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The linear system

The Problem

We want to solve Ax = b where[
A BT

B −C

]
︸ ︷︷ ︸

A
(1)

with A symmetric and positive definite and C symmetric positive semi-
definite.



Motivating Example – The Bramble-Pasciak CG
We consider saddle point problem

A =

[
A BT

B −C

]
with a block-triangular preconditioner

P =

[
A0 0
B −I

]
.

The preconditioned matrix

Â = P−1A =

[
A−1

0 A A−1
0 BT

BA−1
0 A− B BA−1

0 BT + C

]
is self-adjoint and positive definite under certain conditions imposed on
A0 in the inner product defined by

H =

[
A− A0 0

0 I

]
.

Original paper (Cited 181 times on June 6th 2007)!



So why the heck is this useful?

Â is nonsymmetric and solvers would be gmres qmr bicg ...

BUT

Â is self-adjoint in H and we can use cg or minres

AND

in every step we minimize the error

‖ei‖H bA
over

x0 +Ki (P−1r0, Â).



Self-adjointness

We assume
〈·, ·〉H : Rn × Rn → R

to be a symmetric bilinear form or an inner product where

〈x , y〉H = xTHy .

A matrix A ∈ Rn×n is self-adjoint in 〈·, ·〉H iff

〈Ax , y〉H = 〈x ,Ay〉H for all x , y .

Self-adjointness of the matrix A in 〈·, ·〉H thus means that

xTATHy = 〈Ax , y〉H = 〈x ,Ay〉H = xTHAy

for all x , y so that
ATH = HA

is the basic relation for self-adjointness of A in 〈·, ·〉H.



Basic properties I

Lemma 1
If A1 and A2 are self-adjoint in 〈·, ·〉H then for any α, β ∈ R, αA1 + βA2

is self-adjoint in 〈·, ·〉H.

Lemma 2
If A is self-adjoint in 〈·, ·〉H1 and in 〈·, ·〉H2 then A is self-adjoint in
〈·, ·〉αH1+βH2 for every α, β ∈ R.

Lemma 3
For symmetric A, Â = P−1A is self-adjoint in 〈·, ·〉H if and only if
P−TH is self-adjoint in 〈·, ·〉A.
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Basic properties II

Lemma 4
If P1 and P2 are left preconditioners for the symmetric matrix A for
which symmetric matrices H1 and H2 exist with P−1

1 A self-adjoint in
〈·, ·〉H1 and P−1

2 A self-adjoint in 〈·, ·〉H2 and if

αP−T
1 H1 + βP−T

2 H2 = P−T
3 H3

for some matrix P3 and some symmetric matrix H3 then P−1
3 A is

self-adjoint in 〈·, ·〉H3 .

This Lemma shows that if we can find such a splitting we have found a
new preconditioner and a bilinear form in which the matrix is self-adjoint.

(St. & Wathen 2007, Oxford preprint).



Some examples–Bramble Pasciak CG

Introduced by Bramble and Pasciak (1988) it is a widely used CG
technique with the preconditioner

P−1 =

[
A−1

0 0
BA−1

0 −I

]
and inner product matrix

H =

[
A− A0 0

0 I

]
.



Some examples–BP with Schur complement preconditioner

For the Bramble-Pasciak technique an extensions, see Klawonn (1998),
Meyer et al. (2001), Simoncini (2001) include the preconditioner

P−1 =

[
A−1

0 0
S−1

0 BA−1
0 −S−1

0

]
where S0 is a Schur complement preconditioner. The inner product then
becomes

H =

[
A− A0 0

0 S0

]
.



Some examples–Benzi-Simoncini CG (C = 0)

Introduced by Benzi and Simoncini (2006) it is an extension to the CG
method of Fischer et. al. (1998) with the preconditioner

P−1 =

[
I 0
0 −I

]
and inner product matrix

H =

[
A− γI BT

B γI

]



Some examples–Extensions for C 6= 0

The Benzi and Simoncini technique was extended by Liesen (2006) where
the inner product matrix is changed to

H =

[
A− γI BT

B γI − C

]
.



Combination preconditioning

Lemma 4 shows that if we can find P3 and H3 such that

αP−T
1 H1 + βP−T

2 H2 = P−T
3 H3

a new preconditioner and bilinear form are found. We want to combine
the Bramble-Pasciak and the Benzi-Simoncini technique which gives

αP−T
1 H1+βP−T

2 H2 =

[
(αA−1

0 + βI )A− (α + βγ)I (αA−1
0 + βI )BT

−βB −(α + βγ)I

]
.



Combination preconditioning

One possibility for a splitting of αP−T
1 H1 + βP−T

2 H2 is given by

P−T
3 =

[
αA−1

0 + βI 0
0 −βI

]
as the new preconditioner and by

H3 =

[
A− (α + βγ)(αA−1

0 + βI )−1 BT

B α+βγ
β I

]
.

the symmetric matrix defining a bilinear form.



Numerical Experiments

Figure: Combination preconditioning with α = 1/2 and β = 1/2 compared to
Bramble-Pasciak and Benzi-Simoncini cg .



Numerical Experiments

Figure: Combination preconditioning with α = 15 and β = 0.1 compared to
Bramble-Pasciak and Benzi-Simoncini cg .



Conclusions

� We provided insight in how preconditioners for saddle point problems
can be combined.

� The basic analysis holds also for other classes of matrices.

� This is a more theoretical analysis but there might be applications
where such techniques can be exploited.
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More details in Andy’s talk!


