions.
Itis easy to extend generic functions with new cases, but teesupport first-class generic
functions. Exotica such as higher-kinded types and nesitatypes pose a challenge to a
type-class-based implementation. Values of datatypeswclyrbe passed explicitly, while
type class dictionaries can only be passed implicitly. Ngimechanism provides an easy
way to reuse generic functions.

The reality is that in Haskell it is usually possible to wonloand the limitations of
the two mechanisms in one way or another, but doing so tygicatjuires clever tricks
or solutions that hinder usability and comprehensibilte feel that this a symptom of
inappropriate language features, and we claim that withffardint mechanism, generic
libraries could be defined more naturally and used more coexdy.

3 Functional Programmingin Scala

Scala is a strongly typed programming language that comslmbgect-oriented and func-
tional programming features. Although inspired by recesgearch, Scala is not just a
research language; it is also aimed at industrial usagey ddésign goal of Scala is that it
should be easy to interoperate with mainstream languageddiva and C#, making their
many libraries readily available to Scala programmers. 0$er base of Scala is already
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quite significant, with the compiler being actively deveddpand maintained. For a more
complete introduction to and description of Scala, see (€kyeet al, 2008; Odersky,
2006a; Odersky, 2007a; Odersky, 2007b; Schinz, 2007).

3.1 Definitions and values

Functions are introduced using thef keyword. For example, the squaring function on
Doubles could be written:

def square(x: Double) : Double= xxx
Scala distinguishes between definitions and values. In aitlefi def x = e, the expression
e will not be evaluated until the value afis needed. Scala also offers a value definition
val x = g, in which the right-hand side is evaluated at the point of definition. However,
only definitions can take parameters; values must be cassfalthough these constants
can be functions).

3.2 First-class functions

Functions in Scala are first-class values,hégher-order functionsare supported. For
example, to define the functidwice that applies a given functiohtwice to its argument
X, we could write:

def twice (f : Int = Int,x:Int) :Int =f (f (X))
Scala supportanonymous functiongor instance, to define a function that raises an integer
to the fourth power, one could use the functiaicetogether with an anonymous function:

def power(x:Int) : Int = twice ((y: Int) = yxy,X)
The first argument of the functiawiceis the anonymous function that takes an integer
and returny xy.

Scala also supportairrying. To declare a curried version dfiice, one can write:

def curryTwice(f : Int = Int) (x:Int):Int=f (f (x))

3.3 Parametric polymorphism

Like Haskell and ML, and more recently Java and C#, Scalaaupparametric polymor-
phism(known asgenericsn the object-oriented world). For example, function corsigion
can be defined as follows:

def compla,b,c] (f:b=-c) (g:a=Db) (x:a):c=f (g (x))
The functioncompis parametrically polymorphic in the three typab, ¢ of the initial,
intermediate and final values. Note that these type vasdtdee to be explicitly quantified.

3.4 Call-by-name arguments

Function arguments are, by default, passgd/alue being evaluated at the point of func-
tion application. This gives Scala a strict functional paygming flavour. However, one
can also pass argumetig nameby prefixing the type of the formal parameter with-*
the argument is then evaluated at each use within the fundgdnition. This can be used
to emulate lazy functional programming; although multipes do not share evaluation,



14 Bruno Oliveira and Jeremy Gibbons

it is still useful, for example, for defining new control sttures. Parser combinators are a
good example of the use of laziness: the combin@tantries to apply a parsqg, and if
that parser succeeds, applies another parsethe remainder of the input:

def Then(p: Parser) (q:=-Parser) : Parser= ...
Here, the second parsgis passed by name: onlydfis needed will it be evaluated.

3.5 Type inference

The design goal of interoperability with languages likealequires compatibility between
type systems. In particular, this means that Scala needgfmost subtyping and (name-)
overloaded definitions such as:

def add (x:Int): Unit=...

def add (x: String) : Unit= ...
This makes type inference more difficult than in languagks Haskell. Nevertheless,
Scala does support a formlotal type inferencéOderskyet al., 2001). Thus, itis possible,
most of the time, to infer the return type of a definition and type of a lambda-bound
variable. For example, one may write:

def power(x: Int) = twice (y = y*Y,X)
and both the return type and the type of the lambda variabiél be inferred.

3.6 Sums, products, and lists

The Scala libraries provide implementations of sums, petgjland lists. For sum types,
the type constructoEither is used. Following Haskell conventions, this type has two
constructord eftandRight, injections into the sum. For example,

val leftVal :Either[Int, String] = Left(1)

val rightVal: Either[Int, String] = Right("c" )
define two values of the typEither[Int, String]. One can use pattern matching to decon-
struct a value of a sum type, as discussed in Section 4.2, imgra compact notation is
given by thefold of the Either type. For example,

def stringVal(x: Either|Int, String]) = x.fold (y = y.toString(),y =)
defines a function that takes a value of tffiher[Int, String] and returns a string repre-
senting the value contained in the sum.

Products can be defined with the usual tuple notation; fomgte:

val prodVal: (Int,Char) = (3,'c' )
To extract the components of a tuple, Scala provides methidtdsiames consisting of an
underscore followed by the component number:

val fstVal = prodVval_1

val sndVal= prodVal 2
Finally, we can use the syntist (ay, . ..,a,) to construct a list of siza with the elements
g; fori € [1..n]. For example:

val list = List (1,2,3)
builds the list with 1, 2 and 3 as elements.
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4 Object-Oriented Programmingin Scala

Scala has a rich object system, including object-orientatstucts such as concrete and
abstract classes, subtyping, and inheritance familian fnreainstream languages like Java
or C#. Scala also incorporates some less commonly knownepdsian particular, there
is a syntactic notion obbject and interfaces are replaced by the more general notion of
traits (Scharliet al., 2003), which can be composed using a form of mixin compmsiti
Furthermore, Scala introduces the notiorncabe classednstances of which can be de-
composed using case analysis and pattern matching.

This section introduces a subset of the full Scala objedegyssufficient to model all
the programs in this paper.

4.1 Traits and mixin composition

Instead of interfaces, Scala has the more general concefitsf(Scharliet al., 2003).
Like interfaces, traits can be used to defaiestract method&hat is, method signatures).
However, unlike interfaces, traits can also define conenetinods. Traits can be combined
using mixin compositionmaking a safe form omultiple inheritancepossible, as the
following example demonstrates:

trait Hello {
val hello = "Hello!"
}
trait HowAreU{
val howAreU ="How are you?"
}
trait WhatlsUrName
val whatlsUrName="What is your name?"
}

trait Shout{
def shout(str: String) : String

}

This example uses traits in much the same way as one mightisadeclasses, allowing the
declaration of both abstract methods l#®outand concrete methods likesllo, howAreU
and whatlsUrName In a single-inheritance language like Java or C#, it wouid lme
possible to define a subclass that combined the functigradithe four code blocks above.
However, mixin composition allows any number of traits tocoenbined:

trait Basicsextends Hello with HowAreUwith WhatlsUrNamaevith Shout{
val greet =hello+" " +howAreU
def shout(str: String) = str.toUpperCas¢)

}

The traitBasicsinherits methods frorilello, HowAreU andWhatlsUrNameimplements
the methodshoutfrom Shouf and defines a valugreetusing the inherited methodello
andhowAreU
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trait List[A]
case class Nil [A] extends List[A]
caseclass CongA| (x: A, xs: List[A]) extendsList[A]
def len[a] (I:List[a]): Int =1 match {
case Nil () =0
case Cons(x,xs) = 1+ len(xs)
}
def ins[a<: Orderedla]] (x:a,!: List[a]) : List[a] = | match {
case Nil () = Cons(x,Nil [a])
case Cons(y,ys) = if (x<y) Cons(x,Cons(y,ys))
else Cons(y,ins (X,ys))

Fig. 3. Algebraic datatypes and case analysis in Scala.

4.2 Objects and case classes

New object instances can be created as in most object-edéanguages, by using the
new keyword. For example, we could define a nBasicsobject by:

def basicg = new Basics() { }
Alternatively, Scala supports a distinct notionatf ect:
object basics extends Basics

Scala also supports the notion afase classwhich simplifies the definition of functions
by case analysis. In particular, case classes allow theagimnilof algebraic datatypes from
conventional functional languages. Figure 3 gives defingianalogous to the algebraic
datatype of lists and the length and (ordered) insertiontfans. The trait.ist[A] declares
the type of lists parametrized by some element typthe case classddil and Consact
as the two constructors of lists. The functienis defined using standard case analysis on
the list value. The definition of the functians shows another case analysis on lists, and
also demonstrates the usetgibe-parameter boundthe list elements must be drawn from
an ordered type.

Case classes do not require the use ofitve keyword for instantiation, as they provide
a more compact syntax inspired by functional programmingleges:

val alist = Cons(3,Cons(2,Cons(1,Nil ())))

4.3 Higher-kinded types

Type-constructor polymorphism and constructor classgs peoven to be very useful in
Haskell, allowing, among other things, the definition of cepts such as monads (Wadler,
1993), applicative functors (McBride & Paterson, 2008)] anntainer-like abstractions.
This motivated the recent addition of type-constructoryparphism to Scala (Moors
et al, 2008). For example, a very simple interface for itieeable class could be defined in
Scala as:
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trait Setinterface|

type Set_]

typeA

def empty SefA]

def insert(x:A q:SetA]): SefA]

def extract(q: SefA]) : Option[(A, SefA])]
}

trait SetOrderedxtends SetInterface
type SetX] = List[X]
type A<:Ordered/A]
def empty= Nil ()
def insert(x:A,q: SefA]) =ins(x,q)
def extract(q: SefA]) = gmatch {
case Nil () = None
case Cons(x,xs) = Somgx, Xs)

Fig. 4. An abstract datatype for sets.

trait Iterable[A, Container_]] {
def map[B] (f : A=- B) : ContainerB]
def filter (p: A=- Boolear) : ContaineffA]
}

Note thatlterableis parametrized by¥Container[_], a type that is itself parametrized by
another type—in other word€§ontaineris a type constructor. By parametrizing over the
type constructor rather than a particular typentaineffA], one can use the parameter in
method definitions with different types. In particular, hetdefinition ofmap the return
type isContainelB], whereB is a type parameter of the methwép with parametrization
by types onlymapwould have to be homogeneous.

4.4 Abstract types

Scala has a notion abstract typeswhich provide a flexible way to abstract over concrete
types used inside a class or trait declaration. Abstradsygre used to hide information
about internals of a component, in a way similar to their nsgétandard ML (Harper & Lil-
libridge, 1994) and OCaml (Leroy, 1994). Odersky and Zer{ge05) argue that abstract
types are essential for the construction of reusable cosmenthey allow information
hiding over several objects, a key ingredient of comporgi@nted programming.

Figure 4 shows a typical example of an ML-style abstracttgptafor sets. The abstract
trait Setinterfaceleclares the types and the operations required by sets.iBtraet types
AandSet(which is a type constructor) are, respectively, abstoastover the element type
and the shape of the set. The operations supported by theegace aremptyinsertand
extract The traitSetOrderecpresents a concrete refinemenSgtinterfacein which sets
are implemented with lists and the elements of the set aeredd
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4.5 Implicit parameters and type classes

Scala’simplicit parametersallow some parameters to be inferred implicitly by the com-
piler on the basis of type information; as noted by Odersky atfers (Odersky, 2006b;
Oliveiraet al, 2010), they can be used to emulate Haskell's type classabdtal, 1996).
Consider this approximation to the concept of a monoid (6kigr2006a), omitting any
formalization of the monoid laws:

trait Monoid[a] {
def unit :a /lunitofop
defop(x:a,y:a):a //associative

}

This is clearly analogous to a type class. An example objecidve a monoid on strings,
with the unit being the empty string and the binary operaliieimg string concatenation.

implicit object strMonoidextends Monoid[String] {
def unit ="
def op (x: String y: String) = x.concat(y)

}

Again, there is a clear correspondence with an instanceadgidn in Haskell. Ignoring
theimplicit keyword for a moment, one can now define operations that arergein the
monoid:

def reducda] (xs: List[a]) (implicit m: Monoid[a]):a=
if (xsisEmpty m.unitelse m.op (xshead reduce(xstail) (m))

Now reducecan be used in the obvious way:
def tesy = reduce(List ("a" ,"bc" ,"def" )) (strMonoid)

However, one can omit the second argumenteibuce since the compiler has enough
information to infer it automatically:

def tesp : String= reduce(List ("a" ,"bc" ,"def" ))

This works because (a) theplicit quantifier in the object states thsirMonoidis the
default value for the typ&lonoid[String], and (b), themplicit quantifier in the function
states that the argumemtmay be omitted if there exists an implicit object in scopehwit
the typeMonoid[a]. (If there are multiple such objects, the most specific orghissen.)
The second use @éduce with the implicit parameter inferred by the compiler, imgar
to Haskell usage; however, it is more flexible, because tlsetiee option to provide an
explicit value overriding the one implied by the type.

5 Generic Programming with Open Datatypes

In this section, we present a Scala version of the Haskeltogmh based on datatypes
of type representations described in Section 2.1. As shawBection 4.2, Scala readily
supports a form of algebraic datatypes, via case classegni out that these algebraic
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trait RepA]

implicit object RUnit extends RepUnit]

implicit object RInt  extendsRepInt]

implicit object RCharextends Rep/Char]

case classRProdA, B] (ra: RepA],rb: RepB]) extends Rep(A, B)]

case class RPIugA, B] (ra: Rep/A],rb: RepB|) extends RepEither[A, B]]
case classRViewA, B] (iso:1so[B,A],r : () = Rep/A]) extends RepB]
implicit def RepProda, b] (implicit ra: Repa],rb: Repb]) = RProd(ra,rb)
implicit def RepPluga, b] (implicit ra: Repa],rb: Repb]) = RPlus(ra,rb)

Fig. 5. Type representations in Scala.

datatypes are quite expressive, being effectively conippata Haskell's GADTs. How-
ever, unlike the algebraic datatypes found in most funetiggrogramming languages,
Scala allows an encoding @pen datatypegor, from an object-oriented programming
perspectivemulti-methodgAgrawal et al, 1991)), enabling the addition of new variants
to a datatype. This section exploits this encoding as a Wasia generic programming
library with open type representatioyend hence with support for (modul@g-hoccases.

5.1 Type representations and generic functions

The traitRep/A] in Figure 5 is a datatype of type representations. The thi@etsRUnit,
RInt, RCharare used to represent the basic typst, Int andChar; these objects can be
implicitly passed to functions that accept implicit valu#dype Rep/A]. The case classes
RPlusand RProd handle sums and products, and Reiewcase class can be used to
map datatypes into sums of products (and vice versa). Thafgament oRViewshould
correspond to an isomorphism, which is defined as:

trait Iso[A,B] { //fromandto are inverses
def from:A=B
defto :B=A

}

For example, the isomorphism between lists and their supraducts representation is
given bylistlso:

def fromList[a] = (I: List[a]) = | match {
case Nil = Left({})
case (x::xs) = Right(x, xs)
}
def toList[a] = (s: Either[Unit, (a, List[a])]) = smatch {
caseleft(_) = Nil
case Right(x,xs) = X::xs

}
def listlso[a] = Iso[List[a], Either[Unit, (a, List[a])]] (fromList) (toList)



20 Bruno Oliveira and Jeremy Gibbons

Note that the second argumentR¥iewshould be lazily constructed. Unfortunately, Scala
forbids the by-name qualification at that argument posjtsanwe have to encode call-by-
name manually using the conventional ‘thunk’ technique.

As a simple example of a generic function, we present a gggiall he idea is that, given
somerepresentabléypet, we can define a generic binary serializer by case analygisson
structure of the representationtof

def serial[t] (x:t) (implicit r : Rept]) : String=

r match {
case RUnit ="
caseRInt = encodeln{x)
case RChar = encodeChatx)

case RPlus(a,b) = x.fold ("0" +serial(-) (a),"1" +serial(-) (b))
case RProd(a,b) = serial (x._1) (a) + serial (x._2) (b)
case RView(i,a) = serial(i.from (x)) (a())

}

For the purposes of presentation, we encode the binarysepiegion as a string of zeroes
and ones rather than a true binary stream. The argumentsiaf are the value of type

t to encode and a representatiort ¢ivhich may be passed implicitly). For thénit case,

we return an empty string; fdnt andChar, we assume primitive encodezacodelntand
encodeCharThe case for sums applies tfidd method (defined in thEither trait) to the
valuex; in casex is an instance oEeft, we encode the rest of the value and prepend O;
in casex is an instance oRight we encode the rest of the value and prepend 1. The case
for products concatenates the results of encoding the twgpoaents of the pair. Finally,

for the view case, we convert the valweto its sum-of-products equivalent and apply the
serialization function to that.

5.2 Open type representations and ad-hoc cases

In Scala, datatypes may be open to extension—that is, it $siple to introduce new
variants; in the case of type representations, it meansabatan add new constructors
for representations of new types. This is useful for ad-reses in generic functions—
that is, to provide a behaviour different from the generie &or a particular datatype in a
particular generic function.

For example, suppose that we want to use a different encaxfifigts than the one
derived generically: it suffices to encode the length of & fidlowed by the encodings
of each of its elements. For long lists, this encoding is neffieient than the generic
behaviour obtained from the sum-of-products view, whickeesially encodes the length
in unary rather than binary format. In order to be able to @eéin ad-hoc case, we first
need to extend our type representations with a new casesfer li

caseclassRList[A] (a:RepA]) extends
RViewEither[Unit, (A, List[A])], List[A]]
(listlso, () = RPIlus(RUnit RProd(a, RList(a))))

implicit def RepLista] (implicit a: Repa]) = RList(a)
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This is achieved by creating a subtypeR¥iew using the isomorphism between lists
and their sum-of-products representation. Notice fRiist depends on itself; had this
representation parameter not been made lazy, the repaéisenvould unfold indefinitely.
The functiorRepListyields a default implicit representation for lists, giverepresentation
of the elements.

With the extra case for lists, we can have an alternativalssation function with a
special case for lists:

def serial [t] (x:t) (implicit r : Reft]) : String=

r match {
case RUnit ="
case RInt = encodeln{Xx)

case RChar = encodeCharx)

case RPlus(a,b) = x.fold ("0" +seriak (—) (a),"1" +seriak (-) (b))

caseRList(a) = seriah (x.length +
x.map(seriak () (a)).foldRight("" ) ((x,y) = x+Y)

case RView(i,a) = seriah (i.from(x)) (a())

}

The definition ofserial; is essentially the same asrial, except that there is an extra case
for lists, producing an encoding of the list length followmdthe encodings of its elements.

5.3 Inheritance of generic functions

The definition of theserial generic function is somewhat unsatisfactory, because it in
volves code duplication. Scala, being an object-oriendegjllage, supports inheritance.
However, to make use of inheritance on generic functions)@ea to adapt our programs
to use classes instead of function definitions: the sesititin functionserial has to be
rewritten as follows:

trait Producera] {
def apply[t] (x:t) (implicit r: Rept]):a
}

case class Serialextends Produce{String] {
def apply[t] (x:t) (implicit r : Replt]) : String=r match {

case RUnit ="
caseRInt = encodeln{x)
case RChar = encodeCharx)

caseRPlus(a,b) = xfold ("0" +apply(_) (a),"1" +apply(-) (b))
caseRProd(a,b) = apply(x._1) (a) +apply(x._2) (b)
case RView(iso,a) = apply (iso.from (x)) (a())
}
}

obj ect serial extends Serial

The traitProducerdefines a ‘template’ for generic producer functions sucleaaliation,
and can be reused for other producers. The case $&x#alis a subclass dProducer im-
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plementing theapplymethod. The definition oderial is recovered by an object extending
Serial Scala treats methods namapply specially, allowing the use of the conventional
function application notation for invocation: we can writéarg) instead ofo.apply(arg),
andserial (List (1)) instead ofserialapply(List (1)).

The advantage of writing the generic function in this styégher than more directly us-
ing a function definition, is that inheritance allows the digiion to be reused. For example,
instead of repeating all the casessiriak, we could write the following:

case class Seriah extends Serial{
overridedef apply|t] (x:t) (implicit r : Reft]) : String=r match {
caseRList(a) =
apply (x.length +x.map(apply(-) (a)).foldRight("" ) ((x,y) = X+Y)
case _ = super.apply(x) (r)
}
}

object seriah extends Seriak

The case clasSerial inherits fromSerial and adds a special case for lists, overriding
the generic definition. The default casé usessuper to invoke the definition ofpply
from Serialwhenever the argument is not a list representation. Theitlefirof serial, is
once again recovered by an object extending the Gasm®} that represents the generic
function. The following shows how client code can use the wewsions ofserial and
seriak:

val testSerial = serial (List (1))
val testSerial = serial (List (1))

5.4 Evaluation of the approach

The Scala approach presented in this section comparesréblpwith the Haskell ap-
proach using GADTSs to encode type representations, whichpresented in Section 2.1.
While it is true that the code to define the representatior tggsomewhat more verbose
than the Haskell equivalent, we no longer need to createaaiptype class to allow im-
plicit construction of representations. Implicit repretsgions may not be strictly necessary
for a generic programming library, but they are very congahiand nearly all approaches
provide them. The definition of generic functions using tyggresentations is basically as
straightforward in Scala as in Haskell; no significant addl verbosity is involved.

In Haskell, it is difficult to extend a datatype with new vantis, which has drawbacks
from a generic programming point of view, as discussed irti@@@.3.3. In contrast, in
Scala, adding a new variant is essentially the same as addimayv subclass. While it
would be possible to overcome Haskell's extensibility tatibns with theopen datatypes
proposal (Loh & Hinze, 2006), Scala’s case classes havetaa advantage when com-
pared to that proposal. In Scala, we can mark a traiseaked, which prohibits direct
subclassing of that trait outside the module defining itll,Stie can extendsubclasses
even in a different module. Therefore, we could have markedraitRep/A] as sealed;
but modular extension d&®Viewwould still be allowed. The nice thing about this solution is
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trait Total[A] {
def total: A= Int

}
def gtotal[A] (x: A) (implicit t: Total[A]) : Int = t.total (x)

implicit obj ect totalUnit extends Total[Unit] {
def total = _=0

}

implicit obj ect totallnt extends Total[Int] {
def total = x = x

}

implicit def totalPair[a,b] (implicit totalA: Total[a],totalB: Total[b]) =
new Total[(a,b)] {
def total = {
case (x,y) = totalAtotal (x) + totalB.total (y)

}
}

implicit def totalEither[a, b] (implicit totalA: Total[a], totalB: Total[b]) =
new Total[Either[a, b]] {
def total = {
caselLeft(x) =-totalAtotal (x)
case Right(y) = totalB.total (y)

}
}

implicit def totalList[a] (implicit totalA: Total[a]) = new Total[List[a]] {
def total = x = gtotal (fromList(x))

}

Fig. 6. A simple generic ‘sum’ function.

that we can be sure that a fixed set of patterns is exhaustiviessasier to avoid pattern-
matching errors. Scala even has coverage checking of patidren using case analysis on
values of sealed types, warning about any missing cases.

Finally, inheritance allows one to reuse code from existjageric functions. However,
generic functions need to be written using classes insteaohotion definitions, which is
a bit more verbose and less direct. Nonetheless, reuse efigéanctions is an important
and useful feature to have, and the native support provigefidala makes this feature
quite usable.

6 Generic Programmingwith Type Classes

This section shows how to implement a Scala equivalent ®stimple generic program-
ming approach based on type classes presented in Sectidfroldving Section 4.5, the
key idea is to use Scala’s implicits mechanism instead okelés type classes.
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6.1 Simple extensible generic functions

Figure 6 shows a Scala implementation of the Haskell codsepited in Figure 1. The trait
Total[A] plays a role similar to that of the cla3stalin the Haskell version: it defines an
interface containing a functiototal that takes a value of typ& and returns an integer.
The gtotal function provides an interface to the sum function, cortding the dictionary
implicitly; this is not needed in the Haskell version. Howewnlike with the type class
version, such a dictionary can also be passed explicitlg tdtalUnit, totallnt, totalPair
and totalEither definitions are analogous to the type class instances fas,untegers,
products and sums. One notable difference is the explitécBen of the dictionary in
which to find a subsidiary sum function; for example, in thérdtton for pairs,totalAtotal
selects the sum function from the first dictionary argument.lists, thegtotal function
is used instead, allowing the dictionary to be automatidafierred by the compiler. (The
functionfromListwas defined in Section 5.1.)

6.2 Local redefinition

With the Scala approach, local redefinition is possible. &mample, we can obtain a
generic function that counts the integers in a structuredaygua different dictionary for
integers:

obj ect countintextends Total[Int] {
def total =x=1

}
val x = gtotal (List (1,2, 3))
val y = gtotal (List (1,2, 3)) (totalList (countind)

The values< andy are computed by calling the same generic functjartal on the same
list; however, in the second case, a local redefinition ofdicdonary to use for integers
means that the result is 3 rather than 6. (Given this faditityocal redefinition, it would
be reasonable to make the basic function a generic ‘counéurning zero for each base
case, and to expect some cases to be locally redefined fousagh

6.3 Exotic types

In the Haskell approach using type classes, exotic typdsasinested datatypes or datatypes
with higher-kinded type arguments presented a challemg&cala, they pose less of a
problem. For example, the type of generalized trees canfiieedeas follows:

sealed case class GRoséF [_],A] (x: A, children: F [GRoséF,A]])

It is possible to define an implicit representation for thegyéc sum function using an
approach similar to thpolymorphic predicategechnique, as discussed in Section 2.3.6.

implicit def totalGRoséF [_], A] (implicit totalA: Total[A],
totalF: {def apply[B] (implicit totalB: Total[B]) : Total[F [B]] }) =
new Total[GRosgF,A]] {
def total = r = totalAtotal (r.x) +
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totalF (totalGRoséF, A] (totalA totalF)).total (r.children)
}

However, Scala currently does not support type inferencddtatypes with higher-kinded
type arguments, so in the definition above it is necessaryylioitly construct the dictio-
nary

totalF (totalGRoséF, A] (totalA totalF))

so that the dictionary constructor functimal GRosean be passed the type constructor ar-
gument~. To emulate polymorphic predicates, such agthalF argument ofotalGRose

we have to encode higher-ranked types; this is not too hardy wsructural types as
discussed in more detail in Section 10.3. It is also necgdegrovide a dictionary object
that fits the interface required ftotalF values:

implicit object totalList2{
def apply[a] (implicit totalA: Total[a]) : Total[List[a]] =
totalList[a] (totalA)

}

Having set up all this machinery, we can now apply generic sugeneralized rose
trees:

val myRoseGRosdList, Int] = GRoséList, Int] (3, Nil)

def test(rose: GRoséList, Int]) (implicit totalR: (Total|[GRoséList, Int]])) =
totalRtotal (rose)

def testCountInt = test(myRosg (totalGRoséList, Int] (countint totalList2))

The functiontesttakes a valueoseof type GRoséList, Int] and an implicit dictionary for
the generic sum function, and returns the result of applifiegappropriate member of this
dictionary to the rose tree. The functitestCountpplies this function to a particular rose
tree and an explicit dictionary for generalized rose treesirning the result 1. Unfortu-
nately, the dictionary cannot be constructed automagidadicause the higher-kinded type
List cannot be inferred.

6.4 Evaluation of the approach

Not surprisingly, the Scala approach has some additiombbeity when compared to the
Haskell one, in particular with the long-winded syntax foiplicits. In the Scala approach,
a gtotal function is required in order to be able to pass a dictionaplieitly, while in
Haskell no such definition is necessary. Howegéotal can be used for passing arguments
both implicitly and explicitly, while in Haskell only imptit dictionaries are possible.
Exotic types pose a challenge to Scala, as they do for Haskelfor different reasons. In
Scala, there is no native support for higher-ranked tyges; have to be encoded, which
adds extra overhead. Furthermore, the current versionatSioes not yet support type
inference for higher-kinded types; in practice, this methias it is essentially not possible
to automatically infer dictionaries that involve highendted types. Having to write those
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dictionaries manually is tedious. However, in the Scalareagh, local redefinition is
possible, and can be used in a convenient way.

In summary, the Scala approach is a bit more verbose tharotihesponding Haskell
version, but it is also more expressive, since both locagfiaidions and polymorphic
predicates are possible. However the latter feature ha® sigmificant overhead that
makes it impractical to use.

7 Generic Programming with Encodings of Datatypes

This section presents the first of three case studies onrexiBGP approaches. Building
on Section 4.5, which showed how implicit parameters carsled €or type-class-style pro-
gramming, a Scala implementation of tBenerics for the Massé&M) technique (Hinze,
2006) is shown. Furthermore, we discuss two distinct tesphes for reusing generic func-
tions in Scalareuse by inheritancend local redefinition (Moors (2007) provides an
alternative Scala tutorial on GM.)

7.1 Generics for the masses, in Haskell

Figure 7 shows the essence of the GM approach in Haskell. dingtrzictor clas§&eneric

is used to represent the type of generic functions. The patengirepresents the generic
function, and each of the member functions of the class eesctite behaviour of that
generic function for a specific structural case. Generictions over user-defined types
can be defined using thaéew type case: an isomorphism between the datatype and its
structural representation must be provided. Instancekeofyipe clasfkepdenote repre-
sentable types; each such instance consists of a matteaghtthat selects the appropriate
behaviour from a generic function.

A new generic function is represented as an instanGeoteric providing an implemen-
tation for each structural case. For instance, considenargetemplate for functions that
compute some integer measure of a data structure. Eachsaaseciord of typ€ount afor
some typea, which contains a single functicsountof typea — Int that can be used for
a structure of typa. The functiongCount which is the actual generic function, simply
extracts the sole fieldountfrom a record of the appropriate type, built automatically
by accept For sums, products, and user-defined datatypes, it doeshiki®us’ thing:
choosing the appropriate branch of a sum, adding the cofitite dwo components of a
product, and unpacking a view and recursively countingdgtgents; it counts zero for each
of the base cases, but these can be overridden to implemeeatmeresting behaviour.

7.2 Generics for the masses, in Scala

Figure 8 presents a translation of the code in Figure 7 inaSdhe traitGenericis
parametrized with a higher-kinded type construc®orAs in Haskell, there are methods
for sums, products, the unit type, and also a few built-ire/puch as integers and char-
acters; for sums and products, which have type parameteraged extra arguments that
define the generic functions for values of those type pararseTheview case uses an
isomorphism to adapt generic functions to existing datedythe = before the types[a]
signals that that parameter is passed by name.
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class Generic gwhere

unit g Unit
plus rga—gb—g(Sumab
prod ga—gb—g(Prodab
view lsoba—ga—ghb
char ::g Char
int sgint
classRep awhere
accept ::Genericg=ga
instance Rep Unitwhere
accept = unit
instance Rep Chawhere
accept = char
instance Rep Intwhere
accept =int
instance (Rep aRep ) = Rep(Sum a h where
accept = plus accept accept
instance (Rep aRep h = Rep(Prod a b where
accept = prod accept accept

newtype Count a= Count{count::a — Int}

instance Generic Countvhere

unit = Count(A_— 0)
char = Count(A_— 0)
int = Count(A_— 0)

(
(
plusab = Count(Ax — casexof {Inll — countallnrr — countbr})
prod ab = Count(A(Prod xy) — count a x+ count by

view iso a= Count(Ax — count a(fromiso X))

gCount:Rep a=a— Int
gCount= count accept

Fig. 7. Generics for the masses in Haskell

The traitRep[T] has a single methoaccept which takes an encoded generic function
of type Generic|G]. The Scala implementation of the subclasseRep[T] is almost a
transliteration of the Haskell type class version, excépt it uses implicit parameters
instead of type classes.

The generic counter function uses a parametrized clamstwith a single field: a
function of typeA = Int. The concrete subtyp8ountGof the traitGenericCount pro-
vides implementations for the actual generic functionheaethod yields a value of type
Count/A] for the appropriate typA.

7.3 Constructing type representations

For each datatyp& we want to represent, we need to create a value of Rgy@T |. For
example, for lists we could write:

def listRepa,g[_]] (a:g[a]) (implicit gen: Generidg]) : g[List[a]] = {
import gen_
view(listlso[a]) (plus(unit) (prod (a) (listRep[a,g] (a) (gen))))
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trait GeneridG[_]] {

def unit :G[Unit]
def int :G[Int]
def char :G[Char]
def plus[a,b] : G[a] = G[b] = G[Either[a,b]]
def prod[a,b]: G[a] = G[b] = G[(a,b)]
def view[a,b] : Iso[b,a] = (= G[a]) = G[b]
}
trait RegT] {

def accepig[_]] (implicit gen: Generidg]) : g[T]

implicit def RUnit= new RepUnit] {
def accepig[_]] (implicit gen: Generidg]) = genunit

implicit def RInt= new Rep[Int] {
def acceptig[_]] (implicit gen: Generidg]) = genint

implicit def RChar= new RepChar] {
def accepfg[_]] (implicit gen: Generidg]) = genchar

implicit def RPluga, b] (implicit a: Repa],b: Repb]) = new RegEither[a,b]] {
def accepig[_]] (implicit gen: Generidg]) =
} genplus (a.acceptg] (gen) (b.accepig] (gen))

implicit def RProd|a, b] (implicit a: Repa],b: Repb]) = new Rep(a,b)] {
def accepig[_]] (implicit gen: Generidg]) =
} genprod (a.acceptig] (gen) (b.accepig] (gen)

case class Count[A] (count: A= Int)
trait CountGextends GeneridCount {

def unit = Count(x = 0)
def int = Count(x = 0)
def char = Count(x = 0)

def plusfa,b] =a= b= Count(_.fold (a.countb.count))
def prod[a,b] = a= b= Count(x =- a.count(x._1) 4+ b.count(x._2))
def view[a, b] = iso=- a=- Count(x = a.count(iso.from(x)))

Fig. 8. Generics for the Masses in Scala.

}
implicit def RList[a] (implicit a: Repga]) = new RepList[a]] {
def accepfg[_]] (implicit gen: Generidg]) =

listRepa, g] (a.acceptg] (gen) (gen
}

(Theimport declaration allows unqualified use of the methetsy, plus and so on of
the objectgen listlso is the isomorphism presented in Section 5.2.) Here, theliaoxi
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functionlistRepconstructs the rightenericvalue following the sum-of-product structure.
UsinglistRep the representatioRListfor lists is easily defined.

7.4 Applying generic functions

We can now define a meth@Countthat provides an easy-to-use interface for the generic
function encoded b¥ountG this takes a value of a representable tgpend returns the
corresponding count.

def gCounfa] (x:a) (implicit rep: Repa]) = rep.accepfCouni.count(x)

We definedCountGas a trait instead of an object so that it can be extended, dsauss
in more detail in Sections 7.5 and 7.6. We may, however, legasted in having an object
that simply inherits the basic functionality defineddountG Furthermore, this object can
be made implicit, so that methods likep can automatically infer this instance @eneric

implicit object countGextends CountG

Of course, this will still return a count of zero for any datausture; we show next how to
override it with more interesting behaviour.

7.5 Reuse via inheritance

To recover a generic function that counts the integers in&tre, we can use inheritance
to extendCountGand override the case for integers so that it counts 1 for ageger
value.

trait Countintextends CountG{overridedef int = Count(x=-1) }

We can then define a methoduntintto count the integers in any structure of representable
type.

def countinta] (x:a) (implicit rep: Repa]) =

rep.accepfCount (new CountInt{ }).count(x)

The ability to explicitly pass an alternative ‘dictionarig essential to the definition of
the methodtountint since we need to parametrize theceptmethod with an instance of
Countother than the implicitly inferred one.

Using such generic functions is straightforward. The felltg snippet defines a list of
integergestand appliesountintto this list.

val test= List (3,4,5)

def countTest countint(test

Note that the implicit parameter for the type representatis not needed, because it can
be inferred by the compiler (since we providediaplicit def RLis).

7.6 Local redefinition

Suppose that we want to count the instances of the type p#ramean instance of a
parametric datatype such as lists. It is not possible toialise Genericto define such
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Fig. 9. Tree with depth information at the nodes.

a function directly, because there is no way to distinguislues of the type parameter

from other values that happen to be stored in the structareeXample, we could have a

parametric binary tree that has an auxiliary integer at emte that is used to store the
depth of the tree at that node; this could be useful in keetfiagree balanced. Figure 9

shows such a tree; the squares represent the auxiliareisteand the circles represent the
values contained in the tree. If the elements of the treeh@maselves integers, we cannot
count them without also counting the balance information.

val testTree= Fork (2, Fork (1, Value(6), Value(1)), Value(5))

val five= countint(testTree //returns5

To solve this problem, we need to account for the representadf the type parameters
of a parametric type. The methdidtRep for example, needs to receive as an argument a
representation of typgla] for its type parameter. A similar thing happens with binaegs;
assuming that the equivalent method is cab&é@eRepwe can provide a special-purpose
counter for trees that counts only the values of the typerperar.

def countOnéa] = Count((x:a) = 1)
def countTreda] (x: Tree[a]) = btreeRepa, Counf (countOnéal).count(x)

val three= countTregtestTre¢ // returns 3

The idea here is to replace the default behaviour that woailaded for the type parameter
(as inferred from the type) by user-defined behaviour sgethiycountOne

7.7 Evaluation of the approach

Like other generic programming approaches, the GM teclmigjunore verbose in Scala
than in Haskell: in the definitions of instances (suctRamit, RChar, andRProd of the
trait Rep we need to explicitly declare the implicit argument of tteeeptmethod and the
type constructor argumegtfor each instance; this is not necessary in the Haskellarsi

In terms of functionality, the Scala solution provides gtieing present in the Haskell
solution, including the ability to handle local redefinitg In addition, we can easily reuse
one generic function to define another through inheritamgeemonstrated in Section 7.5;
with the Haskell approaches, this kind of reuse is hardeclieae. The only mechanism
that we know of that comes close to this form of reuse in terfr&roplicity is Generic
Haskell'sdefault caseconstruct (Loh, 2004), as discussed in Section 2.3.5.

Another nice aspect of the Scala approach is the ability éorile an implicit parameter.
Theacceptimethod ofReptakes an implicit argument of tyggeneridg]. When we defined
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the genericcountint function (see Section 7.5), we needed to override that aegtim
This was easily achieved in Scala simply by explicitly pagsan argument; it would be
non-trivial to achieve the same effect in Haskell using tgl@sses, since dictionaries are
always implicitly passed. Note that we also explicitly av@e an implicit parameter in the
definition ofcountTregsince the first argument dtreeReps implicit by default).

Finally, it is interesting to observe that, when interpdgtean object-oriented language,
the GM approach essentially corresponds to thsIVOR pattern. While this fact is not
entirely surprising—the inspiration for GM comes from edtws of datatypes, and en-
codings of datatypes are known to be related to visitors liRwsky & Thielecke, 2006;
Oliveira, 2007)—it does not seem to have been observed ititdrature before. As a
consequence, many of the variations observed by Hinze hiaget @¢orrespondents in
variations of visitors, and we may hope that ideas develapéide past in the context of
visitors may reveal themselves to be useful in the contegéakric programming. Oliveira
(2007) explored this, and has shown, for example, both hdutisas to the expression
problem (Wadler, 1998) using visitors can be adapted to GM, lzow solutions to the
problem of extensible generic functions in the GM approaa lse used as solutions to
the expression problem (Oliveira, 2009a).

8 Generic Programmingwith Extensible Superclasses

This section presents the second case study of a DGP libréBgala. We show how to
emulateextensible superclass€Sulzmann & Wang, 2006), and how this technique can be
used to provide an implementation of tBerap your Boilerplate with Clasg.ammel &
Peyton Jones, 2005) approach to generic programming.

8.1 Scrap your boilerplate with class

After realizing that earlierimplementations of the SyB eggch (Lammel & Peyton Jones,
2003) were limiting because they did not suppaxtensible generic functionkammel
and Peyton Jones (2005) proposed a variation using typseslaghis solution is shown
in Figure 10. TheData class defines the higher-order generic functiomapQ which is
used to define new generic functions. TRigeclass declares a new generic functipre
Overlapping instanceare used to provide a defaultimplementation of the fundtiagerms
of gmapQ in the case oBize the instanc&ize tplays this role. Generic functions can be
made extensible by providing additional instances of ciigethat override the default
case. The solution is somewhat involved, and it requireswab@u of non-standard Haskell
extensions to get everything to work. In particulandecidable instancesre needed, and
an extension allowingecursive dictionariedad to be built into the GHC compiler. Also,
proxies for types, which involve passing an extra (bottoailig to functions, are required
to resolve type ambiguities.

The major difficulty Lammel and Peyton Jones found was timagrder to provide a
modular definition of a new generic function, tBata class had itself to be parametrized
by the generic function being defined. In essence, what séerbe needed here are
extensible superclasses. Inspired by Hughes’ (1999) worksiricted datatyped ammel
and Peyton Jones found a solution by emulating type classrmrization: in the class
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dataProxy(a::* — %)
class Sat awheredict::a

class (Typeable aSat(ctx a)) = Data ctx awhere
gmapQ: Proxy ctx— (Vb. Datactxb=b—r) —a—|r]
instance Sat(ctx Char) =- Data ctx Charwhere
gmapQ_fn =[]
instance (Sat(ctx[a]), Data ctx g = Data ctxa] where

gmapQ_ f ] (]
gmapQ_f (x:xs) =|[f x,f xs]

class Size avheregsize:a — Int
data SizeD a= SizeD{gsizeD:a— Int}

sizeProxy: Proxy SizeD
sizeProxy= L

instance Size t=- Sat(SizeD } where
dict = SizeD{gsizeD= gsize}
instance Data SizeD t= Size twhere
gsize t= 1+ sum(gmapQ sizeProxggsizeD dicj t)

instance Size a= Sizda] where
gsizd] =0
gsize(x:xs) = gsize xt gsize xs
test= (gsizg'a’ ,'b" ] ,gsizex' )

Fig. 10. The original ‘SyB with Class’ implementation in Ha#

Data ctx g thectxargument is supposed to represent an unknown type classebatise
Haskell does not allow abstraction over type classes, #sgdbe emulated using records.

8.2 Scrap your boilerplate with class, in Scala

Because of the wide range of non-standard features of Hasledl by the SyB with Class
approach, it is interesting to see what is involved in exgirgsthe approach in Scala. Like
Haskell, Scala does not support extensible superclasseglgi that is, it is not possible
to have a trait (or class)

trait T [Supet extends Super

in which the trait is parametrized by its own superclass. el@v, Scala does provide
explicit self-typegOdersky, 2006a), which can be used to emulate this fedtuFégure 11,

a Scala implementation of tHgata class is shown. As with the Haskell solution, hata
trait is parametrized by a type constructdx (the generic function) and a type The
major difference from the Haskell solution is the use ckH-typeto ensure that the type
of the self object is a subtype aftx[a]. This is to make the generic functions defined in
ctx available to all instances data. (The definitionmeis just a public reference for the
self object, and thgmapQgeneric function uses the technique discussed in Sectich 10
to emulate higher-ranked types.) Two base ‘instances’ fandgbed for characters and lists,
as in the Haskell implementatioAbstract case classese used becaudgataCharand
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trait Datajctx[_],a] {sdlf : ctx[a] =
def me= self
def gmapQr]: {def apply[b] (x:b) (implicit dt: Data[ctx, b]):r } = a=- List[r]

abstract case class DataCharctx[_]] () extends Data[ctx, Char] {self : ctx[Char] =
def gmapQr]=f = n=- Nil

abstract case class DataList[ctx[_],a] (implicit d: Data|ctx a]) extends Data|ctx, List[a]] {
self : ctx[List[a]] =
def gmapQr]=f = {
caseNil = Nil
casex::xs=- List (f (x) (d),f (x9s) (this))
}
}
trait Sizga] extends Data[Sizea] {
def gsizea=Int=t =
1+ sum(gmapqInt] (new {def apply[b] (x:b) (implicit dt: Data[Sizeb]) =
dt.megsize(x) }) (1))
}
abstract case class SizeLisfa] () (implicit d: Siz€a])
extends DataList[Sizea] () (d) with SizdList[a]] {
overridedef gsize= {
caseNil =0
case x::xs=- d.gsize(x) + gsize(xs)
}
}

implicit def sizeChar. SizdChar] =
new DataChar[Sizd () with SizgChar]

implicit def sizeListZa] (implicit d: Siz€a]) : SizeList[a]] =
new SizeLista] () (d) with Siz€List[a]]

def test(implicit s1: SizgChar], s2: SizdList[Char]]) =
(slgsize('a' ),s2gsize(List('a’ ,'b" )))

Fig. 11. Animplementation of ‘SyB with Class’ in Scala.

DataListare incomplete, that is, they still need to be mixed with iempéntations of the
typesctx[Char] and ctx|List [a]]. The trait SizeextendsData and defines the generic
function gsizein terms ofgmapQ This trait plays the role of both th8izeclass and
the Size tinstance in the Haskell solution. The abstract case &#sslistprovides the
overriding case for lists. Note th&izeandSizeListsatisfy, respectively, thBata[Sizea]
andDatalList[Sizea] requirements for the self-type. The implicit definitigizeCharand
sizeListallow the dictionaries for characters and lists to be buitbanatically. Finallytest
shows how the generic function can be used—here, to comipaitgze of a character and
of a list of characters. Becausesttakes two implicit arguments, it is possible to call it
without those arguments; alternatively, different dinaoies can be provided, overriding
the ones selected by the compiler.
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8.3 Local redefinition

In the Scala implementation of SyB with Class, local redg&éniis possible. For example,
instead of using thaizeListdictionary for lists, it is possible to provide an alternati
dictionary that inherits the generic behaviour for listthea than overriding it:

def alternativeLisfa] (implicit d: Siz€a)) : SizdList[a]] =
new DatalList[Sizea] () (d) with SizgList[a]]

Given this definition, bothest andtest(sizeCharalternativeLis} are possible applica-
tions, returning1,2) and(1,5) respectively.

8.4 Evaluation of the approach

Verbosity is once again a problem. The lack of direct supfurhigher-ranked types and
a long-winded syntax for implicits adds significant addiabcode in comparison to the
Haskell approach. Another problem is that separate intpléinitions for dictionaries like
sizeCharandsizeListare needed.

The Scala approach imposes an additional burden on thegmoger due to the absence
of a mechanism similar toverlapping instancesThis requires the programmer to im-
plement the definitions for the implicit dictionaries one daye. In the Haskell solution,
if there is no overridden case, then no additional effortéegeded. On the other hand,
the Scala solution does not distinguish between types gmel ¢classes, and abstracting
over the ‘type class’ is just the same as abstracting ovelpa: tgo encoding of this
feature is required. Furthermore, a solution with expbeilf-types does not require other
advanced features such as recursive dictionaries or whatdei instances; everything is
accomplished naturally, using the standard extension aresim.

In terms of expressiveness, the Scala solution is betteguse it supports local redefi-
nitions and allows greater control of dictionaries by pding the possibility to pass them
explicitly. In the original SyB with Class solution, locadefinitions are not possible.

In summary, for the SyB with Class approach the results aredniHaskell is more
convenient to use because it imposes a lighter burden onrtiggggnmer, but the Scala
solution is more expressive and flexible because local mitlefis are possible.

9 Generic Programming with Recursion Patterns

Most generic programming libraries involve writing gerefiinctions by case analysis
on the structure of the shape of the datatype, whether tts#t amalysis is by value-
based or type-based dispatch. An alternative is to makehhpesparameter an active
participant in the computation—a higher-order functioattban be applied, rather than
passive data that must be analyzed. In particularQhigami Programming(Gibbons,
2003) approach to DGP is based around datatypes represarftepoints of type functors,
and programs expressed in terms of higher-order recursitterps shape-parametrized by
those functors (Meijeet al, 1991). A consequence of black-box application rather than
white-box inspection of the shape parameter is a kind ofériginder naturality property,
guaranteeing coherence between different instances ajeaheric function (Gibbons &
Paterson, 2009).
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newtype Fix f a= In{out::f a (Fixf a)}
class BiFunctor fwhere
bimap::(a—b) — (c—d)—>fac—fbd
fmap2:(c—d)—-fac—fad
fmap2= bimap id
map:: BiFunctor f=- (a— b) — Fixf a— Fixf b
map f= Inobimap f(map f) o out
cata::BiFunctorf= (far —r) - Fixfa—r
cata f =f ofmap2(cata f) o out

ana::BiFunctor f= (r - far) -r — Fixfa
anaf=Inofmap2(anaf)of

hylo::BiFunctorf= (a—fca — (fcb—b)—a—b
hylo f g=gofmap2(hylof g)of

build:: (vb. (fab— b) — b) — Fixf a

buildf =f In

Fig. 12. Origamiin Haskell

One can view the origami recursion patterns as functiora@mming equivalents to
(at least the code aspects of) some of the so-called Ganguofdesign patterns (Gamma
etal, 1995). Gibbons (2006) argues that recursive datatypessmond to the GMPOSITE
design pattern, maps to thedRATORpattern for enumerating the elements of a collection,
folds to the MSITOR pattern for traversing a hierarchical structure, and w¥aind builds
to structured and unstructured instances of tbeLBER pattern for generating structured
data.

Moors et al. (2006) were the first to point out that Scala is expressivaighdo be
a DGP language; they showed how to encode these origamimmtteScala. However,
their encoding was done in an object-oriented style thabihtced some limitations that
the original Haskell version did not have. We feel that tHigeat-oriented style, while
perhaps more familiar to the object-oriented programmegrtoorset al. were targetting,
does not show the full potential of Scala from a generic paogner’s perspective. In this
section, we present an alternative encoding of the origatiems that is essentially a
direct translation of the Haskell solution and has the saxtensibility properties.

9.1 Alittle Origami library

Figure 12 shows the Haskell implementation of the origarttgpas, and Figure 13 shows
a translation of this Haskell code into Scala. The key idéa &ncode type classes through
implicit parameters (see Section 4.5) rather than usingtject-oriented style proposed
by Moorset al.. The newtypd-ix and its constructoin are mapped into a case cldss;
the type clasBiFunctor maps into a trait; and the origami operations map into Scala
definitions with essentially the same signatures. (In Sdalalicit parameters can only
occur in the last parameter position.)

There are two things to note in the Scala version. Firstlgabse evaluation in Scala is
strict, we cannot just write the following in the definitiohaata
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caseclassFix [F[—,_],a] (out: F [a,Fix[F,a]])

trait BiFunctor[F [, _]] {
defblmap[abcd] (a=b)= (c:>d):>F[ac}:>F[b d]
def fmap2a,c,d] :(c=d)= F[ac]= F[ad] =bimap(id)

}

def map[a,b,F [, _]] (f :a=b) (t:Fix[F,a]) (implicit ft: BiFunctor[F]) : Fix[F,b] =
Fix [F,b] (ft.bimap(f) (map[a,b,F] (f)) (t.out))

def catala,r,F[_,_]] (f:F[a,r] =r) (t:Fix[F,a]) (implicit ft: BiFunctor[F]):r =
f (ft.fmap2(cataja,r,F] (f)) (t.out))

def anafa,r,F[_,_]] (f:r = FJar]) (x:r) (implicit ft: BiFunctor[F]) : Fix[F,a] =
Fix[F,a] (ft.fmap2(anala,r,F] (f)) (f (x)))

def hylo[a,b,c,F [, _]]

(f:a=F]c,al]) (9:F|[c,b] = b) (x:a) (implicit ft: BiFunctor[F]):b =
g (ft-fmap2(hylo[a,b,c,F] (f) (9)) (f (x)))
def build[a,F [, _]] (f : {def apply[b]: (F[a,b] = b) = b}) =f.apply(Fix[F,a])

Fig. 13. Origamiin Scala

trait ListF[a,r]
caseclassNil [a,r] extendsListF[a,r]
caseclassConga,r] (x:a,xs:r) extendsListF[a,r]
implicit object biList extends BiFunctor|ListF] {
def bimap[a,b,c,d] =f = g= {
case Nil () = Nil ()
case Cons(x,xs) = Cons(f (x),g (xs))
}
}

typeList[a] = Fix|[ListF,a]
def nil [a] : List[a] = In[ListF,a] (Nil ())
def conga] = (x:@) = (xs: List[a]) = In]ListF,a] (Cons(x,xs))

Fig. 14. Lists as a fixpoint

f oft.fmap2(catala,r,F] (f)) o (—.out)

(the syntax(_.m) is syntactic sugar fofx = x.m); in other words, *’ denotes an ‘anony-
mous’ lambda variable). Under strict evaluation, the abdefnition would expand in-
definitely; we have to write it less elegantly using appimatrather than composition.
Secondly, higher-ranked types are once again requiredaweto encode them in Scala—
see Section 10.3 for more details.

9.2 Using the library

Figure 14 captures the shape of lists as a type construidiht; the two possible shapes
for lists are defined with the case clasbiisandCons TheBiFunctorobjectbilist defines
thebimapoperation for the list shape. Lists are obtained simply bylydpg Fix to ListF.



Journal of Functional Programming 37

trait TC {type A;typeB}

trait BiFunctor[S<: BiFunctor[S]] extends TC {
self:S=
def bimap[c,d] (f:A=c,g:B=-d):S{typeA=c;typeB=d}
}
trait Fix[S<:TC,a] {
def map[b] (f :a=-b):Fix[Sb]
def catalb] (f : S{type A= a;typeB=Db} =Db):b
}
case classIn[S<: BiFunctor[S],a] (out: S{type A= a;type B = Fix[S a] }) extendsFix[S a] {
def map[b] (f :a=-b):Fix[S b] = In (outbimap(f,_.map(f)))
def catalb] (f : S{type A= a;typeB=b} = b):b="f (outbimap(id, _.cata(f)))
}
def ana[s<:BiFunctor[s],a,b] (f :b= s {type A= a;typeB =b}) (x:b):Fix[s,a] =
In (f (x).bimap(id,ana(f)))
def hylo[s<: BiFunctor[s],a, b, c]
(f:b=s{typeA=atypeB=b},g:s{typeA=a;typeB=c} =c) (x:b):c=
g (f (x).bimap(id, hylo[s,a b,c] (f,g)))
trait Builder[S<: BiFunctor[S],a] {
final def build () : Fix[S,a] = bf (In[S a])
def bf [b] (f : S{typeA=a;typeB=b} = b):b
}

Fig. 15. Origamiin Scala, after Mooet al.

The figure also shows functiomd andconsthat play the role of the two constructors for
lists.

We can now define operations on lists using the origami opexad simple example is
the function that sums all the elements of a list of integers:

def sumList= cata[Int, Int, ListF] {
caseNil () =0
case Cons(x,n) = X+n

}

9.3 Evaluation of the approach

Figure 15 presents Mooes al.'s object-oriented encoding of the origami operators (glig
adapted due to intervening changes in Scala syntax), ande=l$ shows the specialization
to lists. Compared to this object-oriented (OO) encoding,more functional (FP) style
has some advantages. The most significant difference bettheetwo is that the OO
encoding favours representing operations as method$attée objects, and provided with

a distinguished ‘self’ parameter, whereas the FP encodwvmyirs representing operations
as global functions, independent of any object. In parsicuh the OO encoding of the type
classBiFunctor, the methoimaptakes just two functions, whereas in the FP encoding
it takes a data structure too; the OO encoding ofd&ia operation is as a method of the
classin, with a recursive data structure as a ‘self’ parameter, edethe FP encoding is
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trait ListF extends BiFunctor[ListF|

caseclass NilF [a,b] extendsListF {
typeA=a;typeB=Db
def bimap[c,d] (f :a=-c,g:b=-d):NilF [c,d] = NilF ()

caseclass ConsHa,b] (x:a,xs:b) extendsListF {
typeA=a;typeB=>b
def bimap[c,d] (f :a=-¢,g:b=-d): ConsFc,d] = ConsF(f (x),g (xs))

typeList[A] = Fix[ListF,A]
Fig. 16. Lists as a fixpoint, after Moogt al.

as a global function, with the recursive data structuregrasgplicitly. The OO approach
requires more advanced language features, and leads temoith extensibility, as we
shall discuss.

The dependence on the self parameter in the OO encodingeseuplicit self types
This is seen in the definition of the tr&iFunctor.

trait BiFunctor[S<:BiFunctor[9]] ... {self:S=...}
trait ListF extends BiFunctor]ListF]

Note thatListF is given a recursive type bound, and that 8yearameter oBiFunctoris
given both an upper bound (nameByunctor[S]) and a lower bound (through tteelf
clause, explicitly specifying the self type: an ‘instandetlte type class’ such alsistF
cannot instantiate th&parameter to anything more specific tHastF itself). Moorset al.
(2006) explain the necessity of this elaborate constradtio guaranteeing type safety; it
is not required at all in the FP encoding.

A second characteristic of the OO encoding is the way opmeratare attached to ob-
jects as methods; for examplegtais a method of the case claks rather than a global
function. This works smoothly for operations consumingwagke distinguished instance of
the recursive datatype, sucheaa However, it doesn't work for operations that produce
rather than consume, and take no instance, suahashese appear outside the case class
instead. (And of course, it is well-known (Bruegal, 1995) that it doesn’t work well for
binary methods such as ‘zip’ either.)

In addition to the awkward asymmetry introduced betweata andana, the associa-
tion of consumer methods with a class introduces an extiibsiproblem: adding new
consumers, such as monadic map (Meijer & Jeuring, 1995anparphism (Meertens,
1992), or idiomatic traversal (Gibbons & Oliveira, 200®quires modifications to existing
code. Moorset al. (2006) address this second problem through an ‘extensiideds
ing’, expressed in terms ofirtual classes—that is, nested classes in a superclass that
are overridable in a subclass. Since Scala does not prouidea construct, this virtual
class encoding has itself to be encoded in terms of type meymbiehe enclosing class,
which are overridable. No such sophistication is needelddérFP approach: a new origami
operator is a completely separate function.

Restricting attention now to the FP approach we describe,dwes the Scala imple-
mentation compare with the Haskell one? Scala is syntdigticather more noisy than
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Haskell, for a variety of reasons: the use of parenthesasr#tan simple juxtaposition
for function application; explicit binding of type variagd, for example in indicating that
bimapis parametrized by the four typasb, ¢, d; the lack of eta reduction because of call-
by-value, as discussed above. However, the extra noisé temdistracting—and indeed,
the extra explicitness in precedence might make this kirtdgifer-order datatype-generic
programming more accessible to those not fluent in the laggua

On the positive side, the translation is quite direct, aredethcoding rather transparent;
the code in Figure 13 is not that much more intimidating theat in Figure 12. Scala even
has some lessons to teach Haskell; for example, the ‘anomyoase analysis’, as used in
the definitions obiList andsumList would be nice syntactic sugar for the Haskell idiom
‘AX — casexof ...".

10 Discussion
10.1 Haskell versus Scala

Scala differs significantly from Haskell, and we were cusida know what were its ad-
vantages and disadvantages when implementing genericapnoging libraries. This work
was done using the Glasgow Haskell Compiler version 6.10Smadka version 2.7, which
were the latest official releases at the time of writing. Heevrethe languages will keep
evolving, and in the future it is likely that both languageifl wrovide better support for
generic programming. Indeed, the next version (2.8) of tta@ecompiler will support
a few features that could have been useful for our wodatext boundswhich provide
a compact syntax for implicitgprioratized overlapping implicitswhich provide an al-
ternative to overlapping instances; ayge-inference for type constructotdowever, for
consistency with the results presented in this paper, wérshtaconsider these features in
the discussion that follows.
Generally speaking, Haskell has a few advantages over:Scala

Laziness. Some approaches to generic programming rely, one way ohanaoh laziness.
While laziness comes without effort in Haskell, it does moScala, and we need to pay
more attention to evaluation order: we had to adapt the oiig&finitions in Section 9,
and introduce call-by-name arguments in RMiewconstructor in Figure 5.

Typeinference: Haskell has good support for type inference, which helpsthuce the
effort and clutter demanded by generic programming lilesarScala’s support for type
inference is not as good, and this leads to additional vésbasd complexity of use.

Syntactic clarity: While Scala’s syntax is more elegant than that of Java or tG# still
more verbose than Haskell's. In particular, we have to deatzore types in Scala, and
need to write extra type annotations. Also, the syntax faliicits can be a bit unwieldy,
and case classes can be slightly more cumbersome than Fadk&h declarations.

Purity: Some generic programming approaches have strong thedretimdations that
provide a good framework for reasoning. However, in a laggtthat does not carefully
control side effects, the properties that one would expexy mot hold. Haskell is a
purely functional programming language, which means thattions will not have
silent side-effects (except for non-termination); Scatavfgles no such guarantees.
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Higher-ranked types. Some implementations of Haskell provide support for higlagked
types, while in Scala they need to be encoded. Because highked types play a role
in some aspects of DGP, the additional overhead requirediéyehcoding can be a
significant drawback.

On the other hand, Scala has its own advantages:

Open datatypeswith case classes. As noted in Section 5, case classes support the easy
addition of new variants to a datatype. As a consequenceaweéhave an extensible
datatype of type representations, which allows the defimitif generic functions with
ad-hoc cases.

Generalized type classes with implicit parameters. In Haskell, type class ‘dictionaries’
are always implicitly passed to functions. However, it isngdimes convenient to ex-
plicitly construct and pass a dictionary (Kahl & ScheffczgR01; Dijkstra & Swierstra,
2005). The ability to override implicit dictionaries is agil@ble feature for generic
programming (Loh, 2004, Chapter 8).

Inheritance: Another advantage of Scala is that we can easily reuse ggoendtions via
inheritance. In Haskell, although we can simulate this fafmeuse in several ways,
there is no natural way to do so.

Expressive type system: The combination of subtyping, higher kinds, abstract typas
plicit parameters, traits and mixins (among other feajupesvides Scala with an im-
pressively powerful type system. Although we do not fullypkmit the expressivity in
this paper, Oliveira (2007, Chapter 5) shows how Scala’s system can shine when
implementing modularly extensible generic functions.

Minor conveniences. We found the support for anonymous case analysis (discussed
Section 9.3) quite neat and useful. Although we seldom nepdavide type annotations
in Haskell expressions, they can be quite tricky to get righén they are needed; in
Scala this is easier. Finally, Scala’s implicits can avdid heed for some of the type
classes and instances that would be needed in Haskell gsdisttussion in Section 7.7).

10.2 Support for DGP in Scala and Haskell

The most noticeable difference between the Haskell anchSggiroaches to DGP is that
type classes and datatypes are essentially two separatamsms in Haskell; in contrast,
in Scala, the same mechanism—Scala’s object system—is akoeit in different ways,
to define standard OO hierarchies and algebraic datatipestiiuctures.

Figure 17 extends the table presented in Figure 2 to incluglapproaches presented in
Sections 5 and 6, which can be considered to be the equisalétite Haskell approaches
in Scala. Specifically, case classes are used to implememntatatype approach in Scala,
while standard OO classes (with implicits) are used to imglet the type class approach.
We discuss and summarize the results in the table for the&paroaches next.

Convenience. Defining and using generic functions with case classes i quaitural, so
this mechanism scores ‘good’ for both aspects of converieBompared to Haskell,
in Scala there is an advantage of using datatypes of typegeptations because the
value of the type representation can be implicit, wherealdaskell (without resorting
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...Haskell .. ...Scala..
Datatypes Type classes Case classes Standard classes

Convenience:
Defining generic functions
Using generic functions
Implicit explicit parametrization
Extensibility
First-class generic functions
Reuse of generic functions
Exotic types

[
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N
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Fig. 17. Evaluation of the Haskell mechanisms for DGP. kgy:‘good’, ©="sufficient’, O="poor’
support. Notes: 1) generic functions need to be writtengusiasses rather than function definitions;
2) reuse can be achieved in Scala via inheritance with Vitypes.

to type classes) it has to be explicit. Using standard ctaasd implicits to implement
the type class based approach confers no advantage ovezlHadkrms of convenience.
Approaches based on both Haskell’s type classes and Sstdadard classes score only
‘sufficient’ for defining generic functions, since there ddétional overhead compared to
using a datatype of type representations.

Implicit explicit parametrization. The Scala approaches do well in this respect because
of the implicits mechanism, which allows values to be passgalicitly or explicitly. In
Haskell, the choice of mechanism determines the choice &npetrization: datatypes
require explicitly passed values, whereas type classasresgmplicitly passed dictio-
naries. In other words, unlike in Haskell, implicit or exgtiparametrization in Scala is
independent of the particular mechanism chosen for imphtimgthe DGP library.

Extensibility. This is another area in which Scala does well. As with the dihslpe
class approach, using Scala classes to define genericdoagirovides extensibility by
default. However, unlike Haskell, the datatype of type espntations in Scala can also be
extensible, since case classes are open. Furthermoradbelass mechanism provides a
safer alternative to open datatypes and functions, prieggtive advantages of static typing
and avoiding pattern match failures by using sealed classes

First-class generic functions. In this area the results are mixed. On the one hand, Scala
does support first-class generic functions, and it is ptessibabstract over the type of the
generic function directly in a type-class based approachth® other hand, Scala does not
provide native support for higher-ranked types, which actmt®plexity and verbosity to
generic functions. For this reason Scala only scores ‘seiffic

Reuse of generic functions. Scala does well here in comparison to Haskell: inheritance
supports reuse of generic functions quite naturally. Inceee class approach, this support
is quite direct, and can be used effectively to define new gefienctions by inheriting
from existing ones. A small inconvenience, though, is that meed to write function
definitions using classes in order to be able to exploit itdwece. It is also possible to
use inheritance to achieve reuse using the standard claggesach, but nested types and
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virtual types are required. Such a solution is not presenéed, but is shown by Oliveira
(2007, Chapter 5). However, this latter solution is ratheoived and heavyweight, which
hinders usability. Ultimately, we think that support foharitance is helpful for generic
programming, and that Scala is worthy of full marks for theecelass approach.

Exotictypes. This is an area in which Haskell is, for the most part, bettantScala. The
two main reasons are Haskell's better support for type @rfee and for higher-ranked
types. Because of that support, exotic types can be usedlyledth the datatype of
type representations approach. In contrast, Scala’sisolig hindered by the additional
verbosity required due to the lack of native support for kigtanked types and the less
complete type inference. The standard classes approactala Bas the merit of directly
supporting the solution proposed by Hinze and Peyton Ja2@30], but like the other
Scala solution the cost in terms of usability is quite highefiefore, in this area, Scala only
scores ‘sufficient’.

10.3 Idiomatic Scala

Throughout this paper, we have been using a functional progring style heavily in-
fluenced by Haskell and somewhat different from conventi@tala. What are the key
techniques in this programming style?

Making the most of type inference. Scala does not support type inference in the same
way that Haskell does. As explained in Section 3.5, in a defimlike

def power(x: Int) : Int = twice ((y: Int) = y*y,X)
the return type opowerand type of the lambda-bourydcan be inferred, but the type of
the parametex cannot. Although in this particular case the type annatati@re not too
daunting, for some definitions taking several argument$aytassibly being implemented
or redefined in subclasses, this can become a burden. A sinigkecan help the com-
piler (at least to try) to infer argument types: use lambdaressions rather than passing
parameters. That is, transform a parametrized method:

deff (xg:t1,.... %0 th) ithyr =€
into a parameterless method with a higher-order value:

deffriti=...=>th=>thi1=X1=>...=> X =>¢€
Then the type; = ... = t, = tn 1 can possibly be inferred, allowing a definition without
type annotations:

deffr=x1=...= X =€
The main difference betwednandfy is that the former can be (name) overloaded, while
the latter cannot. As discussed in Section 3.5, name-cagekd definitions pose a chal-
lenge to type-inference. This transformation is used a &g to make the most of type
inference, avoiding cluttering definitions with redundiymte annotations; see for example
the methods o6enericin Figure 8, andimapin Figure 13.

Type class programming. As we have seen, type classes can be encoded with implicit
parameters. However, object-oriented classes are moeraehan type classes, because
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they can contain data. It is possible to mix ideas from tiad#@ OO programming with
ideas inspired by type classes. For example, Mebed. (2008) define the trait
trait Ord[T] {
def < (other: T): Boolean
¥
in order to encode the Haskell type cl&3si
classOrd twhere
(<):t—t— Bool
There is a significant difference between the two approaeindéastance of the tra@rd [T ]
will contain data, since thedlf variable plays the role of the first argument; whereas an
instance of the type clagdrd is essentially a dictionary containing a binary operatwith
no value of typd. In this paper, we use the classic Haskell type class apprioatead of
the OO approach. As we saw in Section 9, sometimes mergintjyhe class’ with the
data can lead to extensibility problems that can be avoigekkleping the two concepts
separate.

Encoding higher-ranked types. Some more advanced Haskell libraries exploit higher-
ranked types (Odersky & Laufer, 1996). Scala does not stppgher-ranked types di-
rectly, but these can be easily encoded using a class withgéesnethod that has some
local type arguments. However, this encoding requires a (mamed) class, which can
significantly obscure the intent of the code. In this papermake use of Scala’s structural
types to avoid most of the clutter of the encoding. The ide@miple: the Haskell definition

func:va.(Vb.b—b) —a—a
is encoded in Scala as:

def funcla]: {def applyb]:b=b}=a=a
The type{def apply[b]: b = b} stands forsomeclass with a methoapply[b]:b =
b. Structural types allow a definition that is nearly as shartttee Haskell one. As a
final remark, we note that this encoding makes it very eas\séoparameter bounds. For
example, to enforch <:a it suffices to write

def funcla]: {def applylb<:a]:b=b}=a=a
If we had used a separate named class, we would have had togieze that class with
the extra type bound arguments (Washburn, 2008).

To our knowledge, this is the first time such an encoding fghhi-ranked types has
been observed in the literature. We believe that providingigtive support for higher-
ranked types in Scala using this encoding as a basis shotidrlyesimple.

Functional inheritance. In Scala, all functions are objects and, as such, are amenabl
to inheritance when it comes to reuse. Unfortunately, wBitala does support the con-
ventional notation of function definition, this notationedonot support inheritance. A
definition like:

def func(x:Int):Int=e
(whereeis an expression that may dependxmeeds to be rewritten as:

case class Funcextends (Int = Int) {

def apply(x:Int) =e
¥
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Provided that functions are written in this style, then iitta@ce allows the reuse of func-
tion definitions, as demonstrated in Section 5.3.

10.4 Porting generic programming libraries to Scala

There has been a flurry of recent proposals for generic pnogiag libraries in Haskell
(Cheney & Hinze, 2002; Hinze, 2006; Lammel & Peyton Jon8852Oliveiraet al,, 2006;
Hinzeet al,, 2006; Weirich, 2006; Hinze & Loh, 2007; Mitchell & Runcima2007; Brown

& Sampson, 2009), all having interesting aspects but nonerging as clearly the best
option. An international committee has been set up to dgvektandard generic program-
ming library in Haskell. Their first effort (Rodriguest al., 2008) is a detailed comparison
of most of the current library proposals, identifying theplementation mechanisms and
the compiler extensions needed.

The majority of the features required by those librariesglate well into Scala; the
approaches investigated in this paper are quite reprdisentd the mechanisms required
by most generic programming libraries. There are, howesmme questions about some
of the Haskell features. For example, certain approachesye class extensions such
asundecidable instanceeverlapping instancesndabstraction over type classeshich
rely on sophisticated instance selection algorithms imjgleted in the latest Haskell com-
pilers; one example is the approach discussed in Sectios 8iefhave seen, it is possible
to implement such an approach in Scala, but the lack of stifpotype inference for
higher kinds and something likeverlapping instancemeans that additional explicitness
and effort is required in Scala. Therefore, approachestiade intensive use of advanced
type class features can be ported, but they may lose somégitysatScala.

Something that Scala does not have is a meta-programmitigyfeé@ome of the generic
programming libraries uséemplate HaskellSheard & Peyton Jones, 2002) to automati-
cally generate the code necessary for type representalivBsala, those would need to be
generated manually, or a code generation tool would need tieteloped. Th8crap your
Boilerplateapproach (Lammel & Peyton Jones, 2003) relies on the pbiliautomatically
derive instances dbata and Typeablein Scala there is nderiving mechanism, so this
would entail defining instances manually.

11 Conclusions

The goal of this paper was not to promote a particular appré@generic programming.
Instead, we were more interested in investigating how thgdage mechanisms of Haskell
used in various generic programming techniques could betedao Scala. We hope
that this work can serve as a foundation for future develogroégeneric programming
libraries in Scala: all of the approaches discussed in @yigepcould serve as good starting
points for more complete libraries. Moreover, other apphes can still benefit from the
discussions we present.

As we have argued, Scala has some features that are very nsafdatatype-generic
programming language. We expect that other programmingiages (in particular, Haskell)
can learn some lessons from Scala by borrowing these fsat@omversely, Haskell has
some features useful for DGP that are not available in Sbatawhich would be nice to
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have. Ultimately, we believe that we have pinpointed litiitas of some general-purpose
language mechanisms for implementing DGP libraries; hdjyetthis will motivate the
development of improved mechanisms or programming langgia@liveira and Sulzmann
(2008) have already done some preliminary work in that dimady proposing a gener-
alized class system for a Haskell-like language that idyp#spired by Scala, and which
allows both implicit and explicit passing of dictionaries.
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