Locking and Purging for the Hamiltonian Lanczos Process

Martin Stoll

Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz

13. September 2005

<ロト <回ト < 国ト < 国ト = 国

Basics

2 The SR algorithm

3 A symplectic Lanczos algorithm with implicit restarts

- A Krylov-Schur like algorithm
 - A Krylov-Schur like algorithm
 - Locking and Purging

5 Numerical Results

- SR algorithm
- Krylov-Schur like algorithm

6 Outlook

Basics

SR algorithm Symplectic Lanczos algorithm with implicit restarts Krylov-Schur like algorithm Numerical Results Outlook

Basic definitions

Definition

A matrix S is symplectic
$$\iff S^T J S = J$$
 with $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$.

Definition

A matrix *H* is Hamiltonian
$$\iff (JH)^T = JH$$

 $\iff H = \begin{bmatrix} A & G \\ Q & -A^T \end{bmatrix}, \quad \begin{array}{c} G = G^T \\ Q = Q^T \end{array}$

イロト イポト イヨト イヨト

2

Basics

SR algorithm Symplectic Lanczos algorithm with implicit restarts Krylov-Schur like algorithm Numerical Results Outlook

Properties

- If H is Hamiltonian and S is symplectic then $S^{-1}HS$ is Hamiltonian.
- If $\lambda \in \mathbb{R}$ is an eigenvalue of H then $-\lambda$ is also an eigenvalue of H.
- If λ ∈ C is an eigenvalue of H then −λ, λ
 , -λ
 are also an eigenvalue of H.

Definition

A Hamiltonian J-Hessenberg matrix H is of the following structure

SR decomposition

Definition

For $A \in \mathbb{R}^{2n,2n}$ is A = SR, the SR decomposition with a symplectic matrix S and a J-triangular matrix R.

- The SR decomposition is unique \Rightarrow an equivalent to the implicit Q theorem holds.
- If *H* is a Hamiltonian J-Hessenberg matrix and p_k is a polynomial, then $S^{-1}HS$ is also a Hamiltonian J-Hessenberg matrix with *S* from the decomposition of $p_k(H) = SR$.

Implicit shifts

- Single shift $(H \mu I)$
- **2** Double shift $(H \mu I)(H + \mu I)$
- Quadrupel shift $(H \mu I)(H + \bar{\mu}I)(H + \mu I)(H \bar{\mu}I)$
 - Compute first column v
 - Compute transformation W such that $Wv = \alpha e_1$
 - Compute bulge chasing algorithm for $W^{-1}HW$

SR algorithm

SR algorithm

Perform implicit shifts until the permuted form H_p of the Hamiltonian J-Hessenberg matrix H is deflated and the blocks are of size 2×2 or 4×4 .

$$H = \begin{bmatrix} \delta_1 & & \beta_1 & \zeta_2 & \\ & \ddots & & \zeta_2 & \ddots & \\ & & \delta_n & & \zeta_n & \beta_n \\ \hline \nu_1 & & & -\delta_1 & \\ & \ddots & & & \ddots & \\ & & & \nu_n & & & -\delta_n \end{bmatrix}$$

Eingenvalue and eigenvector computation

Eigenvalue computation

Only blocks of size 2 \times 2 and 4 \times 4 have to be considered. Explicit formulas for computing λ could be given.

Eigenvector computation

If $Re(\lambda) < 0$ easy eigenvector computation out of the SR algorithm by [Mehrmann/Bunse-Gerstner,1986].

If $Re(\lambda) > 0$ two ways for the eigenvector computation were developed

- Use inverse iteration with consideration of the sparse Hamiltonian structure.
- A Schur-like form could be used making advantage of the sparse Hamiltonian structure.

The symplectic Lanczos algorithm

- Use Lanczos recursion $H_p S_p^{2n,2k} = S_p^{2n,2k} \tilde{H}_p^{2k,2k} + \zeta_{k+1} v_{k+1} e_{2k}^T$
- Lanczos vectors $S_p^{2n,2k} = [v_1, w_1, v_2, w_2, \dots, v_k, w_k]$ could be obtained
- Parameters of \tilde{H}_p are computed

Symplectic Lanczos algorithm [Benner/Faßbender,1997]

$$\delta_{m} = v_{m}^{T} H_{p} v_{m}$$

$$\tilde{w}_{m} = H_{p} v_{m} - \delta_{m} v_{m}$$

$$v_{m} = v_{m}^{T} J_{p} H_{p} v_{m}$$

$$w_{m} = \frac{1}{\nu_{m}} \tilde{w}_{m}$$

$$\beta_{m} = -w_{m}^{T} J_{p} H_{p} w_{m}$$

$$\tilde{v}_{m+1} = H_{p} w_{m} - \zeta_{m} v_{m-1} - \beta_{m} v_{m} + \delta_{m} w_{m}$$

$$\zeta_{m+1} = \|\tilde{v}_{m+1}\|_{2}$$

$$v_{m+1} = \frac{1}{\zeta_{m+1}} \tilde{v}_{m+1}$$

The symplectic Lanczos algorithm

- Use Lanczos recursion $H_p S_p^{2n,2k} = S_p^{2n,2k} \tilde{H}_p^{2k,2k} + \zeta_{k+1} v_{k+1} e_{2k}^T$
- Lanczos vectors $S_p^{2n,2k} = [v_1, w_1, v_2, w_2, \dots, v_k, w_k]$ could be obtained
- Parameters of \tilde{H}_p are computed

Symplectic Lanczos algorithm [Benner/Faßbender,1997]

$$\delta_m = \mathbf{v}_m^T H_p \mathbf{v}_m \delta_m = H_p \mathbf{v}_m - \delta_m \mathbf{v}_m \mathbf{v}_m = \mathbf{v}_m^T J_p H_p \mathbf{v}_m \mathbf{v}_m = \frac{1}{\nu_m} \tilde{w}_m \mathbf{v}_m = -\mathbf{w}_m^T J_p H_p \mathbf{w}_m \mathbf{v}_{m+1} = H_p \mathbf{w}_m - \zeta_m \mathbf{v}_{m-1} - \beta_m \mathbf{v}_m + \delta_m \mathbf{w}_m \\ \mathbf{v}_{m+1} = \| \tilde{v}_{m+1} \|_2 \\ \mathbf{v}_{m+1} = \frac{1}{\zeta_{m+1}} \tilde{v}_{m+1}$$

The implicitly restarted symplectic Lanczos algorithm

•
$$H_p S_p^{2n,2m} = S_p^{2n,2m} \tilde{H}_p^{2m,2m} + \zeta_{m+1} v_{m+1} e_{2m}^T$$

• $(\tilde{H}_p^{2m} - \mu_i I) (\tilde{H}_p^{2m} + \mu_i I) (\tilde{H}_p^{2m} - \mu_{i+1} I) (\tilde{H}_p^{2m} + \mu_{i+1} I) = S_p^{(i)} R_p^{(i)}$
• $H_p \check{S}_p^{2n,2m} = \check{S}_p^{2n,2m} \check{H}_p^{2m,2m} + \check{\zeta}_{m+1} \check{v}_{m+1} e_{2m}^T S_p$, with
 $\check{S}_p^{2n,2m} = S_p^{2n,2m} S_p$ and $\check{H}_p^{2m,2m} = S_p^{-1} \tilde{H}_p^{2m,2m} S_p$
• Residual term

$$\zeta_{m+1}v_{m+1}(s_{2m,2m-4q}e_{2m-4q}^T + s_{2m,2m-3q}e_{2m-3q}^T + \ldots + s_{2m,2m}e_{2m}^T)$$

The implicitly restarted symplectic Lanczos algorithm

•
$$H_p S_p^{2n,2m} = S_p^{2n,2m} \tilde{H}_p^{2m,2m} + \zeta_{m+1} v_{m+1} e_{2m}^T$$

• $(\tilde{H}_p^{2m} - \mu_i I) (\tilde{H}_p^{2m} + \mu_i I) (\tilde{H}_p^{2m} - \mu_{i+1} I) (\tilde{H}_p^{2m} + \mu_{i+1} I) = S_p^{(i)} R_p^{(i)}$
• $H_p \check{S}_p^{2n,2m} = \check{S}_p^{2n,2m} \check{H}_p^{2m,2m} + \check{\zeta}_{m+1} \check{v}_{m+1} e_{2m}^T S_p$, with
 $\check{S}_p^{2n,2m} = S_p^{2n,2m} S_p$ and $\check{H}_p^{2m,2m} = S_p^{-1} \tilde{H}_p^{2m,2m} S_p$
• Residual term

$$\zeta_{m+1}v_{m+1}(s_{2m,2m-4q}e_{2m-4q}^T + s_{2m,2m-3q}e_{2m-3q}^T + \ldots + s_{2m,2m}e_{2m}^T)$$

The implicitly restarted symplectic Lanczos algorithm

•
$$H_p S_p^{2n,2m} = S_p^{2n,2m} \tilde{H}_p^{2m,2m} + \zeta_{m+1} v_{m+1} e_{2m}^T$$

• $(\tilde{H}_p^{2m} - \mu_i I) (\tilde{H}_p^{2m} + \mu_i I) (\tilde{H}_p^{2m} - \mu_{i+1} I) (\tilde{H}_p^{2m} + \mu_{i+1} I) = S_p^{(i)} R_p^{(i)}$
• $H_p \check{S}_p^{2n,2m} = \check{S}_p^{2n,2m} \check{H}_p^{2m,2m} + \check{\zeta}_{m+1} \check{v}_{m+1} e_{2m}^T S_p$, with
 $\check{S}_p^{2n,2m} = S_p^{2n,2m} S_p$ and $\check{H}_p^{2m,2m} = S_p^{-1} \tilde{H}_p^{2m,2m} S_p$
• Residual term

$$\zeta_{m+1}v_{m+1}(s_{2m,2m-4q}e_{2m-4q}^{T}+s_{2m,2m-3q}e_{2m-3q}^{T}+\ldots+s_{2m,2m}e_{2m}^{T})$$

The implicitly restarted symplectic Lanczos algorithm

•
$$H_p S_p^{2n,2m} = S_p^{2n,2m} \tilde{H}_p^{2m,2m} + \zeta_{m+1} v_{m+1} e_{2m}^T$$

• $(\tilde{H}_p^{2m} - \mu_i I) (\tilde{H}_p^{2m} + \mu_i I) (\tilde{H}_p^{2m} - \mu_{i+1} I) (\tilde{H}_p^{2m} + \mu_{i+1} I) = S_p^{(i)} R_p^{(i)}$
• $H_p \check{S}_p^{2n,2m} = \check{S}_p^{2n,2m} \check{H}_p^{2m,2m} + \check{\zeta}_{m+1} \check{v}_{m+1} e_{2m}^T S_p$, with
 $\check{S}_p^{2n,2m} = S_p^{2n,2m} S_p$ and $\check{H}_p^{2m,2m} = S_p^{-1} \tilde{H}_p^{2m,2m} S_p$
• Residual term

$$\zeta_{m+1}v_{m+1}(s_{2m,2m-4q}e_{2m-4q}^{T}+s_{2m,2m-3q}e_{2m-3q}^{T}+\ldots+s_{2m,2m}e_{2m}^{T})$$

The implicitly restarted symplectic Lanczos algorithm

•
$$H_p S_p^{2n,2m} = S_p^{2n,2m} \tilde{H}_p^{2m,2m} + \zeta_{m+1} v_{m+1} e_{2m}^T$$

• $(\tilde{H}_p^{2m} - \mu_i I) (\tilde{H}_p^{2m} + \mu_i I) (\tilde{H}_p^{2m} - \mu_{i+1} I) (\tilde{H}_p^{2m} + \mu_{i+1} I) = S_p^{(i)} R_p^{(i)}$
• $H_p \check{S}_p^{2n,2m} = \check{S}_p^{2n,2m} \check{H}_p^{2m,2m} + \check{\zeta}_{m+1} \check{v}_{m+1} e_{2m}^T S_p$, with
 $\check{S}_p^{2n,2m} = S_p^{2n,2m} S_p$ and $\check{H}_p^{2m,2m} = S_p^{-1} \tilde{H}_p^{2m,2m} S_p$

Residual term

$$\zeta_{m+1}v_{m+1}(s_{2m,2m-4q}e_{2m-4q}^{T}+s_{2m,2m-3q}e_{2m-3q}^{T}+\ldots+s_{2m,2m}e_{2m}^{T})$$

The implicitly restarted symplectic Lanczos algorithm

•
$$H_p S_p^{2n,2m} = S_p^{2n,2m} \tilde{H}_p^{2m,2m} + \zeta_{m+1} v_{m+1} e_{2m}^T$$

• $(\tilde{H}_p^{2m} - \mu_i I) (\tilde{H}_p^{2m} + \mu_i I) (\tilde{H}_p^{2m} - \mu_{i+1} I) (\tilde{H}_p^{2m} + \mu_{i+1} I) = S_p^{(i)} R_p^{(i)}$
• $H_p \check{S}_p^{2n,2m} = \check{S}_p^{2n,2m} \check{H}_p^{2m,2m} + \check{\zeta}_{m+1} \check{v}_{m+1} e_{2m}^T S_p$, with
 $\check{S}_p^{2n,2m} = S_p^{2n,2m} S_p$ and $\check{H}_p^{2m,2m} = S_p^{-1} \tilde{H}_p^{2m,2m} S_p$

Residual term

$$\zeta_{m+1}v_{m+1}(s_{2m,2m-4q}e_{2m-4q}^T + s_{2m,2m-3q}e_{2m-3q}^T + \ldots + s_{2m,2m}e_{2m}^T)$$

3

Stopping criteria for IRSL

• Assume $\tilde{H}^{2k,2k}$ could be diagonalized by usage of Y.

- $ISY = SYY^{-1}\tilde{H}Y + \tilde{r}_k e_{2k}^T Y \text{ or } HX = X\Lambda + \tilde{r}_k e_{2k}^T Y$
- Oconsider columns $Hx_i = -\lambda_i x_i + y_{2k,i} \tilde{r}_k$ and $Hx_{k+i} = \lambda_i x_{k+i} + y_{2k,k+i} \tilde{r}_k$
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$\|E_{\lambda_i}\| = \max\left\{\frac{\|y_{2k,k+i}\|\|\tilde{r}_k\|}{\|x_{k+i}\|}, \frac{\|y_{2k,i}\|\|\tilde{r}_k^T J\|}{\|Jx_i\|}\right\}.$$

- Assume $\tilde{H}^{2k,2k}$ could be diagonalized by usage of Y.
- $ISY = SYY^{-1}\tilde{H}Y + \tilde{r}_k e_{2k}^T Y \text{ or } HX = X\Lambda + \tilde{r}_k e_{2k}^T Y$
- Consider columns $Hx_i = -\lambda_i x_i + y_{2k,i} \tilde{r}_k$ and $Hx_{k+i} = \lambda_i x_{k+i} + y_{2k,k+i} \tilde{r}_k$
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$||E_{\lambda_i}|| = \max\left\{\frac{|y_{2k,k+i}|\|\tilde{r}_k\|}{\|x_{k+i}\|}, \frac{|y_{2k,i}|\|\tilde{r}_k^T J\|}{\|Jx_i\|}\right\}.$$

- Assume $\tilde{H}^{2k,2k}$ could be diagonalized by usage of Y.
- $ISY = SYY^{-1}\tilde{H}Y + \tilde{r}_k e_{2k}^T Y \text{ or } HX = X\Lambda + \tilde{r}_k e_{2k}^T Y$
- Consider columns $Hx_i = -\lambda_i x_i + y_{2k,i} \tilde{r}_k$ and $Hx_{k+i} = \lambda_i x_{k+i} + y_{2k,k+i} \tilde{r}_k$
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$||E_{\lambda_i}|| = \max\left\{\frac{|y_{2k,k+i}|\|\tilde{r}_k\|}{\|x_{k+i}\|}, \frac{|y_{2k,i}|\|\tilde{r}_k^T J\|}{\|Jx_i\|}\right\}.$$

- Assume $\tilde{H}^{2k,2k}$ could be diagonalized by usage of Y.
- $ISY = SYY^{-1}\tilde{H}Y + \tilde{r}_k e_{2k}^T Y \text{ or } HX = X\Lambda + \tilde{r}_k e_{2k}^T Y$
- Consider columns $Hx_i = -\lambda_i x_i + y_{2k,i} \tilde{r}_k$ and $Hx_{k+i} = \lambda_i x_{k+i} + y_{2k,k+i} \tilde{r}_k$
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$||E_{\lambda_i}|| = \max\left\{\frac{|y_{2k,k+i}|\|\tilde{r}_k\|}{\|x_{k+i}\|}, \frac{|y_{2k,i}|\|\tilde{r}_k^T J\|}{\|Jx_i\|}\right\}.$$

- Assume $\tilde{H}^{2k,2k}$ could be diagonalized by usage of Y.
- $ISY = SYY^{-1}\tilde{H}Y + \tilde{r}_k e_{2k}^T Y \text{ or } HX = X\Lambda + \tilde{r}_k e_{2k}^T Y$
- Consider columns $Hx_i = -\lambda_i x_i + y_{2k,i} \tilde{r}_k$ and $Hx_{k+i} = \lambda_i x_{k+i} + y_{2k,k+i} \tilde{r}_k$
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$||E_{\lambda_i}|| = \max\left\{\frac{|y_{2k,k+i}|\|\tilde{r}_k\|}{\|x_{k+i}\|}, \frac{|y_{2k,i}|\|\tilde{r}_k^T J\|}{\|Jx_i\|}\right\}.$$

A Krylov-Schur like algorithm Locking and Purging

Krylov-Schur like decomposition

Krylov decomposition

Take $S_p^{2k} = (s_1, \ldots, s_{2k})$ with linear independent vectors s_j . A decomposition of the following structure $H_p S_p^{2k} = S_p^{2k} \tilde{H}_p^{2k} + s_{2k+1} \tilde{h}_{2k+1}^T$ is called *Krylov decomposition of order* 2k.

Krylov-Schur like decomposition

Take $S_p^{2k} = (s_1, \ldots, s_{2k})$ with *J*-orthogonal vectors $s_j \Rightarrow (S_p^{2k})^T J_p S_p^{2k} = J_p$ holds. A decomposition $H_p S_p^{2k} = S_p^{2k} \tilde{H}_p^{2k} + s_{2k+1} \tilde{h}_{2k+1}^T$ is called *Krylov-Schur like decomposition of order 2k*, where \tilde{H}_p^{2k} is a permuted Hamiltonian J-Hessenberg matrix in Schur form.

白 とう ちょう とうしょう

A Krylov-Schur like algorithm Locking and Purging

Krylov-Schur like decomposition

Krylov decomposition

Take $S_p^{2k} = (s_1, \ldots, s_{2k})$ with linear independent vectors s_j . A decomposition of the following structure $H_p S_p^{2k} = S_p^{2k} \tilde{H}_p^{2k} + s_{2k+1} \tilde{h}_{2k+1}^T$ is called *Krylov decomposition of order* 2k.

Krylov-Schur like decomposition

Take $S_p^{2k} = (s_1, \ldots, s_{2k})$ with *J*-orthogonal vectors $s_j \Rightarrow (S_p^{2k})^T J_p S_p^{2k} = J_p$ holds. A decomposition $H_p S_p^{2k} = S_p^{2k} \tilde{H}_p^{2k} + s_{2k+1} \tilde{h}_{2k+1}^T$ is called *Krylov-Schur like decomposition of order 2k*, where \tilde{H}_p^{2k} is a permuted Hamiltonian J-Hessenberg matrix in Schur form.

伺 と く ヨ と く ヨ と

A Krylov-Schur like algorithm Locking and Purging

Lanczos factorisation \rightarrow Krylov-Schur like decomposition

Start with Lanczos factorisation

$$H_{p}S_{p}^{2n,2k} = S_{p}^{2n,2k}\tilde{H}_{p}^{2k,2k} + r_{k}e_{2k}^{T}.$$

Take
$$S_p$$
 form SR algorithm to get
 $H_p S_p^{2n,2k} S_p = S_p^{2n,2k} S_p (S_p^{-1} \tilde{H}_p^{2k,2k} S_p) + r_k e_{2k}^T S_p$

Result is Krylov-Schur like decomposition

$$H_p \breve{S}_p^{2n,2k} = \breve{S}_p^{2n,2k} \breve{H}_p^{2k,2k} + r_k s_p^T$$

where $\breve{S}_p = S_p^{2n,2k} S_p, \breve{H}_p^{2k,2k} = (S_p^{-1} \widetilde{H}_p^{2k,2k} S_p)$ and $s_p^T = e_{2k}^T S_p$.

< 国 → < 国 →

A Krylov-Schur like algorithm Locking and Purging

Lanczos factorisation --> Krylov-Schur like decomposition

Start with Lanczos factorisation

$$H_{p}S_{p}^{2n,2k} = S_{p}^{2n,2k}\tilde{H}_{p}^{2k,2k} + r_{k}e_{2k}^{T}.$$

 Take S_p form SR algorithm to get
 H_pS_p^{2n,2k}S_p = S_p^{2n,2k}S_p(S_p⁻¹ H̃_p^{2k,2k}S_p) + r_ke_{2k}^TS_p

 Result is Krylov-Schur like decomposition

$$H_p \check{S}_p^{2n,2k} = \check{S}_p^{2n,2k} \check{H}_p^{2k,2k} + r_k s_p^T$$

where $\breve{S}_p = S_p^{2n,2k} S_p, \breve{H}_p^{2k,2k} = (S_p^{-1} \widetilde{H}_p^{2k,2k} S_p)$ and $s_p^T = e_{2k}^T S_p$.

A Krylov-Schur like algorithm Locking and Purging

Lanczos factorisation \rightarrow Krylov-Schur like decomposition

Start with Lanczos factorisation

$$H_{p}S_{p}^{2n,2k} = S_{p}^{2n,2k}\tilde{H}_{p}^{2k,2k} + r_{k}e_{2k}^{T}.$$

Take
$$S_p$$
 form SR algorithm to get
 $H_p S_p^{2n,2k} S_p = S_p^{2n,2k} S_p (S_p^{-1} \tilde{H}_p^{2k,2k} S_p) + r_k e_{2k}^T S_p$

Result is Krylov-Schur like decomposition

$$H_p \breve{S}_p^{2n,2k} = \breve{S}_p^{2n,2k} \breve{H}_p^{2k,2k} + r_k s_p^T$$

where $\check{S}_p = S_p^{2n,2k} S_p, \check{H}_p^{2k,2k} = (S_p^{-1} \tilde{H}_p^{2k,2k} S_p)$ and $s_p^T = e_{2k}^T S_p$.

(*) *) *) *)

A Krylov-Schur like algorithm Locking and Purging

Krylov-Schur like decomposition \rightarrow Lanczos factorisation

- Start with **Krylov-Schur like decomposition** $H_p S_p^{2k} = S_p^{2k} \tilde{H}_p^{2k} + s_{2k+1} \tilde{h}_{2k+1}^T$
- Compute matrix Q_p (product of Givens matrices) such that $\tilde{h}_{2k+1}^T Q_p = \alpha e_{2k}^T$ multiplication with Q_p results in $H_p S_p^{2k} Q_p = \check{S}_p^{2k} \check{H}_p^{2k} + \alpha s_{2k+1} e_{2k}^T$.
- Transform \check{H}_{p}^{2k} to Hamiltonian *J*-Hessenberg form. Use rowwise variation of JHESS algorithm by [Mehrmann/Bunse-Gerstner]. Structure of $\alpha s_{2k+1} e_{2k}^{T}$ is preserved and the result is a **Lanczos factorisation** $H_{p}\check{S}_{p}^{2k} = \check{S}_{p}^{2k}\check{H}_{p}^{2k} + \check{s}_{2k+1}e_{2k}^{T}$.

A Krylov-Schur like algorithm Locking and Purging

Krylov-Schur like decomposition \rightarrow Lanczos factorisation

- Start with **Krylov-Schur like decomposition** $H_p S_p^{2k} = S_p^{2k} \tilde{H}_p^{2k} + s_{2k+1} \tilde{h}_{2k+1}^T$
- Compute matrix Q_p (product of Givens matrices) such that $\tilde{h}_{2k+1}^T Q_p = \alpha e_{2k}^T$ multiplication with Q_p results in $H_p S_p^{2k} Q_p = \check{S}_p^{2k} \check{H}_p^{2k} + \alpha s_{2k+1} e_{2k}^T$.
- Transform \check{H}_p^{2k} to Hamiltonian *J*-Hessenberg form. Use rowwise variation of JHESS algorithm by [Mehrmann/Bunse-Gerstner]. Structure of $\alpha s_{2k+1} e_{2k}^T$ is preserved and the result is a **Lanczos factorisation** $H_p \check{S}_p^{2k} = \check{S}_p^{2k} \check{H}_p^{2k} + \check{s}_{2k+1} e_{2k}^T$.

A Krylov-Schur like algorithm Locking and Purging

Krylov-Schur like decomposition \rightarrow Lanczos factorisation

- Start with **Krylov-Schur like decomposition** $H_p S_p^{2k} = S_p^{2k} \tilde{H}_p^{2k} + s_{2k+1} \tilde{h}_{2k+1}^T$
- Compute matrix Q_p (product of Givens matrices) such that $\tilde{h}_{2k+1}^T Q_p = \alpha e_{2k}^T$ multiplication with Q_p results in $H_p S_p^{2k} Q_p = \check{S}_p^{2k} \check{H}_p^{2k} + \alpha s_{2k+1} e_{2k}^T$.
- Transform \check{H}_p^{2k} to Hamiltonian *J*-Hessenberg form. Use rowwise variation of JHESS algorithm by [Mehrmann/Bunse-Gerstner]. Structure of $\alpha s_{2k+1} e_{2k}^T$ is preserved and the result is a **Lanczos factorisation** $H_p \check{S}_p^{2k} = \check{S}_p^{2k} \check{H}_p^{2k} + \check{s}_{2k+1} e_{2k}^T$.

A Krylov-Schur like algorithm Locking and Purging

Exchanging eigenblocks

We have now a matrix \check{H}_{p}^{2k} in block diagonal form. If we exchange the eigenblocks by using symplectic transformations we will be able to implement Purging and Locking. The permuted symplectic matrix $T_{p}(n)$ allows to exchange eigenblocks in \check{H}_{p}^{2k} .

$$T_{p}(n) = \left[egin{array}{ccc} & & & 1 \ & & -1 & \ & & \ddots & & \ & 1 & & & \ & -1 & & & \ \end{bmatrix} \in \mathbb{R}^{2n,2n}.$$

A Krylov-Schur like algorithm Locking and Purging

Stopping Criteria for Krylov-Schur like algorithm

• Assume $\check{H}^{2k,2k}$ could be diagonalized by usage of Y.

- $I \breve{S}Y = \breve{S}YY^{-1}\breve{H}Y + \breve{r}_kq^TY \text{ or } HX = X\Lambda + \breve{r}_kq^TY$
- Consider columns $Hx_i = -\lambda_i x_i + \check{r}_k q^T y_i$ and $Hx_{k+i} = \lambda_i x_{k+i} + \check{r}_k q^T y_{k+i}$
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$|E_{\lambda_i}\| = \max\left\{\frac{\|\breve{r}_k q^T y_{k+i}\|}{\|x_{k+i}\|}, \frac{\|\breve{r}_k^T q y_i^T J\|}{\|Jx_i\|}\right\}$$

A Krylov-Schur like algorithm Locking and Purging

- Assume $\check{H}^{2k,2k}$ could be diagonalized by usage of Y.
- $I \breve{S}Y = \breve{S}YY^{-1}\breve{H}Y + \breve{r}_k q^T Y \text{ or } HX = X\Lambda + \breve{r}_k q^T Y$
- Consider columns $Hx_i = -\lambda_i x_i + \check{r}_k q^T y_i$ and $Hx_{k+i} = \lambda_i x_{k+i} + \check{r}_k q^T y_{k+i}$
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$|E_{\lambda_i}\| = \max\left\{\frac{\|\breve{r}_k q^T y_{k+i}\|}{\|x_{k+i}\|}, \frac{\|\breve{r}_k^T q y_i^T J\|}{\|Jx_i\|}\right\}$$

A Krylov-Schur like algorithm Locking and Purging

- Assume $\check{H}^{2k,2k}$ could be diagonalized by usage of Y.
- $I \breve{S}Y = \breve{S}YY^{-1}\breve{H}Y + \breve{r}_kq^TY \text{ or } HX = X\Lambda + \breve{r}_kq^TY$
- Consider columns Hx_i = -λ_ix_i + ř_kq^Ty_i and Hx_{k+i} = λ_ix_{k+i} + ř_kq^Ty_{k+i}
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$|E_{\lambda_i}\| = \max\left\{\frac{\|\check{r}_k q^T y_{k+i}\|}{\|x_{k+i}\|}, \frac{\|\check{r}_k^T q y_i^T J\|}{\|Jx_i\|}\right\}$$

A Krylov-Schur like algorithm Locking and Purging

- Assume $\check{H}^{2k,2k}$ could be diagonalized by usage of Y.
- $I \breve{S}Y = \breve{S}YY^{-1}\breve{H}Y + \breve{r}_kq^TY \text{ or } HX = X\Lambda + \breve{r}_kq^TY$
- Consider columns $Hx_i = -\lambda_i x_i + \check{r}_k q^T y_i$ and $Hx_{k+i} = \lambda_i x_{k+i} + \check{r}_k q^T y_{k+i}$
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$|E_{\lambda_i}\| = \max\left\{\frac{\|\breve{r}_k q^T y_{k+i}\|}{\|x_{k+i}\|}, \frac{\|\breve{r}_k^T q y_i^T J\|}{\|Jx_i\|}\right\}$$

A Krylov-Schur like algorithm Locking and Purging

- Assume $\check{H}^{2k,2k}$ could be diagonalized by usage of Y.
- $I \breve{S}Y = \breve{S}YY^{-1}\breve{H}Y + \breve{r}_kq^TY \text{ or } HX = X\Lambda + \breve{r}_kq^TY$
- Consider columns Hx_i = -λ_ix_i + ř_kq^Ty_i and Hx_{k+i} = λ_ix_{k+i} + ř_kq^Ty_{k+i}
- From the last equations we get eigentriples $(\lambda_i, x_{k+i}, (Jx_i)^T)$ and $(-\lambda_i, x_i, (Jx_{k+i})^T)$
- From [Kahan/Parlett/Jiang,1982] backward error $||E_{\lambda_i}||$, where $(H E_{\lambda_i})x = \lambda_i x$, could be computed

$$|E_{\lambda_i}\| = \max\left\{\frac{\|\breve{r}_k q^T y_{k+i}\|}{\|x_{k+i}\|}, \frac{\|\breve{r}_k^T q y_i^T J\|}{\|Jx_i\|}\right\}$$

A Krylov-Schur like algorithm Locking and Purging

Locking

- For the wanted eigenvalue $\lambda_i || E_{\lambda_i} ||$ is sufficiently small.
- The corresponding eigenblock in $\check{H}_{p}^{2k,2k}$ has to be moved to the left upper corner of $\check{H}_{p}^{2k,2k}$ using the T_{p} transformations.
- Accumulation of this transformations in \check{S}_p guarantees that the first columns of S_p are associated with λ_i .
- Shrink H
 _p such that the eigenblock for λ_i will not be involved in further computations.
- The J-reorthogonalisation has to be done against all columns of \check{S}_p .

A Krylov-Schur like algorithm Locking and Purging

Locking

- For the wanted eigenvalue $\lambda_i || E_{\lambda_i} ||$ is sufficiently small.
- The corresponding eigenblock in $\check{H}_{p}^{2k,2k}$ has to be moved to the left upper corner of $\check{H}_{p}^{2k,2k}$ using the T_{p} transformations.
- Accumulation of this transformations in \check{S}_p guarantees that the first columns of S_p are associated with λ_i .
- Shrink \check{H}_p such that the eigenblock for λ_i will not be involved in further computations.
- The J-reorthogonalisation has to be done against all columns of \check{S}_p .

A Krylov-Schur like algorithm Locking and Purging

Locking

- For the wanted eigenvalue $\lambda_i || E_{\lambda_i} ||$ is sufficiently small.
- The corresponding eigenblock in $\check{H}_{p}^{2k,2k}$ has to be moved to the left upper corner of $\check{H}_{p}^{2k,2k}$ using the T_{p} transformations.
- Accumulation of this transformations in \check{S}_p guarantees that the first columns of S_p are associated with λ_i .
- Shrink H
 _p such that the eigenblock for λ_i will not be involved in further computations.
- The J-reorthogonalisation has to be done against all columns of \check{S}_p .

A Krylov-Schur like algorithm Locking and Purging

Locking

- For the wanted eigenvalue $\lambda_i || E_{\lambda_i} ||$ is sufficiently small.
- The corresponding eigenblock in $\check{H}_{p}^{2k,2k}$ has to be moved to the left upper corner of $\check{H}_{p}^{2k,2k}$ using the T_{p} transformations.
- Accumulation of this transformations in \check{S}_p guarantees that the first columns of S_p are associated with λ_i .
- Shrink H
 _p such that the eigenblock for λ_i will not be involved in further computations.
- The J-reorthogonalisation has to be done against all columns of \check{S}_p .

A Krylov-Schur like algorithm Locking and Purging

Purging

- For the **unwanted** eigenvalue $\lambda_i || E_{\lambda_i} ||$ is sufficiently small.
- The corresponding eigenblock in $\check{H}_{p}^{2k,2k}$ has to be moved to the left upper corner of $\check{H}_{p}^{2k,2k}$ using the T_{p} transformations.
- Accumulation of this transformations in \check{S}_p guarantees that the first columns of S_p are associated with λ_i .
- Shrink H
 _p such that the eigenblock for λ_i will not be involved in further computations.
- The J-reorthogonalisation has to be done against all columns of \check{S}_p .

A Krylov-Schur like algorithm Locking and Purging

•
$$H_p S_p^{2n,2m} = S_p^{2n,2m} \tilde{H}_p^{2m,2m} + \zeta_{m+1} v_{m+1} e_{2m}^T$$

- (a) Compute SR algorithm for \tilde{H}_p .
- Transform Lanczos factorisation into Krylov-Schur like decomposition.
- Compute backward error $||E_{\lambda_i}||$.
- Move the eigenblocks to the proper places.
- Create smaller Lanczos factorisation out of Krylov-Schur like decomposition.

A Krylov-Schur like algorithm Locking and Purging

•
$$H_p S_p^{2n,2m} = S_p^{2n,2m} \tilde{H}_p^{2m,2m} + \zeta_{m+1} v_{m+1} e_{2m}^T$$

- 2 Compute SR algorithm for \tilde{H}_p .
- Transform Lanczos factorisation into Krylov-Schur like decomposition.
- Compute backward error $||E_{\lambda_i}||$.
- Move the eigenblocks to the proper places.
- Create smaller Lanczos factorisation out of Krylov-Schur like decomposition.

A Krylov-Schur like algorithm Locking and Purging

$$H_{p}S_{p}^{2n,2m} = S_{p}^{2n,2m}\tilde{H}_{p}^{2m,2m} + \zeta_{m+1}v_{m+1}e_{2m}^{T}.$$

- 2 Compute SR algorithm for \tilde{H}_p .
- Transform Lanczos factorisation into Krylov-Schur like decomposition.
- Compute backward error $||E_{\lambda_i}||$.
- Move the eigenblocks to the proper places.
- Create smaller Lanczos factorisation out of Krylov-Schur like decomposition.

A Krylov-Schur like algorithm Locking and Purging

$$H_{p}S_{p}^{2n,2m} = S_{p}^{2n,2m}\tilde{H}_{p}^{2m,2m} + \zeta_{m+1}v_{m+1}e_{2m}^{T}.$$

- 2 Compute SR algorithm for \tilde{H}_p .
- Transform Lanczos factorisation into Krylov-Schur like decomposition.
- Compute backward error $||E_{\lambda_i}||$.
- Move the eigenblocks to the proper places.
- Create smaller Lanczos factorisation out of Krylov-Schur like decomposition.

A Krylov-Schur like algorithm Locking and Purging

$$H_{p}S_{p}^{2n,2m} = S_{p}^{2n,2m}\tilde{H}_{p}^{2m,2m} + \zeta_{m+1}v_{m+1}e_{2m}^{T}.$$

- 2 Compute SR algorithm for \tilde{H}_p .
- Transform Lanczos factorisation into Krylov-Schur like decomposition.
- Compute backward error $||E_{\lambda_i}||$.
- Move the eigenblocks to the proper places.
- Create smaller Lanczos factorisation out of Krylov-Schur like decomposition.

A Krylov-Schur like algorithm Locking and Purging

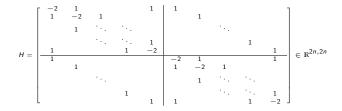
$$H_{p}S_{p}^{2n,2m} = S_{p}^{2n,2m}\tilde{H}_{p}^{2m,2m} + \zeta_{m+1}v_{m+1}e_{2m}^{T}.$$

- 2 Compute SR algorithm for \tilde{H}_p .
- Transform Lanczos factorisation into Krylov-Schur like decomposition.
- Compute backward error $||E_{\lambda_i}||$.
- Move the eigenblocks to the proper places.
- Create smaller Lanczos factorisation out of Krylov-Schur like decomposition.

SR algorithm Krylov-Schur like algorithm

Results of SR algorithm

Comparison of implemented SR algorithm and Matlab's eig routine for matrix *H* from CAREX (Example16) benchmark collection by [Benner/Laub/Mehrmann, 1995].



SR algorithm Krylov-Schur like algorithm

SR algorithm vs. Matlab's eig

eig	SR algorithm	
-4.09007692547218	-4.09007692547218	
-4.09007692547217	-4.09007692547217	
-3.83317281079134	-3.83317281079134	
-3.35764070604493	-3.35764070604493	
-2.73657991827709	-2.73657991827709	
-2.73657991827709	-2.73657991827702	
-2.07265697232460	-2.07265697232467	
-2.07265697232460	-2.07265697232460	
-1.49292460661253	-1.49292460661264	
-1.12803607263302	-1.12803607263302	
-1.00907878741279	-1.00907878741279	
-1.00000000000000	-1.000000000000000	

• Example 16 of CAREX with size 24

1

-

• Maximal condition number for the SR algorithm is 51.75

SR algorithm Krylov-Schur like algorithm

Krylov-Schur for Quadratic Eigenvalue Problem

Consider the Quadratic Eigenvalue Problem (QEP)

$$(\lambda^2 M + \lambda G + K)u = 0$$

with matrices M, G and $K \in \mathbb{C}^{n,n}$. The special QEP where $M = M^T > 0$, $G = -G^T$ und $-K = -K^T > 0$ has Hamiltonian distribution of the eigenvalues and can be transformed in a Hamiltonian eigenvalue problem. See [Apel/Mehrmann/Watkins,2002] or [Mehrmann/Watkins,2001]. The result is the matrix H of the following form

$$H = \begin{bmatrix} I & -\frac{1}{2}G \\ 0 & I \end{bmatrix} \begin{bmatrix} 0 & -K \\ M^{-1} & 0 \end{bmatrix} \begin{bmatrix} I & -\frac{1}{2}G \\ 0 & I \end{bmatrix}$$

SR algorithm Krylov-Schur like algorithm

Krylov-Schur like vs. SHIRA

Krylov-Schur like algorithm

SHIRA algorithm

eigenvalue	residual	eigenvalue	residual
-0.90592878885719	2.813e-16	-0.90592878886122	6.945e-17
-0.90634686034789	1.752e-16	-0.90634686034999	1.325e-16
-1.07560224930035	2.970e-16	-1.07560224930036	3.933e-17
-1.60332758476210	2.576e-15	-1.60332758477172	1.639e-15
-1.65786577098053	3.323e-15	-1.65786577098970	6.311e-16
-1.66121735256369	2.576e-15	-1.66121735256372	2.157e-16

- $\bullet\,$ Both algorithms need 3 iterations to reach convergence bound of $10^{-8}\,$
- SR algorithm has maximal condition number of 21178
- Size of matrices M, G and K is n = 5139

SR algorithm Krylov-Schur like algorithm

Krylov-Schur like vs. Matlab's eigs

Krylov-Schur like algorithm

Matlab's eigs routine

Eigenwerte	Residuen	Eigenwerte	Residuen
-0.90592878885661	3.244e-16	-0.90592878886324	1.864e-16
-0.90634686034754	2.242e-16	-0.90634686035071	1.648e-16
-1.07560224930008	1.591e-16	-1.07560224930012	1.823e-16
-1.60332758476411	7.370e-16	-1.60332758476362	5.733e-17
-1.65786577098821	2.488e-15	-1.65786577099183	5.241e-15
-1.66121735257659	1.169e-14	-1.66121735256949	3.922e-15
-1.75605775398702	2.057e-15	-1.75605775408379	9.367e-14

- Matlab's eigs needs 11 iteration steps and the Krylov-Schur like algorithm 8 (convergence bound of 10⁻¹⁰ for both)
- Maximal condition number during Krylov-Schur like is 2518
- Size of matrices M, G and K is again n = 5139

- Fortran or C implementation of the SR algorithm and the Krylov-Schur Process
- Time measurement when comparing these algorithms with SHIRA, eig and eigs
- Integration of more computable examples such as Positive-Real-Balancing or special QEPs

3 N