Combination preconditioning and self-adjointness in non-standard inner products with application to saddle point problems

Martin Stoll \& Andy Wathen

22nd BIENNIAL CONFERENCE ON NUMERICAL ANALYSIS UNIVERSITY OF DUNDEE,SCOTLAND, UK

The linear system

The Problem
We want to solve $\mathcal{A} x=b$ where

$$
\underbrace{\left[\begin{array}{cc}
A & B^{T} \tag{1}\\
B & -C
\end{array}\right]}_{\mathcal{A}}
$$

with A symmetric and positive definite and C symmetric positive semidefinite.

Motivating Example - The Bramble-Pasciak CG

We consider saddle point problem

$$
\mathcal{A}=\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]
$$

with a block-triangular preconditioner

$$
\mathcal{P}=\left[\begin{array}{cc}
A_{0} & 0 \\
B & -I
\end{array}\right] .
$$

The preconditioned matrix

$$
\widehat{\mathcal{A}}=\mathcal{P}^{-1} \mathcal{A}=\left[\begin{array}{cc}
A_{0}^{-1} A & A_{0}^{-1} B^{T} \\
B A_{0}^{-1} A-B & B A_{0}^{-1} B^{T}+C
\end{array}\right]
$$

is self-adjoint and positive definite under certain conditions imposed on A_{0} in the inner product defined by

$$
\mathcal{H}=\left[\begin{array}{cc}
A-A_{0} & 0 \\
0 & I
\end{array}\right] .
$$

Original paper (Cited 181 times on June 6th 2007)!

So why the heck is this useful?

$\widehat{\mathcal{A}}$ is nonsymmetric and solvers would be GMRES QMR BICG ... BUT
$\widehat{\mathcal{A}}$ is self-adjoint in \mathcal{H} and we can use CG or MINRES

AND

in every step we minimize the error

$$
\left\|e_{i}\right\|_{\mathcal{H} \widehat{\mathcal{A}}}
$$

over

$$
x_{0}+\mathcal{K}_{i}\left(\mathcal{P}^{-1} r_{0}, \widehat{\mathcal{A}}\right)
$$

Self-adjointness

We assume

$$
\langle\cdot, \cdot\rangle_{\mathcal{H}}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

to be a symmetric bilinear form or an inner product where

$$
\langle x, y\rangle_{\mathcal{H}}=x^{T} \mathcal{H} y .
$$

A matrix $\mathcal{A} \in \mathbb{R}^{n \times n}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ iff

$$
\langle\mathcal{A} x, y\rangle_{\mathcal{H}}=\langle x, \mathcal{A} y\rangle_{\mathcal{H}} \quad \text { for all } x, y
$$

Self-adjointness of the matrix \mathcal{A} in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ thus means that

$$
x^{T} \mathcal{A}^{\top} \mathcal{H} y=\langle\mathcal{A} x, y\rangle_{\mathcal{H}}=\langle x, \mathcal{A} y\rangle_{\mathcal{H}}=x^{\top} \mathcal{H} \mathcal{A} y
$$

for all x, y so that

$$
\mathcal{A}^{\top} \mathcal{H}=\mathcal{H} \mathcal{A}
$$

is the basic relation for self-adjointness of \mathcal{A} in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$.

Basic properties I

Lemma 1
If \mathcal{A}_{1} and \mathcal{A}_{2} are self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ then for any $\alpha, \beta \in \mathbb{R}, \alpha \mathcal{A}_{1}+\beta \mathcal{A}_{2}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$.

Lemma 2

If \mathcal{A} is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{1}}$ and in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{2}}$ then \mathcal{A} is self-adjoint in $\langle\cdot, \cdot\rangle_{\alpha \mathcal{H}_{1}+\beta \mathcal{H}_{2}}$ for every $\alpha, \beta \in \mathbb{R}$.

Lemma 3
For symmetric $\mathcal{A}, \widehat{\mathcal{A}}=\mathcal{P}^{-1} \mathcal{A}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ if and only if $\mathcal{P}^{-T} \mathcal{H}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{A}}$.

Basic properties I

Lemma 1
If \mathcal{A}_{1} and \mathcal{A}_{2} are self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ then for any $\alpha, \beta \in \mathbb{R}, \alpha \mathcal{A}_{1}+\beta \mathcal{A}_{2}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$.

Lemma 2
If \mathcal{A} is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{1}}$ and in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{2}}$ then \mathcal{A} is self-adjoint in $\langle\cdot, \cdot\rangle_{\alpha \mathcal{H}_{1}+\beta \mathcal{H}_{2}}$ for every $\alpha, \beta \in \mathbb{R}$.

Lemma 3
For symmetric $\mathcal{A}, \widehat{\mathcal{A}}=\mathcal{P}^{-1} \mathcal{A}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ if and only if $\mathcal{P}^{-T} \mathcal{H}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{A}}$.

Basic properties I

Lemma 1
If \mathcal{A}_{1} and \mathcal{A}_{2} are self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ then for any $\alpha, \beta \in \mathbb{R}, \alpha \mathcal{A}_{1}+\beta \mathcal{A}_{2}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$.

Lemma 2
If \mathcal{A} is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{1}}$ and in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{2}}$ then \mathcal{A} is self-adjoint in $\langle\cdot, \cdot\rangle_{\alpha \mathcal{H}_{1}+\beta \mathcal{H}_{2}}$ for every $\alpha, \beta \in \mathbb{R}$.

Lemma 3
For symmetric $\mathcal{A}, \widehat{\mathcal{A}}=\mathcal{P}^{-1} \mathcal{A}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ if and only if $\mathcal{P}^{-T} \mathcal{H}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{A}}$.

Basic properties II

Lemma 4

If \mathcal{P}_{1} and \mathcal{P}_{2} are left preconditioners for the symmetric matrix \mathcal{A} for which symmetric matrices \mathcal{H}_{1} and \mathcal{H}_{2} exist with $\mathcal{P}_{1}^{-1} \mathcal{A}$ self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{1}}$ and $\mathcal{P}_{2}^{-1} \mathcal{A}$ self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{2}}$ and if

$$
\alpha \mathcal{P}_{1}^{-T} \mathcal{H}_{1}+\beta \mathcal{P}_{2}^{-T} \mathcal{H}_{2}=\mathcal{P}_{3}^{-T} \mathcal{H}_{3}
$$

for some matrix \mathcal{P}_{3} and some symmetric matrix \mathcal{H}_{3} then $\mathcal{P}_{3}^{-1} \mathcal{A}$ is self-adjoint in $\langle\cdot, \cdot\rangle_{\mathcal{H}_{3}}$.
This Lemma shows that if we can find such a splitting we have found a new preconditioner and a bilinear form in which the matrix is self-adjoint.
(St. \& Wathen 2007, Oxford preprint).

Some examples-Bramble Pasciak CG

Introduced by Bramble and Pasciak (1988) it is a widely used CG technique with the preconditioner

$$
\mathcal{P}^{-1}=\left[\begin{array}{cc}
A_{0}^{-1} & 0 \\
B A_{0}^{-1} & -I
\end{array}\right]
$$

and inner product matrix

$$
\mathcal{H}=\left[\begin{array}{cc}
A-A_{0} & 0 \\
0 & l
\end{array}\right] .
$$

Some examples-BP with Schur complement preconditioner

For the Bramble-Pasciak technique an extensions, see Klawonn (1998), Meyer et al. (2001), Simoncini (2001) include the preconditioner

$$
\mathcal{P}^{-1}=\left[\begin{array}{cc}
A_{0}^{-1} & 0 \\
S_{0}^{-1} B A_{0}^{-1} & -S_{0}^{-1}
\end{array}\right]
$$

where S_{0} is a Schur complement preconditioner. The inner product then becomes

$$
\mathcal{H}=\left[\begin{array}{cc}
A-A_{0} & 0 \\
0 & S_{0}
\end{array}\right] .
$$

Some examples-Benzi-Simoncini CG $(C=0)$

Introduced by Benzi and Simoncini (2006) it is an extension to the CG method of Fischer et. al. (1998) with the preconditioner

$$
\mathcal{P}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

and inner product matrix

$$
\mathcal{H}=\left[\begin{array}{cc}
A-\gamma I & B^{T} \\
B & \gamma I
\end{array}\right]
$$

Some examples-Extensions for $C \neq 0$

The Benzi and Simoncini technique was extended by Liesen (2006) where the inner product matrix is changed to

$$
\mathcal{H}=\left[\begin{array}{cc}
A-\gamma I & B^{T} \\
B & \gamma I-C
\end{array}\right] .
$$

Combination preconditioning

Lemma 4 shows that if we can find \mathcal{P}_{3} and \mathcal{H}_{3} such that

$$
\alpha \mathcal{P}_{1}^{-T} \mathcal{H}_{1}+\beta \mathcal{P}_{2}^{-T} \mathcal{H}_{2}=\mathcal{P}_{3}^{-T} \mathcal{H}_{3}
$$

a new preconditioner and bilinear form are found. We want to combine the Bramble-Pasciak and the Benzi-Simoncini technique which gives
$\alpha \mathcal{P}_{1}^{-T} \mathcal{H}_{1}+\beta \mathcal{P}_{2}^{-T} \mathcal{H}_{2}=\left[\begin{array}{cc}\left(\alpha A_{0}^{-1}+\beta I\right) A-(\alpha+\beta \gamma) I & \left(\alpha A_{0}^{-1}+\beta I\right) B^{T} \\ -\beta B & -(\alpha+\beta \gamma) I\end{array}\right]$.

Combination preconditioning

One possibility for a splitting of $\alpha \mathcal{P}_{1}^{-T} \mathcal{H}_{1}+\beta \mathcal{P}_{2}^{-T} \mathcal{H}_{2}$ is given by

$$
\mathcal{P}_{3}^{-T}=\left[\begin{array}{cc}
\alpha A_{0}^{-1}+\beta I & 0 \\
0 & -\beta I
\end{array}\right]
$$

as the new preconditioner and by

$$
\mathcal{H}_{3}=\left[\begin{array}{cc}
A-(\alpha+\beta \gamma)\left(\alpha A_{0}^{-1}+\beta I\right)^{-1} & B^{T} \\
B & \frac{\alpha+\beta \gamma}{\beta} I
\end{array}\right] .
$$

the symmetric matrix defining a bilinear form.

Numerical Experiments

Figure: Combination preconditioning with $\alpha=1 / 2$ and $\beta=1 / 2$ compared to Bramble-Pasciak and Benzi-Simoncini CG .

Numerical Experiments

Figure: Combination preconditioning with $\alpha=15$ and $\beta=0.1$ compared to Bramble-Pasciak and Benzi-Simoncini CG .

Conclusions

- We provided insight in how preconditioners for saddle point problems can be combined.
- The basic analysis holds also for other classes of matrices.
- This is a more theoretical analysis but there might be applications where such techniques can be exploited.

Conclusions

- We provided insight in how preconditioners for saddle point problems can be combined.
- The basic analysis holds also for other classes of matrices.
- This is a more theoretical analysis but there might be applications where such techniques can be exploited.

More details in Andy's talk!

