
Under consideration for publication in J. Functional Programming 1

Scala for Generic Programmers
Comparing Haskell and Scala Support for Generic Programming

BRUNO C. D. S. OLIVEIRA
ROSAEC Center, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744, South Korea

(e-mail: http://ropas.snu.ac.kr/ bruno/)

JEREMY GIBBONS
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

(e-mail: http://www.comlab.ox.ac.uk/jeremy.gibbons/)

Abstract

Datatype-generic programming involves parametrization of programs by the shape of data, in the
form of type constructors such as ‘list of’. Most approachesto datatype-generic programming are
developed in pure functional programming languages such asHaskell. We argue that the functional
object-oriented language Scala is in many ways a better choice. Not only does Scala provide equiv-
alents of all the necessary functional programming features (such as parametric polymorphism,
higher-order functions, higher-kinded type operations, and type- and constructor-classes), but it
also provides the most useful features of object-oriented languages (such as subtyping, overriding,
traditional single inheritance, and multiple inheritancein the form of traits). Common Haskell tech-
niques for datatype-generic programming can be conveniently replicated in Scala, whereas the extra
expressivity provides some important additional benefits in terms of extensibility and reuse. We
illustrate this by comparing two simple approaches in Haskell, pointing out their limitations and
showing how equivalent approaches in Scala address some of these limitations. Finally, we present
three case studies on how to implement in Scala real datatype-generic programming approaches from
the literature: Hinze’s ‘Generics for the Masses’, Lämmeland Peyton Jones’s ‘Scrap your Boilerplate
with Class’, and Gibbons’s ‘Origami Programming’.

1 Introduction

Datatype-generic programming (DGP) is about writing programs that are parametrized by
a datatype, such as lists or trees. This is different from parametric polymorphism, or ‘gener-
ics’ as the term is used by most object-oriented programmers: parametric polymorphism
abstracts from the ‘integers’ in ‘lists of integers’, whereas DGP abstracts from the ‘lists of’.

There is a large and growing collection of techniques for writing datatype-generic pro-
grams. Much of the early research on DGP relied on special-purpose languages or lan-
guage extensions such as Charity (Cockett & Fukushima, 1992), PolyP (Jansson, 2000),
and Generic Haskell (Hinze & Jeuring, 2002). With time, research has shifted towards
more lightweight approaches, based on language extensions such as Scrap yourBoiler-
plate (Lämmel & Peyton Jones, 2003) and Template Haskell (Sheard & Peyton Jones,
2002); more recently, DGP techniques have been encapsulated in libraries for existing
general-purpose languages, such as Generics for the Masses(Hinze, 2006) for Haskell and

2 Bruno Oliveira and Jeremy Gibbons

Adaptive Object-Oriented Programming (Lieberherr, 1996)for C++. One key advantage of
the lightweight approaches is that DGP becomes more accessible to potential users, since
no new tool or compiler is required in order to enjoy its benefits. Indeed, the use of libraries
or simple language extensions rather than completely new languages has greatly promoted
the adoption of DGP.

Despite the rather wide variety of host languages involved in the techniques listed above,
the casual observer might be forgiven for concluding, from the wealth of proposals for
lightweight generic programming in Haskell (Cheney & Hinze, 2002; Hinze, 2006; Lämmel
& Peyton Jones, 2005; Oliveiraet al., 2006; Hinzeet al., 2006; Weirich, 2006; Hinze &
Löh, 2007; Mitchell & Runciman, 2007; Brown & Sampson, 2009), that ‘Haskell is the
programming language of choice for discriminating datatype-generic programmers’. Our
purpose in this paper is to argue to the contrary; we believe that although Haskell is ‘a fine
tool for many datatype-generic applications’, it is not necessarily the best choice.

In particular, we argue that the discriminating datatype-generic programmer ought seri-
ously to consider using Scala, a relatively recent languageproviding a smooth integration
of the functional and object-oriented paradigms. Scala offers equivalents for most famil-
iar features cherished by datatype-generic Haskell programmers, suchparametric poly-
morphism, higher-order functions, higher-kinded types, andtype-andconstructor-classes.
(Two significant missing features arelazy evaluationandhigher-ranked types.) In addition,
it offers some of the most useful features of object-oriented programming languages, such
assubtyping, overriding, and both single and a form of multipleinheritance(via ‘traits’).
We show not only that Haskell techniques for DGP can be conveniently replicated in
Scala, but also that the extra expressivity provides important additional benefits in terms
of extensibility and reuse. Specifically, intricate constructions are often needed to bend the
implicit dictionaries in Haskell’s class system to DGP purposes—these convolutions could
mostly be avoided if one had first-class dictionaries. Scala’s traits mechanism provides
such a facility, including the ability to pass them implicitly where appropriate.

We are not the first to consider DGP in Scala: Moorset al.(2006) presented a translation
into Scala of a Haskell library of ‘origami operators’ (Gibbons, 2006); we discuss this
translation in depth in Section 9. And of course, it is not really surprising that Scala
should turn out effectively to subsume Haskell, since its design is substantially inspired
by functional programming.

We are interested in finding the limitations of the general-purpose mechanisms, in order
to point out their weaknesses and to promote their improvement. The aim here is not to
compare particular DGP libraries, as was done by Rodriguezet al. (2008), but rather
to consider the basic mechanisms used to implement those libraries. We claim that the
language mechanisms traditionally used for implementing DGP libraries, namelytype
classes(Hall et al., 1996) andgeneralized algebraic datatypes(GADTs) (Peyton Jones
et al., 2006), each have their limitations, and that it might be better to exploit a different
mechanism incorporating the advantages of both. This paperexplores Scala’s object system
as such an alternative mechanism.

We feel that our main contribution is as a call to datatype-generic programmers to look
beyond Haskell, and particularly to look at Scala. Not only can Scala be used to express
current approaches to DGP; in some ways—in particular, withits open datatypes, inher-
itance, andimplicits mechanism—it improves upon Haskell. Some of those advantages

Journal of Functional Programming 3

derive from Scala’s mixed-paradigm nature, and so do not translate back into Haskell;
but others (such as case classes and anonymous case analyses, as we shall see) would fit
perfectly well into Haskell. We emphasize that we are not arguing that Scala is universally
superior to Haskell. Indeed, as we shall see, Scala too has some limitations. Instead, our
purpose is to promote the migration of good ideas from Scala to Haskell and vice versa, so
as to improve support for DGP in both languages.

As a secondary contribution, we show that Scala is more of a functional programming
language than is typically appreciated. Scala tends to be seen primarily as an object-
oriented language that happens to have some functional features, and so potential users
feel that they have to use it in an object-oriented way. For example, Moorset al. (2006)
claimed to be ‘staying as close to the original work as possible’ in their translation of the
origami operators, but as we show in Section 9 they still ended up less functional than they
might have done. Scala is also a functional programming language that happens to have
object-oriented features; indeed, it offers the best of both worlds, and this paper serves also
as a tutorial in exploiting Scala as a multi-paradigm language.

The rest of this paper is structured as follows. Section 2 sets the scene, by reviewing two
straightforward approaches to DGP in Haskell—using representation datatypes and type
classes respectively—and pointing out their limitations.Sections 3 and 4 introduce the
basics of Scala, and those more advanced features of its typeand class system on which
we depend. Our contribution starts in Sections 5 and 6, whichshow how to implement
in Scala the two approaches presented in Haskell in Section 2. After that, three case
studies of the translation of existing DGP libraries into Scala are presented: Section 7
discusses an implementation of Hinze’sGenerics for the Massesapproach (Hinze, 2006);
Section 8 shows a Scala implementation ofScrap your Boilerplate with Class(Lämmel &
Peyton Jones, 2005); and Section 9 presents a more functional alternative to Moorset al.’s
encoding (2006) of theOrigami Programmingoperators (Gibbons, 2003; Gibbons, 2006)
in Scala. Finally, Section 10 compares Haskell and Scala support for DGP, and briefly
discusses some of the key ideas of the paper, and Section 11 concludes. Scala code for the
examples is available online (Oliveira, 2009b).

2 Some Limitations of Haskell for Datatype-Generic Programming

To conduct our experiments, we consider two very simple and straightforward libraries
for generic programming, using representation datatypes and type classes respectively.
The purpose here is to discuss the limitations of the two mechanisms. While there are
various clever tricks and workarounds for dealing with these limitations, better linguistic
mechanisms would provide support more naturally, and do away with the need for these
tricks in the first place. We do not intend to have a debate about whether one structural
view of datatypes is better or worse than another; the issueswe identify are pervasive to
most generic programming libraries.

2.1 Generic programming with representation datatypes

A very natural style in which to write a generic programming library is to base it on a
datatype of type representations (Cheney & Hinze, 2002; Hinze et al., 2006; Weirich,

4 Bruno Oliveira and Jeremy Gibbons

2006), leading to a structural approach similar to that of Generic Haskell. Cheney and
Hinze’s lightweight implementation of generics and dynamics(LIGD) (Cheney & Hinze,
2002) provides the earliest example of such an approach, showing how to do a kind of
generic programming using only the standard Hindley-Milner type system extended with
existential datatypes. The key idea is to use a parametrizeddatatype, with the actual pa-
rameter being (a representation of) the type index; constraints on the parameter enforce
consistency between the behaviour and the type index. SinceCheney and Hinze’s proposal,
some Haskell implementations have been extended with GADTs, which provide additional
convenience that existential datatypes alone lack; we use GADTs in this section to illustrate
the approach.

Here is a representation of a family of datatypes based on sums of products:

data Unit = Unit
data Sum a b= Inl a | Inr b
data Prod a b= Prod a b

data Rep twhere
RUnit ::Rep Unit
RInt ::Rep Int
RChar::Rep Char
RSum::Rep a→ Rep b→ Rep(Sum a b)
RProd::Rep a→ Rep b→ Rep(Prod a b)

The typesUnit, Sum, andProd represent, respectively, the unit type and the binary sum and
binary product type constructors. The datatypeRep tprovides the structural representation
of a typet as a sum of products built from the primitive typesUnit, Int, andChar. For
simplicity of presentation, the treatment of isomorphisms, which allows the application of
generic functions to values isomorphic to a sum of products,is omitted here; for the full
details, see elsewhere (Cheney & Hinze, 2002; Weirich, 2006).

Generic functions are defined by case analysis on the datatype of type representations.
For example, here is a definition of generic equality:

equals::∀t. Rep t→ t → t → Bool
equals RUnit = True
equals RInt t1 t2 = (t1 ≡ t2)
equals RChar t1 t2 = (t1 ≡ t2)
equals(RSum ra rb) t1 t2 = case (t1, t2) of

(Inl x, Inl y) → equals ra x y
(Inr x, Inr y) → equals rb x y

→ False
equals(RProd ra rb) t1 t2 = case (t1, t2) of

(Prod x y,Prod x′ y′) → equals ra x x′ ∧ equals rb y y′

Equality is vacuous at the unit type, represented byRUnit, since there is exactly one value
of that type. When the type representation isRInt, the type constraint ensures that the two
values of typet being compared are indeed integers, and so the primitive comparison on
integers is used; and similarly forRCharand characters. For binary sums, the constructor

Journal of Functional Programming 5

class Total awhere
total ::a→ Int

instance Total Unit where
total = const0

instance Total Int where
total = id

instance (Total a,Total b) ⇒ Total (Prod a b) where
total (Prod x y) = total x+ total y

instance (Total a,Total b) ⇒ Total (Sum a b) where
total (Inl x) = total x
total (Inr y) = total y

instance Total a⇒ Total [a] where
total = total◦ fromList

fromList:: [a] → Sum Unit(Prod a[a])
fromList[] = Inl Unit
fromList(x :xs) = Inr (Prod x xs)

Fig. 1. A generic ‘sum’ function, using type classes.

RSumof the representation is applied to representations of the two summands, and these
representations are used in the recursive calls; similarlyfor products andRProd.

2.2 Generic programming with type classes

An alternative to using datatypes for type representationsis to use type classes (Lämmel &
Peyton Jones, 2003; Hinze, 2006; Mitchell & Runciman, 2007;Brown & Sampson, 2009),
since both techniques can be used to definetype-indexed functions, albeit with slightly
different properties (Oliveira & Gibbons, 2005). Figure 1 presents a simple definition of a
generic ‘sum’ function using type classes. The classTotal ahas a methodtotal that takes an
argument of typea and returns an integer result. There are instances for each of the sum-of-
products structural types: for the unit type, zero is returned; for binary products, the results
on the two components are added; for binary sums, the function is applied recursively to
the appropriate case; for integers, the integer itself is returned. Instead of specially crafting
an instance specific to lists, the argument is converted intosum-of-products form using
the functionfromList and then subjected to structural cases oftotal. The same structural
approach can be taken for other datatypes, avoiding the needfor specific definitions for
those datatypes.

2.3 Limitations

The two approaches presented in Sections 2.1 and 2.2 are relatively simple to understand.
Unfortunately, they are also rather simple-minded, and suffer from some limitations in
terms of both convenience and expressiveness. More realistic generic programming li-
braries address some of these limitations, but usually at the cost of comprehensibility. We
discuss these limitations next, together with some of the attempts to address them.

6 Bruno Oliveira and Jeremy Gibbons

2.3.1 Convenience and readability

Two important considerations of convenience concerning a DGP library are how easy it is
to define generic functions, and how easy it is to apply them. Defining generic functions
with a datatype of type representations is usually straightforward, since all that is needed is
to use pattern matching on the type representation to introduce a definition by cases. Type
classes impose some overhead, since each instance declaration requires some additional
code. Furthermore, the use of datatypes and pattern matching is arguably more natural
than type classes and dispatching. Nonetheless, the overhead imposed by type classes is
tolerable.

Using a generic function based on type representations requires that the corresponding
value of the type representation is constructed. For example, to compare two pairs of
integers, one needs a third argument representing the type ‘pairs of integers’:

testDT= equals(RProd RInt RInt) (Prod3 4) (Prod 4 4)

In contrast, with the type class approach, the explicit construction of the type representation
is not necessary:

testTC= total (Prod3 4)

Not having to explicitly construct type representations isan advantage of the type class
approach, and provides additional convenience over an approach based on representation
datatypes.

The reality. In existing proposals for DGP libraries using datatypes of type representa-
tions, it is common to use type classes to automatically generate the values of the type
representations. There are even some proposals, such as Hinze’sGenerics for the Masses
(GM) approach (Hinze, 2006), which do not directly use a datatype of type representations,
but encode one using type classes, and also use the same mechanism to generate the values
of the encoded type representations. The basic idea is as follows:

class Representable awhere
rep:: Rep a

instance Representable Intwhere
rep= RInt

instance (Representable a,Representable b) ⇒ Representable(Prod a b) where
rep= RProd rep rep

(Here, an LIGD-like approach is used for illustration.) An equality function that does not
need an explicit value for the type representation is definable as follows:

eq::Representable a⇒ a→ a→ Bool
eq= equals rep

While this design does bring some of the convenience of type classes into a datatype-based
approach, the fact is thattwodifferent functions for equality are needed: the functionequals
defines the structural generic function, and theeqfunction provides a convenient interface
to this generic function. As we shall see in Section 2.3.2, sometimes it would be handy to

Journal of Functional Programming 7

have functions that could take an optional argument, leaving the job of generating the value
to the compiler when this argument is omitted. Having two differently-named functions for
the explicit and implicit cases is awkward.

2.3.2 Coexistence of implicit and explicit arguments

Generic Haskell provides a simple mechanism for precisely controlling which case gets
applied. For instance, using a Generic Haskell generic function total〈T〉 similar to the func-
tion presented in Figure 1, it is possible to employlocal redefinition(Löh, 2004, Chapter 8)
to overridea case in a particular use of the generic function. With localredefinitions it is
easy to have one variation that counts the values in a list:

let total〈a〉 = const1 in total〈[a]〉[1. .10]

and another sums the (integer) values in that list:

let total〈Int〉 = id in total〈[Int]〉[1. .10]

The total function in Figure 1 sums the integers in a structure. In order to provide a
local redefinition to count rather than sum the elements, onemight attempt to provide the
following alternative instance for integers:

instance Total Intwhere
total = const1

However, this instance overlaps with the one already given in Figure 1. This leads to an
ambiguity in instance selection; Haskell provides no mechanism for resolving the am-
biguity, and disallows the coexistence of such instances. (What is needed here is some
explicit mechanism for dictionaries, rather than the implicit mechanism provided by the
class system. GHC’s ‘overlapping instances’ flag doesn’t help, because the instances are
duplicated; it is useful only when one instance is more specific than the other, when it
allows the compiler to select the more specific instance.)

The reality. Very few generic programming libraries in Haskell provide support for local
redefinitions. In fact, we believe that currently only GM andits extensible and modular
generics for the masses(EMGM) extension (Oliveiraet al., 2006) provide some support
for this feature, and then only partially—although there isan alternative encoding using
a proposed extension to Haskell (Hinze & Löh, 2009). As Hinze (2006) points out, in
the GM approach, a generic counter function can be instantiated to behave like a sum-
ming function or a size function. However, this is significantly less convenient to use than
the Generic Haskell solution, since two different functions are needed: one for when no
local redefinitions are used, and another to explicitly passthe type representation argu-
ment with the local redefinition. Worse, first-class genericfunctions induce an exponential
growth in the number of combinations. For example, in the case of a generic function like
everywhere(Lämmel & Peyton Jones, 2003), which in turn takes a genericfunction as
an argument, four different variations would be needed—foreach combination of allowing
and disallowing local redefinitions foreverywhereitself and for the generic function passed
as an argument.

8 Bruno Oliveira and Jeremy Gibbons

In a generic programming approach like the one shown in Figure 1, it is simply not pos-
sible to have local redefinitions without some forward planning. There have been some pro-
posals to extend Haskell with a mechanism for choosing a particularnamed instance(Kahl
& Scheffczyk, 2001; Dijkstra & Swierstra, 2005), but these extensions are not widely
implemented. It is possible to use a simple trick to emulate named instances, as shown for
example by Löh (2004); however, this still entails significant rewriting, planning ahead,
and some advanced Haskell extensions.

2.3.3 Extensibility

Generic functions are useful because they work ‘out of the box’ for a newly introduced
datatype. However, it is sometimes desirable to define a specific (non-generic) behaviour
for the generic function on a particular datatype. For this to happen, the generic function
needs to beextensible, allowing the definition of new cases for particular datatypes. From
a generic programming point of view, extensible generic functions are essential for the
design of modular generic programming libraries (Hinze & Peyton Jones, 2000; Lämmel
& Peyton Jones, 2005; Hinze, 2006; Oliveiraet al., 2006). For example, abstract datatypes
such as sets are often represented using a standard algebraic datatype like lists or trees, but
a generic function based solely on the algebraic structure of the representation probably
does not provide an appropriate implementation on the abstract type. Consider the case of
equality; while structural equality is the right thing to dofor most datatypes, it is wrong for
an abstract datatype of sets represented as lists.

In the simple DGP approach presented in Section 2.1, it is notpossible to extend the
equality generic function in a modular way. In order to add a new case for sets, one must
add a new constructor to theRepdatatype, and provide a special case for equality on sets,
as follows:

newtype Set a= Set[a]

data Rep twhere
. . .

RSet:: Rep a→ Rep(Set a)

equals::∀t. Rep t→ t → t → Bool
. . .

equals(RSet a) = . . .

On the other hand, in the type-class based approach, the generic function can be easily
extended with new cases; all that is needed is to create a new instance:

instance Total(Set a) where
total (Set xs) = . . .

In essence, approaches based on datatypes of representations usually do not support
modular extensions, whereas those based on type classes do.

The reality. In recent proposals for DGP libraries, the trend is to use type classes: they can
be extended more easily than datatypes, and also they make the use of generic functions

Journal of Functional Programming 9

quite convenient (see Section 2.1). However, even using type classes,extensibilitycan still
be problematic—especially in combination withfirst-class generic functions, as we shall
see in Section 2.3.4. This is the case, for example, for the original GM approach, which
does not allow extensible generic functions. To address these extensibility problems, a
number of clever approaches have been proposed. RepLib (Weirich, 2006) uses a mix of
datatypes and type classes to allow extensible generic functions; the key idea is to use a
standard generic function defined on a datatype of type representations, and use that generic
function as the default for another (type-class-overloaded) function that can be extended
with new ad-hoc cases. While the approach achieves its goal of supporting an extensible
generic programming library, it does so at the loss of some usability and understandability:
it relies on several non-standard extensions, and it requires the programmer to write generic
functions in two different styles, namely using datatypes and type classes. Ultimately, a
programmer needs to understand quite a bit of the mechanics of the generic programming
library and some advanced Haskell features to use the approach effectively. The EMGM
approach (Oliveiraet al., 2006) addresses the extensibility limitations of the original GM
proposal requiring only a common extension to Haskell 98, namely, multiple-parameter
type classes; however, writing generic functions in EMGM (and in the original GM) is not
as direct as using a datatype of type representations. The original Scrap your Boilerplate
(SyB) approach (Lämmel & Peyton Jones, 2003) approach doesnot support extensible
generic functions; to address this problem, an alternativeimplementation (Lämmel & Pey-
ton Jones, 2005) of SyB using type classes has been proposed,but this approach uses many
non-standard extensions and tricks.

A different solution (Löh & Hinze, 2006) to the extensibility problem consists of ex-
tending Haskell with open datatypes and open functions. This would have some important
advantages, especially from a usability point of view, since the natural style of writing a
generic function using pattern matching on the type representation would be preserved.
However, to date that extension is not supported by any compiler.

2.3.4 First-class generic functions and generic function abstraction

The SyB approach has shown the utility of first-class genericfunctions for generic traver-
sals and queries. With a datatype of type representations, it is straightforward to write such
functions (Hinze, 2003). For example, consider the function everywhere:

everywhere:: (∀b. Rep b→ b→ b) → Rep a→ a→ a

It takes as an argument a generic function that transforms a value of typeb into another
value of the same type; it also takes a representation of sometype a and a value of that
type, and returns a value of the same type. In this approach, first-class generic functions
are quite simple and natural. However, with the simple type-class approach, it is far from
obvious how to write the type ofeverywhere. The key problem is thateverywhereneeds
to be applicable toanygeneric function as its first argument. In pseudo-code, the intended
type is as follows:

everywhere:: Everywhere a⇒ (∀b. g b⇒ b→ b) → a→ a

10 Bruno Oliveira and Jeremy Gibbons

That is,everywhereshould take a generic function defined in an arbitrary type classg as
the first argument. However, Haskell does not support type class abstraction, and the type
class constraintg b⇒ . . . is not valid.

In summary, while a datatype-based approach trivially supports first-class generic func-
tions, a type-class-based approach stumbles over the fact that type classes cannot be ab-
stracted.

The reality. There are some generic programming approaches based on typeclasses that
do not have a problem with first-class generic functions. Interestingly enough, these show
a strong correlation with the approaches that have a problemwith extensibility. In other
words, there seems to be a conspicuous relationship betweenextensibility and first-class
generic functions: having one of these features makes the other feature harder to achieve
(in Haskell, at least).

Using a technique proposed by Hughes (1999), it is possible to emulate type-class
abstraction in Haskell using only existing extensions. This technique has been used in
the ‘SyB with Class’ approach (Lämmel & Peyton Jones, 2005)to allow extensible higher-
order generic functions (see Section 8.1 for more details);a similar technique is used in
RepLib (Weirich, 2006).

2.3.5 Reuse of generic functions

Generic Haskell providesdefault cases, a mechanism that allows the reuse of generic
functions (Löh, 2004, Chapter 14). The motivation for thisis that often minor variations
of a generic function are written over and over again. For example, consider collecting
variables in some datatype of abstract syntax trees. Instead of defining a function generic
in the datatype but specific to the problem of collecting variables, a more general function
for collecting values (Löh, 2004, Chapter 9) could be reused, overriding the case for the
variable type. In Generic Haskell, this idea can be expressed as follows:

newtype Var = V String

varcollectextends collect
varcollect〈Var〉(V x) = [x]

Neither the datatype nor the type class solutions allow for this kind of reusability; without
anticipation, it is necessary to duplicate code in creatinga variation of the original function.

The reality. As far as we are aware, this kind of reuse is not addressed by any generic
programming library in existence, except by an early approach (Lämmelet al., 2000) based
on Haskell records that achieves reuse between algebras by exploiting record updates. Un-
fortunately, although the current implementation of type classes in most Haskell compilers
is based on records, the updating feature is not available for type classes.

Reuse of generic functions is akin to inheritance, and it is known how to encode in-
heritance in functional languages (Cook, 1989). So, in theory, it should be possible to
adapt existing generic programming libraries to achieve this kind of reuse via inheritance;
however, any encoding introduces its own cost in terms of usability. Another alternative
is to create a more general generic function that is parametrized by functions covering

Journal of Functional Programming 11

the different cases; but this requires anticipation, and makes the interface of the generic
function more complex.

2.3.6 Exotic types

DGP techniques are applicable to some exotic types, such as datatypes with higher-kinded
type arguments and nested datatypes (Hinze, 2000). One example of the former is the type
of generalized rose trees:

data GRose f a= GFork a(f (GRose f a))

The type constructorGRoseis parametrized by a higher-kinded argumentf . Datatype-
based approaches to DGP comfortably support type representations for such types, and
corresponding cases for generic functions:

data Rep twhere
. . .

RGRose:: (∀a. Rep a→ Rep(f a)) → Rep a→ Rep(GRose f a)

equals::∀t. Rep t→ t → t → Bool
. . .

equals(RGRose f a) (GFork x xs) (GFork y ys) =

equals a x y∧ equals(f (RGRose f a)) xs ys

One small inconvenience with the datatype-based approach is that it is not possible to use
nested patterns such asRGRose RList a: the first argument of theRGRoseconstructor is not
a valid pattern, since it is not fully applied to the right number of arguments. Nevertheless,
there is a workaround that allows emulation of such nested patterns (Hinze & Löh, 2009).

With type-class-based approaches, support for datatypes like GRosedoes not work so
smoothly. Recent versions of some Haskell compilers support recursive dictionaries in type
classes, and accept the following code:

instance (Total a,Total(f (GRose f a))) ⇒ Total (GRose f a) where
total (GFork x xs) = total x+ total xs

but this requires allowing undecidable type class instances. (Indeed, in older versions of
some compilers, it used to be the case that such an instance would lead to non-termination
of the type checker (Hinze & Peyton Jones, 2000).)

A theoretically more appealing solution, suggested by Hinze and Peyton Jones (2000),
would be to allowpolymorphic predicatesin the constraints. With such a feature, the
following instance would be valid:

instance (∀a. Total a⇒ Total (f a),Total a) ⇒ Total(GRose f a) where
total (GFork x xs) = total x+ total xs

The reality. As shown by the recent comparison of generic programming libraries in
Haskell (Rodriguezet al., 2008), exotic features such as datatypes with higher-kinded type
arguments and nested datatypes are not a problem for most approaches that use a datatype

12 Bruno Oliveira and Jeremy Gibbons

Datatypes Type classes

Convenience:
Defining generic functions G#

Using generic functions G#

Implicit explicit parametrization #
1

#
2

Extensibility #

First-class generic functions #

Reuse of generic functions # #

Exotic types G#
3

Fig. 2. Evaluation of the Haskell mechanisms for DGP. Key: =‘good’, G#=‘sufficient’,#=‘poor’
support. Notes: 1) datatypes only allow explicit parametrization; 2) type classes only allow implicit
parametrization; 3) datatypes with higher-kinded type arguments can be accommodated using
undecidable instances.

of type representations. However, none of the approaches based on type classes is fully
capable of handling such exotic types. The limitations of type classes are to blame.

2.4 Discussion

Type classes and datatypes provide two alternative mechanisms for DGP, but neither mech-
anism is clearly superior to the other. Figure 2 shows the trade-offs between the two
mechanisms. Datatypes provide a very natural and convenient way to define new generic
functions, but they also require every value to be explicitly constructed by the programmer;
this makes generic functions harder to use. Datatypes make it easy to support first-class
generic functions, and they can be used to construct type representations for higher-kinded
types; however, achieving extensibility is difficult. Typeclasses are convenient when it
comes to using generic functions, since dictionaries are automatically inferred by the
compiler, but they provide a somewhat less natural syntax for defining generic functions.
It is easy to extend generic functions with new cases, but hard to support first-class generic
functions. Exotica such as higher-kinded types and nested datatypes pose a challenge to a
type-class-based implementation. Values of datatypes canonly be passed explicitly, while
type class dictionaries can only be passed implicitly. Neither mechanism provides an easy
way to reuse generic functions.

The reality is that in Haskell it is usually possible to work around the limitations of
the two mechanisms in one way or another, but doing so typically requires clever tricks
or solutions that hinder usability and comprehensibility.We feel that this a symptom of
inappropriate language features, and we claim that with a different mechanism, generic
libraries could be defined more naturally and used more conveniently.

3 Functional Programming in Scala

Scala is a strongly typed programming language that combines object-oriented and func-
tional programming features. Although inspired by recent research, Scala is not just a
research language; it is also aimed at industrial usage: a key design goal of Scala is that it
should be easy to interoperate with mainstream languages like Java and C#, making their
many libraries readily available to Scala programmers. Theuser base of Scala is already

Journal of Functional Programming 13

quite significant, with the compiler being actively developed and maintained. For a more
complete introduction to and description of Scala, see (Odersky et al., 2008; Odersky,
2006a; Odersky, 2007a; Odersky, 2007b; Schinz, 2007).

3.1 Definitions and values

Functions are introduced using thedef keyword. For example, the squaring function on
Doubles could be written:

def square(x :Double) :Double= x∗x
Scala distinguishes between definitions and values. In a definition def x= e, the expression
e will not be evaluated until the value ofx is needed. Scala also offers a value definition
val x = e, in which the right-hand sidee is evaluated at the point of definition. However,
only definitions can take parameters; values must be constants (although these constants
can be functions).

3.2 First-class functions

Functions in Scala are first-class values, sohigher-order functionsare supported. For
example, to define the functiontwice that applies a given functionf twice to its argument
x, we could write:

def twice(f : Int ⇒ Int,x : Int) : Int = f (f (x))
Scala supportsanonymous functions. For instance, to define a function that raises an integer
to the fourth power, one could use the functiontwicetogether with an anonymous function:

def power(x : Int) : Int = twice((y : Int) ⇒ y∗y,x)
The first argument of the functiontwice is the anonymous function that takes an integery
and returnsy∗y.

Scala also supportscurrying. To declare a curried version oftwice, one can write:
def curryTwice(f : Int ⇒ Int) (x : Int) : Int = f (f (x))

3.3 Parametric polymorphism

Like Haskell and ML, and more recently Java and C#, Scala supportsparametric polymor-
phism(known asgenericsin the object-oriented world). For example, function composition
can be defined as follows:

def comp[a,b,c] (f : b⇒ c) (g :a⇒ b) (x : a) :c = f (g (x))
The functioncompis parametrically polymorphic in the three typesa,b,c of the initial,
intermediate and final values. Note that these type variables have to be explicitly quantified.

3.4 Call-by-name arguments

Function arguments are, by default, passedby value, being evaluated at the point of func-
tion application. This gives Scala a strict functional programming flavour. However, one
can also pass argumentsby name, by prefixing the type of the formal parameter with ‘⇒’;
the argument is then evaluated at each use within the function definition. This can be used
to emulate lazy functional programming; although multipleuses do not share evaluation,

14 Bruno Oliveira and Jeremy Gibbons

it is still useful, for example, for defining new control structures. Parser combinators are a
good example of the use of laziness: the combinatorThentries to apply a parserp, and if
that parser succeeds, applies another parserq to the remainder of the input:

def Then(p :Parser) (q :⇒Parser) :Parser= . . .

Here, the second parserq is passed by name: only ifq is needed will it be evaluated.

3.5 Type inference

The design goal of interoperability with languages like Java requires compatibility between
type systems. In particular, this means that Scala needs to support subtyping and (name-)
overloaded definitions such as:

def add(x : Int) : Unit = . . .

def add(x :String) : Unit = . . .

This makes type inference more difficult than in languages like Haskell. Nevertheless,
Scala does support a form oflocal type inference(Oderskyet al., 2001). Thus, it is possible,
most of the time, to infer the return type of a definition and the type of a lambda-bound
variable. For example, one may write:

def power(x : Int) = twice(y⇒ y∗y,x)
and both the return type and the type of the lambda variabley will be inferred.

3.6 Sums, products, and lists

The Scala libraries provide implementations of sums, products, and lists. For sum types,
the type constructorEither is used. Following Haskell conventions, this type has two
constructorsLeft andRight, injections into the sum. For example,

val leftVal :Either[Int,String] = Left (1)

val rightVal:Either[Int,String] = Right("c")

define two values of the typeEither[Int,String]. One can use pattern matching to decon-
struct a value of a sum type, as discussed in Section 4.2, but amore compact notation is
given by thefold of theEither type. For example,

def stringVal(x : Either[Int,String]) = x.fold (y⇒ y.toString(),y⇒ y)
defines a function that takes a value of typeEither[Int,String] and returns a string repre-
senting the value contained in the sum.

Products can be defined with the usual tuple notation; for example:
val prodVal: (Int,Char) = (3, 'c')

To extract the components of a tuple, Scala provides methodswith names consisting of an
underscore followed by the component number:

val fstVal = prodVal. 1
val sndVal= prodVal. 2

Finally, we can use the syntaxList (a1, . . . ,an) to construct a list of sizen with the elements
ai for i ∈ [1..n]. For example:

val list = List (1,2,3)

builds the list with 1, 2 and 3 as elements.

Journal of Functional Programming 15

4 Object-Oriented Programming in Scala

Scala has a rich object system, including object-oriented constructs such as concrete and
abstract classes, subtyping, and inheritance familiar from mainstream languages like Java
or C#. Scala also incorporates some less commonly known concepts; in particular, there
is a syntactic notion ofobject, and interfaces are replaced by the more general notion of
traits (Schärliet al., 2003), which can be composed using a form of mixin composition.
Furthermore, Scala introduces the notion ofcase classes, instances of which can be de-
composed using case analysis and pattern matching.

This section introduces a subset of the full Scala object system, sufficient to model all
the programs in this paper.

4.1 Traits and mixin composition

Instead of interfaces, Scala has the more general concept oftraits (Schärliet al., 2003).
Like interfaces, traits can be used to defineabstract methods(that is, method signatures).
However, unlike interfaces, traits can also define concretemethods. Traits can be combined
using mixin composition, making a safe form ofmultiple inheritancepossible, as the
following example demonstrates:

trait Hello {

val hello = "Hello!"
}

trait HowAreU{

val howAreU = "How are you?"
}

trait WhatIsUrName{
val whatIsUrName= "What is your name?"

}

trait Shout{
def shout(str :String) : String

}

This example uses traits in much the same way as one might haveused classes, allowing the
declaration of both abstract methods likeshoutand concrete methods likehello, howAreU
and whatIsUrName. In a single-inheritance language like Java or C#, it would not be
possible to define a subclass that combined the functionality of the four code blocks above.
However, mixin composition allows any number of traits to becombined:

trait Basicsextends Hello with HowAreUwith WhatIsUrNamewith Shout{
val greet = hello+ " " +howAreU
def shout(str :String) = str.toUpperCase()

}

The traitBasicsinherits methods fromHello, HowAreUandWhatIsUrName, implements
the methodshoutfrom Shout, and defines a valuegreetusing the inherited methodshello
andhowAreU.

16 Bruno Oliveira and Jeremy Gibbons

trait List[A]
case class Nil [A] extends List[A]
case class Cons[A] (x :A,xs:List[A]) extends List[A]

def len[a] (l :List[a]) : Int = l match {
case Nil () ⇒ 0
case Cons(x,xs) ⇒ 1+ len(xs)

}

def ins[a<: Ordered[a]] (x :a, l : List[a]) :List[a] = l match {
case Nil () ⇒ Cons(x,Nil [a])
case Cons(y,ys) ⇒ if (x 6 y) Cons(x,Cons(y,ys))

else Cons(y, ins(x,ys))
}

Fig. 3. Algebraic datatypes and case analysis in Scala.

4.2 Objects and case classes

New object instances can be created as in most object-oriented languages, by using the
new keyword. For example, we could define a newBasicsobject by:

def basics1 = new Basics() {}

Alternatively, Scala supports a distinct notion ofobject:

object basics2 extends Basics

Scala also supports the notion of acase class, which simplifies the definition of functions
by case analysis. In particular, case classes allow the emulation of algebraic datatypes from
conventional functional languages. Figure 3 gives definitions analogous to the algebraic
datatype of lists and the length and (ordered) insertion functions. The traitList[A] declares
the type of lists parametrized by some element typeA; the case classesNil andConsact
as the two constructors of lists. The functionlen is defined using standard case analysis on
the list value. The definition of the functionins shows another case analysis on lists, and
also demonstrates the use oftype-parameter bounds: the list elements must be drawn from
an ordered type.

Case classes do not require the use of thenew keyword for instantiation, as they provide
a more compact syntax inspired by functional programming languages:

val alist = Cons(3,Cons(2,Cons(1,Nil ())))

4.3 Higher-kinded types

Type-constructor polymorphism and constructor classes have proven to be very useful in
Haskell, allowing, among other things, the definition of concepts such as monads (Wadler,
1993), applicative functors (McBride & Paterson, 2008), and container-like abstractions.
This motivated the recent addition of type-constructor polymorphism to Scala (Moors
et al., 2008). For example, a very simple interface for theIterableclass could be defined in
Scala as:

Journal of Functional Programming 17

trait SetInterface{
type Set[]
type A

def empty: Set[A]
def insert(x :A,q:Set[A]) :Set[A]
def extract(q: Set[A]) :Option[(A,Set[A])]

}

trait SetOrderedextends SetInterface{
type Set[X] = List[X]
type A<:Ordered[A]

def empty= Nil ()
def insert(x :A,q:Set[A]) = ins(x,q)
def extract(q: Set[A]) = q match {

case Nil () ⇒ None
case Cons(x,xs) ⇒ Some(x,xs)

}
}

Fig. 4. An abstract datatype for sets.

trait Iterable[A,Container[]] {

def map[B] (f :A⇒ B) :Container[B]

def filter (p :A⇒ Boolean) :Container[A]

}

Note thatIterable is parametrized byContainer[], a type that is itself parametrized by
another type—in other words,Containeris a type constructor. By parametrizing over the
type constructor rather than a particular typeContainer[A], one can use the parameter in
method definitions with different types. In particular, in the definition ofmap, the return
type isContainer[B], whereB is a type parameter of the methodmap; with parametrization
by types only,mapwould have to be homogeneous.

4.4 Abstract types

Scala has a notion ofabstract types, which provide a flexible way to abstract over concrete
types used inside a class or trait declaration. Abstract types are used to hide information
about internals of a component, in a way similar to their use in Standard ML (Harper & Lil-
libridge, 1994) and OCaml (Leroy, 1994). Odersky and Zenger(2005) argue that abstract
types are essential for the construction of reusable components: they allow information
hiding over several objects, a key ingredient of component-oriented programming.

Figure 4 shows a typical example of an ML-style abstract datatype for sets. The abstract
trait SetInterfacedeclares the types and the operations required by sets. The abstract types
A andSet(which is a type constructor) are, respectively, abstractions over the element type
and the shape of the set. The operations supported by the set interface areempty, insertand
extract. The traitSetOrderedpresents a concrete refinement ofSetInterface, in which sets
are implemented with lists and the elements of the set are ordered.

18 Bruno Oliveira and Jeremy Gibbons

4.5 Implicit parameters and type classes

Scala’simplicit parametersallow some parameters to be inferred implicitly by the com-
piler on the basis of type information; as noted by Odersky and others (Odersky, 2006b;
Oliveiraet al., 2010), they can be used to emulate Haskell’s type classes (Hall et al., 1996).
Consider this approximation to the concept of a monoid (Odersky, 2006a), omitting any
formalization of the monoid laws:

trait Monoid[a] {

def unit :a // unit of op
def op(x : a,y :a) :a // associative

}

This is clearly analogous to a type class. An example object would be a monoid on strings,
with the unit being the empty string and the binary operationbeing string concatenation.

implicit object strMonoidextends Monoid[String] {
def unit = ""
def op(x : String,y :String) = x.concat(y)

}

Again, there is a clear correspondence with an instance declaration in Haskell. Ignoring
the implicit keyword for a moment, one can now define operations that are generic in the
monoid:

def reduce[a] (xs:List [a]) (implicit m: Monoid[a]) :a =

if (xs.isEmpty) m.unit else m.op(xs.head, reduce(xs.tail) (m))

Now reducecan be used in the obvious way:

def test1 = reduce(List ("a" , "bc" , "def")) (strMonoid)

However, one can omit the second argument toreduce, since the compiler has enough
information to infer it automatically:

def test2 : String= reduce(List ("a" , "bc" , "def"))

This works because (a) theimplicit quantifier in the object states thatstrMonoid is the
default value for the typeMonoid[String], and (b), theimplicit quantifier in the function
states that the argumentm may be omitted if there exists an implicit object in scope with
the typeMonoid[a]. (If there are multiple such objects, the most specific one ischosen.)
The second use ofreduce, with the implicit parameter inferred by the compiler, is similar
to Haskell usage; however, it is more flexible, because thereis the option to provide an
explicit value overriding the one implied by the type.

5 Generic Programming with Open Datatypes

In this section, we present a Scala version of the Haskell approach based on datatypes
of type representations described in Section 2.1. As shown in Section 4.2, Scala readily
supports a form of algebraic datatypes, via case classes. Itturns out that these algebraic

Journal of Functional Programming 19

trait Rep[A]
implicit object RUnit extends Rep[Unit]
implicit object RInt extends Rep[Int]
implicit object RCharextends Rep[Char]
case class RProd[A,B] (ra :Rep[A], rb :Rep[B]) extends Rep[(A,B)]
case class RPlus[A,B] (ra :Rep[A], rb :Rep[B]) extends Rep[Either[A,B]]
case class RView[A,B] (iso: Iso[B,A], r : () ⇒ Rep[A]) extends Rep[B]

implicit def RepProd[a,b] (implicit ra :Rep[a], rb :Rep[b]) = RProd(ra, rb)
implicit def RepPlus[a,b] (implicit ra :Rep[a], rb :Rep[b]) = RPlus(ra, rb)

Fig. 5. Type representations in Scala.

datatypes are quite expressive, being effectively comparable to Haskell’s GADTs. How-
ever, unlike the algebraic datatypes found in most functional programming languages,
Scala allows an encoding ofopen datatypes(or, from an object-oriented programming
perspective,multi-methods(Agrawalet al., 1991)), enabling the addition of new variants
to a datatype. This section exploits this encoding as a basisfor a generic programming
library with open type representations, and hence with support for (modular)ad-hoccases.

5.1 Type representations and generic functions

The traitRep[A] in Figure 5 is a datatype of type representations. The three objectsRUnit,
RInt, RCharare used to represent the basic typesUnit, Int andChar; these objects can be
implicitly passed to functions that accept implicit valuesof typeRep[A]. The case classes
RPlusand RProd handle sums and products, and theRViewcase class can be used to
map datatypes into sums of products (and vice versa). The first argument ofRViewshould
correspond to an isomorphism, which is defined as:

trait Iso[A,B] { // from andto are inverses
def from: A⇒ B
def to : B⇒ A

}

For example, the isomorphism between lists and their sum-of-products representation is
given bylistIso:

def fromList[a] = (l :List [a]) ⇒ l match {

case Nil ⇒ Left ({})
case (x :: xs) ⇒ Right(x,xs)

}

def toList[a] = (s: Either[Unit,(a,List[a])]) ⇒ smatch {

case Left () ⇒ Nil
case Right(x,xs) ⇒ x ::xs

}

def listIso[a] = Iso[List [a],Either[Unit,(a,List[a])]] (fromList) (toList)

20 Bruno Oliveira and Jeremy Gibbons

Note that the second argument ofRViewshould be lazily constructed. Unfortunately, Scala
forbids the by-name qualification at that argument position, so we have to encode call-by-
name manually using the conventional ‘thunk’ technique.

As a simple example of a generic function, we present a serializer. The idea is that, given
somerepresentabletypet, we can define a generic binary serializer by case analysis onthe
structure of the representation oft:

def serial[t] (x : t) (implicit r : Rep[t]) : String=

r match {

case RUnit ⇒ ""
case RInt ⇒ encodeInt(x)
case RChar ⇒ encodeChar(x)
case RPlus(a,b) ⇒ x.fold ("0" +serial() (a), "1" +serial() (b))

case RProd(a,b) ⇒ serial(x. 1) (a)+serial(x. 2) (b)

case RView(i,a) ⇒ serial(i.from(x)) (a ())

}

For the purposes of presentation, we encode the binary representation as a string of zeroes
and ones rather than a true binary stream. The arguments ofserial are the valuex of type
t to encode and a representation oft (which may be passed implicitly). For theUnit case,
we return an empty string; forInt andChar, we assume primitive encodersencodeIntand
encodeChar. The case for sums applies thefold method (defined in theEither trait) to the
valuex; in casex is an instance ofLeft, we encode the rest of the value and prepend 0;
in casex is an instance ofRight, we encode the rest of the value and prepend 1. The case
for products concatenates the results of encoding the two components of the pair. Finally,
for the view case, we convert the valuex into its sum-of-products equivalent and apply the
serialization function to that.

5.2 Open type representations and ad-hoc cases

In Scala, datatypes may be open to extension—that is, it is possible to introduce new
variants; in the case of type representations, it means thatwe can add new constructors
for representations of new types. This is useful for ad-hoc cases in generic functions—
that is, to provide a behaviour different from the generic one for a particular datatype in a
particular generic function.

For example, suppose that we want to use a different encodingof lists than the one
derived generically: it suffices to encode the length of a list, followed by the encodings
of each of its elements. For long lists, this encoding is moreefficient than the generic
behaviour obtained from the sum-of-products view, which essentially encodes the length
in unary rather than binary format. In order to be able to define an ad-hoc case, we first
need to extend our type representations with a new case for lists.

case class RList[A] (a :Rep[A]) extends
RView[Either[Unit,(A,List[A])],List [A]]

(listIso,() ⇒ RPlus(RUnit,RProd(a,RList(a))))

implicit def RepList[a] (implicit a :Rep[a]) = RList(a)

Journal of Functional Programming 21

This is achieved by creating a subtype ofRView, using the isomorphism between lists
and their sum-of-products representation. Notice thatRList depends on itself; had this
representation parameter not been made lazy, the representation would unfold indefinitely.
The functionRepListyields a default implicit representation for lists, given arepresentation
of the elements.

With the extra case for lists, we can have an alternative serialization function with a
special case for lists:

def serial1 [t] (x : t) (implicit r : Rep[t]) : String=

r match {

case RUnit ⇒ ""
case RInt ⇒ encodeInt(x)
case RChar ⇒ encodeChar(x)
case RPlus(a,b) ⇒ x.fold ("0" +serial1 () (a), "1" +serial1 () (b))

case RList(a) ⇒ serial1 (x.length)+

x.map(serial1 () (a)).foldRight("") ((x,y) ⇒ x+y)
case RView(i,a) ⇒ serial1 (i.from (x)) (a ())

}

The definition ofserial1 is essentially the same asserial, except that there is an extra case
for lists, producing an encoding of the list length followedby the encodings of its elements.

5.3 Inheritance of generic functions

The definition of theserial1 generic function is somewhat unsatisfactory, because it in-
volves code duplication. Scala, being an object-oriented language, supports inheritance.
However, to make use of inheritance on generic functions, weneed to adapt our programs
to use classes instead of function definitions: the serialization functionserial has to be
rewritten as follows:

trait Producer[a] {

def apply[t] (x : t) (implicit r : Rep[t]) : a
}

case class Serialextends Producer[String] {
def apply[t] (x : t) (implicit r : Rep[t]) : String= r match {

case RUnit ⇒ ""
case RInt ⇒ encodeInt(x)
case RChar ⇒ encodeChar(x)
case RPlus(a,b) ⇒ x.fold ("0" +apply() (a), "1" +apply() (b))

case RProd(a,b) ⇒ apply(x. 1) (a)+apply(x. 2) (b)

case RView(iso,a) ⇒ apply(iso.from(x)) (a ())

}

}

object serialextends Serial

The traitProducerdefines a ‘template’ for generic producer functions such as serialization,
and can be reused for other producers. The case classSerial is a subclass ofProducer, im-

22 Bruno Oliveira and Jeremy Gibbons

plementing theapplymethod. The definition ofserial is recovered by an object extending
Serial. Scala treats methods namedapplyspecially, allowing the use of the conventional
function application notation for invocation: we can writeo (arg) instead ofo.apply(arg),
andserial(List (1)) instead ofserial.apply(List (1)).

The advantage of writing the generic function in this style,rather than more directly us-
ing a function definition, is that inheritance allows the definition to be reused. For example,
instead of repeating all the cases inserial1, we could write the following:

case class Serial1 extends Serial{
override def apply[t] (x : t) (implicit r : Rep[t]) : String= r match {

case RList(a) ⇒

apply(x.length)+x.map(apply() (a)).foldRight("") ((x,y) ⇒ x+y)
case ⇒ super.apply(x) (r)

}

}

object serial1 extends Serial1

The case classSerial1 inherits fromSerial and adds a special case for lists, overriding
the generic definition. The default case ‘’ usessuper to invoke the definition ofapply
from Serialwhenever the argument is not a list representation. The definition of serial1 is
once again recovered by an object extending the classSerial1 that represents the generic
function. The following shows how client code can use the newversions ofserial and
serial1:

val testSerial = serial(List (1))

val testSerial1 = serial1 (List (1))

5.4 Evaluation of the approach

The Scala approach presented in this section compares favourably with the Haskell ap-
proach using GADTs to encode type representations, which was presented in Section 2.1.
While it is true that the code to define the representation type is somewhat more verbose
than the Haskell equivalent, we no longer need to create a separate type class to allow im-
plicit construction of representations. Implicit representations may not be strictly necessary
for a generic programming library, but they are very convenient, and nearly all approaches
provide them. The definition of generic functions using typerepresentations is basically as
straightforward in Scala as in Haskell; no significant additional verbosity is involved.

In Haskell, it is difficult to extend a datatype with new variants, which has drawbacks
from a generic programming point of view, as discussed in Section 2.3.3. In contrast, in
Scala, adding a new variant is essentially the same as addinga new subclass. While it
would be possible to overcome Haskell’s extensibility limitations with theopen datatypes
proposal (Löh & Hinze, 2006), Scala’s case classes have an extra advantage when com-
pared to that proposal. In Scala, we can mark a trait assealed, which prohibits direct
subclassing of that trait outside the module defining it. Still, we can extendsubclasses
even in a different module. Therefore, we could have marked the traitRep[A] as sealed;
but modular extension ofRViewwould still be allowed. The nice thing about this solution is

Journal of Functional Programming 23

trait Total[A] {
def total :A⇒ Int

}

def gtotal[A] (x :A) (implicit t :Total[A]) : Int = t.total (x)

implicit object totalUnit extends Total[Unit] {
def total = ⇒ 0

}

implicit object totalInt extends Total[Int] {
def total = x⇒ x

}

implicit def totalPair[a,b] (implicit totalA:Total[a], totalB:Total[b]) =
new Total[(a,b)] {

def total = {
case (x,y) ⇒ totalA.total (x)+ totalB.total (y)

}
}

implicit def totalEither[a,b] (implicit totalA: Total[a], totalB:Total[b]) =
new Total[Either[a,b]] {

def total = {
case Left (x) ⇒ totalA.total (x)
case Right(y) ⇒ totalB.total (y)

}
}

implicit def totalList[a] (implicit totalA:Total[a]) = new Total[List[a]] {
def total = x⇒ gtotal (fromList(x))

}

Fig. 6. A simple generic ‘sum’ function.

that we can be sure that a fixed set of patterns is exhaustive, so it is easier to avoid pattern-
matching errors. Scala even has coverage checking of patterns when using case analysis on
values of sealed types, warning about any missing cases.

Finally, inheritance allows one to reuse code from existinggeneric functions. However,
generic functions need to be written using classes instead of function definitions, which is
a bit more verbose and less direct. Nonetheless, reuse of generic functions is an important
and useful feature to have, and the native support provided by Scala makes this feature
quite usable.

6 Generic Programming with Type Classes

This section shows how to implement a Scala equivalent for the simple generic program-
ming approach based on type classes presented in Section 2.2. Following Section 4.5, the
key idea is to use Scala’s implicits mechanism instead of Haskell’s type classes.

24 Bruno Oliveira and Jeremy Gibbons

6.1 Simple extensible generic functions

Figure 6 shows a Scala implementation of the Haskell code presented in Figure 1. The trait
Total[A] plays a role similar to that of the classTotal in the Haskell version: it defines an
interface containing a functiontotal that takes a value of typeA and returns an integer.
Thegtotal function provides an interface to the sum function, constructing the dictionary
implicitly; this is not needed in the Haskell version. However, unlike with the type class
version, such a dictionary can also be passed explicitly. The totalUnit, totalInt, totalPair
and totalEither definitions are analogous to the type class instances for units, integers,
products and sums. One notable difference is the explicit selection of the dictionary in
which to find a subsidiary sum function; for example, in the definition for pairs,totalA.total
selects the sum function from the first dictionary argument.For lists, thegtotal function
is used instead, allowing the dictionary to be automatically inferred by the compiler. (The
functionfromListwas defined in Section 5.1.)

6.2 Local redefinition

With the Scala approach, local redefinition is possible. Forexample, we can obtain a
generic function that counts the integers in a structure by using a different dictionary for
integers:

object countIntextends Total[Int] {
def total = x⇒ 1

}

val x = gtotal(List (1,2,3))

val y = gtotal(List (1,2,3)) (totalList (countInt))

The valuesx andy are computed by calling the same generic functiongtotal on the same
list; however, in the second case, a local redefinition of thedictionary to use for integers
means that the result is 3 rather than 6. (Given this facilityfor local redefinition, it would
be reasonable to make the basic function a generic ‘counter’, returning zero for each base
case, and to expect some cases to be locally redefined for eachuse.)

6.3 Exotic types

In the Haskell approach using type classes, exotic types such as nested datatypes or datatypes
with higher-kinded type arguments presented a challenge; in Scala, they pose less of a
problem. For example, the type of generalized trees can be defined as follows:

sealed case class GRose[F [],A] (x : A,children:F [GRose[F,A]])

It is possible to define an implicit representation for the generic sum function using an
approach similar to thepolymorphic predicatestechnique, as discussed in Section 2.3.6.

implicit def totalGRose[F [],A] (implicit totalA: Total[A],

totalF : {def apply[B] (implicit totalB: Total[B]) :Total[F [B]]}) =

new Total[GRose[F,A]] {

def total = r ⇒ totalA.total (r.x)+

Journal of Functional Programming 25

totalF (totalGRose[F,A] (totalA, totalF)).total (r.children)
}

However, Scala currently does not support type inference for datatypes with higher-kinded
type arguments, so in the definition above it is necessary to explicitly construct the dictio-
nary

totalF (totalGRose[F,A] (totalA, totalF))

so that the dictionary constructor functiontotalGRosecan be passed the type constructor ar-
gumentF. To emulate polymorphic predicates, such as thetotalF argument oftotalGRose,
we have to encode higher-ranked types; this is not too hard using structural types, as
discussed in more detail in Section 10.3. It is also necessary to provide a dictionary object
that fits the interface required fortotalF values:

implicit object totalList2{
def apply[a] (implicit totalA: Total[a]) :Total[List[a]] =

totalList[a] (totalA)

}

Having set up all this machinery, we can now apply generic sumto generalized rose
trees:

val myRose:GRose[List, Int] = GRose[List, Int] (3,Nil)

def test(rose:GRose[List, Int]) (implicit totalR: (Total[GRose[List, Int]])) =

totalR.total (rose)

def testCount: Int = test(myRose) (totalGRose[List, Int] (countInt, totalList2))

The functiontesttakes a valueroseof typeGRose[List, Int] and an implicit dictionary for
the generic sum function, and returns the result of applyingthe appropriate member of this
dictionary to the rose tree. The functiontestCountapplies this function to a particular rose
tree and an explicit dictionary for generalized rose trees,returning the result 1. Unfortu-
nately, the dictionary cannot be constructed automatically, because the higher-kinded type
List cannot be inferred.

6.4 Evaluation of the approach

Not surprisingly, the Scala approach has some additional verbosity when compared to the
Haskell one, in particular with the long-winded syntax for implicits. In the Scala approach,
a gtotal function is required in order to be able to pass a dictionary explicitly, while in
Haskell no such definition is necessary. However,gtotalcan be used for passing arguments
both implicitly and explicitly, while in Haskell only implicit dictionaries are possible.
Exotic types pose a challenge to Scala, as they do for Haskell, but for different reasons. In
Scala, there is no native support for higher-ranked types; they have to be encoded, which
adds extra overhead. Furthermore, the current version of Scala does not yet support type
inference for higher-kinded types; in practice, this meansthat it is essentially not possible
to automatically infer dictionaries that involve higher-kinded types. Having to write those

26 Bruno Oliveira and Jeremy Gibbons

dictionaries manually is tedious. However, in the Scala approach, local redefinition is
possible, and can be used in a convenient way.

In summary, the Scala approach is a bit more verbose than the corresponding Haskell
version, but it is also more expressive, since both local redefinitions and polymorphic
predicates are possible. However the latter feature has some significant overhead that
makes it impractical to use.

7 Generic Programming with Encodings of Datatypes

This section presents the first of three case studies on existing DGP approaches. Building
on Section 4.5, which showed how implicit parameters can be used for type-class-style pro-
gramming, a Scala implementation of theGenerics for the Masses(GM) technique (Hinze,
2006) is shown. Furthermore, we discuss two distinct techniques for reusing generic func-
tions in Scala:reuse by inheritanceand local redefinition. (Moors (2007) provides an
alternative Scala tutorial on GM.)

7.1 Generics for the masses, in Haskell

Figure 7 shows the essence of the GM approach in Haskell. The constructor classGeneric
is used to represent the type of generic functions. The parameterg represents the generic
function, and each of the member functions of the class encodes the behaviour of that
generic function for a specific structural case. Generic functions over user-defined types
can be defined using theview type case: an isomorphism between the datatype and its
structural representation must be provided. Instances of the type classRepdenote repre-
sentable types; each such instance consists of a methodacceptthat selects the appropriate
behaviour from a generic function.

A new generic function is represented as an instance ofGeneric, providing an implemen-
tation for each structural case. For instance, consider a generic template for functions that
compute some integer measure of a data structure. Each case is a record of typeCount afor
some typea, which contains a single functioncountof typea→ Int that can be used for
a structure of typea. The functiongCount, which is the actual generic function, simply
extracts the sole fieldcount from a record of the appropriate type, built automatically
by accept. For sums, products, and user-defined datatypes, it does the‘obvious’ thing:
choosing the appropriate branch of a sum, adding the counts of the two components of a
product, and unpacking a view and recursively counting its contents; it counts zero for each
of the base cases, but these can be overridden to implement more interesting behaviour.

7.2 Generics for the masses, in Scala

Figure 8 presents a translation of the code in Figure 7 into Scala. The traitGeneric is
parametrized with a higher-kinded type constructorG. As in Haskell, there are methods
for sums, products, the unit type, and also a few built-in types such as integers and char-
acters; for sums and products, which have type parameters, we need extra arguments that
define the generic functions for values of those type parameters. Theview case uses an
isomorphism to adapt generic functions to existing datatypes; the ‘⇒’ before the typeG[a]

signals that that parameter is passed by name.

Journal of Functional Programming 27

class Generic gwhere
unit ::g Unit
plus ::g a→ g b→ g (Sum a b)
prod ::g a→ g b→ g (Prod a b)
view :: Iso b a→ g a→ g b
char ::g Char
int ::g Int

class Rep awhere
accept ::Generic g⇒ g a

instance Rep Unitwhere
accept = unit

instance Rep Charwhere
accept = char

instance Rep Intwhere
accept = int

instance (Rep a,Rep b) ⇒ Rep(Sum a b) where
accept = plus accept accept

instance (Rep a,Rep b) ⇒ Rep(Prod a b) where
accept = prod accept accept

newtype Count a= Count{count::a→ Int}

instance Generic Countwhere
unit = Count(λ → 0)
char = Count(λ → 0)
int = Count(λ → 0)
plus a b = Count(λx→ case x of {Inl l → count a l; Inr r → count b r})
prod a b = Count(λ(Prod x y) → count a x+count b y)
view iso a= Count(λx→ count a(from iso x))

gCount::Rep a⇒ a→ Int
gCount= count accept

Fig. 7. Generics for the masses in Haskell

The traitRep[T] has a single methodaccept, which takes an encoded generic function
of type Generic[G]. The Scala implementation of the subclasses ofRep[T] is almost a
transliteration of the Haskell type class version, except that it uses implicit parameters
instead of type classes.

The generic counter function uses a parametrized classCount with a single field: a
function of typeA ⇒ Int. The concrete subtypeCountGof the traitGeneric[Count] pro-
vides implementations for the actual generic function: each method yields a value of type
Count[A] for the appropriate typeA.

7.3 Constructing type representations

For each datatypeT we want to represent, we need to create a value of typeRep[T]. For
example, for lists we could write:

def listRep[a,g[]] (a :g[a]) (implicit gen:Generic[g]) :g[List[a]] = {

import gen.
view(listIso[a]) (plus(unit) (prod (a) (listRep[a,g] (a) (gen))))

28 Bruno Oliveira and Jeremy Gibbons

trait Generic[G[]] {
def unit : G[Unit]
def int : G[Int]
def char : G[Char]
def plus[a,b] : G[a] ⇒ G[b] ⇒ G[Either[a,b]]
def prod[a,b] : G[a] ⇒ G[b] ⇒ G[(a,b)]
def view[a,b] : Iso[b,a] ⇒ (⇒ G[a]) ⇒ G[b]

}

trait Rep[T] {
def accept[g[]] (implicit gen:Generic[g]) :g[T]

}

implicit def RUnit= new Rep[Unit] {
def accept[g[]] (implicit gen:Generic[g]) = gen.unit

}

implicit def RInt= new Rep[Int] {
def accept[g[]] (implicit gen:Generic[g]) = gen.int

}

implicit def RChar= new Rep[Char] {
def accept[g[]] (implicit gen:Generic[g]) = gen.char

}

implicit def RPlus[a,b] (implicit a: Rep[a],b: Rep[b]) = new Rep[Either[a,b]] {
def accept[g[]] (implicit gen:Generic[g]) =

gen.plus(a.accept[g] (gen)) (b.accept[g] (gen))
}

implicit def RProd[a,b] (implicit a: Rep[a],b: Rep[b]) = new Rep[(a,b)] {
def accept[g[]] (implicit gen:Generic[g]) =

gen.prod (a.accept[g] (gen)) (b.accept[g] (gen))
}

case class Count[A] (count:A⇒ Int)

trait CountGextends Generic[Count] {
def unit = Count(x⇒ 0)
def int = Count(x⇒ 0)
def char = Count(x⇒ 0)
def plus[a,b] = a⇒ b⇒ Count(.fold (a.count,b.count))
def prod[a,b] = a⇒ b⇒ Count(x⇒ a.count(x. 1)+b.count(x. 2))
def view[a,b] = iso⇒ a⇒ Count(x⇒ a.count(iso.from(x)))

}

Fig. 8. Generics for the Masses in Scala.

}

implicit def RList[a] (implicit a :Rep[a]) = new Rep[List[a]] {

def accept[g[]] (implicit gen: Generic[g]) =

listRep[a,g] (a.accept[g] (gen)) (gen)
}

(The import declaration allows unqualified use of the methodsview, plus, and so on of
the objectgen; listIso is the isomorphism presented in Section 5.2.) Here, the auxiliary

Journal of Functional Programming 29

functionlistRepconstructs the rightGenericvalue following the sum-of-product structure.
Using listRep, the representationRList for lists is easily defined.

7.4 Applying generic functions

We can now define a methodgCountthat provides an easy-to-use interface for the generic
function encoded byCountG: this takes a value of a representable typea and returns the
corresponding count.

def gCount[a] (x :a) (implicit rep: Rep[a]) = rep.accept[Count].count(x)

We definedCountGas a trait instead of an object so that it can be extended, as wediscuss
in more detail in Sections 7.5 and 7.6. We may, however, be interested in having an object
that simply inherits the basic functionality defined inCountG. Furthermore, this object can
be made implicit, so that methods likerepcan automatically infer this instance ofGeneric.

implicit object countGextends CountG

Of course, this will still return a count of zero for any data structure; we show next how to
override it with more interesting behaviour.

7.5 Reuse via inheritance

To recover a generic function that counts the integers in a structure, we can use inheritance
to extendCountGand override the case for integers so that it counts 1 for eachinteger
value.

trait CountIntextends CountG{override def int = Count(x⇒ 1)}

We can then define a methodcountIntto count the integers in any structure of representable
type.

def countInt[a] (x :a) (implicit rep: Rep[a]) =

rep.accept[Count] (new CountInt{}).count(x)

The ability to explicitly pass an alternative ‘dictionary’is essential to the definition of
the methodcountInt, since we need to parametrize theacceptmethod with an instance of
Countother than the implicitly inferred one.

Using such generic functions is straightforward. The following snippet defines a list of
integerstestand appliescountIntto this list.

val test= List (3,4,5)

def countTest= countInt(test)

Note that the implicit parameter for the type representations is not needed, because it can
be inferred by the compiler (since we provided animplicit def RList).

7.6 Local redefinition

Suppose that we want to count the instances of the type parameter in an instance of a
parametric datatype such as lists. It is not possible to specialize Genericto define such

30 Bruno Oliveira and Jeremy Gibbons

2

1

6 1

5

Fig. 9. Tree with depth information at the nodes.

a function directly, because there is no way to distinguish values of the type parameter
from other values that happen to be stored in the structure. For example, we could have a
parametric binary tree that has an auxiliary integer at eachnode that is used to store the
depth of the tree at that node; this could be useful in keepingthe tree balanced. Figure 9
shows such a tree; the squares represent the auxiliary integers, and the circles represent the
values contained in the tree. If the elements of the tree are themselves integers, we cannot
count them without also counting the balance information.

val testTree= Fork (2,Fork (1,Value(6),Value(1)),Value(5))

val five= countInt(testTree) // returns 5

To solve this problem, we need to account for the representations of the type parameters
of a parametric type. The methodlistRep, for example, needs to receive as an argument a
representation of typeg[a] for its type parameter. A similar thing happens with binary trees;
assuming that the equivalent method is calledbtreeRep, we can provide a special-purpose
counter for trees that counts only the values of the type parameter.

def countOne[a] = Count((x :a) ⇒ 1)

def countTree[a] (x :Tree[a]) = btreeRep[a,Count] (countOne[a]).count(x)

val three= countTree(testTree) // returns 3

The idea here is to replace the default behaviour that would be used for the type parameter
(as inferred from the type) by user-defined behaviour specified bycountOne.

7.7 Evaluation of the approach

Like other generic programming approaches, the GM technique is more verbose in Scala
than in Haskell: in the definitions of instances (such asRUnit, RChar, andRProd) of the
trait Rep, we need to explicitly declare the implicit argument of theacceptmethod and the
type constructor argumentg for each instance; this is not necessary in the Haskell version.

In terms of functionality, the Scala solution provides everything present in the Haskell
solution, including the ability to handle local redefinitions. In addition, we can easily reuse
one generic function to define another through inheritance,as demonstrated in Section 7.5;
with the Haskell approaches, this kind of reuse is harder to achieve. The only mechanism
that we know of that comes close to this form of reuse in terms of simplicity is Generic
Haskell’sdefault caseconstruct (Löh, 2004), as discussed in Section 2.3.5.

Another nice aspect of the Scala approach is the ability to override an implicit parameter.
Theacceptmethod ofReptakes an implicit argument of typeGeneric[g]. When we defined

Journal of Functional Programming 31

the genericcountInt function (see Section 7.5), we needed to override that argument.
This was easily achieved in Scala simply by explicitly passing an argument; it would be
non-trivial to achieve the same effect in Haskell using typeclasses, since dictionaries are
always implicitly passed. Note that we also explicitly override an implicit parameter in the
definition ofcountTree(since the first argument ofbtreeRepis implicit by default).

Finally, it is interesting to observe that, when interpreted in an object-oriented language,
the GM approach essentially corresponds to the VISITOR pattern. While this fact is not
entirely surprising—the inspiration for GM comes from encodings of datatypes, and en-
codings of datatypes are known to be related to visitors (Buchlovsky & Thielecke, 2006;
Oliveira, 2007)—it does not seem to have been observed in theliterature before. As a
consequence, many of the variations observed by Hinze have direct correspondents in
variations of visitors, and we may hope that ideas developedin the past in the context of
visitors may reveal themselves to be useful in the context ofgeneric programming. Oliveira
(2007) explored this, and has shown, for example, both how solutions to the expression
problem (Wadler, 1998) using visitors can be adapted to GM, and how solutions to the
problem of extensible generic functions in the GM approach can be used as solutions to
the expression problem (Oliveira, 2009a).

8 Generic Programming with Extensible Superclasses

This section presents the second case study of a DGP library in Scala. We show how to
emulateextensible superclasses(Sulzmann & Wang, 2006), and how this technique can be
used to provide an implementation of theScrap your Boilerplate with Class(Lämmel &
Peyton Jones, 2005) approach to generic programming.

8.1 Scrap your boilerplate with class

After realizing that earlier implementations of the SyB approach (Lämmel & Peyton Jones,
2003) were limiting because they did not supportextensible generic functions, Lämmel
and Peyton Jones (2005) proposed a variation using type classes. This solution is shown
in Figure 10. TheData class defines the higher-order generic functiongmapQ, which is
used to define new generic functions. TheSizeclass declares a new generic functionsize.
Overlapping instancesare used to provide a default implementation of the functionin terms
of gmapQ; in the case ofSize, the instanceSize tplays this role. Generic functions can be
made extensible by providing additional instances of classSizethat override the default
case. The solution is somewhat involved, and it requires a number of non-standard Haskell
extensions to get everything to work. In particular,undecidable instancesare needed, and
an extension allowingrecursive dictionarieshad to be built into the GHC compiler. Also,
proxies for types, which involve passing an extra (bottom) value to functions, are required
to resolve type ambiguities.

The major difficulty Lämmel and Peyton Jones found was that,in order to provide a
modular definition of a new generic function, theData class had itself to be parametrized
by the generic function being defined. In essence, what seemsto be needed here are
extensible superclasses. Inspired by Hughes’ (1999) work on restricted datatypes, Lämmel
and Peyton Jones found a solution by emulating type class parametrization: in the class

32 Bruno Oliveira and Jeremy Gibbons

data Proxy(a:: ∗→ ∗)

class Sat awhere dict ::a

class (Typeable a,Sat(ctx a)) ⇒ Data ctx awhere
gmapQ::Proxy ctx→ (∀b. Data ctx b⇒ b→ r) → a→ [r]

instance Sat(ctx Char) ⇒ Data ctx Charwhere
gmapQ f n =[]

instance (Sat(ctx[a]),Data ctx a) ⇒ Data ctx[a] where
gmapQ f [] =[]
gmapQ f (x :xs) =[f x, f xs]

class Size awhere gsize::a→ Int

data SizeD a= SizeD{gsizeD::a→ Int}

sizeProxy::Proxy SizeD
sizeProxy= ⊥

instance Size t⇒ Sat(SizeD t) where
dict = SizeD{gsizeD= gsize}

instance Data SizeD t⇒ Size twhere
gsize t= 1+sum(gmapQ sizeProxy(gsizeD dict) t)

instance Size a⇒ Size[a] where
gsize[] = 0
gsize(x :xs) = gsize x+gsize xs

test= (gsize['a' , 'b'],gsize'x')

Fig. 10. The original ‘SyB with Class’ implementation in Haskell

Data ctx a, thectx argument is supposed to represent an unknown type class, butbecause
Haskell does not allow abstraction over type classes, this has to be emulated using records.

8.2 Scrap your boilerplate with class, in Scala

Because of the wide range of non-standard features of Haskell used by the SyB with Class
approach, it is interesting to see what is involved in expressing the approach in Scala. Like
Haskell, Scala does not support extensible superclasses directly; that is, it is not possible
to have a trait (or class)

trait T [Super] extends Super

in which the trait is parametrized by its own superclass. However, Scala does provide
explicit self-types(Odersky, 2006a), which can be used to emulate this feature.In Figure 11,
a Scala implementation of theDataclass is shown. As with the Haskell solution, theData
trait is parametrized by a type constructorctx (the generic function) and a typea. The
major difference from the Haskell solution is the use of aself-typeto ensure that the type
of the self object is a subtype ofctx[a]. This is to make the generic functions defined in
ctx available to all instances ofData. (The definitionme is just a public reference for the
self object, and thegmapQgeneric function uses the technique discussed in Section 10.3
to emulate higher-ranked types.) Two base ‘instances’ are provided for characters and lists,
as in the Haskell implementation.Abstract case classesare used becauseDataCharand

Journal of Functional Programming 33

trait Data[ctx[],a] {self :ctx[a] ⇒
def me= self
def gmapQ[r] : {def apply[b] (x :b) (implicit dt :Data[ctx,b]) : r }⇒ a⇒ List[r]

}

abstract case class DataChar[ctx[]] () extends Data[ctx,Char] {self :ctx[Char] ⇒
def gmapQ[r] = f ⇒ n⇒ Nil

}

abstract case class DataList[ctx[],a] (implicit d : Data[ctx,a]) extends Data[ctx,List[a]] {
self : ctx[List[a]] ⇒
def gmapQ[r] = f ⇒ {

case Nil ⇒ Nil
case x ::xs⇒ List (f (x) (d), f (xs) (this))

}
}

trait Size[a] extends Data[Size,a] {
def gsize:a⇒ Int = t ⇒

1+sum(gmapQ[Int] (new {def apply[b] (x :b) (implicit dt :Data[Size,b]) =
dt.me.gsize(x)}) (t))

}

abstract case class SizeList[a] () (implicit d : Size[a])
extends DataList[Size,a] () (d) with Size[List[a]] {

override def gsize= {
case Nil ⇒ 0
case x ::xs⇒ d.gsize(x)+gsize(xs)

}
}

implicit def sizeChar:Size[Char] =
new DataChar[Size] () with Size[Char]

implicit def sizeList2[a] (implicit d : Size[a]) :Size[List[a]] =
new SizeList[a] () (d) with Size[List[a]]

def test(implicit s1:Size[Char],s2:Size[List[Char]]) =
(s1.gsize('a'),s2.gsize(List ('a' , 'b')))

Fig. 11. An implementation of ‘SyB with Class’ in Scala.

DataList are incomplete, that is, they still need to be mixed with implementations of the
typesctx [Char] and ctx [List [a]]. The trait SizeextendsData and defines the generic
function gsize in terms ofgmapQ. This trait plays the role of both theSizeclass and
the Size tinstance in the Haskell solution. The abstract case classSizeListprovides the
overriding case for lists. Note thatSizeandSizeListsatisfy, respectively, theData[Size,a]

andDataList[Size,a] requirements for the self-type. The implicit definitionssizeCharand
sizeListallow the dictionaries for characters and lists to be built automatically. Finally,test
shows how the generic function can be used—here, to compute the size of a character and
of a list of characters. Becausetest takes two implicit arguments, it is possible to call it
without those arguments; alternatively, different dictionaries can be provided, overriding
the ones selected by the compiler.

34 Bruno Oliveira and Jeremy Gibbons

8.3 Local redefinition

In the Scala implementation of SyB with Class, local redefinition is possible. For example,
instead of using thesizeListdictionary for lists, it is possible to provide an alternative
dictionary that inherits the generic behaviour for lists rather than overriding it:

def alternativeList[a] (implicit d :Size[a]) :Size[List[a]] =

new DataList[Size,a] () (d) with Size[List[a]]

Given this definition, bothtest and test(sizeChar,alternativeList) are possible applica-
tions, returning(1,2) and(1,5) respectively.

8.4 Evaluation of the approach

Verbosity is once again a problem. The lack of direct supportfor higher-ranked types and
a long-winded syntax for implicits adds significant additional code in comparison to the
Haskell approach. Another problem is that separate implicit definitions for dictionaries like
sizeCharandsizeListare needed.

The Scala approach imposes an additional burden on the programmer due to the absence
of a mechanism similar tooverlapping instances. This requires the programmer to im-
plement the definitions for the implicit dictionaries one byone. In the Haskell solution,
if there is no overridden case, then no additional effort is needed. On the other hand,
the Scala solution does not distinguish between types and type classes, and abstracting
over the ‘type class’ is just the same as abstracting over a type: no encoding of this
feature is required. Furthermore, a solution with explicitself-types does not require other
advanced features such as recursive dictionaries or undecidable instances; everything is
accomplished naturally, using the standard extension mechanism.

In terms of expressiveness, the Scala solution is better, because it supports local redefi-
nitions and allows greater control of dictionaries by providing the possibility to pass them
explicitly. In the original SyB with Class solution, local redefinitions are not possible.

In summary, for the SyB with Class approach the results are mixed: Haskell is more
convenient to use because it imposes a lighter burden on the programmer, but the Scala
solution is more expressive and flexible because local redefinitions are possible.

9 Generic Programming with Recursion Patterns

Most generic programming libraries involve writing generic functions by case analysis
on the structure of the shape of the datatype, whether that case analysis is by value-
based or type-based dispatch. An alternative is to make the shape parameter an active
participant in the computation—a higher-order function that can be applied, rather than
passive data that must be analyzed. In particular, theOrigami Programming(Gibbons,
2003) approach to DGP is based around datatypes representedas fixpoints of type functors,
and programs expressed in terms of higher-order recursion patterns shape-parametrized by
those functors (Meijeret al., 1991). A consequence of black-box application rather than
white-box inspection of the shape parameter is a kind of higher-order naturality property,
guaranteeing coherence between different instances of thegeneric function (Gibbons &
Paterson, 2009).

Journal of Functional Programming 35

newtype Fix f a = In{out:: f a (Fix f a)}

class BiFunctor f where
bimap:: (a→ b) → (c→ d) → f a c→ f b d
fmap2:: (c→ d) → f a c→ f a d
fmap2= bimap id

map::BiFunctor f ⇒ (a→ b) → Fix f a→ Fix f b
map f= In◦bimap f (map f)◦out

cata::BiFunctor f ⇒ (f a r → r) → Fix f a→ r
cata f = f ◦ fmap2(cata f)◦out

ana::BiFunctor f ⇒ (r → f a r) → r → Fix f a
ana f = In◦ fmap2(ana f)◦ f

hylo::BiFunctor f ⇒ (a→ f c a) → (f c b→ b) → a→ b
hylo f g= g◦ fmap2(hylo f g)◦ f

build :: (∀b. (f a b→ b) → b) → Fix f a
build f = f In

Fig. 12. Origami in Haskell

One can view the origami recursion patterns as functional programming equivalents to
(at least the code aspects of) some of the so-called Gang of Four design patterns (Gamma
et al., 1995). Gibbons (2006) argues that recursive datatypes correspond to the COMPOSITE

design pattern, maps to the ITERATORpattern for enumerating the elements of a collection,
folds to the VISITOR pattern for traversing a hierarchical structure, and unfolds and builds
to structured and unstructured instances of the BUILDER pattern for generating structured
data.

Moors et al. (2006) were the first to point out that Scala is expressive enough to be
a DGP language; they showed how to encode these origami patterns in Scala. However,
their encoding was done in an object-oriented style that introduced some limitations that
the original Haskell version did not have. We feel that this object-oriented style, while
perhaps more familiar to the object-oriented programmer that Moorset al.were targetting,
does not show the full potential of Scala from a generic programmer’s perspective. In this
section, we present an alternative encoding of the origami patterns that is essentially a
direct translation of the Haskell solution and has the same extensibility properties.

9.1 A little Origami library

Figure 12 shows the Haskell implementation of the origami patterns, and Figure 13 shows
a translation of this Haskell code into Scala. The key idea isto encode type classes through
implicit parameters (see Section 4.5) rather than using theobject-oriented style proposed
by Moorset al.. The newtypeFix and its constructorIn are mapped into a case classFix;
the type classBiFunctor maps into a trait; and the origami operations map into Scala
definitions with essentially the same signatures. (In Scala, implicit parameters can only
occur in the last parameter position.)

There are two things to note in the Scala version. Firstly, because evaluation in Scala is
strict, we cannot just write the following in the definition of cata:

36 Bruno Oliveira and Jeremy Gibbons

case class Fix [F [,],a] (out: F [a,Fix [F,a]])

trait BiFunctor[F [,]] {
def bimap[a,b,c,d] : (a⇒ b) ⇒ (c⇒ d) ⇒ F [a,c] ⇒ F [b,d]
def fmap2[a,c,d] : (c⇒ d) ⇒ F [a,c] ⇒ F [a,d] = bimap(id)

}

def map[a,b,F [,]] (f :a⇒ b) (t :Fix [F,a]) (implicit ft :BiFunctor[F]) :Fix [F,b] =
Fix [F,b] (ft.bimap(f) (map[a,b,F] (f)) (t.out))

def cata[a, r,F [,]] (f :F [a, r] ⇒ r) (t :Fix [F,a]) (implicit ft :BiFunctor[F]) : r =
f (ft.fmap2(cata[a, r,F] (f)) (t.out))

def ana[a, r,F [,]] (f : r ⇒ F [a, r]) (x : r) (implicit ft :BiFunctor[F]) :Fix [F,a] =
Fix [F,a] (ft.fmap2(ana[a, r,F] (f)) (f (x)))

def hylo[a,b,c,F [,]]
(f : a⇒ F [c,a]) (g: F [c,b] ⇒ b) (x :a) (implicit ft :BiFunctor[F]) :b =
g (ft.fmap2(hylo[a,b,c,F] (f) (g)) (f (x)))

def build[a,F [,]] (f : {def apply[b] : (F [a,b] ⇒ b) ⇒ b}) = f .apply(Fix [F,a])

Fig. 13. Origami in Scala

trait ListF [a, r]
case class Nil [a, r] extends ListF[a, r]
case class Cons[a, r] (x :a,xs: r) extends ListF [a, r]

implicit object biList extends BiFunctor[ListF] {
def bimap[a,b,c,d] = f ⇒ g⇒ {

case Nil () ⇒ Nil ()
case Cons(x,xs) ⇒ Cons(f (x),g (xs))

}
}

type List[a] = Fix [ListF,a]

def nil [a] :List[a] = In [ListF,a] (Nil ())
def cons[a] = (x :a) ⇒ (xs:List[a]) ⇒ In [ListF,a] (Cons(x,xs))

Fig. 14. Lists as a fixpoint

f ◦ ft.fmap2(cata[a, r,F] (f))◦ (.out)

(the syntax(.m) is syntactic sugar for(x⇒ x.m); in other words, ‘ ’ denotes an ‘anony-
mous’ lambda variable). Under strict evaluation, the abovedefinition would expand in-
definitely; we have to write it less elegantly using application rather than composition.
Secondly, higher-ranked types are once again required; we have to encode them in Scala—
see Section 10.3 for more details.

9.2 Using the library

Figure 14 captures the shape of lists as a type constructorListF; the two possible shapes
for lists are defined with the case classesNil andCons. TheBiFunctorobjectbiList defines
thebimapoperation for the list shape. Lists are obtained simply by applying Fix to ListF.

Journal of Functional Programming 37

trait TC {type A; type B}

trait BiFunctor[S<:BiFunctor[S]] extends TC {
self : S⇒
def bimap[c,d] (f :A⇒ c,g: B⇒ d) :S{type A = c; type B = d}

}

trait Fix [S<:TC,a] {
def map[b] (f :a⇒ b) : Fix [S,b]
def cata[b] (f :S{type A = a; type B = b} ⇒ b) : b

}
case class In [S<: BiFunctor[S],a] (out: S{type A = a; type B = Fix [S,a]}) extends Fix [S,a] {

def map[b] (f :a⇒ b) : Fix [S,b] = In (out.bimap(f , .map(f)))
def cata[b] (f :S{type A = a; type B = b} ⇒ b) : b = f (out.bimap(id, .cata(f)))

}

def ana[s<:BiFunctor[s],a,b] (f : b⇒ s{type A = a; type B = b}) (x :b) : Fix [s,a] =
In (f (x).bimap(id,ana(f)))

def hylo[s<:BiFunctor[s],a,b,c]
(f :b⇒ s{type A = a; type B = b},g: s{type A = a; type B = c} ⇒ c) (x :b) : c =
g (f (x).bimap(id,hylo[s,a,b,c] (f ,g)))

trait Builder[S<:BiFunctor[S],a] {
final def build () :Fix [S,a] = bf (In [S,a])
def bf [b] (f :S{type A = a; type B = b}⇒ b) : b

}

Fig. 15. Origami in Scala, after Moorset al.

The figure also shows functionsnil andconsthat play the role of the two constructors for
lists.

We can now define operations on lists using the origami operators. A simple example is
the function that sums all the elements of a list of integers:

def sumList= cata[Int, Int,ListF] {

case Nil () ⇒ 0
case Cons(x,n) ⇒ x+n

}

9.3 Evaluation of the approach

Figure 15 presents Moorset al.’s object-oriented encoding of the origami operators (slightly
adapted due to intervening changes in Scala syntax), and Figure 16 shows the specialization
to lists. Compared to this object-oriented (OO) encoding, our more functional (FP) style
has some advantages. The most significant difference between the two is that the OO
encoding favours representing operations as methods attached to objects, and provided with
a distinguished ‘self’ parameter, whereas the FP encoding favours representing operations
as global functions, independent of any object. In particular, in the OO encoding of the type
classBiFunctor, the methodbimaptakes just two functions, whereas in the FP encoding
it takes a data structure too; the OO encoding of thecataoperation is as a method of the
classIn, with a recursive data structure as a ‘self’ parameter, whereas the FP encoding is

38 Bruno Oliveira and Jeremy Gibbons

trait ListF extends BiFunctor[ListF]

case class NilF [a,b] extends ListF {
type A = a; type B = b
def bimap[c,d] (f :a⇒ c,g: b⇒ d) : NilF [c,d] = NilF ()

}
case class ConsF[a,b] (x :a,xs:b) extends ListF {

type A = a; type B = b
def bimap[c,d] (f :a⇒ c,g: b⇒ d) : ConsF[c,d] = ConsF(f (x),g (xs))

}

type List[A] = Fix [ListF,A]

Fig. 16. Lists as a fixpoint, after Moorset al.

as a global function, with the recursive data structure passed explicitly. The OO approach
requires more advanced language features, and leads to problems with extensibility, as we
shall discuss.

The dependence on the self parameter in the OO encoding requiresexplicit self types.
This is seen in the definition of the traitBiFunctor:

trait BiFunctor[S<:BiFunctor[S]] . . . {self :S⇒ . . .}

trait ListF extends BiFunctor[ListF]

Note thatListF is given a recursive type bound, and that theS parameter ofBiFunctor is
given both an upper bound (namelyBiFunctor[S]) and a lower bound (through theself
clause, explicitly specifying the self type: an ‘instance of the type class’ such asListF
cannot instantiate theSparameter to anything more specific thanListF itself). Moorset al.
(2006) explain the necessity of this elaborate construction for guaranteeing type safety; it
is not required at all in the FP encoding.

A second characteristic of the OO encoding is the way operations are attached to ob-
jects as methods; for example,cata is a method of the case classIn, rather than a global
function. This works smoothly for operations consuming a single distinguished instance of
the recursive datatype, such ascata. However, it doesn’t work for operations that produce
rather than consume, and take no instance, such asana; these appear outside the case class
instead. (And of course, it is well-known (Bruceet al., 1995) that it doesn’t work well for
binary methods such as ‘zip’ either.)

In addition to the awkward asymmetry introduced betweencata andana, the associa-
tion of consumer methods with a class introduces an extensibility problem: adding new
consumers, such as monadic map (Meijer & Jeuring, 1995), paramorphism (Meertens,
1992), or idiomatic traversal (Gibbons & Oliveira, 2009), requires modifications to existing
code. Moorset al. (2006) address this second problem through an ‘extensible encod-
ing’, expressed in terms ofvirtual classes—that is, nested classes in a superclass that
are overridable in a subclass. Since Scala does not provide such a construct, this virtual
class encoding has itself to be encoded in terms of type members of the enclosing class,
which are overridable. No such sophistication is needed in the FP approach: a new origami
operator is a completely separate function.

Restricting attention now to the FP approach we describe, how does the Scala imple-
mentation compare with the Haskell one? Scala is syntactically rather more noisy than

Journal of Functional Programming 39

Haskell, for a variety of reasons: the use of parentheses rather than simple juxtaposition
for function application; explicit binding of type variables, for example in indicating that
bimapis parametrized by the four typesa,b,c,d; the lack of eta reduction because of call-
by-value, as discussed above. However, the extra noise is not too distracting—and indeed,
the extra explicitness in precedence might make this kind ofhigher-order datatype-generic
programming more accessible to those not fluent in the language.

On the positive side, the translation is quite direct, and the encoding rather transparent;
the code in Figure 13 is not that much more intimidating than that in Figure 12. Scala even
has some lessons to teach Haskell; for example, the ‘anonymous case analysis’, as used in
the definitions ofbiList andsumList, would be nice syntactic sugar for the Haskell idiom
‘λx→ case x of . . .’.

10 Discussion

10.1 Haskell versus Scala

Scala differs significantly from Haskell, and we were curious to know what were its ad-
vantages and disadvantages when implementing generic programming libraries. This work
was done using the Glasgow Haskell Compiler version 6.10 andScala version 2.7, which
were the latest official releases at the time of writing. However, the languages will keep
evolving, and in the future it is likely that both languages will provide better support for
generic programming. Indeed, the next version (2.8) of the Scala compiler will support
a few features that could have been useful for our work:context bounds, which provide
a compact syntax for implicits;prioratized overlapping implicits, which provide an al-
ternative to overlapping instances; andtype-inference for type constructors. However, for
consistency with the results presented in this paper, we shall not consider these features in
the discussion that follows.

Generally speaking, Haskell has a few advantages over Scala:

Laziness: Some approaches to generic programming rely, one way or another, on laziness.
While laziness comes without effort in Haskell, it does not in Scala, and we need to pay
more attention to evaluation order: we had to adapt the origami definitions in Section 9,
and introduce call-by-name arguments in theRViewconstructor in Figure 5.

Type inference: Haskell has good support for type inference, which helps to reduce the
effort and clutter demanded by generic programming libraries. Scala’s support for type
inference is not as good, and this leads to additional verbosity and complexity of use.

Syntactic clarity: While Scala’s syntax is more elegant than that of Java or C#, it is still
more verbose than Haskell’s. In particular, we have to declare more types in Scala, and
need to write extra type annotations. Also, the syntax for implicits can be a bit unwieldy,
and case classes can be slightly more cumbersome than Haskell’s data declarations.

Purity: Some generic programming approaches have strong theoretical foundations that
provide a good framework for reasoning. However, in a language that does not carefully
control side effects, the properties that one would expect may not hold. Haskell is a
purely functional programming language, which means that functions will not have
silent side-effects (except for non-termination); Scala provides no such guarantees.

40 Bruno Oliveira and Jeremy Gibbons

Higher-ranked types: Some implementations of Haskell provide support for higher-ranked
types, while in Scala they need to be encoded. Because higher-ranked types play a role
in some aspects of DGP, the additional overhead required by the encoding can be a
significant drawback.

On the other hand, Scala has its own advantages:

Open datatypes with case classes: As noted in Section 5, case classes support the easy
addition of new variants to a datatype. As a consequence, we can have an extensible
datatype of type representations, which allows the definition of generic functions with
ad-hoc cases.

Generalized type classes with implicit parameters: In Haskell, type class ‘dictionaries’
are always implicitly passed to functions. However, it is sometimes convenient to ex-
plicitly construct and pass a dictionary (Kahl & Scheffczyk, 2001; Dijkstra & Swierstra,
2005). The ability to override implicit dictionaries is a desirable feature for generic
programming (Löh, 2004, Chapter 8).

Inheritance: Another advantage of Scala is that we can easily reuse generic functions via
inheritance. In Haskell, although we can simulate this formof reuse in several ways,
there is no natural way to do so.

Expressive type system: The combination of subtyping, higher kinds, abstract types, im-
plicit parameters, traits and mixins (among other features) provides Scala with an im-
pressively powerful type system. Although we do not fully exploit the expressivity in
this paper, Oliveira (2007, Chapter 5) shows how Scala’s type system can shine when
implementing modularly extensible generic functions.

Minor conveniences: We found the support for anonymous case analysis (discussedin
Section 9.3) quite neat and useful. Although we seldom need to provide type annotations
in Haskell expressions, they can be quite tricky to get rightwhen they are needed; in
Scala this is easier. Finally, Scala’s implicits can avoid the need for some of the type
classes and instances that would be needed in Haskell (see the discussion in Section 7.7).

10.2 Support for DGP in Scala and Haskell

The most noticeable difference between the Haskell and Scala approaches to DGP is that
type classes and datatypes are essentially two separate mechanisms in Haskell; in contrast,
in Scala, the same mechanism—Scala’s object system—is used, albeit in different ways,
to define standard OO hierarchies and algebraic datatype-like structures.

Figure 17 extends the table presented in Figure 2 to include the approaches presented in
Sections 5 and 6, which can be considered to be the equivalents of the Haskell approaches
in Scala. Specifically, case classes are used to implement the datatype approach in Scala,
while standard OO classes (with implicits) are used to implement the type class approach.
We discuss and summarize the results in the table for the Scala approaches next.

Convenience. Defining and using generic functions with case classes is quite natural, so
this mechanism scores ‘good’ for both aspects of convenience. Compared to Haskell,
in Scala there is an advantage of using datatypes of type representations because the
value of the type representation can be implicit, whereas inHaskell (without resorting

Journal of Functional Programming 41

. . .Haskell.Scala. . .
Datatypes Type classes Case classes Standard classes

Convenience:
Defining generic functions G# G#

Using generic functions G#

Implicit explicit parametrization # #

Extensibility #

First-class generic functions # G# G#

Reuse of generic functions # #
1

G#
2

Exotic types G# G# G#

Fig. 17. Evaluation of the Haskell mechanisms for DGP. Key: =‘good’,G#=‘sufficient’,#=‘poor’
support. Notes: 1) generic functions need to be written using classes rather than function definitions;
2) reuse can be achieved in Scala via inheritance with virtual types.

to type classes) it has to be explicit. Using standard classes and implicits to implement
the type class based approach confers no advantage over Haskell in terms of convenience.
Approaches based on both Haskell’s type classes and Scala’sstandard classes score only
‘sufficient’ for defining generic functions, since there is additional overhead compared to
using a datatype of type representations.

Implicit explicit parametrization. The Scala approaches do well in this respect because
of the implicits mechanism, which allows values to be passedimplicitly or explicitly. In
Haskell, the choice of mechanism determines the choice of parametrization: datatypes
require explicitly passed values, whereas type classes require implicitly passed dictio-
naries. In other words, unlike in Haskell, implicit or explicit parametrization in Scala is
independent of the particular mechanism chosen for implementing the DGP library.

Extensibility. This is another area in which Scala does well. As with the Haskell type
class approach, using Scala classes to define generic functions provides extensibility by
default. However, unlike Haskell, the datatype of type representations in Scala can also be
extensible, since case classes are open. Furthermore, the case class mechanism provides a
safer alternative to open datatypes and functions, preserving the advantages of static typing
and avoiding pattern match failures by using sealed classes.

First-class generic functions. In this area the results are mixed. On the one hand, Scala
does support first-class generic functions, and it is possible to abstract over the type of the
generic function directly in a type-class based approach. On the other hand, Scala does not
provide native support for higher-ranked types, which addscomplexity and verbosity to
generic functions. For this reason Scala only scores ‘sufficient’.

Reuse of generic functions. Scala does well here in comparison to Haskell: inheritance
supports reuse of generic functions quite naturally. In thecase class approach, this support
is quite direct, and can be used effectively to define new generic functions by inheriting
from existing ones. A small inconvenience, though, is that we need to write function
definitions using classes in order to be able to exploit inheritance. It is also possible to
use inheritance to achieve reuse using the standard classesapproach, but nested types and

42 Bruno Oliveira and Jeremy Gibbons

virtual types are required. Such a solution is not presentedhere, but is shown by Oliveira
(2007, Chapter 5). However, this latter solution is rather involved and heavyweight, which
hinders usability. Ultimately, we think that support for inheritance is helpful for generic
programming, and that Scala is worthy of full marks for the case class approach.

Exotic types. This is an area in which Haskell is, for the most part, better than Scala. The
two main reasons are Haskell’s better support for type inference and for higher-ranked
types. Because of that support, exotic types can be used cleanly with the datatype of
type representations approach. In contrast, Scala’s solution is hindered by the additional
verbosity required due to the lack of native support for higher-ranked types and the less
complete type inference. The standard classes approach in Scala has the merit of directly
supporting the solution proposed by Hinze and Peyton Jones (2000), but like the other
Scala solution the cost in terms of usability is quite high. Therefore, in this area, Scala only
scores ‘sufficient’.

10.3 Idiomatic Scala

Throughout this paper, we have been using a functional programming style heavily in-
fluenced by Haskell and somewhat different from conventional Scala. What are the key
techniques in this programming style?

Making the most of type inference. Scala does not support type inference in the same
way that Haskell does. As explained in Section 3.5, in a definition like

def power(x : Int) : Int = twice((y : Int) ⇒ y∗y,x)
the return type ofpowerand type of the lambda-boundy can be inferred, but the type of
the parameterx cannot. Although in this particular case the type annotations are not too
daunting, for some definitions taking several arguments while possibly being implemented
or redefined in subclasses, this can become a burden. A simpletrick can help the com-
piler (at least to try) to infer argument types: use lambda expressions rather than passing
parameters. That is, transform a parametrized method:

def f (x1 : t1, . . . ,xn : tn) : tn+1 = e
into a parameterless method with a higher-order value:

def fT : t1 ⇒ . . . ⇒ tn ⇒ tn+1 = x1 ⇒ . . . ⇒ xn ⇒ e
Then the typet1 ⇒ . . . ⇒ tn ⇒ tn+1 can possibly be inferred, allowing a definition without
type annotations:

def fT = x1 ⇒ . . . ⇒ xn ⇒ e
The main difference betweenf andfT is that the former can be (name) overloaded, while
the latter cannot. As discussed in Section 3.5, name-overloaded definitions pose a chal-
lenge to type-inference. This transformation is used a few times to make the most of type
inference, avoiding cluttering definitions with redundanttype annotations; see for example
the methods ofGenericin Figure 8, andbimapin Figure 13.

Type class programming. As we have seen, type classes can be encoded with implicit
parameters. However, object-oriented classes are more general than type classes, because

Journal of Functional Programming 43

they can contain data. It is possible to mix ideas from traditional OO programming with
ideas inspired by type classes. For example, Moorset al. (2008) define the trait

trait Ord[T] {

def 6 (other: T) : Boolean
}

in order to encode the Haskell type classOrd
class Ord t where

(6) :: t → t → Bool
There is a significant difference between the two approaches: an instance of the traitOrd[T]

will contain data, since theself variable plays the role of the first argument; whereas an
instance of the type classOrd is essentially a dictionary containing a binary operation,with
no value of typet. In this paper, we use the classic Haskell type class approach instead of
the OO approach. As we saw in Section 9, sometimes merging the‘type class’ with the
data can lead to extensibility problems that can be avoided by keeping the two concepts
separate.

Encoding higher-ranked types. Some more advanced Haskell libraries exploit higher-
ranked types (Odersky & Läufer, 1996). Scala does not support higher-ranked types di-
rectly, but these can be easily encoded using a class with a single method that has some
local type arguments. However, this encoding requires a new(named) class, which can
significantly obscure the intent of the code. In this paper, we make use of Scala’s structural
types to avoid most of the clutter of the encoding. The idea issimple: the Haskell definition

func::∀a.(∀b.b→ b) → a→ a
is encoded in Scala as:

def func[a] : {def apply[b] :b⇒ b}⇒ a⇒ a
The type{def apply[b] : b ⇒ b} stands forsomeclass with a methodapply[b] : b ⇒

b. Structural types allow a definition that is nearly as short as the Haskell one. As a
final remark, we note that this encoding makes it very easy to use parameter bounds. For
example, to enforceb<:a it suffices to write

def func[a] : {def apply[b<:a] :b⇒ b}⇒ a⇒ a
If we had used a separate named class, we would have had to parametrize that class with
the extra type bound arguments (Washburn, 2008).

To our knowledge, this is the first time such an encoding for higher-ranked types has
been observed in the literature. We believe that providing primitive support for higher-
ranked types in Scala using this encoding as a basis should befairly simple.

Functional inheritance. In Scala, all functions are objects and, as such, are amenable
to inheritance when it comes to reuse. Unfortunately, whileScala does support the con-
ventional notation of function definition, this notation does not support inheritance. A
definition like:

def func(x : Int) : Int = e
(wheree is an expression that may depend onx) needs to be rewritten as:

case class Funcextends (Int ⇒ Int) {
def apply(x : Int) = e

}

44 Bruno Oliveira and Jeremy Gibbons

Provided that functions are written in this style, then inheritance allows the reuse of func-
tion definitions, as demonstrated in Section 5.3.

10.4 Porting generic programming libraries to Scala

There has been a flurry of recent proposals for generic programming libraries in Haskell
(Cheney & Hinze, 2002; Hinze, 2006; Lämmel & Peyton Jones, 2005; Oliveiraet al., 2006;
Hinzeet al., 2006; Weirich, 2006; Hinze & Löh, 2007; Mitchell & Runciman, 2007; Brown
& Sampson, 2009), all having interesting aspects but none emerging as clearly the best
option. An international committee has been set up to develop a standard generic program-
ming library in Haskell. Their first effort (Rodriguezet al., 2008) is a detailed comparison
of most of the current library proposals, identifying the implementation mechanisms and
the compiler extensions needed.

The majority of the features required by those libraries translate well into Scala; the
approaches investigated in this paper are quite representative of the mechanisms required
by most generic programming libraries. There are, however,some questions about some
of the Haskell features. For example, certain approaches use type class extensions such
asundecidable instances, overlapping instances, andabstraction over type classes, which
rely on sophisticated instance selection algorithms implemented in the latest Haskell com-
pilers; one example is the approach discussed in Section 8. As we have seen, it is possible
to implement such an approach in Scala, but the lack of support for type inference for
higher kinds and something likeoverlapping instancesmeans that additional explicitness
and effort is required in Scala. Therefore, approaches thatmake intensive use of advanced
type class features can be ported, but they may lose some usability in Scala.

Something that Scala does not have is a meta-programming facility. Some of the generic
programming libraries useTemplate Haskell(Sheard & Peyton Jones, 2002) to automati-
cally generate the code necessary for type representations. In Scala, those would need to be
generated manually, or a code generation tool would need to be developed. TheScrap your
Boilerplateapproach (Lämmel & Peyton Jones, 2003) relies on the ability to automatically
derive instances ofData andTypeable; in Scala there is noderiving mechanism, so this
would entail defining instances manually.

11 Conclusions

The goal of this paper was not to promote a particular approach to generic programming.
Instead, we were more interested in investigating how the language mechanisms of Haskell
used in various generic programming techniques could be adapted to Scala. We hope
that this work can serve as a foundation for future development of generic programming
libraries in Scala: all of the approaches discussed in this paper could serve as good starting
points for more complete libraries. Moreover, other approaches can still benefit from the
discussions we present.

As we have argued, Scala has some features that are very useful in a datatype-generic
programming language. We expect that other programming languages (in particular, Haskell)
can learn some lessons from Scala by borrowing these features. Conversely, Haskell has
some features useful for DGP that are not available in Scala,but which would be nice to

Journal of Functional Programming 45

have. Ultimately, we believe that we have pinpointed limitations of some general-purpose
language mechanisms for implementing DGP libraries; hopefully, this will motivate the
development of improved mechanisms or programming languages. Oliveira and Sulzmann
(2008) have already done some preliminary work in that direction by proposing a gener-
alized class system for a Haskell-like language that is partly inspired by Scala, and which
allows both implicit and explicit passing of dictionaries.

Acknowledgements

Some of the material from this paper is partly based on the first author’s DPhil thesis
(Oliveira, 2007, Chapters 2 and 4); particular thanks are due to the DPhil examiners Ralf
Hinze and Martin Odersky for their insightful advice and constructive comments. Adriaan
Moors made many useful suggestions; and the members of the Scala mailing list were
very helpful in answering some questions related to this paper—their input, and guidance
from the anonymous reviewers of theWorkshop on Generic Programmingin 2008 and
of this journal, helped to improve the presentation. The work reported in this paper has
been supported by the UK Engineering and Physical Sciences Research Council grant
Generic and Indexed Programming(EP/E02128X) and the Engineering Research Center
of Excellence Program of Korea Ministry of Education, Science and Technology (MEST) /
Korea Science and Engineering Foundation (KOSEF) grant number R11-2008-007-01002-
0. Some of the work was conducted while the first author was at Oxford University Com-
puting Laboratory.

References

Agrawal, Rakesh, Demichiel, Linda G., & Lindsay, Bruce G. (1991). Static type checking of multi-
methods.Pages 113–128 of: Object oriented programming systems languages and applications.

Brown, Neil C. C., & Sampson, Adam T. (2009). Alloy: Fast generic transformations for Haskell.
Pages 105–116 of: Haskell symposium.

Bruce, Kim, Cardelli, Luca, Castagna, Giuseppe, The Hopkins Object Group, Leavens, Gary T., &
Pierce, Benjamin. (1995). On binary methods.Theory and practice of object systems, 1(3), 221–
242.

Buchlovsky, Peter, & Thielecke, Hayo. (2006). A type-theoretic reconstruction of the Visitor pattern.
Electronic notes in theoretical computer science, 155, 309–329. Mathematical Foundations of
Programming Semantics.

Cheney, James, & Hinze, Ralf. (2002). A lightweight implementation of generics and dynamics.
Pages 90–104 of: Haskell workshop.

Cockett, Robin, & Fukushima, Tom. 1992 (May).About Charity. Department of Computer Science,
University of Calgary.

Cook, William R. (1989).A denotational semantics of inheritance. Ph.D. thesis, Brown University.

Dijkstra, Atze, & Swierstra, S. Doaitse. (2005).Making implicit parameters explicit. Tech. rept.
UU-CS-2005-032. Department of Information and Computing Sciences, Utrecht University.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).Design patterns: Elements of reusable
object-oriented software. Addison-Wesley.

Gibbons, Jeremy. (2003). Origami programming.In: (Gibbons & de Moor, 2003).

Gibbons, Jeremy. (2006). Design patterns as higher-order datatype-generic programs.Pages 1–12
of: Workshop on generic programming.

46 Bruno Oliveira and Jeremy Gibbons

Gibbons, Jeremy, & de Moor, Oege (eds). (2003).The fun of programming. Cornerstones in
Computing. Palgrave Macmillan.

Gibbons, Jeremy, & Oliveira, Bruno C. d. S. (2009). The essence of the Iterator pattern.Journal of
functional programming, 19, 377–402.

Gibbons, Jeremy, & Paterson, Ross. (2009). Parametric datatype-genericity.Pages 85–93 of:Jansson,
Patrik, & Schupp, Sibylle (eds),Workshop on generic programming.

Hall, Cordelia V., Hammond, Kevin, Peyton Jones, Simon L., &Wadler, Philip L. (1996). Type
classes in Haskell.ACM transactions on programming languages and systems, 18(2), 109–138.

Harper, Robert, & Lillibridge, Mark. 1994 (Jan.). A type-theoretic approach to higher-order modules
with sharing.Pages 123–137 of: Principles of programming languages.

Hinze, R., & Peyton Jones, S. (2000). Derivable type classes. Electronic notes in theoretical
computer science, 41(1), 5–35. Haskell Workshop.

Hinze, Ralf. (2000). Polytypic values possess polykinded types. Pages 2–27 of:Backhouse,
Roland, & Oliveira, J. N. (eds),LNCS 1837: Proceedings of the fifth international conference
on mathematics of program construction. Springer-Verlag.

Hinze, Ralf. (2003). Fun with phantom types.In: (Gibbons & de Moor, 2003).

Hinze, Ralf. (2006). Generics for the masses.Journal of functional programming, 16(4-5), 451–483.

Hinze, Ralf, & Jeuring, Johan. (2002). Generic Haskell: Practice and theory.LNCS 2793: Summer
school on generic programming.

Hinze, Ralf, & Löh, Andres. (2007). Generic programming, now! LNCS 4719: Datatype-generic
programming.

Hinze, Ralf, & Löh, Andres. (2009). Generic programming in3D. Science of computer
programming, 74(8), 590–628.

Hinze, Ralf, Löh, Andres, & Oliveira, Bruno C. d. S. (2006).‘Scrap your Boilerplate’ reloaded.
Pages 13–29 of: LNCS 3945: Functional and logic programming.

Hughes, John. (1999). Restricted data types in Haskell. Meijer, Erik (ed), Haskell workshop.
Technical Report UU-CS-1999-28, Utrecht University.

Jansson, Patrik. 2000 (May).Functional polytypic programming. Ph.D. thesis, Computing Science,
Chalmers University of Technology and Göteborg University, Sweden.

Kahl, Wolfram, & Scheffczyk, Jan. (2001). Named instances for Haskell type classes.Pages 77–99
of: Haskell workshop.

Lämmel, Ralf, & Peyton Jones, Simon. (2003). Scrap your boilerplate: A practical design pattern for
generic programming.Pages 26–37 of: Types in language design and implementation.

Lämmel, Ralf, & Peyton Jones, Simon. (2005). Scrap your boilerplate with class: Extensible generic
functions.Pages 204–215 of: International conference on functional programming.

Lämmel, Ralf, Visser, Joost, & Kort, Jan. 2000 (July). Dealing with large bananas.Pages 46–59 of:
Jeuring, Johan (ed),Workshop on generic programming.

Leroy, Xavier. (1994). Manifest types, modules, and separate compilation. Pages 109–122 of:
Principles of programming languages.

Lieberherr, Karl. (1996).Adaptive object-oriented software: The Demeter Method with propagation
patterns. PWS Publishing.

Löh, Andres. (2004).Exploring Generic Haskell. Ph.D. thesis, Utrecht University.

Löh, Andres, & Hinze, Ralf. (2006). Open data types and openfunctions. Pages 133–144 of:
Principles and practice of declarative programming.

McBride, Conor, & Paterson, Ross. (2008). Applicative programming with effects. Journal of
functional programming, 18(1).

Meertens, Lambert. (1992). Paramorphisms.Formal aspects of computing, 4(5), 413–425.

Journal of Functional Programming 47

Meijer, Erik, & Jeuring, Johan. (1995). Merging monads and folds for functional programming.
LNCS 925: Advanced functional programming. Springer-Verlag.

Meijer, Erik, Fokkinga, Maarten, & Paterson, Ross. (1991).Functional programming with bananas,
lenses, envelopes and barbed wire.Pages 124–144 of:Hughes, John (ed),LNCS 523: Functional
programming languages and computer architecture.

Mitchell, Neil, & Runciman, Colin. (2007). Uniform boilerplate and list processing.Pages 49–60
of: Haskell workshop.

Moors, Adriaan. 2007 (June).Code-follows-type programming in Scala. http://www.cs.
kuleuven.be/ ˜ adriaan/?q=cft_intro .

Moors, Adriaan, Piessens, Frank, & Joosen, Wouter. (2006).An object-oriented approach to
datatype-generic programming.Pages 96–106 of: Workshop on generic programming.

Moors, Adriaan, Piessens, Frank, & Odersky, Martin. (2008). Generics of a higher kind.Object-
oriented programming, systems, languages, and applications.

Odersky, Martin. (2006a).An Overview of the Scala programming language (second edition). Tech.
rept. IC/2006/001. EPFL Lausanne, Switzerland.

Odersky, Martin. 2006b (July).Poor man’s type classes. http://lamp.epfl.ch/ ˜ odersky/
talks/wg2.8-boston06.pdf .

Odersky, Martin. 2007a (May).Scala by example. http://scala.epfl.ch/docu/files/
ScalaIntro.pdf .

Odersky, Martin. 2007b (May).The Scala language specification, version 2.4. http://scala.
epfl.ch/docu/files/ScalaReference.pdf .

Odersky, Martin, & Läufer, Konstantin. (1996). Putting type annotations to work.Pages 54–67 of:
Principles of programming languages.

Odersky, Martin, & Zenger, Matthias. (2005). Scalable component abstractions.Pages 41–57 of:
Object oriented programming, systems, languages, and applications.

Odersky, Martin, Zenger, Christoph, & Zenger, Matthias. (2001). Colored local type inference.Pages
41–53 of: Principles of programming languages.

Odersky, Martin, Spoon, Lex, & Venners, Bill. (2008).Programming in Scala: A comprehensive
step-by-step guide. 1st edn. Artima Inc.

Oliveira, Bruno, & Gibbons, Jeremy. (2005). TypeCase: A design pattern for type-indexed functions.
Pages 98–109 of: Haskell workshop. New York, NY, USA: ACM Press.

Oliveira, Bruno C. d. S. (2007).Genericity, extensibility and type-safety in theV ISITOR pattern.
D.Phil. thesis, University of Oxford.

Oliveira, Bruno C. d. S. 2009a (July). Modular visitor components: A practical solution to the
expression families problem.Pages 269–293 of:Drossopoulou, Sophia (ed),23rd European
conference on object oriented programming (ECOOP).

Oliveira, Bruno C. d. S. 2009b (Sept.).Scala for Generic Programmers: Source code. http:
//www.comlab.ox.ac.uk/projects/gip/Scala.tgz .

Oliveira, Bruno C. d. S., & Sulzmann, Martin. 2008 (Apr.).Objects to unify type classes and GADTs.
http://www.comlab.ox.ac.uk/people/Bruno.Oliveira/ob jects.pdf .

Oliveira, Bruno C. d. S., Hinze, Ralf, & Löh, Andres. 2006 (Apr.). Extensible and modular generics
for the masses.Pages 109–138 of: Trends in functional programming.

Oliveira, Bruno C. d. S., Moors, Adriaan, & Odersky, Martin.2010 (October). Type classes as objects
and implicits. Rinard, Martin (ed),Systems, programming, languages and applications: Software
for humanity (SPLASH). To appear.

Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie, & Washburn, Geoffrey. (2006).
Simple unification-based type inference for GADTs.Pages 50–61 of: International conference
on functional programming.

48 Bruno Oliveira and Jeremy Gibbons

Rodriguez, Alexey, Jeuring, Johan, Jansson, Patrik, Gerdes, Alex, Kiselyov, Oleg, & Oliveira, Bruno
C. d. S. (2008). Comparing libraries for generic programming in Haskell.Haskell symposium.

Schärli, Nathanael, Ducasse, Stéphane, Nierstrasz, Oscar, & Black, Andrew. 2003 (July). Traits:
Composable units of behavior.Pages 248–274 of: LNCS 2743: European conference on object-
oriented programming.

Schinz, Michel. 2007 (May).A Scala tutorial for Java programmers. http://scala.epfl.
ch/docu/files/ScalaTutorial.pdf .

Sheard, Tim, & Peyton Jones, Simon. (2002). Template meta-programming for Haskell.Haskell
workshop.

Sulzmann, Martin, & Wang, Meng. (2006). Modular generic programming with extensible
superclasses.Pages 55–65 of: Workshop on generic programming. New York, NY, USA: ACM.

Wadler, Philip. (1993). Monads for functional programming. Program design calculi. Springer-
Verlag.

Wadler, Philip. 1998 (Nov.).The expression problem. Java Genericity Mailing list.http://www.
cse.ohio-state.edu/ ˜ gb/cis888.07g/java-genericity/20 .

Washburn, Geoffrey. 2008 (May). Revisiting higher-rank impredicative polymorphism
in Scala. http://existentialtype.net/2008/05/26/revisiting-hi gher-
rank-impredicative-polymorphism-in-scala/ .

Weirich, Stephanie. (2006). RepLib: a library for derivable type classes.Pages 1–12 of: Haskell
workshop.

