
Extended Abstract: A Functional Derivation
of the Warren Abstract Machine

Maciej Piróg and Jeremy Gibbons

Oxford University Computing Laboratory
firstname.lastname@comlab.ox.ac.uk

Abstract. Based on Danvy et al.’s functional correspondence, we give a
further example of gradual refinement of an interpreter into a known, low-
level abstract machine underlying real-world compilers, by deriving an
abstract model of the Warren Abstract Machine from a simple resolution-
based Prolog interpreter. We show that other well-known functional pro-
gramming techniques (namely, explicit laziness and semi-persistent data
structures) can help to develop abstract machines without detailed ex-
amination of the semantics realised by the interpreter.
Keywords. Abstract machine, defunctionalisation, continuation-passing,
semi-persistent data structures.

1 Introduction

The Warren Abstract Machine [4, 11] (WAM) is a detailed, low-level virtual
machine for execution of Prolog. It has been widely studied and serves as a
foundation for several Prolog implementations. It comes with a great number
of variations that boost efficiency or implement additional language features. It
consists of a translation scheme from Prolog into a set of instructions, a descrip-
tion of an evaluation environment (a heap, stacks, registers), and a collection of
rules defining how each instruction affects the environment.

The most comprehensive study of the WAM and its correctness with respect
to a more intuitive semantics is due to Börger and Rosenzweig [6]. Their study
successfully isolates the WAM evaluation model from the myriad of low-level
technical components, different for different incarnations of the WAM. In this
spirit, we are trying to isolate the WAM evaluation model in the form of an
abstract machine that operates directly on Prolog terms, rather than on a set
of instructions. This way, we maintain a high level of abstraction, leaving a
lot of space for further implementation choices. For example, we concentrate
on WAM control structure and backtracking, without much concern for how
terms are unified and represented in the heap. We start with an evaluator based
on SLD-resolution written in Haskell, and apply meaning-preserving program
transformations to get an abstract model of the WAM in a few simple steps.
Hence, without any heavy formal machinery, we show that the WAM evaluation
model is equivalent to SLD-resolution. We do not provide a complete proof of
equivalence, but all the transformations we perform on the interpreter are either
very intuitive or previously proved correct.

2 Maciej Piróg and Jeremy Gibbons

Our main tool is Danvy et al.’s functional correspondence between evalua-
tors and abstract machines [1], which has previously been used for derivation of
machines for Prolog [5], but not for any as elaborate as the WAM. In deriva-
tions based on functional correspondence, we embed an evaluator in a functional
metalanguage, representing various elements of the language and its semantics
by abstract objects of the metalanguage; for example, we represent functions
in the language by functions in the metalanguage. We convert the evaluator to
continuation-passing style (CPS) and defunctionalise the continuations, making
it less dependent on the semantics of the metalanguage [1–3].

Our observation is that to liberate the evaluator from the metalanguage, said
transformations reify some techniques used to implement the abstract constructs
of the metalanguage. Defunctionalisation replaces functional abstractions with
explicit closures, while CPS conversion creates an explicit call-stack. We may
then extend this repertoire with less elegant, but still useful mechanisms (not
necessarily seen as program transformations), such as efficient implementation
of semi-persistent data structures [7], which, as we will see, enable us to switch
from the persistence-based backtracking present in the evaluator implementing
SLD-resolution to the imperative heap unwinding implemented by the WAM.

In this extended abstract we show only the essential steps of our derivation.
The full source code with more fine-grained transformations is available at the
first author’s web page1.

2 A Prolog interpreter

Program definition. A term is either a variable or an operator with a list of
terms as arguments.

type VarN = String
type OpN = String
data Term = Var VarN | Op OpN [Term]

A substitution is an association list pairing variables and terms. We do not
substitute for variables in terms; instead, we keep one global substitution. Thus,
when we see a variable, we must always look it up in the substitution to determine
whether there is an associated value.

type Sub = [(VarN ,Term)]

We model Prolog programs by means of clauses and predicates. In each predicate,
the arity and the outermost operator in the head of each clause should coincide.
A program is a map from predicate names to predicates. A name in a key should
match the name of the associated predicate (that is, the outermost operator in
heads of all its clauses). We hold the whole Prolog program as a constant value.

data Cls = Cls Term [Term]
type Pred = [Cls]

1 http://www.comlab.ox.ac.uk/people/maciej.pirog/wam.tar.gz

Title Suppressed Due to Excessive Length 3

type Prog = Data.Map.Map OpN Pred
database :: Prog
database = ...

A simple interpreter. The function predicate looks up a proper predicate in the
program. If no such predicate is defined, the whole evaluation fails. To avoid
variable name capture in resolution, the function freshClause generates fresh
variable names. The function mgu computes the most general unifier in the
context of some initial global substitution, and, if the unifier exists, returns the
global substitution extended with the unifier.

predicate :: OpN → Pred
predicate f = case Data.Map.lookup f database of

Nothing → error ("Predicate " ++ f ++ " not in the database")
Just p → p

freshClause :: Integer → Cls → Cls
freshClause n (Cls h tl) = Cls (aux h) (map aux tl) where

aux (Op f ts) = Op f (map aux ts)
aux (Var v) = Var (v ++ "__" ++ show n)

mgu :: Term → Term → Sub → Maybe Sub
mgu t r s = ...

The interpreter computes the first solution to a given query, via lazy evaluation.
The integer argument indicates the current depth of the resolution tree; it is
used solely for generating fresh variable names.

type Qry = [Term]
eval :: Sub → Qry → Integer → Maybe Sub
eval s [] = Just s
eval ((Var) :) = error "Variable as goal"
eval s (g@(Op f) : gs) n = msum (map try (predicate f)) where

try c = let Cls h b = freshClause n c in case mgu g h s of
Nothing → Nothing
Just s ′ → eval s ′ (b ++ gs) (n + 1)

ask :: Qry → Maybe Sub
ask q = eval [] q 0

The first step. To prepare for subsequent transformations, we rewrite the pro-
gram so that it no longer depends on laziness. We cannot look for solutions for
all clauses from a predicate at once and then select one; instead, we traverse the
list of clauses until we find a solution.

Moreover, we make our first transformation, which is the only one inspired
directly by the design of the WAM. Instead of passing the first of the current
goals, g , to try , we store g in the global substitution under a fresh name, which
we pass to try as a ‘pointer’. Then the third clause of eval becomes:

4 Maciej Piróg and Jeremy Gibbons

eval s (g@(Op s) : gs) n = let pg = "TOP" ++ show n
s ′ = (pg , g) : s

in try s ′ gs n pg (predicate s)
try :: Sub → Qry → Integer → VarN → Pred → Maybe Sub
try [] = Nothing
try s gs n pg (c : cs) =

let Cls h b = freshClause n c
in case mgu (Var pg) h s of

Nothing → try s gs n pg cs
Just s ′ → case eval s ′ (b ++ gs) (n + 1) of

Nothing → try s gs n pg cs
j → j

3 Semi-persistent substitution

A data structure is semi-persistent [7] if we can backtrack to its previous ver-
sions, but we never simultaneously keep two different modifications (siblings) of
the same ancestor. Then we may define dedicated data structures which make
some under-the-hood optimisations. Here, we focus our attention on a regular
persistent list used in a semi-persistent way.

Having a list xs, we may create another list by consing an element, obtaining
x : xs, and yet another by consing a different element, obtaining y : xs. Though
x : xs and y : xs are different lists, they share a tail, which is a previous version of
both. If xs is used in a semi-persistent way, after consing y , there is no need to
keep x :xs alive in memory. Consequently, no part of such a list is ever shared with
any other list, except for previous versions. We can see the list as a stand-alone
object, mutable over time by consing new elements and dropping prefixes. As
with any mutable object, we can encode it as a ‘global’ value, threaded through
functions in exactly the same way that stateful computations treat state.

In the case of association lists with no duplicate keys, we may also reify
pointers to previous versions as keys of the first elements of appropriate tails.
Backtracking then corresponds to dropping the prefix before the right key.

Note that mgu and eval may only extend the global substitution, and if
eval in try returns Nothing , we use the ancestor of the substitution from before
the unification. So, we may encode the substitution as a semi-persistent data
structure, with explicit backtracking provided by the function unwind :

unwind :: Sub → VarN → Sub
unwind [] = error "Wrong trail address"
unwind h@((v ,) : t) s | v ≡ s = h

| otherwise = unwind t s

Since we want the substitution to be a state now, it must always be returned by
each function of the interpreter, successful or not. Thus, we change the return
type of the functions from Maybe Sub to (Res,Sub), where

data Res = Flr | Scs

Title Suppressed Due to Excessive Length 5

Apart from appropriate refactoring of return values, this impacts mostly on the
second clause for try :

try s gs n pg (c : cs) =
let Cls h b = freshClause n c

(trailPtr ,) : = s
in case mgu (Var pg) h s of

(Flr , s ′)→ try (unwind s ′ trailPtr) gs n pg cs
(Scs, s ′)→ case eval s ′ (b ++ gs) (n + 1) of

(Flr , s ′′)→ try (unwind s ′′ trailPtr) gs n pg cs
j → j

To assure that the matching of trailPtr never fails, we start with a substitution
which holds a dummy variable that stands for the bottom of the substitution:

ask :: Qry → (Res,Sub)
ask q = eval [("BOTTOM",⊥)] q 0

4 CPS transformation and defunctionalisation

Now we can CPS-transform the functions with return type (Res,Sub), so that
they take a continuation as an additional argument. Instead of returning a value
directly, the functions either tail-call themselves or apply the continuation to the
result. Since Res is an enumeration of two elements, the type (Res,Sub)→k is
isomorphic to (Sub→k ,Sub→k)—success and failure continuations [10]. Apart
from the obvious changes to mgu:

mgu :: Term → Term → Sub → (Sub→k)→ (Sub→k)→ k
mgu t r s ks kf = case ... of

(Scs, s)→ ks s
(Flr , s)→ kf s

the most significant changes are to the try function:

try :: Sub → Qry → Integer → VarN → Pred → (Sub→k)→ (Sub→k)→ k
try s [] kf = kf s
try s gs n pg (c : cs) ks kf =

let Cls h b = freshClause n c
(trailPtr ,) : = s

in mgu (Var pg) h s
(λs ′ → eval s ′ (b ++ gs) (n + 1)

(λs ′′ → ks s ′′)
(λs ′′ → try (unwind s ′′ trailPtr) gs n pg cs ks kf))

(λs ′ → try (unwind s ′ trailPtr) gs n pg cs ks kf)

Inlining the success continuation. In the previous interpreter, mgu is used in
one place only, so we know exactly the continuations it is applied to. Also,
the failure continuation for eval in try is the same as the failure continuation

6 Maciej Piróg and Jeremy Gibbons

for mgu. So, instead of giving mgu its complicated success continuation, we
can rewrite it so that in case of success it calls eval directly with try ’s success
continuation and mgu’s failure continuation. As we may notice, the original
mgu’s success continuation is the only non-identity success continuation in the
whole interpreter. Since we managed to inline it into mgu, we may get rid of the
success continuations altogether, and replace them with direct returns.

mgu :: Sub → Qry → Integer → VarN → Term → (Sub→Sub)→ Sub
mgu s gs n pg t kf = case ... of

(Scs, s ′)→ eval s ′ gs (n + 1) kf
(Flr , s ′)→ kf s ′

try :: Sub → Qry → Integer → VarN → Pred → (Sub→Sub)→ Sub
try s [] kf = kf s
try s gs n pg (c : cs) kf =

let Cls h b = freshClause n c
(trailPtr ,) : = s

in mgu s (b ++ gs) n pg h
(λs ′ → try (unwind s ′ trailPtr) gs n pg cs kf)

Defunctionalisation of continuations. We replace each construction of a fail-
ure continuation with an explicit closure, which stores all free variables of the
continuation, and each application of a continuation with a call to apply .

data BStack = Btm | Frm Qry Integer VarN Pred VarN BStack
apply :: BStack → (Sub→Sub)
apply Btm = error "No"
apply (Frm gs n pg cs trailPtr kf) s ′ =

try (unwind s ′ trailPtr) gs n pg cs kf
try :: Sub → Qry → Integer → VarN → Pred → BStack → Sub
try s [] kf = apply kf s
try s gs n pg (c : cs) kf =

let Cls h b = freshClause n c
(trailPtr ,) : = s

in mgu s (b ++ gs) n pg h (Frm gs n pg cs trailPtr kf)
ask :: Qry → Sub
ask q = eval [("BOTTOM",⊥)] q 0 Btm

5 Comparison with a realistic WAM

In this section we compare our abstract machine with the exemplary low-level
WAM implementation described by Aı̈t-Kaci [4].

Queries. The code compiled from the Prolog query and bodies of clauses (the
put... instructions) is mirrored by the eval function. The basic idea is to put
the terms in the heap (represented here by the global substitution) and then the
clauses from the suitable predicates will try to unify them with their heads.

Title Suppressed Due to Excessive Length 7

Predicates. The code for a predicate (the try... and trust... instructions) is
mirrored by the try function. Each clause first pushes a backtrack frame on the
stack, which will allow the system to go back to the current state to try another
clause, and then enters the code for the head of the clause.

Clauses. The code for the head of a clause tries to unify the head with an
appropriate term in the heap (the get... and unify... instructions). If it
succeeds, we continue with the body of the clause or the next goal from the
stack. Otherwise, we backtrack. This is reflected by the mgu function.

Backtracking. If the unification fails at some point, the WAM calls its backtrack
subroutine, which restores a previous state using data stored in the top backtrack
frame on the stack, and jumps to code which tries to unify an another potentially
matching clause. This is reflected by the apply function.

The heap and the trail. Our global substitution models the WAM heap as an as-
sociation list, enabling backtracking based on its structure. We could use a more
elaborate data structure, for example a map implemented using binary-search
trees. To use it as semi-persistent state, we must implement some backtracking
mechanism, for example keeping a stack of variables for which we substitute, a
trail. To backtrack to a previous state, we need to revert the appropriate front of
the trail. Our model shows that the exact heap implementation is not important
for the control structure of the WAM. We just need to write and unify terms, and
take a small piece of information to store on a stack and then use to backtrack
to a previous version of the heap.

The backtrack stack. In the WAM, if the query or body of a clause consists of
more than one goal, we put a pointer to the code for other goals on the stack
before entering the code for the first goal. After entering a pointer from the stack,
we cannot always pop it, since it may be needed again after backtracking. That
is why we put backtrack frames on the same stack, and do not pop pointers to
goals if there is a backtrack frame above them. Thus, there may be goals on the
stack that are already satisfied, and in real implementations we keep both goals
and backtrack frames as linked lists to bypass the satisfied goals when looking
for a new goal, or all the goals in between when looking for another backtrack
frame. The careful analysis of this fragile ecosystem of the WAM stack may
seem difficult at first. Our model reveals that this complicated structure is just
an implementation of a stack (BStack) of stacks (Qry). Each backtrack frame
holds the complete list of goals to be satisfied after backtracking, but goals may
be shared between different frames. In the WAM, the sharing is implemented by
linked lists.

The goal stack. Our goal stack seems crude in comparison to WAM goal man-
agement. The problem is that when trying a clause, our model puts its whole
body on the stack, even before we check whether the head of the clause unifies
with the current goal. The WAM delays this kind of stack operation as much

8 Maciej Piróg and Jeremy Gibbons

as possible, which means that we push a single pointer to the next goal just
before dealing with the previous one. For instance, if the body of the clause is
[g1, g2, g3], before evaluation of g1, we push a single pointer to the code for g2

(and not two pointers to g2 and g3), and then it is the job of g2 to push a pointer
to g3 before evaluation. Of course this is all done after the unification of the
head of the clause.

It is easy to move the goal management after the unification. We just need
to give mgu the whole clause as an argument (not only its head) and push
the body onto the stack after unification of the head. It would not violate the
correspondence with the WAM, since both eval and mgu reflect code created for
the whole clause. It seems much more difficult to push goals one by one, and not
all the goals from the body at once. The solution comes as yet another technique
used by functional programmers: explicit laziness.

In strict languages, the cost of concatenation of two lists, say xs and ys, is
linear in the length of xs, because we need to rebuild it in order to connect its
last element with ys. The trick to avoid this is to traverse xs only when it is really
needed. Thus, ys is represented as a list of thunks containing lists to be traversed,
via type LList a = [[a]]; then ++, head and tail can all be implemented in
constant time. From the point of view of the datatype interface, we still just
pop goals from the stack and concatenate bodies of clauses. Hence, we need
no conceptual changes in the interpreter, just some syntactic adjustments. But
inlining the exact definitions of operations on LLists reveals that concatenation
of a body [g1, g2, g3] to the goal stack is in reality pushing a single element
[g1, g2, g3], and when we want to pop the soon-to-be-satisfied goal g1, the tail
function removes this element and pushes [g2, g3] instead. That is exactly the
WAM behaviour; we just need to think of elements of the goal stack as pointers
to tails of the bodies of the clauses, not individual goals.

Argument registers. The outermost operator in the head of each clause of a
predicate is the same as the name of the predicate in the program, so there is
no reason to compare it to the outermost operator in the current goal during
unification: it always matches. We can optimise the evaluation by writing only
the arguments of the current goal in the substitution, and give them to try using
some set of registers, instead of the single register pg . This is an optimisation that
originates on the level of the interpreter and does not require any understanding
of the WAM. Moreover, it can be almost forced by a more precise program
representation, representing clauses with data Cls = Cls [Term] [Term], so
that we hold the head of a clause as a list of its arguments; we no longer need
the outermost operator, since it is equivalent to the name of the predicate.

6 Conclusion and future work

We present a derivation of a model of the WAM from a simple Prolog interpreter.
We could obtain a more precise model with the same method simply by tweaking
the interpreter and the definition of Prolog programs. For a further example, we

Title Suppressed Due to Excessive Length 9

may avoid pushing a backtrack frame for the last clause of a predicate by using
a more elaborate datatype for clauses, with an explicit constructor for the last
element. Many such optimisations can be expressed on the level of interpreter,
including tail-calls, the optimised treatment of lists, or switching on atoms.

It would be interesting to build an instruction set for our model and compare
it to that of the WAM. We know all the possible goals in eval (up to fresh variable
names) and all the possible clauses for try , as they are always parts of the original
program, so they may be easily encoded as instructions. It would also be possible
to formalise our derivation in a proof system like Coq. This may lead to a novel
construction of a certified Prolog compiler—the existing developments are just
formalisations of the proof by Börger and Rosenzweig [8, 9].

Acknowledgements. We thank Dariusz Biernacki for helpful comments and point-
ers to related work. This work was partially supported by UK EPSRC grant
Reusability and Dependent Types.

References

1. Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: A functional correspondence
between evaluators and abstract machines. In: Miller, D. (ed.) Principles and Prac-
tice of Declarative Programming. pp. 8–19 (2003)

2. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between call-
by-need evaluators and lazy abstract machines. Inf. Process. Lett. 90(5), 223–232
(2004)

3. Ager, M.S., Danvy, O., Midtgaard, J.: A functional correspondence between
monadic evaluators and abstract machines for languages with computational ef-
fects. Theor. Comput. Sci. 342(1), 149–172 (2005)

4. Aı̈t-Kaci, H.: Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press
(1991)

5. Biernacki, D., Danvy, O.: From interpreter to logic engine by defunctionalization.
In: Bruynooghe, M. (ed.) Logic Based Program Synthesis and Transformation.
LNCS, vol. 3018, pp. 143–159 (2003)

6. Börger, E., Rosenzweig, D.: The WAM—definition and compiler correctness. In:
Logic Programming: Formal Methods and Practical Applications, pp. 20–90. Else-
vier (1995)

7. Conchon, S., Filliâtre, J.C.: Semi-persistent data structures. In: Programming Lan-
guages and Systems. LNCS, vol. 4960, pp. 322–336 (2008)

8. Pusch, C.: Verification of compiler correctness for the WAM. In: Theorem Proving
in Higher Order Logics. pp. 347–362. Springer-Verlag (1996)

9. Schellhorn, G., Ahrendt, W.: The WAM case study: Verifying compiler correctness
for Prolog with KIV. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction —
A Basis for Applications, pp. 165–194. Kluwer, Dordrecht (1998)

10. Wand, M., Vaillancourt, D.: Relating models of backtracking. In: International
Conference on Functional Programming. pp. 54–65 (2004)

11. Warren, D.H.D.: An abstract Prolog instruction set. Tech. rep., SRI International,
Menlo Park (1983)

10 Maciej Piróg and Jeremy Gibbons

Appendix: Haskell notation

We have used the notation of the Haskell programming language throughout.
For the benefit of reviewers who may not be familiar with Haskell, this appendix
presents a brief summary of the important points—assuming familiarity with
functional programming in general, but not Haskell in particular.

– Haskell’s semantics is lazy, or call-by-need: arguments to functions are not
evaluated at call time, but only when their value is needed to make further
progress, and moreover, multiple copies of an argument in a function body
are shared, so that no argument is evaluated more than once. In particular,
list cons is lazy; one may define a (perhaps infinitely) long list, but look
at only the first few elements, and then the remaining elements are never
evaluated.

– As a lexical rule, identifiers with an initial lowercase letter are used for type-
and value variables, and identifiers with an initial uppercase letter for type-
and constructor names.

– The type expression [a] denotes the type of (finite or infinite) lists, with
elements of type a; the constructors are [] (‘nil’) and : (‘cons’); there is a
shorthand [1, 2, 3] for enumerating the elements of a list, and the operator
++ appends two lists.

– The keyword type introduces a new synonym for an existing type; data
declares a new algebraic datatype—typically with multiple variants, each
variant having a constructor and zero or more arguments. For example, the
standard prelude provides a datatype data Maybe a = Just a | Nothing
of ‘optional values’; we also use the library function msum :: [Maybe a] →
Maybe a, which takes a list of optional values and returns Just the first one
present, or Nothing if none are.

– There is a module Data.Map in the standard library, which provides a
datatype Map of finite mappings, and (among many other functions) an
operation lookup of type k → Map k a → Maybe a (for which the key type
k has to provide an ordering).

– In ‘patterns’ on the left-hand side of function definitions, is a wildcard, and
@ allows matches against the same value; so matching xs@(y : ys) against
the list [1, 2, 3] binds xs = [1, 2, 3] but also binds y = 1 and ys = [2, 3].

– The binary comparison operator ≡ yields a boolean result (in contrast to =,
which is used only in definitions), and ⊥ denotes the undefined value.

Title Suppressed Due to Excessive Length 11

Appendix: full versions of programs

For reasons of space, we have been constrained to presenting in the body of the
paper only the programs fragments with significant changes for each of the trans-
formation steps. For ease of reading, this appendix presents fuller definitions.

The first step

The transformation on page 3 eliminates the dependency on lazy evaluation,
yielding the following definitions.

eval :: Sub → Qry → Integer → Maybe Sub
eval s [] = Just s
eval ((Var) :) = error "Variable as goal"
eval s (g@(Op s) : gs) n = let pg = "TOP" ++ show n

s ′ = (pg , g) : s
in try s ′ gs n pg (predicate s)

try :: Sub → Qry → Integer → VarN → Pred → Maybe Sub
try [] = Nothing
try s gs n pg (c : cs) =

let Cls h b = freshClause n c
in case mgu (Var pg) h s of

Nothing → try s gs n pg cs
Just s ′ → case eval s ′ (b ++ gs) (n + 1) of

Nothing → try s gs n pg cs
j → j

12 Maciej Piróg and Jeremy Gibbons

Semi-persistent substitutions

By explicitly managing the backtracking, we can make the substitution data
structure semi-persistent, as described in Section 3. That leads to the following
definitions.

mgu :: Term → Term → Sub → (Res,Sub)
mgu t r s = ...

eval :: Sub → Qry → Integer → (Res,Sub)
eval s [] = (Scs, s)
eval ((Var) :) = error "Variable as goal"
eval s (g@(Op s) : gs) n = let pg = "TOP" ++ show n

s ′ = (pg , g) : s
in try s ′ gs n pg (predicate s)

try :: Sub → Qry → Integer → VarN → Pred → (Res,Sub)
try s [] = (Flr , s)
try s gs n pg (c : cs) =

let Cls h b = freshClause n c
(trailPtr ,) : = s

in case mgu (Var pg) h s of
(Flr , s ′)→ try (unwind s ′ trailPtr) gs n pg cs
(Scs, s ′)→ case eval s ′ (b ++ gs) (n + 1) of

(Flr , s ′′)→ try (unwind s ′′ trailPtr) gs n pg cs
j → j

Title Suppressed Due to Excessive Length 13

Explicit success and failure continuations

The CPS transformation described in Section 4 leads to versions of the inter-
preter that explicitly manage success and failure continuations.

mgu :: Term → Term → Sub → (Sub→k)→ (Sub→k)→ k
mgu t r s ks kf = case ... of

(Scs, s)→ ks s
(Flr , s)→ kf s

eval :: Sub → Qry → Integer → (Sub→k)→ (Sub→k)→ k
eval s [] ks kf = ks s
eval ((Var) :) ks kf = error "Variable as goal"
eval s (g@(Op s) : gs) n ks kf = let pg = "TOP" ++ show n

s ′ = (pg , g) : s
in try s ′ gs n pg (predicate s) ks kf

try :: Sub → Qry → Integer → VarN → Pred → (Sub→k)→ (Sub→k)→ k
try s [] kf = kf s
try s gs n pg (c : cs) ks kf =

let Cls h b = freshClause n c
(trailPtr ,) : = s

in mgu (Var pg) h s
(λs ′ → eval s ′ (b ++ gs) (n + 1)

(λs ′′ → ks s ′′)
(λs ′′ → try (unwind s ′′ trailPtr) gs n pg cs ks kf))

(λs ′ → try (unwind s ′ trailPtr) gs n pg cs ks kf)
ask :: Qry → Sub
ask q = eval [("BOTTOM",⊥)] q 0 id (const (error "No"))

14 Maciej Piróg and Jeremy Gibbons

Inlining the success continuation

On page 6 we showed how to streamline the continuation-passing interpreter,
eliminating the success continuations.

mgu :: Sub → Qry → Integer → VarN → Term → (Sub→Sub)→ Sub
mgu s gs n pg t kf = case ... of

(Scs, s ′)→ eval s ′ gs (n + 1) kf
(Flr , s ′)→ kf s ′

eval :: Sub → Qry → Integer → (Sub→Sub)→ Sub
eval s [] kf = s
eval ((Var) :) kf = error "Variable as goal"
eval s (g@(Op s) : gs) n kf = let pg = "TOP" ++ show n

s ′ = (pg , g) : s
in try s ′ gs n pg (predicate s) kf

try :: Sub → Qry → Integer → VarN → Pred → (Sub→Sub)→ Sub
try s [] kf = kf s
try s gs n pg (c : cs) kf =

let Cls h b = freshClause n c
(trailPtr ,) : = s

in mgu s (b ++ gs) n pg h
(λs ′ → try (unwind s ′ trailPtr) gs n pg cs kf)

ask :: Qry → Sub
ask q = eval [("BOTTOM",⊥)] q 0 (const (error "No"))

Title Suppressed Due to Excessive Length 15

Defunctionalisation

Finally, on page 6 we defunctionalised the failure continuations using the datatype
BStack .

data BStack = Btm
| Frm Qry Integer VarN Pred VarN BStack

apply :: BStack → (Sub→Sub)
apply Btm = error "No"
apply (Frm gs n pg cs trailPtr kf) s ′ =

try (unwind s ′ trailPtr) gs n pg cs kf
mgu :: Sub → Qry → Integer → VarN → Term → BStack → Sub
mgu s gs n pg t kf = case ... of

(Scs, s ′)→ eval s ′ gs (n + 1) kf
(Flr , s ′)→ apply kf s ′

eval :: Sub → Qry → Integer → BStack → Sub
eval s [] kf = s
eval ((Var) :) kf = error "Variable as goal"
eval s (g@(Op s) : gs) n kf = let pg = "TOP" ++ show n

s ′ = (pg , g) : s
in try s ′ gs n pg (predicate s) kf

try :: Sub → Qry → Integer → VarN → Pred → BStack → Sub
try s [] kf = apply kf s
try s gs n pg (c : cs) kf =

let Cls h b = freshClause n c
(trailPtr ,) : = s

in mgu s (b ++ gs) n pg h (Frm gs n pg cs trailPtr kf)
ask :: Qry → Sub
ask q = eval [("BOTTOM",⊥)] q 0 Btm

