
The Bramble-Pasciak+ preconditioner for saddle
point problems

Martin Stoll & Andy Wathen

Numerical Analysis Day
Oxford, April 13, 2007



The linear system

The Problem

We want to solve Ax = b where[
A BT

B −C

]
︸ ︷︷ ︸

A
(1)

with A ∈ Rn,n symmetric and positive definite and C ∈ Rm,m symmetric
negative semi-definite. B ∈ Rm,n is assumed to have full rank.



Saddle point problems

Saddle point problems arise in a variety of applications such as

� Mixed finite element methods for Fluid and Solid mechanics

� Interior point methods in optimisation

See Benzi, Golub, Liesen (2005), Elman, Silvester, Wathen (2005),
Brezzi, Fortin (1991), Nocedal, Wright (1999)

Saddle point problems provide due to their indefiniteness and often poor
spectral properties a challenge for people developing solvers.
Benzi, Golub, Liesen (2005)
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Some Background – Basic relations

We introduce the bilinear form induced by H

〈x , y〉H := xTHy

which is an inner product iff H is positive definite. A matrix A ∈ Rn×n is
self-adjoint in 〈·, ·〉H if and only if

〈Ax , y〉H = 〈x ,Ay〉H for all x , y

which can be reformulated to

ATH = HA.



Some Background – Solvers

� cg needs symmetry in 〈·, ·〉H plus positive definiteness in 〈·, ·〉H
� minres needs the symmetry 〈·, ·〉H but no definiteness in 〈·, ·〉H

Spectral properties of A can be enhanced by preconditioning, ie.
considering

Â = P−1A

instead of A.

Original matrix A is symmetric in 〈·, ·〉I ⇒ minres can be used.

What about the symmetry of Â?



The Bramble-Pasciak CG

We consider saddle point problem

A =

[
A BT

B −C

]
with a block-triangular preconditioner

P =

[
A0 0
B −I

]
which results in

Â = P−1A =

[
A−1

0 A A−1
0 BT

BA−1
0 A− B BA−1

0 BT + C

]
.



The Bramble-Pasciak CG

The preconditioned matrix

Â = P−1A =

[
A−1

0 A A−1
0 BT

BA−1
0 A− B BA−1

0 BT + C

]
is self-adjoint in the bilinear form defined by

H =

[
A− A0 0

0 I

]
.

Under certain conditions for A0 H defines an inner product and Â is also
positive definite in this inner product, e.g. A0 = .5A.

The condition for A0 usually involves the solution of an eigenvalue
problem which can be expensive.



The Bramble-Pasciak+ CG

We always want an inner product for symmetric and positive definite A0

H+ =

[
A + A0

I

]
.

Therefore, new preconditioner P+

P+ =

[
A0 0
−B I

]
is required. The preconditioned matrix

Â =
(
P+

)−1A =

[
A−1

0 A A−1
0 BT

BA−1
0 A+B BA−1

0 BT−C

]
is self-adjoint in this inner product.



Definiteness in H+

If we split

ÂTH+ =

[
AA−1

0 A + A AA−1
0 BT + BT

BA−1
0 A + B BA−1

0 BT − C

]
as [

I
BA−1 I

] [
AA−1

0 A + A
−BA−1

0 BT − C

] [
I A−1BT

I

]
we see that since this is a congruence transformation the matrix is always
indefinite. This means:

� No reliable CG can be applied

� In practice CG quite often works fine

� Augmented methods might be used.



An H+-inner product implementation of minres

Use that Â symmetric in H-inner product and therefore implement a
version of Lanczos process with H-inner product which gives

ÂVk = VkTk + βkvk+1e
T
k

with

Tk =


α1 β1

β1
. . .

. . .
. . .

. . . βk−1

βk−1 αk

 and Vk = [v1, v2, . . . , vk ]

as well as V T
k H+Vk = I .



An H+-inner product implementation of minres

The following condition holds for the residual

‖rk‖H+ = ‖b − Axk‖H = ‖b − Ax0 − AVkyk‖H+

= ‖r0 − Vk+1Tk+1yk‖H+ =
∥∥Vk+1(V

T
k+1H+r0 − Tk+1yk)

∥∥
H+

=
∥∥V T

k+1H+r0 − Tk+1yk

∥∥
H+ = ‖‖r0‖ e1 − Tk+1yk‖H+ .

Minimizing ‖‖r0‖ e1 − Tk+1yk‖H+ can be done by the standard
updated-QR factorization technique. Implementation details can be
found in Greenbaum (1997).



The simplified Lanczos method

The non-symmetric Lanczos process generates two sequences of vectors
where the following condition holds

vj = φj(Â)v1 and wj = γjφj(ÂT )w1

where φ is a polynomial of degree j − 1 the so-called Lanczos polynomial.
Setting w1 = Hv1 and using the self-adjointness of Â in H+, ie.
ÂTH+ = H+Â, gives

wj = γjφj(ÂT )w1 = γjφj(ÂT )H+v1 = γjH+φj(Â)v1 = γjH+vj .

Therefore the non-symmetric Lanczos process can be simplified, ie.
multiplications with ÂT can be exchanged for multiplication by H+.



The ideal transpose-free QMR method (itfqmr )

Based on the qmr method Freund (1994) a transpose-free qmr
method with an implementation derived from the bicg procedure. Here,
we use matrix formulation of the non-symmetric Lanczos process

ÂVk = Vk+1Hk

and
rk = Vk+1(‖r0‖ e1 − Hkyk).

Ignoring the term Vk+1 gives qmr method. Using simplification of the
Lanczos process gives itfqmr .



Eigenvalue analysis for A0 = A

To get some insight into the convergence behaviour we the eigenvalues of

Â =
(
P+

)−1A =

[
I A−1BT

2B BA−1BT

]
.

For the eigenpair (λ,

[
x
y

]
) of Â we know that

[
I A−1BT

2B BA−1BT

] [
x
y

]
=

[
x + A−1BT y

2Bx + BA−1BT y

]
= λ

[
x
y

]
For λ = 1 we get

Ax + BT y = Ax

which gives BT y = 0 and y = 0 iff Bx = 0.

Since dim(ker(B)) = n −m multiplicity of λ = 1 is n −m.



Eigenvalue analysis for A0 = A

For λ 6= 1, we get that x = 1
λ−1A−1BT y which gives

BA−1BT y =
λ(λ− 1)

λ + 1
y .

For an eigenvalue σ of BA−1BT we get

σ =
λ(λ− 1)

λ + 1
.

Eigenvalues of Â become

λ1,2 =
1 + σ

2
±

√
(1 + σ)2

4
+ σ.

Since σ > 0 we have m negative eigenvalues.
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Numerical Experiments – Stokes problem

We are going to solve saddle point systems coming from the finite
element method for the Stokes problem

−O2u + Op = 0
O · u = 0

The linear system governing the finite element method for the Stokes
problem is a saddle point problem[

A BT

B −C

]
where C 6= 0 for stabilized systems. In our examples C = 0.

All examples come from the ifiss package.



Block diagonal preconditioning

Silvester and Wathen (1993,1994) use preconditioner

P =

[
A0 0
0 S0

]
which is symmetric positive definite.

=⇒ Preconditioned minres can be applied.



Example 1 – Stokes problem Channel domain

Results for H-minres and classical Preconditioned minres with
problem dimension 9539. Preconditioner A0 = A and S0 being the
Gramian (Mass matrix).
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Example 2 – Stokes problem Channel domain

Results for H-minres and classical Preconditioned minres with
problem dimension 9539. Preconditioner A0 is Incomplete Cholesky of A
and S0 being the Gramian (Mass matrix).
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Example 3 – Stokes problem Channel domain

Again H-minres and classical Preconditioned minres for problem
dimension 9539. Preconditioner A0 is Incomplete Cholesky of A and S0

being the Gramian (Mass matrix). Additionally, H-minres residual in
the 2-norm and the classical Bramble-Pasciak CG.
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Conclusions

� We presented a alternative approach

� Method could be used with augmented techniques to become
competitive

� Presented algorithm could be used for combination preconditioning
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Thank you for your attention!

Difficult questions can be discussed in 20 minutes in the pub!


