
Machine Learning in Particle Physics: Graph
Neural Networks for Jet Clustering at the

Future Circular Collider (FCC-ee)

Candidate no. 1048263
Thesis word count: 18956

A thesis submitted for the degree of
Master of Computer Science

Trinity 2021

Abstract
We present an interdisciplinary project in Particle Physics and Computer Sci-
ence by applying novel data processing techniques, modern data analysis and
integrating them with advanced machine learning. Our objective is to develop
a novel methodology to perform final state particle classification, based on its
origin of decay in the event of two leptons(electron and positron) colliding at the
FCC-ee detector, a future circular detector, proposed at CERN in the coming
decades. Based on the classification of the final state, as decaying from the
Higgs Boson, or Z Boson, we group the particles of the same class together: jet
clustering. Traditional techniques use sequential recombination methods for jet
clustering. A wide variety of graph machine learning architectures, using diverse
graph representations, specifically targeting generated level simulations, have been
recently explored in the literature and have offered promising results. However,
there has been limited exploration of the application of graph neural networks in
jet clustering, as most relevant work has been carried out in pile-up mitigation,
reconstruction of the calorimeter, and jet tagging. Our research project is the first
to build a supervised node classification for jet clustering in an electron-positron
collision within an inductive learning setup on a simulation dataset. Each event
collision is represented as a graph, whereas the final state particles (observed
at the detector) are represented as nodes. We aim to develop three new graph
representations based on existing literature reviews, implement a baseline for
comparison among the eight different graph neural network models, and evaluate
the best model parameters through multiple empirical experiments. Our key
findings report an increased performance against the established baseline, the
most suitable network depth, the best performing GNN architectures, graph
processing scheme, and edge-generation scheme. Our work highlights the way
forward for further exploration and research to enhance jet clustering algorithms
for the future circular collider.

Machine Learning in Particle Physics:
Graph Neural Networks for Jet
Clustering at the Future Circular

Collider (FCC-ee)

Candidate no. 1048263
Word count: 18956

A thesis submitted for the degree of
Master of Computer Science

I hereby certify that this is entirely
my own work unless otherwise stated.

Trinity 2021

Abstract

We present an interdisciplinary project in Particle Physics and Computer Science
by applying novel data processing techniques, modern data analysis and integrating
them with advanced machine learning. Our objective is to develop a novel
methodology to perform final state particle classification, based on its origin of decay
in the event of two leptons(electron and positron) colliding at the FCC-ee detector,
a future circular detector, proposed at CERN in the coming decades. Based on the
classification of the final state, as decaying from the Higgs Boson, or Z Boson, we
group the particles of the same class together: jet clustering. Traditional techniques
use sequential recombination methods for jet clustering. A wide variety of graph
machine learning architectures, using diverse graph representations, specifically
targeting generated level simulations, have been recently explored in the literature
and have offered promising results. However, there has been limited exploration of
the application of graph neural networks in jet clustering, as most relevant work
has been carried out in pile-up mitigation, reconstruction of the calorimeter, and jet
tagging. Our research project is the first to build a supervised node classification
for jet clustering in an electron-positron collision within an inductive learning
setup on a simulation dataset. Each event collision is represented as a graph,
whereas the final state particles (observed at the detector) are represented as nodes.
We aim to develop three new graph representations based on existing literature
reviews, implement a baseline for comparison among the eight different graph
neural network models, and evaluate the best model parameters through multiple
empirical experiments. Our key findings report an increased performance against
the established baseline, the most suitable network depth, the best performing
GNN architectures, graph processing scheme, and edge-generation scheme. Our
work highlights the way forward for further exploration and research to enhance
jet clustering algorithms for the future circular collider.

Contents

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Particle Physics . 1

1.1.1 The Standard Model . 2
1.1.2 Limitations of the Standard Model 2
1.1.3 Objective of Experimental Particle Physics 2

1.2 Computing in Particle Physics . 3
1.3 Higgs Boson . 3

1.3.1 Significance of the Higgs Boson 3
1.3.2 Future Experiments Studying the Higgs Boson 4

1.4 Graph Neural Networks in Particle Physics 4
1.5 Motivation: Problem Statement . 5
1.6 Proposed Solution . 5
1.7 Overview of the Chapters . 6
1.8 Key Contributions . 7

2 Background 9
2.1 Introduction . 10
2.2 The Standard Model (SM) . 10

2.2.1 Fermions . 10
2.2.2 Force Carriers . 13
2.2.3 Standard Units of Measurements 14
2.2.4 Limitations of SM . 14

2.3 Experimental Particle Physics . 15
2.3.1 Introduction to Particle Accelerators and Colliders 15
2.3.2 Experimental Dataset . 17
2.3.3 Simulations . 18
2.3.4 Distributed Computing: . 19
2.3.5 Accelerators of the Future 19

iii

Contents iv

2.4 Existing Experiments . 19
2.5 Future experiments . 20

2.5.1 How is the Higgs Boson produced at FCC-ee? 21
2.5.2 Higgs Boson Production in HZ mode: 21
2.5.3 Higgs Boson Decay: . 22
2.5.4 Event Decay Chain . 22

2.6 Role of Engineering and Computer Science in Particle Physics . . . 23
2.6.1 CERN’s Infrastructure . 23
2.6.2 Future of Computing in HEP 23
2.6.3 Challenges in HEP: Physics and Computing 23

2.7 Graph Neural Networks in Particle Physics 24
2.7.1 Introduction . 24
2.7.2 Related Work . 25
2.7.3 Jet Classification: Jet Tagging 25
2.7.4 Jet Clustering . 26

2.8 Graph Neural Networks in Jet Clustering 27
2.8.1 Research Questions . 28

3 Graph Machine Learning 29
3.1 What is a graph? . 30

3.1.1 What are the types of graphs 30
3.1.2 Mathematical Representations of Graph 31
3.1.3 Properties: Graph Metrics and Node Metrics 31
3.1.4 Graph Network Embedding 33
3.1.5 Graph Representation Learning 34
3.1.6 Machine Learning in Network Science 35

3.2 Message Passing Networks . 35
3.2.1 K-Hop Neighbourhood . 36
3.2.2 Node Embeddings . 37
3.2.3 Message Passing with Self Loops 37
3.2.4 Basic Graph Neural Networks 37

3.3 Graph Convolutional Networks . 38
3.3.1 Symmetric Normalisation 38
3.3.2 Graph Convolutional Networks 38

3.4 Set Aggregations . 38
3.4.1 Neighbourhood Attention Mechanisms 39

3.5 Generalised Update Functions . 39
3.5.1 Over-Smoothing . 40
3.5.2 Skip Connections . 40

Contents v

3.5.3 Jumping Knowledge Connections 41
3.6 Overview of Graph Neural Networks 41

3.6.1 History of Graph Neural Networks 41
3.6.2 Types of Graph Neural Networks 42
3.6.3 Training Settings for Graph Neural Networks 42
3.6.4 Computational Modules in Graph Neural Networks 43
3.6.5 Recent advances in Graph Neural Networks 44
3.6.6 Complex Real World Graphs in Network Science 45
3.6.7 Graph Transfer Learning . 45
3.6.8 Explainability in Graph Neural Networks 45
3.6.9 Computational Efficiency . 46

3.7 Strengths and Weaknesses of Graph Neural Networks 47
3.7.1 Strengths and Advantages 47
3.7.2 Limitations and their Proposed Solutions 48

4 Methodology 51
4.1 Introduction . 52
4.2 Particle Physics Data . 52

4.2.1 Event Data . 53
4.2.2 Simulated Dataset . 53

4.3 Data Generation and Conversion 54
4.3.1 Data handling framework 54
4.3.2 Simulation Frameworks . 54
4.3.3 Data Conversion to Compatible Formats 54

4.4 Data Description . 55
4.4.1 Dataset Version 1 . 55
4.4.2 Dataset Version 2 . 56
4.4.3 Data Analysis and Preprocessing 57

4.5 An overview of the GNN Pipeline 57
4.5.1 Practical Implementation . 57
4.5.2 Introduction to Graph Generation in Particle Physics 57
4.5.3 Construction of a Graph . 57
4.5.4 Role of Edges in a Graph . 58
4.5.5 Size of a Graph . 58

4.6 Definition of the Machine Learning Task 59
4.6.1 What are the entities and relations that could also be repre-

sented as nodes and edges, respectively? 59
4.6.2 What is the desired output, such as predictions at the edge,

node, or graph level? . 59

Contents vi

4.6.3 Is it necessary to have a global output network to create
graph-level outputs? . 59

4.6.4 How many message-passing steps should be utilised to spread
information among the graph’s remote nodes? 59

4.7 Edge-generation strategies . 60
4.7.1 edge-KNN . 60
4.7.2 edge-radius . 60
4.7.3 edge-label . 60

4.8 Graph Processing . 61
4.8.1 Fixed-size Graph dataset . 61
4.8.2 Variable-size Graph dataset 61
4.8.3 Edges in Fixed and Variable size dataset 61

4.9 Model Evaluation Metrics . 61
4.9.1 Accuracy . 62
4.9.2 Node Accuracy . 62
4.9.3 Event Accuracy . 62

4.10 Model Methodology . 63
4.10.1 Graph Network Blocks . 63
4.10.2 Attention mechanism . 63
4.10.3 Stacking Graph Network Blocks 64
4.10.4 GNN architectures . 64

4.11 Selecting the Graph Network Blocks 64
4.11.1 GCNConv . 64
4.11.2 ChebConv . 65
4.11.3 TAGConv . 66
4.11.4 Jumping Knowledge . 66
4.11.5 SAGEConv . 67
4.11.6 GINConv . 67
4.11.7 GATConv . 67
4.11.8 SuperGATConv . 68
4.11.9 Conclusion . 69

5 Results 70
5.1 Introduction . 71

5.1.1 Event wise classification . 71
5.1.2 Multiclass-classifier: . 71
5.1.3 Default Case: . 72

5.2 MLP: Establishing a Baseline with neural networks 72
5.2.1 Objective: MLP-2 . 72

Contents vii

5.2.2 Results: . 72
5.3 MLP: Network Depth . 73

5.3.1 Objective: Network Depth of 2, 4, 8 73
5.3.2 Results: . 73

5.4 Graph Convolutional Network: An in-depth exploration 73
5.4.1 Objective: GCN-2 . 73
5.4.2 Results: . 73

5.5 GCN: Most Representative Dataset 74
5.5.1 Objective: GCN-2 on edge-radius, edge-KNN, edge-label . . 74
5.5.2 Results: . 75

5.6 GCN: Network Depth Experiment 75
5.6.1 Objective: Network Depth of 2, 4, 8, 16 75
5.6.2 Results: . 76

5.7 GCN: Accuracy with Different Dataset Sizes 80
5.7.1 Objective: Dataset split into 0.2, 0.4, 0.6, 0.8 80
5.7.2 Results: . 80

5.8 GCN: Hyperparameter Search . 81
5.8.1 Objective: Find optimal hyperparameters for GCN-2 on edge-

KNN . 81
5.8.2 Results: . 81

5.9 GNN-variants: Model Evaluation and Comparison 81
5.9.1 Objective: MLP, GCN, ChebNet, SAGE, GAT, GIN, JKNet,

TAGCN and SuperGAT . 81
5.9.2 Results: . 83

5.10 Conclusion . 85
5.10.1 Could machine learning techniques be used to predict the

sets of final state particles originating from the Higgs Boson
and Z boson in the HZ production mode at the future lepton
collider? . 85

5.10.2 How can graph neural networks be used to model event
collisions as graphs and particles as nodes for the supervised
task of node classification? 85

5.10.3 How can we generate relationships or links between final state
particles? What is the most optimal type of graph data
representation of the stable particles detected at a collider? . 86

5.10.4 What is the most promising graph neural architecture to
correctly predict all the nodes’ labels in a graph? 86

Contents viii

6 Conclusions 87
6.1 Overview . 87
6.2 Limitations of Our Work . 88
6.3 Key Contributions and Results . 89
6.4 Future work and Directions . 89

6.4.1 Higgs Production Modes . 89
6.4.2 Data representation . 90
6.4.3 Lepton Collider Datasets . 91
6.4.4 Extending Model Designs 91
6.4.5 Exhaustive evaluation on Random Seeds 91
6.4.6 Fast Inference . 91
6.4.7 Larger Datasets . 92

6.5 Conclusion . 92

Bibliography 93

List of Figures

2.1 The Standard Model of Particle Physics 11
2.2 An example of an event collision at the LHC: ATLAS[147] 17
2.3 Supervised ML algorithms are used to invert the detector simulation

to infer something about the underlying physics and are then applied
to real data. 18

2.4 Future Circular Collider[145] . 20
2.5 Reference Frame: [146] . 21
2.6 Higgsstrahlung Process [30] . 22

3.1 Embeddings of a Graph[148] . 34
3.2 Message Passing Networks: Aggregation from a node’s local neigh-

bourhood[148] . 35
3.3 Comparison of Euclidean and Non-Euclidean Data 42
3.4 Computational Modules of a Graph Neural Network[29] 44

4.1 Graph Neural Networks Pipeline [29] 58

5.1 Training and Validation Accuracy Curves on GCN-2: edge-KNN . . 74
5.2 Training and Validation Loss Curves on GCN-2: edge-KNN 74
5.3 Networkx Visualisation of a sample event: edge-KNN 75
5.4 Networkx Visualisation of a sample event: edge-radius 76
5.5 Node Metrics for a sample event: edge-KNN 77
5.6 Graph Global Metrics for a sample of 100 event:edge-KNN 78
5.7 Visualisation of Subgraph to Explain GCN-2 predictions for node at

indices(L-R): 0, 11, 12, 21 using [91]: edge-KNN 79

ix

List of Abbreviations

Anti-kt Anti-kt clustering algorithm

ATLAS A Toroidal LHC Apparatus

AWAKE . . . Advanced Proton Driven Plasma Wakefield Acceleration Experi-
ment

BDT Boosted Decision Trees

C-A Cambridge-Aachen

CEPC Circular Electron Positron Collider

CERN European Organisation for Nuclear Research

ChebNet . . . Graph Convolutional Network with Chebyshev filter

CLIC Compact Linear Collider

CMS Compact Muon Solenoid

CNN Convolutional Neural Networks

CPU Central Processing Unit

DAG Directed Acyclic Graph

DNN Deep Neural Network

e- or e Electron

e+ Positron

ESA European Space Agency

eV Electron-Volt

FCC Future Circular Collider

FCC-ee Future Circular Lepton Collider

FPGA Field Programmable Gate Arrays

GAT Graph Attention Network

GCN Graph Convolutional Network

GeV Giga-electron Volt

x

List of Abbreviations xi

GIN Graph Isomorphism Network

GNN Graph Neural Networks

H Higgs Boson

HEP High Energy Physics

HL-LHC . . . High-Luminosity LHC

ILC International Linear Collider

JKNet Jumping Knowledge Network

KNN K Neareast Neighbours

LEP Large Electron–Positron Collider

LHC Large Hardon Collider

LR Learning Rate

MC Monte Carlo

ML Machine Learning

MLP Multi Layer Perceptron (Neural Network)

MVA Multivariate Analysis

NN Neural Network

PB Peta Byte

pp Proton-Proton

QCD Quantum Chromodynamics

QFT Quantum Field Theory

RF Radio-Frequency

RL Re-inforcement Learning

RNN Recurrent Neural Networks

SAGE Sample and Aggregate

SGD Stochastic Gradient Descent

SM Standard Model

SuperGAT . . Self-supervised Graph Attention Network

TAGCN Topology Aware Graph Convolutional Network

TB Tera Byte

W- Gauge Boson and carrier of weak force

W+ Gauge Boson and carrier of weak force

List of Abbreviations xii

WD Weight Decay

WLCG Worldwide LHC Computing Grid

WWW World Wide Web

Z Z Boson

1
Introduction

Contents
1.1 Particle Physics . 1

1.1.1 The Standard Model . 2
1.1.2 Limitations of the Standard Model 2
1.1.3 Objective of Experimental Particle Physics 2

1.2 Computing in Particle Physics 3
1.3 Higgs Boson . 3

1.3.1 Significance of the Higgs Boson 3
1.3.2 Future Experiments Studying the Higgs Boson 4

1.4 Graph Neural Networks in Particle Physics 4
1.5 Motivation: Problem Statement 5
1.6 Proposed Solution . 5
1.7 Overview of the Chapters 6
1.8 Key Contributions . 7

1.1 Particle Physics

Particle physics is a field of science devoted to the development of the fundamental

laws of matter and forces. It is a scientific discipline that investigates the nature

of our Universe’s constituents. Its objective is to understand and uncover all

characteristics of elementary particles, the smallest irreducible subset of constituents,

and how they interact and behave fundamentally. As a result of this endeavour,

1

1. Introduction 2

many important theoretical and experimental discoveries have been made in the

last few decades, with the effort spanning across centuries.

1.1.1 The Standard Model

Particle physics focuses on studying fundamental particles in controlled environments

such as in collider physics or nature. The standard model is a theory of elementary

particles such as quarks and leptons and the strong, weak, and electromagnetic

forces. The Standard Model is currently our best explanation of the elements of

matter [1]. It was built with the help of interrelated quantum field theories majorly

created in the second half of the twentieth century.

1.1.2 Limitations of the Standard Model

While the scope and precision of the theoretical framework are phenomenal, the

standard model still fails to describe some key aspects of our Universe, including

gravity, dark matter and energy, the fine-tuned hierarchy of effects, the origin

of neutrino’s mass, and the matter-antimatter asymmetry. The main challenge

of modern physics is to broaden its scope to include these critical components,

resulting in the birth of theories such as Supersymmetry, String Theory, and

Grand Unified Theory.

1.1.3 Objective of Experimental Particle Physics

Experimental particle physics aims to overcome the existing predicament by exposing

evidence of physics outside the Standard Model or occurrences where its predictions

differ from observations. Physicists explore the subatomic realm by colliding large

numbers of particles and examining the decayed particles formed due to the collisions.

Massive detectors constructed around the collision or interaction point record a

wide variety of data from these events. The validity of theoretical predictions of

the SM can be tested against observations by analysing the data acquired so far.

1. Introduction 3

1.2 Computing in Particle Physics

The largest machine and most powerful accelerator, the Large Hadron Collider,

was built at CERN in 2008. On a typical day of operation, the Large Hadron

Collider’s different detectors produce approximately 1 PB of collision data per

second and capture about 100 TB per day [2, 3]. As a result, computational

efficiency is a crucial component of modern particle physics. The experimental

design requires computational approaches across data, software, hardware, and

infrastructure regimes for resource sharing, compression, storage, event filtering,

simulation, reconstruction, and physics analysis.

1.3 Higgs Boson

The Higgs boson discovery, a fundamental scalar boson with a mass of 125 GeV, in

2012 [4, 5, 6, 20] at the LHC was the Standard Model’s most recent spectacular

triumph. The Higgs boson’s couplings to other elementary particles, precise

measurements of the Higgs boson’s characteristics, an early examination of the

Higgs boson’s self-interaction and form of the Higgs potential have all been the

focus of studies at the LHC so far.

1.3.1 Significance of the Higgs Boson

The 125 GeV mass of the Higgs boson is a remarkable value, implying that the

fundamental condition of the Universe, the vacuum, is extremely close to the stable-

metastable boundary, suggesting deeper physics beyond the standard model. [7] The

Higgs potential also influences theories about the cosmological constant, dark energy,

which drives the Universe’s accelerating expansion, dark matter, which constitutes

about 80 percent of the Universe’s matter, and a possible phase transition in the

early Universe that could be responsible for baryogenesis.

1. Introduction 4

1.3.2 Future Experiments Studying the Higgs Boson

According to the latest European Particle Physics Strategy update in 2020 [10,11],

precision studies of the Higgs boson and its interactions are a prime objective

for the next high-energy collider.

Future colliders at CERN could include the Future Circular Collider(FCC-ee)

[12,13] or the Compact Linear Collider (CLIC) [14,15]. Other additional electron-

positron (e+e) collider options being discussed in the context of CERN’s future

could be the International Linear Collider (ILC) [16] and the Circular Electron

Positron Collider (CEPC) in Japan and China, respectively [17].

Although electron-positron colliders cannot attain the same high centre-of-

mass energies as proton-proton colliders, they have a considerably cleaner initial

collision state, having fundamental particles with well-defined energies entering the

interactions. Therefore, ‘Higgs production could be measured inclusively from its

presence as a recoil to the Z in e+e HZ events in electron-positron colliders, allowing

the absolute measurement of the Higgs boson’s coupling to the Z boson.’ [7]

1.4 Graph Neural Networks in Particle Physics

Graph neural networks are trainable functions that operate on graphs—sets of

objects and their pairwise relationship. GNNs are a key component of geometric

deep learning. They are extremely expressive, and they have outperformed other

traditional deep learning techniques in a multitude of domains. Particle physics

data is frequently represented by sets and graphs; therefore, graph neural networks

could provide significant benefits. [8]

Several graph representational techniques recently proposed in the literature for

jet tagging have been successful. [18, 19, 21] Traditional jet clustering methods [9]

are still prevalent and an important preprocessing step in the jet-tagging pipeline.

Supervised jet clustering using graph neural networks on the edge level has been

explored recently for proton-proton collisions at the LHC [31]. Therefore, it allows

us to examine if graph neural networks can generate representative node embeddings

1. Introduction 5

for jet clustering on the electron-positron collisions for the Future Circular Collider.

We aim to investigate if the graph neural network algorithms can show promising

results on the simulation dataset for supervised jet clustering at the node level.

1.5 Motivation: Problem Statement

Jets are a collimated spray of stable particles, which are directly observed in an

experiment. Jets are first clustered and then classified into specific types (jet tagging

or jet classification) to understand and identify the origin of the stable observed

particles. Our purpose is to cluster particles and specify which set of final state

(stable) particles were generated from the decay of the Higgs Boson, Z boson or

other types of particles. To narrow our search, we aim to study whether graph

representation learning algorithms could be added to the toolbox of experimental

physicists of the FCC collaboration at CERN.

1.6 Proposed Solution

Our approach differs from existing methods as it questions if only final state particles

can be used to discriminate based on the origin of decay. We first create the labels

directly from the raw features of the event for all the particles in an event decay.

Then we selectively filter the final state particles of the event. We then use the

particle features of the final state particles and generate edges between them to

build a graph dataset that is eventually used to create node embeddings through

multiple layers of graph convolutions. In the end, we make predictions on the node

and classify it into different categories: as particle decaying from Higgs, as a particle

decaying from Z and as a particle decaying from others.

We process a simulated dataset: a node is represented as a particle observed

at the detector, and all the particles in a single event collision are represented

as a graph. We generate three different graphical representations of the final

state particles by connecting them with edges and evaluate the node classification

1. Introduction 6

accuracy of 10,000 events over various GNN architectures. Therefore, we develop a

classifier that distinguishes among stable particles for a future lepton collider.

Deriving an accurate graph representation of events and developing a graph-

machine-learning algorithm to discriminate particles based on their origin of decay

in the FCC-ee experiment could prove extremely useful in its quest to unravel

the laws of our Universe.

1.7 Overview of the Chapters

• Chapter 2 discusses the background physics and graph neural networks in-

depth, the key research areas and methodologies, and highlights the current

state of the art of jet clustering and node classification techniques in HEP.

These concepts are aggregated and re-framed into a concrete and cohesive set

of research questions for our research project.

• Chapter 3 discusses the mathematical definition, properties and background

of graphs. It highlights the message passing network in graph neural networks

and explains the most prominent architectures in depth. Lastly, it covers recent

advances in the domain, followed by a set of advantages and disadvantages of

using graph neural networks.

• Chapter 4 is dedicated to the project’s overall methodology, and it focuses

on processing data, generating and analysing graph datasets, and developing

models suitable for the supervised learning task of node classification. A

simulation dataset was collected and processed to meet requirements to

analyse the effectiveness and characteristics of the investigated approach. We

build three types of datasets: edge-KNN, edge-Radius, edge-Label based on

edge generation recommendations by the authors in [8]. Since there are no

benchmarks on the supervised node classification of the jet clustering task,

we first establish a baseline using an MLP and GCN model. We present the

foundations for graph neural networks, explain the model design, development

and implementation. The chapter highlights seven types of recently developed

1. Introduction 7

GNN architectures that are further implemented to improve the baseline

results.

• Chapter 5 highlights the results of the implemented data and model method-

ology. We build upon the baseline models and evaluate the performance of

the state of the art GNN architectures. We discover the most suitable dataset

generated for our task and present the findings of the model performance

using evaluation metrics of node classification accuracy. Further, we augment

our work by introducing event accuracy, the number of events classified with

100 per cent node accuracy divided by the number of events in the dataset.

Finally, all the models are examined, and their results are summarised for

future work.

• This dissertation draws to a close with Chapter 6, which summarises the key

findings from each research stage, limitations of the current work and future

avenues for growth.

1.8 Key Contributions

The key contributions of the project are

• Edge Generation of three types of datasets:

edge-KNN, edge-Radius, edge-Label.

• Implementation of a baseline for supervised node classification:

Neural Network, Graph Convolutional Network.

• Model Exploration, Implementation and Optimisation of 8 GNN architectures.

GCN, SAGE, GAT, GIN, JKNet, ChebNet, TAGCN, SuperGAT.

• Model evaluation and comparison of the top-performing GNN architectures.

Our research places a strong emphasis on the multi-disciplinary nature of

the project: particle physics and machine learning. This dissertation aims to

examine aspects of both disciplines and present a novel discriminator for the

1. Introduction 8

clustering of the final state particles originating from H, Z or other particles at

the future FCC-ee experiment.

2
Background

Contents
2.1 Introduction . 10
2.2 The Standard Model (SM) 10

2.2.1 Fermions . 10
2.2.2 Force Carriers . 13
2.2.3 Standard Units of Measurements 14
2.2.4 Limitations of SM . 14

2.3 Experimental Particle Physics 15
2.3.1 Introduction to Particle Accelerators and Colliders . . . 15
2.3.2 Experimental Dataset 17
2.3.3 Simulations . 18
2.3.4 Distributed Computing: 19
2.3.5 Accelerators of the Future 19

2.4 Existing Experiments . 19
2.5 Future experiments . 20

2.5.1 How is the Higgs Boson produced at FCC-ee? 21
2.5.2 Higgs Boson Production in HZ mode: 21
2.5.3 Higgs Boson Decay: . 22
2.5.4 Event Decay Chain . 22

2.6 Role of Engineering and Computer Science in Particle
Physics . 23

2.6.1 CERN’s Infrastructure 23
2.6.2 Future of Computing in HEP 23
2.6.3 Challenges in HEP: Physics and Computing 23

2.7 Graph Neural Networks in Particle Physics 24
2.7.1 Introduction . 24
2.7.2 Related Work . 25
2.7.3 Jet Classification: Jet Tagging 25
2.7.4 Jet Clustering . 26

9

2. Background 10

2.8 Graph Neural Networks in Jet Clustering 27
2.8.1 Research Questions . 28

2.1 Introduction

We introduce high-energy physics (HEP) and computer science methodologies to

accomplish the goals of the interdisciplinary project. We provide a summary of the

physics background by outlining the major principles and underlying theoretical

knowledge. We discuss the experimental setup at a new electron-lepton collider at

the Future Circular Collider. Further, we introduce the Higgs production and decay

and the motivation for specifically targeting the decay of particles from the Higgs

Boson and Z bosons. We describe event decay chains and highlight how traditional

clustering methods operate in particle physics. We present our aim to build an

algorithm to cluster all particles originating from the same source together using

graph neural networks and highlight the research questions for the project.

2.2 The Standard Model (SM)

The Standard Model (SM) has so far been the most successful theory for explaining

matter’s constituents and dynamics [4]. It is often regarded as science’s most

successful theory [10], capable of accurately predicting and modelling some of

the Universe’s mechanisms to a high degree of precision. The Standard Model

is a set of fields and their dynamics: bosons which explain how matter interacts

with other matter in electromagnetic, weak, and strong interactions and fermions,

which describe the matter itself.

2.2.1 Fermions

• Fermions are classified according to how they interact or equivalently, by what

charges they carry.

2. Background 11

Figure 2.1: The Standard Model of Particle Physics

• Quarks and leptons are the two fundamental types of these particles. Each

group is made up of six particles that are linked together in pairs, or

generations. The first generation has the lightest and most stable particles,

whereas the second and third generations include the heavier and less stable

particles. All stable matter in the universe comprises first-generation particles;

heavier particles rapidly decay to more stable ones. The six quarks are coupled

in three generations: first, up quark and down quark, second, charm quark

and strange quark, and finally, the top quark and bottom (or beauty) quark

[32].

• Quarks come in three distinct ‘colours’ and can only be mixed in certain ways

to produce colourless objects. These can be up, down, bottom, top, charm and

strange quarks. Quantum Field Theory (QFT) of Quantum Chromodynamics

describes this process (QCD).

• Colour denotes the fundamental strong charge and is available in three colours:

‘blue’, ‘red’, and ‘green’. The gluon is the mediator of this interaction, is

2. Background 12

colour-charged, with two charges, and massless, which has a significant impact

on quark and gluon behaviour known as colour-confinement.

• Quarks are can never be found in isolation due to a mechanism known as

colour confinement. Quarks can only be found within hadrons, comprising

baryons (such as protons and neutrons) and mesons, or quark-gluon plasmas

[138].

• Hadrons are composite particles and are made up of quarks: the most stable

of which are protons and neutrons (building blocks of atomic nuclei)

• Quarks experience all four fundamental interactions, also known as funda-

mental forces: electromagnetism, gravitation, strong interaction, and weak

interaction. Quarks are the only fundamental fermions sensitive to strong

interaction forces. They are also the only particles having electric charges

that are not integer multiple of the elementary charge.

• The six leptons – electron and electron neutrino, muon and muon neutrino,

and tau and tau neutrino– are similarly organised in three generations.

• Leptons can be of two types: charged leptons, also known as electron-like

leptons or muons, and neutral leptons, better known as neutrinos. The

electron, muon, and tau all have an electric charge and a significant mass,

but neutrinos are electrically neutral and have a little mass. For example, an

electron is a lepton with an electric charge e = -1ev, and the anti-electron

referred to as positron is depicted as e+ with a positive charge of +1ev.

• Charged leptons may mix with other particles to create composite particles

like atoms and positronium, while neutrinos seldom interact with anything

and are rarely seen.

• Leptons, unlike quarks, are not affected by the strong interaction, but they are

affected by the other three basic interactions: gravity, the weak interaction,

and electromagnetism, the latter of which is proportional to charge and

therefore 0 for electrically neutral neutrinos.

2. Background 13

2.2.2 Force Carriers

• The Universe is governed by four fundamental forces. They operate in a variety

of ranges and have varying strengths. Gravity is the weakest of the forces,

yet it has an unlimited range. The electromagnetic force has an unlimited

range, but it is several orders of magnitude stronger than gravity. The weak

and strong forces are only powerful over a very small distance and dominate

solely at the subatomic particle level. The weak force, despite its name, is

considerably stronger than gravity, yet it is the weakest of the three. As the

name suggests, the strong force is the most powerful among the four basic

interactions [32].

• Three of the basic forces result from the exchange of force-carrier particles,

which are classified as bosons in a larger context. Particles of matter exchange

discrete quantities of energy by exchanging bosons. Each fundamental force

has its associated boson: electromagnetic force is carried by the photon, the

weak force is carried by the W and Z bosons, and the strong force is carried

by the gluon. Although yet to be discovered, the graviton should be the

equivalent force-carrying particle of gravity.

• Based on their spins, elementary bosons are further categorised as gauge

bosons and scalar bosons. Spin is defined as a type of angular momentum

that is carried by elementary particles.

• Gauge bosons are force carriers that mediate strong, weak, and electromagnetic

interactions: gluons, W+, W−, and Z and photons, respectively.

• Scalar bosons, like the Higgs Boson, are particles with no inherent spin. The

Higgs boson is a fundamental particle attributed with the Higgs field, which

gives mass to other fundamental particles like electrons and quarks [33][139].

2. Background 14

2.2.3 Standard Units of Measurements

The masses of the particles, by convention, are in GeV , a specific unit of energy.

(109eV where 1 eV is the energy of an electrical charge equal to that of the electron

accelerating from rest in a potential of 1 volt). The renowned equation E = mc2,

with c the speed of light in vacuum, links the mass m and energy in the rest frame

E. Both momentum and mass are frequently represented in GeV units, with the

appropriate factor of c added back in as necessary. A mass represented in GeV

can be re-written in the correct unit using GeV/c2.

2.2.4 Limitations of SM

• As noted in the introduction, the SM is an incomplete model, missing an

explanation for certain fundamental properties of the Universe, such as gravity,

the mass of neutrinos, dark matter, imbalance of matter and anti-matter, and

dark energy.

• The SM cannot be the ultimate theory for a range of reasons. It currently does

not incorporate gravity, for example. It is difficult to connect this interaction

with the others since it is extremely weak at the quantum level. It only

becomes significant at larger scales. Fortunately for particle physics, the

impact of gravity on the minuscule scale of particles is so small that it is

insignificant. Only when matter is in mass, such as at the size of the human

body or the planets, can gravity take over. So, despite its omission of one of

the basic forces, the Standard Model nevertheless functions effectively [32].

• The SM predicts, just like the photons, neutrinos have no mass. However,

scientists have discovered that the three neutrinos oscillate as they move,

which is only feasible because neutrinos are not massless. It is unclear to what

extent did the standard model made its predictions on neutrinos incorrectly.

After all, neutrinos have extremely small masses [34].

2. Background 15

• When scientists discovered that galaxies, based on the gravitational attraction

of their visible matter, were spinning far faster than they should be, they con-

cluded they were missing something. Galaxies should have ripped themselves

apart since they were spinning so rapidly. Galaxies must be receiving extra

mass—and therefore gravitational pull—from something we cannot directly

observe, called dark matter. However, the Standard Model does not include

dark matter, which accounts for 27 per cent of the Universe’s total mass [34].

• The Standard Model cannot explain the imbalance between matter and anti-

matter in the Universe. When equal amounts of matter and anti-matter

interact, they annihilate each other. Scientists claim that matter and anti-

matter should have been generated in equal amounts when the Universe was

formed in the Big Bang. However, some mechanisms prevented matter and

anti-matter from destroying one other in their expected pattern, and matter

now dominates the Universe around us [34].

• According to the latest Hubble Space Telescope and ESA’s Gaia(observatory)

data, galaxies are speeding away from us at a rapid rate of 45 miles per

second. The rate is thought to be caused by dark energy, an unknown feature

of space-time that is pulling the Universe apart. Scientists estimate that

the dark energy accounts for approximately 68 per cent of the energy in the

universe[34].

2.3 Experimental Particle Physics

2.3.1 Introduction to Particle Accelerators and Colliders

• Planck-Einstein relation: According to the prominent physicist Albert Einstein,

energy and length are inversely related in physics by the formula E = hc
λ

where h, is known as the Planck’s constant, c is the speed of light and λ is

the wavelength. To observe and precisely measure a particle, one must first

obtain a wavelength and energy corresponding to the particle’s size of interest.

The smaller the particle, the higher energy would be used.

2. Background 16

• Beam: A beam is a focused unidirectional stream of particles or radiation and

is accelerated using particle accelerators. [35]

• Purpose of accelerators: Accelerators are designed to enhance the kinetic

energy of charged particles (such as protons or electrons) before they release

their inherent content through collisions (interactions). Charged particles

are smashed onto a target or collide against other particles circulating in the

opposite direction. Physicists probe into the sub-atomic realms by studying

these particle collisions.[36] [35]

• Energy-Mass Relationship: When the particle’s gains sufficient energy and

collides with another particle, the energy of the collision is transformed into

matter, and new particles are formed, the biggest of which existed in the

early Universe. The phenomenon is described by Einstein’s famous equation

E = mc2, according to which matter and energy are interchangeable.

• Collision: A collision occurs when two or more particles collide closely enough

for physical quantities like energy, momentum, and charge to be exchanged.

The mechanisms dictating physics at a particular level of energy are revealed

by the decay of the original particle, which generates new particles.

• Accelerator Shape: Accelerators usually employ a circular shape to keep

charged particle beams, typically gathered into bunches, in a closed trajectory.

However, there are many linear accelerators as well. The particle bunches’

speed and kinetic energy increase with each cycle via radio-frequency cavities

(RF-cavities). The RF-cavities create an oscillating electromagnetic field

that is synchronised with the evolving revolution frequency of the bunches to

accelerate the particle bunches.

• Magnets: Powerful magnetic components constrain the beams to their intended

trajectory so that they are collimated within a specific beamline radius. The

particle bunches are monitored, controlled, and shaped using various magnets

such as dipoles and quadrupoles.

2. Background 17

Figure 2.2: An example of an event collision at the LHC: ATLAS[147]

• Beamline: A beamline refers to all of the equipment used to control, monitor,

and create a beam with specific characteristics. Magnets, intensity monitors,

beam position monitors, and collimators are all typical components of a

beamline.

• Interaction Point: Two distinct beams can intersect at a controlled Interaction

Point along their path (IP).

• Event: Event refers to all information and processes resulting from two-particle

bunches colliding.

2.3.2 Experimental Dataset

• Data Transmission: In the collider’s operation, the high rate of collisions at

the detector’s interaction point produces a data transmission bottleneck. A

set of filters should be used to limit data processing to events of interest.

These filters are known as triggers, and they limit the rate of events by using

a hierarchical setup of electronic devices at the lower level and numerical

methods at the higher level.

2. Background 18

Figure 2.3: Supervised ML algorithms are used to invert the detector simulation to
infer something about the underlying physics and are then applied to real data.

• Data Processing: Raw data that passes through all triggers could then be

stored in massive databases. Higher-level variables are reconstructed from

low-level information using several stages of processing.

• Data Analysis: Physicists can then access a hierarchy of increasingly processed

databases for analysing various signal regions.

2.3.3 Simulations

Monte Carlo Techniques are stochastic, and thus, are the appropriate modelling

tool for generating physical events: this is referred to as the generated level [19].

The simulated events would then be passed through another simulation layer

to incorporate detection, bringing them to the reconstructed level. Many of the

reconstructed events are then grouped into distributions, which are then compared to

the measured events to see whether there is any agreement or divergence with respect

to theoretical predictions. Recently, many variants of deep generative models have

been considered for the same. There has been an evident growth of VAE(variational

autoencoders) and adversarial networks for simulations in particle physics [117].

2. Background 19

2.3.4 Distributed Computing:

The quest to undertake precise tests of the Standard Model and find evidence of

new physics drives the massive resources committed to these enormous experiments.

Event analysis, reconstruction, transfer and storage are computationally intensive

tasks that eventually lead to resource pooling into a global computer grid. Currently,

the Worldwide-LHC-Grid is in operation for resource sharing, monitoring and

maintenance of simulation, experimental and processed datasets [39].

2.3.5 Accelerators of the Future

It takes decades to imagine, design, and construct an accelerator. For example,

CERN scientists were already planning to replace the old LEP electron-positron

accelerator with a more powerful one before it had started operating. That was

twenty-four years before the LHC began, in 1984. Scientists have been working

on the successor to the LHC, the High-Luminosity LHC, since 2010. The CERN

Council approved the second-generation LHC in 2016, and it is scheduled to begin

operations around 2025. CERN scientists are also researching accelerators that

will be operational beyond 2040, such as the Future Circular Collider(FCC) or the

Compact Linear Collider(CLIC). Alternative acceleration methods are also being

investigated, such as the AWAKE experiment, a linear accelerator [36].

2.4 Existing Experiments

We focus on particle physics experiments that study the collision of particles at

high energies to identify and accurately measure Higgs Boson’s properties. The

CMS and ATLAS experiments detected the Higgs Boson in 2012 at the LHC at 13

TeV [6,20]. One of the major priorities of the LHC physics program, after the Higgs

discovery, is to measure as precisely as possible the Higgs Boson’s properties.

2. Background 20

Figure 2.4: Future Circular Collider[145]

2.5 Future experiments

The FCC’s mission is to push particle colliders’ energy and intensity boundaries

in the quest for novel physics to achieve collision energies of 100 TeV. The FCC

considers scenarios for three kinds of particle collisions: hadron (proton-proton and

heavy-ion) collisions, similar to those seen at the LHC (FCC-hh), and electron-

positron collisions (FCC-ee), similar to those seen at the old LEP. Proton–electron

collisions and proton–heavy-ion collisions are two more possibilities.

Currently, experiments are being designed to improve the measurements of the

Higgs Boson and its properties. More precise experiments will require a new collider,

which led to the proposal of Future Circular Lepton Collider (FCC-ee), that collides

the electrons and positrons, and will be sensitive to rare phenomena [30][36].

The FCC-ee is a precision machine, colliding point-like particles: electrons and

positrons. Such a collider will be precise and sensitive to rare phenomena. The

future circular collider e+e will operate at energies below the LHC from 45 GeV to

175 GeV per electron and positron beam. Because electrons and positrons have no

internal structure, a lepton collider provides a highly clean experimental environment

with minimal backgrounds, allowing accurate observations and precise measurements.

The FCC-ee beams will include billions of electrons, compressed to approximately

50 nm before colliding to accomplish the maximum number of collisions[37].

The reference frame used in this research is described with a polar angle, θ,

and an azimuthal angle, φ, as the two angles. The x − axis is aligned with the

2. Background 21

Figure 2.5: Reference Frame: [146]

FCC ring’s centre, the z − axis follows the beamline, and the y − axis closes the

basis, making the system x − y − z right-handed. Transversal variables exist in

the x − y plane and have the subscript T appended to them. (ET is the energy

projected in the transverse plane, and ~pT is the momentum projected in the x-y

plane with a momentum of ~p). Instead of the polar angle θ, the pseudorapidity

η = − log
(
tan θ

2

)
is frequently used in HEP, which maps θ in the range of [0, π] to

[−∞,∞]. There is a limit to the range of η, since if θ is near 0 or π, the particle

would still be inside the beam pipe and would not be detected.

2.5.1 How is the Higgs Boson produced at FCC-ee?

At an e+e collider, the two main Higgs production mechanisms are Higgs–strahlung

and W -fusion Higgs production [13]

2.5.2 Higgs Boson Production in HZ mode:

The Higgs Boson is produced as a result of many-particle interactions, the main

production mode concerned with this study is the Higgs Strahlung process, or the

2. Background 22

Figure 2.6: Higgsstrahlung Process [30]

HZ mode, where the electron and positron collision decays to HZ, where H is

Higgs Boson, and Z is Z boson. The energy regime for this decay is between

240 and 250 GeV [30].

2.5.3 Higgs Boson Decay:

The Higgs Boson and Z boson further decays into a stable particle and has multiple

decay modes. The chain of decay particles is often non-deterministic.

2.5.4 Event Decay Chain

When leptons(electrons, positrons) collide at specific energies, they create different

particles. After the event collision, in our simulation dataset, the electron-positron

collision produces Higgs and Z boson. These intermediate particles further decay

into more stable particles, and the final states of the collision are called stable

particles. The chain of particle in the decay chain forms an event decay chain. Such

a collision generates a cascade of combinations and decays that form a dense cone

of particles surrounding the initial decaying particle’s track. Due to the law of

energy-momentum conservation, the initial particle’s momentum is shared among

the elements of the end state. The particles are then clustered together based on

2. Background 23

their origin of decay. Traditionally, the particles can be clustered by using cone

clustering or sequential clustering algorithms [38].

2.6 Role of Engineering and Computer Science
in Particle Physics

2.6.1 CERN’s Infrastructure

CERN is one of the most challenging computer environments in the world of

science. The World Wide Web(WWW) was invented at CERN to satisfy the

need for automated information exchange among scientists at universities and

institutions worldwide. Computing stands at the core of CERN’s infrastructure:

software development, data acquisition, processing and storage, networks, support,

automation and controls, as well as services for the accelerator complex.The

Worldwide LHC Computing Grid (WLCG) — a tier-based distributed computing

infrastructure – provides near-real-time access to LHC data to a community of

thousands of scientists. The CERN data centre is the hub of the WLCG, serving as

the initial point of interaction between LHC experimental data and the grid [39].

2.6.2 Future of Computing in HEP

In 2017, the High Energy Physics community published a roadmap Community

White Paper that identifies software research and development investments necessary

for HEP experiments for the next decade. First, to achieve improvements in

software efficiency, scalability, and performance and to take advantage of advances in

computational, storage, and network technologies. Second, to allow novel computer

and software methods that may dramatically expand the physics reach of the

detectors. Lastly, to ensure data and knowledge preservation and to guarantee

long-term software sustainability over the lifespan of the experiment[40].

2.6.3 Challenges in HEP: Physics and Computing

The improvements necessary for the achievement of long-term particle physics

goals include: [41] First, a larger number of events are proposed to be collected

2. Background 24

to decrease statistical uncertainty in measurements. Second, different ranges of

energies should be explored and used to expand the spectrum of possible collision

events. Lastly, the introduction of more precise methodologies to enhance the

quality of datasets, reconstruct a larger number of events, identify and implement

better filters to minimise data transfer bottleneck, and improve the accuracy by

finer track reconstruction. Further, as per the European Strategy for Particle

Physics report in 2020 [11], the physics community must pursue collaborations with

computer science, data science and information technology to develop software and

computing infrastructure to exploit the recent advancements in the field.

2.7 Graph Neural Networks in Particle Physics

2.7.1 Introduction

In High Energy Physics, machine learning has a long history, beginning with

Multivariate Analysis (MVA) in the early 2000s [42] and continuing to current deep

learning applications. Machine learning is frequently used in HEP experiments to

train complex inverse functions to infer something about the underpinning physics

processes from the data collected in the detector.

Many challenges require data that can be readily expressed as graphs and

represented as unordered sets of components with extensive relations and interactions.

Unless there is a specific tree structure, they are not easy to express as vectors,

grids, or sequences — the format needed by CNNs, and RNNs, respectively —

unless there is a specific tree structure [43, 44]. The expressive power of graphs

in deep learning has shown significant advancement in social networks, biomedical

networks, knowledge graphs and other research areas. Therefore, it is natural to

extend successful techniques into particle physics.

Representation of data in particle physics measurements is typically performed in

large accelerator facilities such as CERN and Fermilab, with detectors measuring tens

of metres in size that record millions of high-dimensional measurements every second.

These detectors are made up of numerous sub-detectors: tracking detectors,

calorimeters, muon detectors, and so on — each measuring the trail of particles using

2. Background 25

a different sets of techniques. As a result, data in particle physics is heterogeneous.

Machine learning could be used at multiple stages of the event, including triggering,

reconstruction, simulation, and distinguishing signals from noise in physics analysis.

2.7.2 Related Work

• Reconstruction of calorimeter: A calorimeter is a detector whose objective is

to contain and measure a system’s total energy. The reconstruction of the

incoming particle’s energy requires calibration and clustering of the signal from

various cells. A graph network-based technique to clustering and assigning the

signal in a high granularity calorimeter to two incoming particles is presented

in [46]. Two methods are suggested for graph connectedness: one, GravNet,

utilises nearest neighbours in a latent space, while the other, GarNet, uses a

fixed number of additional nodes in the graph.

• Pileup Mitigation: Misleading, less interesting interactions (pileup) is regarded

as noise in the study, and such prevention of pileup is critical for physics

analysis at colliders. In particle flow reconstruction [47], state of the art

is to compute a pileup weight per particle [48] and utilise it for mitigation.

The authors use the gated graph network design [49] in [50] to predict a

per particle likelihood of belonging to the pileup part of the collision event.

The network has one node for each charged and neutral particle in the event,

and the connectivity is imposed to ∆R ≡
√
δφ2 + δη2 < 0.3 in the azimuth-

pseudorapidity plane. The authors of [18] use the graph attention network

from [52] to forecast a per-particle pileup probability.

2.7.3 Jet Classification: Jet Tagging

Jets are primarily represented in three ways;

• First, a physical object with observable properties such as several components

that led to approaches such as DNN and BDT, widely used in the HEP

community[142].

2. Background 26

• Second, a jet can be represented as an image, which led to CNNs being

used on calorimetry data, often in combination with tracking data. Only a

small portion of the particle physics data could be represented as images,

which resulted in increased usage of computer vision techniques and improved

performances [140, 141]. On the other hand, image representations are limited

by the uneven geometry of detectors and the sparsity of the projections used.

Image representations may restrict the amount of information retrieved from

data due to the inherent loss of information [8].

• Lastly, jets can be represented as a series of branchings that can be ordered

(such as the factorisation tree) or be unordered (such as the particle cloud).

Such relations led to the application of RNN and GNNs on particle physics

data. The term ‘particle cloud’ refers to a point cloud which has been

transformed to consider a jet as an unordered collection of stable or final

state particles. When paired with DGCNN to perform complex convolution

operations on the graph (made of final state particles), the approach can

result in an performance, specifically for jet tagging applications [53]. Many

jet classification (tagging) techniques have been improved using graph neural

networks, such as ParticleNet, JediNet and ABCNet [18, 19, 21].

2.7.4 Jet Clustering

All of the methods for jet tagging share one thing in common: they all start with

a set of constituents chosen using a jet clustering approach. They still rely on

non-machine learning techniques to cluster stable particles—for example, all of the

methods mentioned above cluster particles using the anti-kt algorithm.

Jet clustering algorithms are divided into two categories: cone algorithms that

define jets based on cones in phase space containing the bulk of an event’s energy

flow and sequential recombination algorithms which merge pairs of particles until

a stopping condition is reached [51].

Several researchers have explored how to improve the jet clustering method

by considering a range of aspects [56, 57, 58]. While essential for convergence

2. Background 27

in the conventional paradigm, these methods are fundamentally constrained by

the discreteness of algorithm types and the flexibility provided by a particular

algorithm’s adjustable parameters.

‘As there is no unique method to link hadronic final states with the quark

and gluon degrees of freedom that produced them, jet clustering is typically an

unsupervised learning problem.[55]’ It implies there are no per-particle labels that

could be employed to create the jets. However, for uncoloured particles like the

W , Z, and Higgs bosons, it is possible to both generate labels and is to feasible

to predict the ancestors of the final state particles in an approximate way. One

recent work [55] applies graph neural networks for supervised jet clustering for

proton-proton collisions at the LHC.

Therefore, it is reasonable to question whether a supervised method for clustering

jets could be devised for electron-positron collisions.[55]

Based on the particle’s kinematic characteristics, positional information as well

as the connection with other particles in the event, a model could be trained to

identify individual particles as coming from an ancestor or not. While this method

would forego the calculability provided by algorithms such as anti-kt, however, it

may be a better method in cases when calculability is not needed.[55] An architecture

that can handle variable length sets as input would be required to build such a

supervised jet clustering method. Therefore, we turn to graph neural networks to

return node-level predictions for the supervised jet clustering.

2.8 Graph Neural Networks in Jet Clustering

Overall, the project aims to use machine learning techniques, particularly graph

networks, in a new sub-domain of jet clustering for electron-positron collisions at

the future circular collider. Our objective is to build graph neural nets that can

exploit both physical features and spatio-temporal relationships between final

state particles to classify them based on their ancestor (source of origin), to

eventually cluster them together.

2. Background 28

2.8.1 Research Questions

• Could machine learning techniques be used to predict the sets of final state

particles originating from the Higgs Boson and Z boson in the HZ production

mode at the future lepton collider?

• How can graph neural networks be used to model event collisions as graphs

and particles as nodes for the supervised task of node classification? We

proceed with the assumption that the predicted labels of the nodes would be

used to cluster particles coming from the same source together.

• What is the most optimal type of graph data representation of the stable

particles detected at a collider? How can we generate relationships or links

between final state particles?

• What is the most promising graph neural architecture to correctly predict all

the node’s labels in a graph?

Our research is a collaborative and interdisciplinary project between the Department

of Computer Science and Particle Physics at the University of Oxford. Our research

aims to provide a foundation for future physics experiments by investigating the

potential of new and specialised computational tools and algorithms based on

advanced graph machine learning.

3
Graph Machine Learning

Contents
3.1 What is a graph? . 30

3.1.1 What are the types of graphs 30
3.1.2 Mathematical Representations of Graph 31
3.1.3 Properties: Graph Metrics and Node Metrics 31
3.1.4 Graph Network Embedding 33
3.1.5 Graph Representation Learning 34
3.1.6 Machine Learning in Network Science 35

3.2 Message Passing Networks 35
3.2.1 K-Hop Neighbourhood 36
3.2.2 Node Embeddings . 37
3.2.3 Message Passing with Self Loops 37
3.2.4 Basic Graph Neural Networks 37

3.3 Graph Convolutional Networks 38
3.3.1 Symmetric Normalisation 38
3.3.2 Graph Convolutional Networks 38

3.4 Set Aggregations . 38
3.4.1 Neighbourhood Attention Mechanisms 39

3.5 Generalised Update Functions 39
3.5.1 Over-Smoothing . 40
3.5.2 Skip Connections . 40
3.5.3 Jumping Knowledge Connections 41

3.6 Overview of Graph Neural Networks 41
3.6.1 History of Graph Neural Networks 41
3.6.2 Types of Graph Neural Networks 42
3.6.3 Training Settings for Graph Neural Networks 42
3.6.4 Computational Modules in Graph Neural Networks . . . 43
3.6.5 Recent advances in Graph Neural Networks 44
3.6.6 Complex Real World Graphs in Network Science 45

29

3. Graph Machine Learning 30

3.6.7 Graph Transfer Learning 45
3.6.8 Explainability in Graph Neural Networks 45
3.6.9 Computational Efficiency 46

3.7 Strengths and Weaknesses of Graph Neural Networks 47
3.7.1 Strengths and Advantages 47
3.7.2 Limitations and their Proposed Solutions 48

3.1 What is a graph?

Graphs are data structure instances: a set of nodes(entities) and edges (relationships

between nodes). A features is a property of the entity represented by the node, edge

or graph. Graphs can consist of the following key elements: nodes, edges, graphs,

sub-graphs, node features, edge features, graph features, walks and paths, and

local neighbourhoods.

3.1.1 What are the types of graphs

As per Zhou et al., we can categorize graphs as follows [29]

• Directed and Undirected Graphs.

The edges in the directed graph are directed towards a particular node. Edges

depict the direction of a connection between nodes. Alternatively, undirected

graphs are connected via edges with no directions, assuming that a single

undirected edge between nodes is two directed edges.

• Homogeneous and Heterogeneous Graphs

Homogeneous graphs have nodes and edges of the same or identical type.

Alternatively, heterogeneous graphs have nodes and edges of different types.

• Static and Dynamic Graphs.

Static graphs are graphs whose topology and input features do not change

with time. Alternatively, dynamic graphs are graphs whose topology and

input features can change with time. Further, the graphs commonly used

in network science include weighted and attributed graphs, multimodal or

3. Graph Machine Learning 31

heterogeneous graphs, knowledge graphs, multi-layer graphs, temporal graphs

and spatial graphs. We could further join the graph types to create new

hybrid graph types such as multi-layer spatial graphs or multimodal temporal

graphs.[28]

3.1.2 Mathematical Representations of Graph

• An adjacency matrix A of a graph G = (V,E), with a set of nodes V and a

set of edges E is defined as a square matrix of size (|V |X|V |) such that the

element Aij, is 1 when there is an edge from node i to node j and Aij is 0

when there is no edge. Adjacency matrices are always symmetric when no

direction is defined for the edge: for undirected graphs.

• An edge list is another compact representation of a graph that is represented

as a list of edges. An edge list, expressed as EL of a graph G = (V,E), is

defined as a list of size |E|. The element ELi is a pair: representing the start

and the end node of the edge i.

• A degree matrix is defined on a graph G = (V,E) and is defined as matrix of

size (|V |X|V |) such that Dij is deg (vi) if i = j else, it is 0. Here, deg (vi) is

defined as the degree of the node and it counts the number of times an edge

terminates at that node.

• Laplacian Matrix: A Laplacian of a graph G = (V,E) with |V | nodes is

defined as: L = D − A where D is the degree matrix and A is the adjacency

matrix.

3.1.3 Properties: Graph Metrics and Node Metrics

Each complex graph comprises a set of intrinsic properties that could be characterised

locally or globally. We describe a set of advanced metrics that could be considered

to characterise the complicated dynamics of a network [101]. We define these

metrics as we use them understand and infer the best representation of the graph

data set for our task.

3. Graph Machine Learning 32

• Integration metrics measure how the nodes of the graph tend to be intercon-

nected with each other.

• Segregation metrics quantify the presence of communities or a group of

interconnected nodes inside a graph.

• Centrality metrics evaluate and assess the importance of individual nodes in

a graph.

Integration metrics

• Global efficiency is defined for all pairs of nodes in a graph as the average

of the inverse shortest path length. It quantifies the extent to which the

information transfer in the network is efficient. Let us assume that the lij is

the shortest path between 2 nodes in the graph, let these nodes be node i and

node j, global efficiency can be expressed as:

1
q(q − 1)

∑
i∈V

1
lij

(3.1)

Here q is |V |, which represents the order or the number of nodes of the graph.

A fully connected graph will have higher efficiency than a graph of circular

shape. It would be shorter to reach any node from a fully connected graph,

whereas it would take multiple steps in a circular graph to reach from one

node to another.

• Local efficiency of a node is calculated by evaluating the neighbourhood of

the specific node, excluding itself.

Segregation metrics

• The clustering coefficient quantifies to what extent are the nodes are clustered

together. The clustering co-efficient is defined as the ‘fraction of triangles

around a node’ [101]. A triangle in this context is defined as a completely

linked subgraph of three nodes with three edges. The clustering coefficient

can be calculated on the node level and as an average on the graph level.

3. Graph Machine Learning 33

• Transitivity is defined as the ratio between the observed closed triplets and

the maximum number of closed triplets in the graph. It’s another variant of

clustering and is defined as a global property of the graph.

Centrality Metrics

• Degree centrality measures the number of incident edges on a specific node i.

• Closeness centrality quantifies how much a node is close to other nodes in a

graph [101]. It refers to the average distance of a node i to all other nodes

in the network; if lij is the shortest path between node i and node j, the

closeness centrality is defined as

1∑
i∈V,i!=j lij

(3.2)

• Betweenness centrality describes how much a node acts as a bridge between

other nodes [101]. Despite having poor connections, a node can still be

strategically connected, making sure the graph is overall well-linked. Consider,

that Lwj is the total number of shortest paths between 2 nodes, node w and

node j respectively and Lwj(i) is the total number of shortest paths between

node w and j through the node i , in that case betweenness centrality is:

∑
w!=i!=j

Lwj(i)
Lwj

(3.3)

3.1.4 Graph Network Embedding

We can analyse graphs at different levels of granularity at the node, edge and

graph levels. [101]

• Node level: In a graph G = (V,E), the objective is to classify each vertex v

belonging to a set of nodes V into the correct class. The dataset can include

a single graph (or multiple graphs) G and a list of pairs of nodes and their

corresponding labels, depicting their category.

3. Graph Machine Learning 34

Figure 3.1: Embeddings of a Graph[148]

• Edge Level: In a graph G = (V,E), the objective is to classify each edge e

belonging to a set of edges E into the correct class. The dataset also includes

a graph G and a list of pairs of edges and their corresponding labels, depicting

their category.

• Graph Level: In a graph G = (V,E), the objective is to build an algorithm

such that it classifies the whole graph into the correct class. The dataset here

would include a set of graphs and and their corresponding labels.

A network embedding is defined as a task that aims to learn a mapping function

f : G → Rn, from a discrete graph into a continuous domain. Function f will

transform the graph G to a low dimensional vector representation to preserve the

graph’s local and global properties.

3.1.5 Graph Representation Learning

Graph representation learning techniques are used for modelling, analysis, and

learning networks in applied sciences such as biology, medicine, physics and chemistry.

Network Science is identified as a set of principles to organize complex interactions

which connect network structure to different entities. As per [27], it is defined as

‘the study of network representations of physical, biological, and social phenomena

leading to predictive models of these phenomena.’ This discipline draws from

graph theory from mathematics, statistical mechanics from physics, data mining

and visual analytics from computer science, inferential modelling from statistics,

and social structure from sociology.

3. Graph Machine Learning 35

Figure 3.2: Message Passing Networks: Aggregation from a node’s local neighbour-
hood[148]

3.1.6 Machine Learning in Network Science

Machine learning on graphs and network science has been studied for several years.

According to [28], it can be broadly categorized into seven methods: graph-theoretic

techniques, network diffusion, topological data analysis, manifold learning, shallow

network embeddings, graph neural networks and generative models. Theoretic

techniques calculate a deterministic value for identifying patterns in a graph.

Network diffusion captures the influence and significance of nodes. Topological data

analysis summarises the different types of views of the shape of graph data. Manifold

learning finds the graphical structure of the data and obtains its low-dimensional

embedding. Shallow network embeddings generate node embeddings by directly

encoding node similarities in the input graph. Generative models create graphs with

properties of interest. In this project, we specifically focus on graph neural networks.

3.2 Message Passing Networks

A GNN is distinguished by the fact that it employs a type of neural message

passing [148]. In such a framework, vector messages are passed between nodes and

neural networks are used to update them [128].We take an input graph G = (V,E)

with node features X ∈ Rd×|V|. Using the node features, we generate an output

of node embeddings: zu,∀u ∈ V.

A hidden embedding h(k)
u of node u ∈ V is updated according to information

collected from u′s graph neighbourhood N (u) during each message passing step in

3. Graph Machine Learning 36

a graph neural network. The message-passing update is mathematically expressed

such that the UPDATE function and AGGREGATE function are both arbitrary

differentiable functions (such as neural networks). Here mN (u) is the aggregated

message from u′s neighbourhood N (u) [148]. (To differentiate the embeddings and

functions at various rounds of message passing, we apply superscripts.)

h(k+1)
u = UPDATE(k)

(
h(k)
u , AGGREGATE (k)

({
h(k)
v ,∀v ∈ N (u)

}))
(3.4)

= UPDATE(k)
(
h(k)
u ,m(k)

N (u)

)
(3.5)

.

For each iteration k of the graph neural network, the AGGREGATE function

takes the embeddings of the nodes in u’s graph neighbourhood N (u) and trans-

forms them to produce a message m(k)
N (u) based on the aggregated neighbourhood

information. To produce the updated embedding h(k)
u of node u, the UPDATE

function combines the message m(k)
N (u) with the previous embedding h(k−1)

u of node

u. At k = 0, the initial embeddings for all nodes are set to the input features:

h(0)
u = xu,∀u ∈ V . After performing k iterations of message passing, the output of

the final layer of the graph neural network results in node embeddings. GNNs created

in this manner are permutation equivariant by design since the AGGREGATE

function accepts a set as input[148].

zu = h(K)
u ,∀u ∈ V (3.6)

3.2.1 K-Hop Neighbourhood

At each iteration, each node in the graph collects information from its immediate

neighbourhood. With each iteration, every node embedding includes more and more

information from the farther reaches of the graph [148]. Every node embedding

includes information from its 1-hop neighbourhood after the first iteration when

k=1. It means the node embedding contains information about the features of

3. Graph Machine Learning 37

its immediate graph neighbours, which could be reached by a path of length 1

in the graph. After k iterations, every node embedding contains information

from its k-hop neighbourhood.

3.2.2 Node Embeddings

The embedding h(k)
u of node u can contain graph structural information. It may

contain information about the degrees of all the nodes in u′s k-hop neighbourhood

after k rounds of GNN message passing, which can be helpful for a variety of

purposes. The embeddings for each node additionally contain information about all

the features in their k-hop neighbourhood after k rounds of GNN message passing.

3.2.3 Message Passing with Self Loops

To simplify the neural message passing method further, adding self-loops to the

input graph and skipping the explicit update step is common. We redefine

message passing as:

h(k)
u = AGGREGATE

({
h(k−1)
v , ∀v ∈ N (u) ∪ {u}

})
(3.7)

The aggregation step is performed over the node’s neighbours, as well as the node

itself and the AGGREGATE function, is now applied over the set N (u)∪ {u}. The

advantage of adding self-loops is that we do not need to explicitly define an update

function since the aggregation method defines the update [148]. Overfitting may be

reduced by simplifying message passing in this manner, but it significantly restricts

the expressivity of the GNN since the information from the node’s neighbours

cannot be distinguished from information from the node itself.

3.2.4 Basic Graph Neural Networks

The most basic GNN framework is a simplified version of the original GNN models

[129, 130] and is mathematically defined as:

h(k)
u = σ

W(k)
self h(k−1)

u + W(k)
neigh

∑
v∈N (u)

h(k−1)
v + b(k)

 (3.8)

3. Graph Machine Learning 38

Here, b(k) ∈ Rd(k) is the bias term, W(k)
self ,W

(k)
neigh ∈ Rd(k)×d(k−1) are trainable

parameter matrices and σ is an elementwise non-linearity.

3.3 Graph Convolutional Networks

3.3.1 Symmetric Normalisation

The simplest neighbourhood aggregation procedure merely adds the neighbour

embeddings together. This method has the disadvantage of being unstable and

extremely sensitive to node degrees. This huge discrepancy in magnitude may cause

numerical instabilities and make optimisation challenging [148]. One alternative is

to normalise the aggregation process according to the degrees of the nodes involved.

Taking an average rather than a total is the simplest method. The authors in

[102] apply the symmetric normalisation:

mN (u) =
∑

v∈N (u)

hv√
|N (u)||N (v)|

(3.9)

3.3.2 Graph Convolutional Networks

The graph convolutional network is one of the most important fundamental graph

neural network models. It uses both symmetric-normalized aggregation and the self-

loop update method. As a result, the GCN model defines the message forwarding

function as follows:

h(k)
u = σ

W(k) ∑
v∈N (u)∪{u}

hv√
|N (u)| | N (v) |

 (3.10)

GCN has proven to be one of the most popular and successful GNN designs. It

is commonly used as an effective baseline for most research papers[102].

3.4 Set Aggregations

Neighbourhood aggregation is essentially a set function: a collection of neighbour

embeddings {hv,∀v ∈ N (u)} being mapped to a single vector mN (u). Aggregation

3. Graph Machine Learning 39

functions must be permutation invariant, since there is no natural ordering of

a node’s neighbours [148].

3.4.1 Neighbourhood Attention Mechanisms

Applying attention [133] is a widely known strategy for improving the aggregation

layer in graph neural networks. The fundamental principle behind attention is to

assign each neighbour an attention weight or importance. This attention weight is

then used to weigh that neighbour’s influence during the aggregation phase. Graph

Attention Network [52] was the first GNN model to employ the strategy:

mN (u) =
∑

v∈N (u)
αu,vhv (3.11)

where, αu,v is the attention on neighbor v ∈ N (u) as we are aggregate information

at node u.The attention weights are calculated as: [52]

αu,v =
exp

(
a> [Whu ⊕Whv]

)
∑
v′∈N (u) exp (a> [Whu ⊕Whv′])

(3.12)

Here, W is a trainable matrix, a is a trainable attention vector, and ⊕ represents

the concatenation operation. We can have several attention heads, similar to the

popular transformer architecture [134], but this practice is less frequent in the

graph neural networks literature. The representational ability of a GNN model by

adding attention can be enhanced, particularly if we have prior knowledge that

certain neighbours are more informative than others.

3.5 Generalised Update Functions

The AGGREGATE operator has invited the greatest attention from scholars in

academia and has led to various new designs and variants, especially with the

GraphSAGE framework that developed the concept of generalized neighbourhood

aggregation.[114] However, the UPDATE operator is equally significant in deter-

mining the power and inductive bias of a GNN model.

3. Graph Machine Learning 40

3.5.1 Over-Smoothing

Over-smoothing is a frequent problem with GNNs that generalised update methods

may potentially alleviate. The general premise behind over-smoothing is that after

multiple iterations of GNN message passing, all nodes in the graph’s representations

could become remarkably similar. Such a similarity in node representations is

especially true in simple GNN models and architectures that use the self-loop

update method. Over-smoothing makes it difficult to construct deeper GNN models,

which take full advantage of the graph’s longer-term dependencies [148]. It can

formally be defined by quantifying the influence of each node’s input features

h(0)
u = xu on the last layer embedding of all other nodes in the graph h(K)

v ,∀v ∈ V .

Using the notion of influence, [135] demonstrates that: ‘when we are using a

K-layer GCN-style model, the influence of node u and node v is proportional the

probability of reaching node v on a K-step random walk starting from node u.[148]’

However, when K approaches infinity, the influence of each node approaches a stable

distribution, implying that local neighbourhood information is lost. Developing and

building deeper models could negatively affect performance when employing simple

GNN models—especially those that use the self-loop update method. We lose

knowledge about local neighbourhood structures as additional layers are added, and

our learnt embeddings get over-smoothed, reaching a nearly uniform distribution.

3.5.2 Skip Connections

When the information gathered from node neighbours during message passing

starts to dominate the updated node representations, we may anticipate over

smoothing. The updated node representations will be too dependent on the incoming

message aggregated from neighbours at the cost of the preceding layers’ node

representations. Using vector concatenations or skip connections, which attempt

to explicitly maintain information from earlier rounds of message passing during

the update phase, is a logical solution to over smoothing.

UPDATE base represents the base update function we build upon. We further

define skip-connection updates on top of it. Concatenation is an example of a skip

3. Graph Machine Learning 41

connection update to retain more node-level information during message passing.

UPDATE concat
(
hu,mN (u)

)
=
[
UPDATE base

(
hu,mN (u)

)
⊕ hu

]
(3.13)

where the previous-layer representation of the node is concatenated with the

output of the base update function.

3.5.3 Jumping Knowledge Connections

We presume node embeddings utilised in a downstream task are the same as the

GNN’s final layer node embeddings. However, rather than depending only on

the last layer’s output, an alternative approach for improving the quality of the

final node representations is to utilise the representations at each layer of message

passing. The final node representations can be defined as:

zu = fJK
(
h(0)
u ⊕ h(1)

u ⊕ . . .⊕ h(K)
u

)
(3.14)

where fJK is an arbitrary differentiable function and such a strategy is called

Jumping Knowledge connections[108]. For many cases, the function is specified

as an identity function, implying that we concatenate the node embeddings from

each layer.In the paper, authors also consider alternative methods such as max-

pooling and LSTM attention layers[108]. Jumping Knowledge often results in

consistent gains across a broad range of activities and is a strategy that may be

used in a number of situations.

3.6 Overview of Graph Neural Networks

3.6.1 History of Graph Neural Networks

RNNs were the first to be applied on DAG(directed acyclic graphs) in the 1990s

[59]. Approximately a decade later, RNNs and Feedforward NNs were used to tackle

cycles [60]. The underlying idea behind the methods was to build a state transition

system that iterates until it converges. Recently in 2015, CNN architectures led to

breakthroughs in all machine learning areas and led to the rediscovery of GNNs. The

3. Graph Machine Learning 42

Figure 3.3: Comparison of Euclidean and Non-Euclidean Data

main principles of CNNs are; first, local connections; second, shared weights; third,

multiple layers [61], which are equally significant for learning on graphs. However,

CNN can only be used for Euclidean data like images and texts. [29] Therefore,

geometric deep learning is used to extend deep learning to non-Euclidean spaces[62].

3.6.2 Types of Graph Neural Networks

Graph Convolutional Networks [102] are the most well-known enhanced variants

of Graph Neural Networks, which apply the concepts of Convolutional Neural

Networks to graphs. The GNNs are further divided into 2 categories: spectral-

based approaches and the spatial-based methods. Spectral-based techniques rely

on the eigen-decomposition of the graph’s adjacency matrix, making them less

appropriate for big data processing or generalisation to unknown data. On the

other hand, spatial-based techniques rely on aggregating information from each

node’s neighbourhood, allowing the algorithm to analyse the network in batches

and therefore handle huge graphs.

3.6.3 Training Settings for Graph Neural Networks

We have three settings for training: supervised, semi-supervised and unsupervised

[29]. In supervised models, labelled data is available for training. In semi-supervised

models, we have access to a small set of labelled data and a large set of unlabelled

3. Graph Machine Learning 43

data for training. Examples of supervised and semi-supervised setting include node

classification. In the test phase, the model can be evaluated using inductive or

transductive settings. In the inductive settings, the model is trained and tested

on unseen dataset points and in transductive settings, the model is trained and

tested only on seen data points. Further, there have been recent suggestions of

mixed approaches[63]. Lastly, in the unsupervised setting, only unlabelled data

is available for the model to generate representations and perform the task; here,

node clustering is an example[29].

3.6.4 Computational Modules in Graph Neural Networks

A GNN model is built by combining the computational modules. We have three

types of computational modules: propagation modules, sampling modules, and

pooling modules.

• Propagation Modules

In the propagation modules, the information is propagated between nodes

such that the aggregated data can collect topological network structure and

features. Here, both the convolution and the recurrent operator are utilized

to aggregate information from the neighbours. Further, the skip connection

operation is utilized to gather data from past representations of the node and

alleviate the over-smoothing problem.

• Sampling modules

The sampling modules are required for large graphs and are often used in

combination with the propagation module. Large graphs are defined as those

whose graph Laplacian matrix does not fit the device’s memory[29].

• Pooling modules

Pooling modules are often used to derive information from nodes, especially

when we require representations of graphs and high-level subgraphs.

3. Graph Machine Learning 44

Figure 3.4: Computational Modules of a Graph Neural Network[29]

3.6.5 Recent advances in Graph Neural Networks

GNN variants such as graph convolutional network (GCN)[38], graph attention

network (GAT)[52], and graph recurrent network (GRN) have shown leading-edge

performance on several deep learning tasks.[29] Graph Attention Networks (GAT)

assigns an attention score to each node during the message aggregation step. [52]

Further improvements have been led by applying the transformed self-attention

mechanism [70] to Graph Neural Networks [71, 72, 73, 74]. GNNs ability to collect

graph structural details has been improved by JK-Net [75] that incorporates skip-

connections. To capture high order local graph structures, MixHop [76] uses a

higher-order adjacency matrix. Graph Pooling methods, such as DiffPool [77], learn

a graph’s topological structures. To better explain GNNs, practical improvements

are complemented by extensive theoretical studies. These theories include linking the

3. Graph Machine Learning 45

expressive powers of GNNs to the Weisfeiler-Lehman test [78], label propagation[79],

and universal invariance [80, 81].

3.6.6 Complex Real World Graphs in Network Science

The progress in standard GNNs is limited and, one could say, overfitted to the

popular machine learning tasks. Standard GNNs only recognize homogeneous graphs,

but many graphs in network science are heterogeneous. [82, 83, 88] developed new

aggregation mechanisms to account for the heterogeneity of different node and

relation types in practical and realistic networks. Additionally, standard GNNs can

only deal with static graphs and cannot work with dynamic graphs, [82, 84, 85]

have suggested different types of dynamic update mechanisms that can take in a

series of graphs. [86, 87] recommend sampling methods to increase the scalability

of GNNs on real-world data.

3.6.7 Graph Transfer Learning

It is key to use transfer learning to allow rapid adaptation from large pre-trained

GNN models, as labels are rarely available due to the extensive expertise required

in manual labelling. Recent work, such as [89], have developed unsupervised

pre-training techniques for learning better node representations, such as local

graph structure context prediction. Further, self-supervised methods[90] are also

intended to take advantage of unsupervised network statistics prediction to aid

in downstream task prediction.

3.6.8 Explainability in Graph Neural Networks

In computer science, interpretability is defined as the degree to which a person

can consistently predict a model’s result, but they may not know why. In contrast,

explainability is defined as the degree to which a person can understand the

underlying cause of the model’s result and know why. GNN models are not end-to-

end interpretable as a large number of parameters parameterize them. However,

they can be explainable to the extent to which they specify why the model made

3. Graph Machine Learning 46

a particular prediction. For instance, GNNExplainer [91] can be used in graph

level prediction tasks to identify relevant sub-graphs and their attributes. Another

framework, NIFTY (uNIfyingFairness and stabiliTY), can be compatible with any

kind of GNN and be used to learn fair and stable data representations[92].

3.6.9 Computational Efficiency

As per [126], the execution patterns for GCN on the Reddit dataset depict that

L1 Cache Miss Rate and Last Level Cache Miss Rate in the aggregation step

are very high. Moreover, the Executed IPC is only 0.46. Due to limited feature

vectors capable of being loaded into cache, the memory access is random. It causes

poor data reuse among neighbour vertices, resulting in poor efficiency of cache

utilisation. The peak memory usage almost reaches 32GB leading to a high risk

of out of memory issues. Therefore, it is suggested to use state of the art feature

decomposition methods to reduce computational costs.

The choice of dense or sparse implementations of the graph’s edges is essential

when developing and training GNNs on hardware. The number of edges in a

graph influences the memory and speed bottleneck because there are usually

more edges than nodes.

The use of sparse adjacency matrices allows memory to scale linearly with the

number of edges, allowing for the processing of significantly larger graphs. However,

the sparse indexing operations necessary to perform sparse matrix multiplication

might take longer than their dense equivalents – this is an important area of

software and hardware acceleration development. Sparse operations, on the other

hand, are a major barrier in present deep learning hardware technology, and

if next-generation hardware significantly improves its speed, sparse edge GNN

implementations might gain a competitive advantage. Although research is ongoing

to improve the infrastructure, physicists do not anticipate having access to dedicated

accelerators such as GPU, TPU, or FPGA in a computing environment in HEP.

Thus, time complexity of the models in production should be carefully considered[8].

3. Graph Machine Learning 47

3.7 Strengths and Weaknesses of Graph Neural
Networks

3.7.1 Strengths and Advantages

• Graph data representations are more rich and relatable in network science.

Many physical systems are modelled as networks from particles, jets and

events; the graph’s abstract structure can represent them more naturally than

other data types such as grids and sequences.

• Graph neural networks are designed for real-world graph data, but not all tasks

on the graph could be solved accurately. A common example is whether a

GNN can distinguish between two isomorphic graphs and if not, then any task

of discriminating them would not yield any positive results. However, since

graphs are permutation invariant, it makes it mandatory that two isomorphic

graphs will always be indistinguishable. The Weisfeiler-Leman Test is an

algorithm for graph isomorphism testing, and GNNs are no more powerful than

1-WL[29]. According to [79], GCNs and GraphSAGE are far less discriminative

than the WL(Weisfeiler-Leman) test. GINs (GraphIsomorphism Networks)

are proposed as they are more expressive variants of GNN[79]. Recent works

investigate GNNs with finite depth and width and discuss the limitations on

their behaviour of GNNs with an increase in the model depth.

• Recent literature has seen growing applications of graph neural networks[29]

due to its increase in accuracy in classification based tasks. As seen in

Chapter 2, they have been shown to outperform both traditional and other

deep learning architectures [18, 19, 21].

• It has also been seen that graph neural networks perform faster, as specified

here [140]. The stability and generalization of single-layer GNNs have been

analyzed with different types of convolutional filters and depend on the filters’

biggest eigenvalue[29]. Further, it has been concluded that attention enables

GNNs to generalize to larger and noisier graphs [29].

3. Graph Machine Learning 48

• The outputs of GNN models are permutation-invariant or equivariant to input

features [29]. Since many physical entities have a graphical structure but

might not be of sequential order, the permutation invariant nature of graphs

is suitable for making predictions.

• High-quality benchmark datasets on a large scale help accelerate ML research,

and graph learning is in the phase of transitioning from small node classification

datasets to large, scalable and reliable datasets.[29]

3.7.2 Limitations and their Proposed Solutions

• Graph neural networks is not the sole answer to all physics-based problems in

the ML pipeline but might be a step towards better data representation and

therefore leading to better algorithmic results. However, this is an opportunity

for multi-disciplinary teams to join their efforts and improve upon existing

literature.

• GNNs can be vulnerable to adversarial attacks, which consider their structural

information. However, there are recent developments in both how to attack

[93] and defend graphs [94], and they are explained in more detail here [95].

• As GNNs are also black-box models, there is a lack of interpretability for most

tasks. However, there has been ongoing research and progress to explain the

node, edge and graph level predictions [91].

• There can be different types of biases in the dataset and algorithms. As

evidenced in other deep learning algorithms[96], GNNs also suffer from the

same problems of fairness and equality. In many social and medical contexts,

algorithmic bias has been detected against minorities. However, in particle

physics experiments, data collection is a more rigorous and ethical process,

independent of any social entities. Therefore, bias is less likely to be a big

problem. The only bias possible is observer’s bias or a sampling bias, at the

level of data acquisition when event filters are applied on the detector’s output

3. Graph Machine Learning 49

that could cause inaccurate representations and lead to incorrect predictions.

However, such triggers are very well-defined for selecting ‘interesting events’,

thus, are less likely to introduce any major disadvantages.

• There can be difficulties in pre-training on graphs. In NLP and CV, many

self-supervised methods have been successfully used to help models learn from

unlabelled data[97]. However, recent literature on pre-training on graphs is

not sufficient as they focus on different problems and aspects of it[98, 99].

Future work is expected to grow in this direction and significantly aid scientific

fields[29].

• There is an abundance of particle data across different research organizations.

There are many standards for data acquisition, data simulation, data quality,

and data types in HEP. Data sets can be numerical files, image files, event

records with various features, and each of these can differ in terms of

representation across two experiments alone. Similarly, the software packages

and methods to process and distribute the data vary as well. Therefore to

build machine learning models across different HEP experiments, they should

be built independent of the HEP-related dependencies and rely more on

general purpose and open source frameworks.

• GNNs require more computational resources as they are required to perform

high dimensional matrix multiplications. Low-scale solutions use free compute

from GoogleColab; however, these are not suitable for large-scale deployments.

Further, as per empirical observations, edge-related computations have been

a major bottleneck, and sampling techniques for GNN are still not efficient

enough and need improvement [100].

• A more generic disadvantage of machine learning models in large scale particle

physics is it’s lack of reproducibility [40]. Due to the scale and complexity

of the operation, diversity of the data processing in each organization and

confidentiality of research, most experiments are not reproducible.

3. Graph Machine Learning 50

• Lastly, we are assuming; all organizations have equal access to resources such

as computational resources to run GNNs, financial resources to protect data,

legal resources to be compliant, and human-based technical resources to fix

any bugs. Practically, these changes are only expected to be implemented in

the future when deep learning becomes affordable. Despite ongoing research

of improvements to the infrastructure, it is less likely that physicists will have

access to dedicated accelerators in a computing environment in HEP.

4
Methodology

Contents
4.1 Introduction . 52
4.2 Particle Physics Data . 52

4.2.1 Event Data . 53
4.2.2 Simulated Dataset . 53

4.3 Data Generation and Conversion 54
4.3.1 Data handling framework 54
4.3.2 Simulation Frameworks 54
4.3.3 Data Conversion to Compatible Formats 54

4.4 Data Description . 55
4.4.1 Dataset Version 1 . 55
4.4.2 Dataset Version 2 . 56
4.4.3 Data Analysis and Preprocessing 57

4.5 An overview of the GNN Pipeline 57
4.5.1 Practical Implementation 57
4.5.2 Introduction to Graph Generation in Particle Physics . 57
4.5.3 Construction of a Graph 57
4.5.4 Role of Edges in a Graph 58
4.5.5 Size of a Graph . 58

4.6 Definition of the Machine Learning Task 59
4.6.1 What are the entities and relations that could also be

represented as nodes and edges, respectively? 59
4.6.2 What is the desired output, such as predictions at the

edge, node, or graph level? 59
4.6.3 Is it necessary to have a global output network to create

graph-level outputs? . 59
4.6.4 How many message-passing steps should be utilised to

spread information among the graph’s remote nodes? . 59
4.7 Edge-generation strategies 60

51

4. Methodology 52

4.7.1 edge-KNN . 60
4.7.2 edge-radius . 60
4.7.3 edge-label . 60

4.8 Graph Processing . 61
4.8.1 Fixed-size Graph dataset 61
4.8.2 Variable-size Graph dataset 61
4.8.3 Edges in Fixed and Variable size dataset 61

4.9 Model Evaluation Metrics 61
4.9.1 Accuracy . 62
4.9.2 Node Accuracy . 62
4.9.3 Event Accuracy . 62

4.10 Model Methodology . 63
4.10.1 Graph Network Blocks 63
4.10.2 Attention mechanism 63
4.10.3 Stacking Graph Network Blocks 64
4.10.4 GNN architectures . 64

4.11 Selecting the Graph Network Blocks 64
4.11.1 GCNConv . 64
4.11.2 ChebConv . 65
4.11.3 TAGConv . 66
4.11.4 Jumping Knowledge . 66
4.11.5 SAGEConv . 67
4.11.6 GINConv . 67
4.11.7 GATConv . 67
4.11.8 SuperGATConv . 68
4.11.9 Conclusion . 69

4.1 Introduction

This chapter delves into the project’s pipeline, from data collection, processing,

analysis to the model implementation. Several iterations and modifications were

made to accommodate these intricacies. We build a data building upon the strategies

in literature and design graph neural network models suitable for our task.

4.2 Particle Physics Data

Particle physics is an interesting and rich field to apply machine learning techniques.

The data collected in its operations is theoretically sound, abundant, and reliable

and is straightforward to simulate both the generated and reconstructed data. In

4. Methodology 53

High Energy Physics, ‘data’ usually refers to data collected from real events in the

detector, whereas simulation or ‘MC’ refers to simulated data.

4.2.1 Event Data

As soon as a collision is identified as interesting after the trigger process, it is

recorded. The process of aggregating together all the information from many sub-

detectors in a particle collider is called event building. Overall, putting together all

the incoming data from the detector is a complex process as the detector elements

read out several collisions simultaneously, and only a portion of it is useful and thus,

stored. The event size ranges from a few kilobytes to a few megabytes depending on

the detector type and its purpose and directly depends on the number of particles

generated per collision[116]. As specified, the data of many events together are

stored in a single file and temporarily saved on hard disks as buffers. Data is then

shipped to permanent storage on tapes and is extracted for either reconstruction or

physics analysis. For example, at the current scale and scope of experiments at the

LHC, the total amount of data per experiment in a year reaches a few petabytes. [40]

4.2.2 Simulated Dataset

Simulations are required to understand and identify the effects of detectors on

observations for accurate and precise measurements. Using the Monte Carlo

technique, a detector simulation reproduces the behaviour of the detector as closely

as possible. The steps comprising a simulation include: a collision generator

simulates which particles are created in a collision, an accurate description of the

geometry of all active (sensitive and operating) and inactive (frames, cooling devices,

cables) elements in the detector and a transport software to simulate the interaction

of the particle in the collision with the detector material[116].

Particles after an event collision can decay, deflect or get stuck. The active

detector elements record the energy deposits of the particles. Eventually, the

simulated signals are reconstructed with the same software used to reconstruct

4. Methodology 54

the real experimental data. The simulation results allow physicists to correct the

distortions caused by the detector on the specific measurement.

4.3 Data Generation and Conversion

4.3.1 Data handling framework

The ROOT framework is C++ based and an object-oriented framework for data

processing and analysis and has evolved as the standard tool in the High Energy

Physics community. It has been developed since 1995 at CERN and holds extensive

2D and 3D Tools for the visualisation of particle physics data. In this project, we use

the Delphes framework, which is directly dependent on the ROOT framework. [112]

4.3.2 Simulation Frameworks

At high-energy colliders, multipurpose detectors are extremely complex systems.

Their simulations are typically done with the GEANT [118] package. However,

the final observables used in analyses frequently need complicated reconstruction

techniques, which consume much time. Delphes is a C++ framework [118, 119, 120]

for a fast simulation of a generic particle collider experiment. A particle tracking

system embedded in a magnetic field, calorimeters, and a muon system are all a

part of the simulation. Delphes supports a range of available data file formats as

an input, allowing it to process events from various generators. Delphes outputs

data in the form of a ROOT ntuple [120, 121].

4.3.3 Data Conversion to Compatible Formats

The raw data of 10,000 events must be transformed into a compatible format. The

simulation dataset was generated with Delphes, and the data had been saved as

a .root file. The simulated datasets were produced and shared by Dr Michele

Selvaggi and Dr Loukas Gouskos, research scientists, currently working at CERN.

The ROOT files allow us to organise physics objects or data into tree structures.

Further, we set up a Delphes environment locally and programmed a script to

4. Methodology 55

Dataset Features Original Physical Significance
N Node index for each event
PID Process ID: Identifies a particle
St Status: Informs if stable or not
Pt Tranvserse momentum
E Energy of the particle
Mass Mass of the particle
Eta Pseudorapidity
M1 Mother 1 of the current particle
M2 Mother 2 of the current particle
D1 Daughter 1 of the current particle
D2 Daughter 2 of the current particle

Table 4.1: Raw Features of the Dataset

extract the labels and engineered features for our experiment from the .root file

and saved them as a .csv file in a tabular format.

4.4 Data Description

4.4.1 Dataset Version 1

Initially, the dataset consisted of various raw features such as process ID, status,

physical parameters and node indices of all the decay products in an event collision,

as illustrated in the table. An initial dataset contained all the particles in the event

decay chain and was a complete picture of the event collision. While processing

the first dataset, our goal was to discriminate between particles decaying from

the charm and anti-charm quarks in an event decay chain. However, after data

analysis and exploration on the first version of the dataset, we found out that the

daughter particles of charm and anti-charm quark were conflicting, leading to issues

in discriminating stable particles into these two classes. Therefore, we could not

generate labels for particles if they were decaying from charm quark or not. The

domain experts informed us that we could not separate particles decaying from

the charm and anti-charm quarks, as explained in Chapter 2. Thus, we reassessed

and revised the problem statement to classify the particles decaying from bosons

4. Methodology 56

Node Features Physical significance
PID Process ID
pos_r position: vertex 4-vector(distance from the centre)
pos_theta position:vertex 4-vector(polar angle)
pos_phi position:vertex 4-vector(azimuth angle)
pos_t position:vertex 4-vector(time)
mom_p momentum 4-vector(transverse momentum)
mom_theta momentum 4-vector(polar angle)
mom_phi momentum 4-vector(azimuth angle)
mom_mass momentum 4-vector(mass)

Table 4.2

instead of quarks. In the end, we finalised and reframed the problem to discriminate

between particles decaying from the Higgs and Z boson during an e− e+ collision.

4.4.2 Dataset Version 2

We proceed to generate the labels based on the features available in simulation

data sets. There are three categories of labels: particles decaying from Higgs,

particles decaying from Z Boson, and particles decaying from others. Labels were

generated using the information about the decay of each particle in an event

decay chain: using variables ‘D1’ and ‘D2’. We aim to train a model on the

simulation dataset using the labels generated. Later, we will test the model on the

simulation dataset, where we will have access to the labels required for calculating

accuracy and evaluating the model.

As explained in Chapter 2, only the final state(stable) particles of the event

decay chain are detected or observed during the experiment. Therefore, we filter

and process our dataset based on stable particles only.

Further, we enhanced the dataset, selected features representative of the task

and incorporated engineered features to the dataset: such as the process ID, vertex-

4-vector calculated with the particle’s position(x,y,z,time) and the momentum

4-vector. Overall, these nine features cover the relevant spatial and physical

properties related to the particle [123].

4. Methodology 57

4.4.3 Data Analysis and Preprocessing

Most machine learning algorithms perform considerably better when dealing with

features on the same scale; thus we standardise our data using min-max scaling as

it is an important step in the preprocessing phase. The dataset is of high quality

and we don’t have any missing values since it’s a simulation generated dataset.

4.5 An overview of the GNN Pipeline

The GNN pipeline contains the following steps: First, we find graph structure in

the data. Second, we identify the graph type and scale. Third, define the kind

of training and design loss function accordingly. Lastly, we build the GNN model

using task-specific computational modules as [29].

4.5.1 Practical Implementation

The most common programming frameworks are pytorch and pytorch geometric,

deep graph library from Amazon, graph nets from Deepmind, spektral with

tensorflow, and Jax with jgraph[15]. The complexity level of technical documentation

and ease of use and operation for the software frameworks vary significantly. We

can find exhaustive state of the art software frameworks and hardware accelerators

exclusively for graph neural networks here[127]. We develop our data and models

using: sklearn, numpy, pandas, matplotlib, pytorch, and pytorch-geometric.

4.5.2 Introduction to Graph Generation in Particle Physics

According to domain experts, a critical task in designing algorithms is applying

our understanding of the underlying physics to capture the relationship between

the nodes in the input graph and the model architecture.

4.5.3 Construction of a Graph

The molecular structure and social networks have inherent connections that can

be easily represented as nodes and edges, with both of them signifying an entity

and a relation. However, the nature of the relationships between distinct nodes in a

4. Methodology 58

Figure 4.1: Graph Neural Networks Pipeline [29]

graph is unclear in most particle physics applications. As a result, a well-rounded

decision must be taken regarding how to create a graph from the inputs.

4.5.4 Role of Edges in a Graph

The graph’s edges serve three purposes: first, the edges are node-to-node communi-

cation channels. Second, the input edge features can denote a relationship between

objects and encode physics-motivated variables about that relationship. Third,

latent edges hold relational information computed during message transmission,

allowing the network to encode variables it considers important to the task.

4.5.5 Size of a Graph

When the input sets are small, the most common and straightforward solution

is to create a fully linked graph, which allows the network to learn which object

connections are essential. The computational cost of utilising a neural network to

construct an edge representation or compute attention weights becomes prohibitive

in bigger sets when the number of edges between all nodes increases.

4. Methodology 59

4.6 Definition of the Machine Learning Task

The first task is to determine the data representation for the specific application.

Next, it should be decided if the model learns a function at the node, edge or

graph level. A trivial case in HEP involves applications of the jet, event or particle

classification. In our project, we perform particle classification by identifying the

origin of decay of the final state particle. Many decisions were taken on how the

data may be portrayed as a graph and how to compute the embeddings using

available GNN architectures:

4.6.1 What are the entities and relations that could also
be represented as nodes and edges, respectively?

We represent an event collision as a graph and the stable particles as nodes. The

edges are generated based on literature approved strategies as discussed in the

following sections as edge-radius, edge-knn, edge-label.

4.6.2 What is the desired output, such as predictions at
the edge, node, or graph level?

The desired outcome is a node-level prediction of the particle class: whether it

decayed from an H boson, Z boson, or other particles in an e + e− collision.

4.6.3 Is it necessary to have a global output network to
create graph-level outputs?

Our node classification task is limited to the Higgs production in the HZ mode.

Therefore, all the event graphs are of the same type of decay. Thus, event

classification or identification is out of the scope of our research unless other

Higgs production modes are also investigated.

4.6.4 How many message-passing steps should be utilised
to spread information among the graph’s remote nodes?

We perform experiments with network depth to evaluate the optimal number of

message passing steps for node classification.

4. Methodology 60

Dataset Parameters
edge-radius radius = 0.2
edge-knn K = 8
edge-label NA

Table 4.3: Hyperparameters for Dataset Generation

4.7 Edge-generation strategies

We are working with an undirected, static, and homogeneous graph where nodes

though belonging to different classes are essentially of the same type or entity, that

is, particles. The scale of the graph (more than 50 nodes) makes it difficult to

construct a graph with fully connected edges, as suggested in [8]. We implement

and construct graphs in three different ways. Edge Generation is implemented as

an edge list in the COOCoordinate list format) format, and as the data objects

of the pytorch-geometric library.

4.7.1 edge-KNN

As per the domain experts in [8], ‘Given a distance measure between nodes, some

criterion for connecting them needs to be formulated, such as connecting k-nearest

neighbors in the feature space.’ Therefore, our first strategy is to connect the

k-nearest neighbours of each node for each event separately.

4.7.2 edge-radius

Motivated by the methodology in [25], we project the features in 2 dimensions

using principal component analysis and calculate the pair of distances for each

node in the graph. Here, euclidean distance between each pair of nodes was

calculated. We specify a radius threshold, and we connect all the particles within

a specific radius together.

4.7.3 edge-label

We also build a graph dataset by connecting all the nodes of the same class in an

event (or having the same labels) to assess the performance difference by comparing

4. Methodology 61

Graph dataset Number of nodes* Number of edges
edge-radius 60 3540
edge-knn 60 480
edge-label 60 3368

Table 4.4: A sample event is used to illustrate the characteristics

it with edge-radius and edge-knn.

4.8 Graph Processing

4.8.1 Fixed-size Graph dataset

We padded extra nodes to ensure the event graph had the same number of nodes for

each event. We also created a new class label for the padded nodes to accommodate

the new set of nodes for model training.

4.8.2 Variable-size Graph dataset

The graph dataset was created with a variable number of nodes per event. The

minimum number of nodes per event was 48, whereas the maximum number

was 130, in our dataset.

4.8.3 Edges in Fixed and Variable size dataset

Edges were only generated for real particle nodes, such that the padded nodes

in the fixed-size graph were not connected (isolated nodes). On the other hand,

edges in the variable-sized graphs were generated for each node based on the

three strategies described.

4.9 Model Evaluation Metrics

We define two measures of success for supervised node classification: node accuracy

and event accuracy. We evaluate the model performance on event accuracy as it

helps discriminate and compare the different models more effectively.

4. Methodology 62

4.9.1 Accuracy

Accuracy that the node or particle is correctly classified in an event.

Accuracy = Number of correctly classified nodes
Total number of nodes in an event (4.1)

To illustrate this, we share an example: let us assume that total number of nodes

(stable particles in an event)is 70, and number of correctly classified nodes is also 70,

then the accuracy for a single event over all nodes is given by: 70/70 = 100 percent.

4.9.2 Node Accuracy

Accuracy that the node or particle is correctly classified in an event. Node accuracy

is the means of all accuracies reported over the size of the dataset n.

Node Accuracy = 1
n

n∑
i=1

ai = a1 + a2 + · · ·+ an
n

(4.2)

where ai is the accuracy of the ith event collision in the dataset of size n.

To illustrate this, we share an example: let us assume that total number of

events is 3, and accuracy for each event is 96, 98, and 99, then the node accuracy

for a single event over all nodes is given by: (96 + 98 + 99)/3 = 97.6666 percent.

4.9.3 Event Accuracy

Event Accuracy is calculated on a set of events, where each event has a specific

node accuracy, then we obtain the frequency of events that were classified with 100

percent node accuracy. We further illustrate this with an example:

EventAccuracy = Number of event classified with 100 percent node accuracy
Number of events in the dataset

(4.3)

To illustrate this, we share an example: let the, number of event classified with

100 percent node accuracy be 80, and the number of events in the test dataset

(dataset size) be 100, the event accuracy is given by 80/100 = 80 percent.

4. Methodology 63

4.10 Model Methodology

Graph Neural Networks learn a representation of the graph to generate a low-

dimensional embedding of the graph nodes. The end-to-end training allows for

the learning of this representation to represent the structural properties of the

particle graph that are relevant to the task of node classification. When a task

requires classification at the node level, the embedding’s representation of each

node is directly used. Therefore, we utilise the node embeddings generated by

the model to make predictions.

4.10.1 Graph Network Blocks

The update functions and aggregation functions form a GN(Graph Network) block

as discussed in Chapter 2. The update functions accept a set of entities, apply

the same function to each entity, resulting in an updated representation. The

aggregation functions take a set of entities and produce a fixed-size representation

for the whole set by implementing an order invariant function to group together

the representations of the entities[125]. The model architecture is designed to

represent a logical combination of inputs pertinent to the learning task. We specify

which GN blocks are used and how we stack them. In many cases, the update

functions may be implemented as neural networks, giving the learning processes

the most flexibility. As it would incur computational expenses, we started with

a small scale efficient design and progressively increased its complexity until the

algorithm’s performance met our expectations.

4.10.2 Attention mechanism

An essential factor to consider when developing and implementing an attention

mechanism is whether certain aspects of the input data are more significant than

others. They are all based on the idea of computing weights that indicate the relative

importance of different elements in a set using a neural network or a predefined

function. These weights are used to construct weighted sums of the representations

of the individual elements in the GN block functions [8].

4. Methodology 64

4.10.3 Stacking Graph Network Blocks

GN blocks placed consecutively serve the same purpose for building the node

representations as stacked layers in any neural network design such as a CNN or

DNN. As a result, introducing more GN blocks to the model increases its depth

and expressive power. Further, the node has only exchanged information with

its immediate connected neighbours after one iteration of the message passing in

a single GN block. Many iterations with a GN block, either the identical block

applied multiple times or different blocks applied in a sequence, enhances each

node’s receptive field since its neighbouring nodes’ representations were previously

updated with information from their neighbours. [8] Skip connections (residual

connections), which combine the input and output, prevent corruption of the

updated representations and preserve the gradient signal over multiple message-

passing steps [79].

4.10.4 GNN architectures

Different architectures exist for designing a GNN, but they are all equivalent as their

output comprises a graph with learned node representations. These embeddings are

further used to perform the actual task [8, 125]. We explore the Graph Convolutional

Network[102] in depth and we also outline other GN blocks used for our research

project: GAT[52], SAGE[114], GIN[79], ChebNet[115], JKNet[108] with GCN,

TAGCN[144] and SuperGAT[113].

4.11 Selecting the Graph Network Blocks

To compare the performance of GNNs against NNs, we first implement an MLP

to identify model performance solely on node features.

4.11.1 GCNConv

We build the Graph Convolutional Network[102] and establish a GNN baseline. In

all model experiments, we stack the convolutional layers in a depth-wise fashion

and train each model variant on all the three graph datasets generated.

4. Methodology 65

The graph convolutional operator is given by:[136]

x′i = Θ
∑

j∈N (v)∪{i}

ej,i√
d̂j d̂i

xj (4.4)

where xi is the node embedding of node i, xj is a node embedding of node j, N (v)

is the neighbourhood of node v, Θ is the weight matrix, with d̂i = 1 +∑
j∈N (i) ej,i

where ej,i represents the edge weight from the source node j to the target node

i and is by default set to 1.0.

4.11.2 ChebConv

Next, we explore spectral GNNs in the domain such as ChebNet[115], and TAGCN[144].

The ChebNet model allows us to conduct convolution on graph-like datasets.

Convolution in the spatial domain is equal to multiplication in the Fourier domain,

according to the convolution theorem. As a result, rather than executing convolution

directly in the spatial domain, the graph data and filter will be transformed into

the Fourier domain. We apply element-wise multiplication, then use the inverse

Fourier transform to transfer the result back to the spatial domain[115]. The

authors propose the spectral filters to be strictly localised in a ball of radius k,

where k refers to the number of hops from the central node. We implement ChebNet

to compare its performance with GCNs and assess how spectral graph neural

network methods perform on the task.

Chebyshev spectral graph convolutional operator is described as:[136]

X′ =
K∑
k=1

Z(k) ·Θ(k) (4.5)

where Z(k) is computed recursively:

Z(1) = X
Z(2) = L̂ ·X
Z(k) = 2 · L̂ · Z(k−1) − Z(k−2)

(4.6)

where L̂ is the scaled and normalized Laplacian 2L
λmax
− I

4. Methodology 66

4.11.3 TAGConv

As we highlighted that physicists do not anticipate having access to dedicated

accelerators, the time complexity of the models in production should be carefully

considered. We experiment with the spectral TAGCN method. It offers a method for

designing a set of fixed-size learnable filters to conduct convolutions on graphs in a

systematic manner. When these filters scan the graph to conduct convolutions, their

topologies adapt to the graph’s topology. TAGCN inherits the characteristics of

convolutions in CNN for grid-structured data and follows the definition of convolution

in graph signal processing. Spectral graph convolutional neural networks require

approximation to the convolution to reduce computational complexity, resulting

in performance degradation. However, as per [144], TAGCN is computationally

cheaper since no approximation to the convolution is required.

Topology adaptive graph convolutional networks operator can be defined as fol-

lows:

X′ =
K∑
k=0

(
D−1/2AD−1/2

)k
XΘk (4.7)

where A denotes the adjacency matrix and Dii = ∑
j=0Aij its diagonal degree

matrix and k denotes the number of hops and by default it is set to 3.

4.11.4 Jumping Knowledge

Additionally, we also implement Jumping Knowledge (JKNet) networks, designed

to solve over-smoothing as discussed in Chapter 3. In the JKNet[108] model, we

perform the aggregation using a weighted summation of node embeddings where

a bi-directional LSTM provides the attention scores.

Jumping Knowledge layer is an aggregation module based on the weighted

summation computed as:[136]

T∑
t=1

α(t)
v x(t)

v (4.8)

here attention scores α(t)
v are provided by a bi-directional LSTM.

4. Methodology 67

4.11.5 SAGEConv

Further, we move into the spatial domain and build a basic graph network block

using the SAGE[114] convolutional operator. SAGE is suitable for the inductive

learning setting, as the model is can be trained on a collection of graphs to produce

node embeddings for previously unseen nodes or unseen graphs, as long as the

graphs have the same attribute format as the training data.

The Graph SAGE operator can be defined as follows, where W1,W2 are weight

matrices: [136]

x′i = W1xi + W2 ·meanj∈N (i) xj (4.9)

4.11.6 GINConv

However, as per [79], both GCN and SAGE neighbourhood aggregations are

limited in their discriminative power, so we proceed to build a model with GIN

convolutional operators.

The graph isomorphism operator which helps build more expressive graphs

is defined as follows: [136]

x′i = hΘ

(1 + ε) · xi +
∑

j∈N (i)
xj

 (4.10)

where ε is a scalar with a default value of 0 and hΘ is a neural network (MLP).

4.11.7 GATConv

Similarly, we extend our experiment to include a model with graph attention layers,

and we implement the baseline attention mechanism in GAT[52] as discussed in

Chapter 3 and compare it with the current state of the art SuperGAT[113].

Graph attentional operator, as discussed in Chapter 3 is defined as: [136]

x′i = αi,iΘxi +
∑

j∈N (i)
αi,jΘxj (4.11)

where the attention weights αi,j are calculated as:

4. Methodology 68

αi,j =
exp

(
LeakyReLU

(
a> [Θxi‖Θxj]

))
∑
k∈N (i)∪{i} exp (LeakyReLU (a> [Θxi‖Θxk]))

(4.12)

4.11.8 SuperGATConv

The self-supervised graph attention network (SuperGAT) is an enhanced graph

attention model for noisy graphs. Authors in [113] employ a self-supervised task in

which the attention value is used as input to estimate the probability of a node-to-

node connection. To understand how edges are encoded in graph attention, they

understand what graph attention learns and how it relates to the existence of edges.

SuperGAT focuses on two widely utilised attention mechanisms, GAT’s original

single-layer neural network (GO) and dot-product (DP). Two SuperGAT versions

are explored, scaled dot product (SD) and combined GO and DP (MX) to examine

the strength of GO and DP. We implemented superGAT to assess how the average

degree of the various graph datasets and their homophily can determine which

of the two graph attention models could best capture the relational significance

and offer the most accurate node representations.

The SuperGATConv operator is defined as follows:

x′i = αi,iΘxi +
∑

j∈N (i)
αi,jΘxj (4.13)

where the two types of attention are computed as:

αMX
i,j or SD =

exp
(
Leaky ReLU

(
eMX or SD
i,j

))
∑
k∈N (i)∪{i} exp

(
LeakyReLU

(
eMX
i,k or SD

)) (4.14)

eMX
i,j = a> [Θxi‖Θxj] · σ

(
(Θxi)>Θxj

)
(4.15)

eSD
i,j = (Θxi)>Θxj√

d
(4.16)

The self-supervised task is a edge prediction task which uses the attention values

as input to estimate the probability of a node-to-node edge.

4. Methodology 69

φMX
i,j = σ

(
(Θxi)>Θxj

)
(4.17)

φSD
i,j = σ

(
(Θxi)>Θxj√

d

)
(4.18)

4.11.9 Conclusion

We discussed the process and reasons to create three different strategies for edge-

generation, selected the most suitable architectures according to the literature

and designed eight graph neural networks variants by stacking the same type of

GN blocks in a depth-wise fashion.

5
Results

Contents

5.1 Introduction . 71
5.1.1 Event wise classification 71
5.1.2 Multiclass-classifier: . 71
5.1.3 Default Case: . 72

5.2 MLP: Establishing a Baseline with neural networks . . 72
5.2.1 Objective: MLP-2 . 72
5.2.2 Results: . 72

5.3 MLP: Network Depth . 73
5.3.1 Objective: Network Depth of 2, 4, 8 73
5.3.2 Results: . 73

5.4 Graph Convolutional Network: An in-depth exploration 73
5.4.1 Objective: GCN-2 . 73
5.4.2 Results: . 73

5.5 GCN: Most Representative Dataset 74
5.5.1 Objective: GCN-2 on edge-radius, edge-KNN, edge-label 74
5.5.2 Results: . 75

5.6 GCN: Network Depth Experiment 75
5.6.1 Objective: Network Depth of 2, 4, 8, 16 75
5.6.2 Results: . 76

5.7 GCN: Accuracy with Different Dataset Sizes 80
5.7.1 Objective: Dataset split into 0.2, 0.4, 0.6, 0.8 80
5.7.2 Results: . 80

5.8 GCN: Hyperparameter Search 81
5.8.1 Objective: Find optimal hyperparameters for GCN-2 on

edge-KNN . 81
5.8.2 Results: . 81

5.9 GNN-variants: Model Evaluation and Comparison . . 81

70

5. Results 71

5.9.1 Objective: MLP, GCN, ChebNet, SAGE, GAT, GIN,
JKNet, TAGCN and SuperGAT 81

5.9.2 Results: . 83
5.10 Conclusion . 85

5.10.1 Could machine learning techniques be used to predict
the sets of final state particles originating from the Higgs
Boson and Z boson in the HZ production mode at the
future lepton collider? 85

5.10.2 How can graph neural networks be used to model event
collisions as graphs and particles as nodes for the super-
vised task of node classification? 85

5.10.3 How can we generate relationships or links between final
state particles? What is the most optimal type of graph
data representation of the stable particles detected at a
collider? . 86

5.10.4 What is the most promising graph neural architecture to
correctly predict all the nodes’ labels in a graph? . . . 86

5.1 Introduction

This chapter examines and evaluates the results acquired during the research and

the project’s objectives and methods for investigating our research questions. Each

experiment reported in this part originated from interrogating previous initiatives.

The selected layout aims to follow this natural sequence, justifying the actions taken

and offering a comprehensive view of the results obtained.

5.1.1 Event wise classification

We performed the particle classification task in an event wise fashion on the GNN

models. Event-wise implies that the model processed every event(graph), and

then it made predictions on each particle(node) before proceeding to the next

event(graph). Thus, supervised node classification was carried out by considering

all particles of a single event within a batch.

5.1.2 Multiclass-classifier:

We aimed to process the events(graphs) and classified each particle(node) of the

event(graph) into three categories: decaying from the Higgs boson, Z boson or other

5. Results 72

particles. We implemented multi-classification on three classes using variable event

graphs (with varying numbers of particles). The variable-sized graphs outperformed

fixed-sized graphs in our setup, so we have performed all our experiments with

variable-sized graphs.

5.1.3 Default Case:

We split the dataset into 60:20:20 across training, validation and test phases. We

set 16 hidden channels, and processed the graphs with variable sizes in the default

case. The ReLU activation function is used in all the models. To prevent overfitting,

a dropout layer is added, with a dropout rate of 0.5. A softmax activation function

follows the output layer with one neuron. The Adam Optimizer is used to train

the model, using a learning rate of 0.01. The cross-entropy loss function is used

as the loss function. All model performance metrics, node accuracy and event

accuracy are reported on the test dataset.

5.2 MLP: Establishing a Baseline with neural net-
works

5.2.1 Objective: MLP-2

Our objective is to analyze and report how the neural network performs on the

supervised learning task of classifying final state particles based on their source

of decay using only the node(particle) features. The experiment is carried out

to establish a baseline that will be successively improved upon in the project.

The experiment aims to build a comparison between the neural network baseline

against the graph neural network baseline. Further, it also helps us observe if the

neighbourhood aggregation techniques add any significant gains in performance.

5.2.2 Results:

The two-layer MLP-2 model was trained on the node features of the dataset and

established a baseline result with an event accuracy of 87.2637 per cent.

5. Results 73

Model Network Depth Dataset Event Accuracy Node Accuracy
MLP 2 Node Features 87.2637 99.9538
MLP 4 Node Features 83.3637 99.9494
MLP 8 Node Features 0 95.8934

Table 5.1: MLP: Model Performance with Network Depth

5.3 MLP: Network Depth

5.3.1 Objective: Network Depth of 2, 4, 8

Our objective is to train the neural network model on the node features with

varying network depths and assess if deep neural networks increase the event

accuracy performance metric.

5.3.2 Results:

We observed that MLP-2 (87.2637 percent) outperforms MLP-4 (83.3637 percent)

and MLP-8(0 percent) on the event accuracy metric. Therefore, we observe shallow

neural networks are more effective than deep neural networks.

5.4 Graph Convolutional Network: An in-depth
exploration

5.4.1 Objective: GCN-2

Our objective is to establish a baseline for GNN models using the GCN model.

Further, we analyze the training and loss curves to identify the number of epochs

fixed for all GNN experiments. The objective is to ensure a fair model comparison

against other architectures.

5.4.2 Results:

The two-layer GCN-2 model built with the default parameters, results in an event

accuracy of 90.7206 per cent on the KNN dataset. The number of epochs is set

to 51 as the node classification accuracy saturates after 35 epochs. The GNN

5. Results 74

Figure 5.1: Training and Validation Accuracy Curves on GCN-2: edge-KNN

Figure 5.2: Training and Validation Loss Curves on GCN-2: edge-KNN

baseline reported here in the experiment would be further improved on in the

course of the project.

5.5 GCN: Most Representative Dataset

5.5.1 Objective: GCN-2 on edge-radius, edge-KNN, edge-
label

Our objective is to find the most representative graph dataset by training the model

on edge-radius, edge-KNN and edge-label datasets.

5. Results 75

Figure 5.3: Networkx Visualisation of a sample event: edge-KNN

5.5.2 Results:

The event accuracy of GCN-2 on edge-radius was 13.0618 per cent, edge-KNN was

90.7206 per cent, and edge-label was 0 per cent. Therefore, we observe that the

edge-KNN is the most representative graph dataset. The results of the GCN model

can be directly correlated with the visualization of each type of graph and their

corresponding node and graph metrics. The edge-KNN model’s visualization is

more distinct and helps the classifier discriminate the particles effectively. Further,

the local properties of a sample event and the global properties of edge-KNN

events across multiple events also well distributed. We keep in mind the most

representative dataset: edge-KNN to perform our hyperparameter experiments on

the GCN model. Additionally, since the number of edges are the speed bottleneck,

as discussed in Chapter 3, edge-KNN is also the most efficient with minimum

number of edges as shown in Chapter 4.

5.6 GCN: Network Depth Experiment

5.6.1 Objective: Network Depth of 2, 4, 8, 16

We aim to find the optimal network depth for the GCN model on particle classifica-

tion. We perform this experiment to investigate the performance across different

5. Results 76

Figure 5.4: Networkx Visualisation of a sample event: edge-radius

KNN - Node Metrics on Event ID = 9
Node 22 has the largest degree value 15.
Node 49 has the largest betweenness centrality value 0.21056706050397578.
Node 50 has the largest closeness centrality value 0.28065458796025716.
Node 22 has the largest degree centrality value 0.2542372881355932.
Node 10 has the largest clustering value 1.0.
Node 34 has the largest average neighbor degree value 9.6.

Table 5.2: Maximum Value of Node Metrics of edge-KNN

network depths and make an informed decision about selecting an appropriate net-

work depth for future GNN architectures explored in the course of the project. The

most optimal depth is evaluated based on the event accuracy performance metric.

5.6.2 Results:

As per research [104], shallow networks outperform deep graph networks, which

is empirically observed here in our experiment. It highlights the problem of over

smoothing: the model has aggregated across all the nodes in the graph, causing

the learned node embeddings for each node to be similar to all other nodes in the

graph as discussed in Chapter 3. Over-smoothing decreases a GNN’s discriminating

ability, as observed in the results.

The dilemma of using deep architectures on graphs, where depth refers to the

5. Results 77

Figure 5.5: Node Metrics for a sample event: edge-KNN

5. Results 78

Figure 5.6: Graph Global Metrics for a sample of 100 event:edge-KNN

number of stacked graph convolutional layers, is crucial. Due to vanishing gradients

and feature smoothing, deep GNNs are notoriously difficult to train [105, 106, 107].

Although recent work depicts that these issues can be addressed to some extent [108,

109, 110, 111, 112], comprehensive experiments conducted in [112] demonstrate

that depth often does not bring any major performance gain over shallow baselines.

Proceeding with shallow GNNs is particularly important in all scenarios where

scalability is a primary concern, such as large-scale industrial systems at CERN.

We experimented with network depth in the GCN model with 2, 4, 8 and

16 layers to observe changes in event accuracy. We observed that shallow graph

networks outperform deep graph networks. The event accuracy on the KNN dataset

5. Results 79

Figure 5.7: Visualisation of Subgraph to Explain GCN-2 predictions for node at
indices(L-R): 0, 11, 12, 21 using [91]: edge-KNN

Model Depth Dataset Event Accuracy Node Accuracy
GCN 2 KNN 90.7206 99.8618
GCN 2 Radius 13.0618 97.0824
GCN 2 Label 0 95.8934
GCN 4 KNN 84.6716 99.7607
GCN 4 Radius 0.0059 95.8934
GCN 4 Label 0 95.8934
GCN 8 KNN 46.9039 99.676
GCN 8 Radius 0 95.8934
GCN 8 Label 0 95.8934
GCN 16 KNN 0.0049 95.8934
GCN 16 Radius 0 95.8934
GCN 16 Label 0 95.8934

Table 5.3: GCN: Network Depth Experiment

for GCN 2 is 90.7206 per cent, GCN-4 is 84.6716 per cent, GCN-8 is 46.9039 per

cent, and GCN-16 is 0.00049 per cent. Consequently, we design the next experiments

with network depths of two and four as they outperform other depth values.

5. Results 80

Model Dataset Size Dataset Event Accuracy Node Accuracy
GCN 20% of dataset KNN 89.7353 99.8079
GCN 20% of dataset Radius 9.4706 96.9705
GCN 20% of dataset Label 0 95.8092
GCN 40% of the dataset KNN 91.8701 99.6715
GCN 40% of the dataset Radius 10.4559 97.0927
GCN 40% of the dataset Label 0 95.742
GCN 60% of the dataset KNN 89.6912 99.7916
GCN 60% of the dataset Radius 13.1781 97.0374
GCN 60% of the dataset Label 0 95.8441
GCN 80% of the dataset KNN 90.3039 99.7483
GCN 80% of the dataset Radius 12.5784 97.1147
GCN 80% of the dataset Label 0 95.8886

Table 5.4: GCN: Accuracy with Different Dataset Sizes

5.7 GCN: Accuracy with Different Dataset Sizes

5.7.1 Objective: Dataset split into 0.2, 0.4, 0.6, 0.8

Our objective is to observe the changes in performance metrics based on the size

of the dataset. The experiment was conducted to assess the next direction of our

research and help us identify if we need to train the model on more data or to

execute experiments with different GNN architectures.

5.7.2 Results:

We observe minor changes in event accuracy with respect to the dataset size. We

trained the GCN-2 model on 20 per cent, 40 per cent, 60 per cent, 80 per cent of the

dataset to observe the changes in the GCN-2 performance with increasing dataset

sizes. We observe that the event accuracy fluctuates with minor changes across the

four datasets. Event accuracy in increasing order of dataset sizes is reported as

89.7353 per cent, 91.870 per cent, 89.6912 per cent and 90.3039 per cent. As the

results indicate, exploring the diverse types of models in the current graph neural

network literature and reporting their results first would prove to be more promising.

5. Results 81

5.8 GCN: Hyperparameter Search

5.8.1 Objective: Find optimal hyperparameters for GCN-
2 on edge-KNN

We examine individual contributions of our model design choices across various

hyperparameters of GCN. We aim to identify any significant increase or decrease

in event accuracy, but we limited our exploration on the edge-KNN as it was

previously observed to provide the most representative dataset.

5.8.2 Results:

On the GCN-2 network, we experimented with different dropout values(0.1, 0.2,

0.3, 0.4,0.5) different number of hidden channels(10,16,32,64,128) and different

learning rates (0.1, 0.01, 0.001, 0.0001, 0.00001), different weight decay (0.5, 0.05,

0.005, 0.0005, 0.00005) and different optimisers(adam, sgd, rmsprop). The optimal

parameters based on the event accuracy performance metric were selu as non-

linearity, 16 hidden channels, 0.0001 as learning rate, 0.00005 as weight decay, and

dropout value of 0.2. Adam and SGD optimizers were of comparable performance.

An interesting observation was made when GCN-2 with a weight decay of 0.00005

led to a sharp increase in event accuracy from 90.7206 percent to 94.9716 percent.

5.9 GNN-variants: Model Evaluation and Com-
parison

5.9.1 Objective: MLP, GCN, ChebNet, SAGE, GAT, GIN,
JKNet, TAGCN and SuperGAT

We train and test all the graph neural network models on three datasets: edge-

radius, edge-KNN and edge-label to observe changes in performance against the

NN baseline and GNN baseline, to compare each model variant and to assess if

they follow the same pattern observed for GCN experiments.

5. Results 82

Model Hyperparamters (Note) Event Accuracy Node Accuracy
GCN relu 90.7206 99.8618
GCN elu 90.0892 99.8177
GCN selu 91.0265 99.861
GCN gelu 88.9549 99.7944
GCN leaky_relu 90.6088 99.8405
GCN tanh 90.4912 99.8209

Model Hyperparamters (Note) Event Accuracy Node Accuracy
GCN hidden channels = 10 88.9971 99.875
GCN hidden channels = 16 90.7206 99.8618
GCN hidden channels = 32 90.4853 99.7893
GCN hidden channels = 64 90.4951 99.7854
GCN hidden channels = 128 90.3627 99.8686

Model Hyperparamters (Note) Event Accuracy Node Accuracy
GCN dropout=0.1 91.0461 99.7852
GCN dropout=0.2 91.052 99.7987
GCN dropout=0.3 90.9598 99.8032
GCN dropout=0.4 90.951 99.8467
GCN dropout=0.5 90.7206 99.8618

Model Hyperparamters (Note) Event Accuracy Node Accuracy
GCN learning rate = 0.1 54.4539 99.9149
GCN learning rate = 0.01 90.7206 99.8618
GCN learning rate = 0.001 91.3824 99.7973
GCN learning rate = 0.0001 91.5716 99.7992
GCN learning rate = 0.00001 91.2735 99.8064

Model Hyperparamters (Note) Event Accuracy Node Accuracy
GCN weight decay = 0.1 0 95.8934
GCN weight decay= 0.01 0 95.8934
GCN weight decay = 0.001 89.3147 99.8096
GCN weight decay = 0.0001 90.7206 99.8618
GCN weight decay = 0.00001 94.9716 99.9235

Model Hyperparamters (Note) Event Accuracy Node Accuracy
GCN optimiser = adam 90.7206 99.8618
GCN optimiser = sgd 90.7245 99.8097
GCN optimiser = rmsprop 90.248 99.8333

Table 5.5: Model Performance for Different Hyperparameters in GCN-2 on edge-KNN

5. Results 83

Model Depth Dataset Event Accuracy Node Accuracy
MLP 2 KNN 87.2637 99.9538
GCN 2 KNN 90.7206 99.8618
Cheb 2 KNN 95.4245 99.9591
SAGE 2 KNN 95.0667 99.9518
TAGCN 4 Radius 91.3637 99.9611
GAT 2 KNN 95.8284 99.9414
GIN 2 KNN 88.1157 99.7083
JK 2 KNN 86.3539 99.9302
SuperGAT 4 KNN 96.4912 99.9494

Table 5.6: GNN-variants: Model Evaluation and Comparison

5.9.2 Results:

• To accomplish the supervised node classification task on diverse networks,

we implemented various architectures: MLP, GCN, ChebNet, SAGE, GAT,

SuperGAT, GIN, JK and TAGCN on three datasets: edge-KNN, edge-radius,

and edge-label. The models were built by stacking graph convolutional layers,

implemented with network depths of 2 and 4 due to the previous results of the

network depth experiment favouring shallow networks. Default parameters

were applied unless otherwise specified. Since node classification accuracies

of most of the models were on the same scale of approximately 99 percent,

the event accuracy gives a better insight into the classifier’s performance

and is a suitable metric for evaluating the jet clustering capabilities of the

model. A detailed comparison of the best performing model of each category

is illustrated with event accuracies reported on the test dataset.

• All models outperformed their counterparts on the edge-KNN dataset except

for TAGCN-4. It performed better on the edge-radius dataset with an event

accuracy of 91.3637 per cent compared to 86.2598 per cent on the edge-KNN

dataset.

• The majority of the models performed better with a network depth of 2 than 4.

However, TAGCN-4 and SuperGAT-4 performed better than their two-layer

counterparts.

5. Results 84

Model Depth Hyperparamters Event Accuracy
GAT 2 heads=1 95.8284
GAT 2 heads=2 20.7843
GAT 2 heads=4 24.1284
GAT 2 heads=6 24.8716
GAT 2 heads=8 25.4216
GAT 2 heads=10 25.4216

Table 5.7: Model Performance of GAT

Model Depth Hyperparameters Event Accuracy
superGAT 4 heads = 1, attn=MX 96.4912
superGAT 2 heads = 1, attn=MX 95.9304
superGAT 2 heads = 8, attn=MX, edge ratio = 0.8 5.8735
superGAT 2 heads =1, attn=SD 3.9784
superGAT 2 heads= 8, attn=SD, edge ratio = 0.8 5.4098

Table 5.8: Model Performance of superGAT

• We also perform experiments with different hyperparameters for three GNNs:

ChebNet, GAT and superGAT to observe any significant changes in the

performance metrics. We noted that the attention mechanisms in GAT and

superGAT models decreased their event accuracy to a great extent when

multiple heads were used.

• The best performing model is superGAT-4, with 96.4912 per cent event

accuracy on the edge-KNN dataset. We observe that SuperGAT(MX) outper-

forms SuperGAT(SD), as it’s better able to capture the average degree and

homophily of the edge-KNN dataset.

• Though most models perform impressively well on edge-KNN compared to

other generated graph datasets, ChebNet’s performance on the edge-label

resulted in an event accuracy of 99.8265 percent. The strictly localized filters

implemented in ChebConv layers allows the ChebNet model to learn the

node embeddings more accurately on the edge-label dataset (outperforming

superGAT). However, the edge-label is generated by connecting nodes from

the same class and utilized only for comparison in this study. It is still a

strong indication that a better graph representation could lead to significant

5. Results 85

Model Depth Cheby-shev filter Dataset Event Accuracy
ChebNet 2 k = 2 KNN 0.954245
ChebNet 2 k = 3 KNN 0.923353
ChebNet 2 k = 4 KNN 0.917618
ChebNet 2 k = 2 Label 0.998265

Table 5.9: Model Performance of ChebNet

performance gains. Increasing the Chebyshev filter size k from k=2 to k=3, 4

in ChebNet decreases the performance. Our experiments on varying k and

with network depths 2 and 4 are also summarised in the table.

5.10 Conclusion

The results highlight significant improvements against the established baseline. We

have answered all the research questions enlisted in Chapter 2.

5.10.1 Could machine learning techniques be used to pre-
dict the sets of final state particles originating from
the Higgs Boson and Z boson in the HZ production
mode at the future lepton collider?

Yes, machine learning techniques can be used to classify particles based on its origin

of decay, as evidenced by the results of the MLP experiment, which only used

features: process ID, vertex 4-vector and momentum 4-vector.

5.10.2 How can graph neural networks be used to model
event collisions as graphs and particles as nodes for
the supervised task of node classification?

Each event collision is treated as a graph of variable size, with a different number

of particles in an event decay chain. Labels are generated using the information

regarding the sequence of particle decay in the ‘D1’ and ‘D2’ features from the

simulation dataset. Stable particles are filtered based on each particle’s ‘status’

feature and each of the stable particles is treated as a node. After the dataset of final

state particles is generated and processed, we build a graph dataset through various

5. Results 86

edge generation techniques between pairs of nodes, process each graph as a batch in

the training process and make predictions on unseen graphs. The GCN experiments

support the statements in [8] that graphs are better representations of event collisions

when compared to datasets built solely on the particle(node) features for each event.

5.10.3 How can we generate relationships or links between
final state particles? What is the most optimal type
of graph data representation of the stable particles
detected at a collider?

We define the graph for the electron-positron collision by generating edges on

the final state(stable) particles observed using three techniques: edge-KNN, edge-

Radius, and edge-label. We further analyze the results and performance of the

graph neural networks across the three datasets to find edge-KNN is the most

optimal type of graph representation.

5.10.4 What is the most promising graph neural architec-
ture to correctly predict all the nodes’ labels in a
graph?

We find that event accuracy is a better performance metric than the mean node

classification accuracy. The baseline MLP-2 event accuracy is 87.2637 per cent,

and GCN-2 is 90.7206 per cent on the edge-KNN dataset. The most promising

model is the four-layer GNN architecture, superGAT-4, with 96.4912 per cent

event accuracy on the edge-KNN dataset.

In this chapter, we successively explored and reported the design choices and

performance metrics for the graph neural networks used to classify the final state

particle of an electron-positron collision for the Future Circular Collider (FCC-ee).

6
Conclusions

Contents
6.1 Overview . 87
6.2 Limitations of Our Work 88
6.3 Key Contributions and Results 89
6.4 Future work and Directions 89

6.4.1 Higgs Production Modes 89
6.4.2 Data representation . 90
6.4.3 Lepton Collider Datasets 91
6.4.4 Extending Model Designs 91
6.4.5 Exhaustive evaluation on Random Seeds 91
6.4.6 Fast Inference . 91
6.4.7 Larger Datasets . 92

6.5 Conclusion . 92

6.1 Overview

The project uncovers important results and conclusions. Our work is the first

research project applying graph neural networks for clustering jets at a future

FCC-ee experiment. The focus of the present dissertation is to examine a set of

methods to generate graph representations of particles of an event and evaluate a

set of neural network models on each of these graph representations.

Our approach is designed to compare three diverse representations of the dataset

87

6. Conclusions 88

and nine different neural network models. The project pipeline is implemented in a

reproducible fashion and sub-divided into experiments. Each pipeline, driven by

physics-related requirements, is programmed to collect, produce, process, analyse,

and visualise the dataset, graphs, models, predictions and performance metrics.

6.2 Limitations of Our Work

• We proceeded our experiment with the assumption that once the model

predicts the class of the particle to a sufficient degree of accuracy, we will be

able to evaluate its performance on the experimental dataset. A Monte Carlo

simulation generates the dataset used in this work. The experimental dataset

is unavailable to us as the FCC experiment is not in operation as of 2021.

Therefore our work is limited to evaluating algorithms only on the MC data.

However, as reported in [8], much of the recent work in particle physics, on

graph neural nets is carried out on simulation datasets.

• The in-depth analysis presented in this dissertation only contains tools,

architectures and predictions on the stable(final-state) particles expected

to be observed at the detector. The interest of this restriction is to offer

meaningful points of comparison with the selected literature and make sure

the model can be used both on the experimental dataset and the simulation

dataset.

• The main production mode concerned with this study is the Higgs Strahlung

process, or the HZ mode, where the electron and positron collision decays

to HZ, where H is Higgs Boson, and Z is Z boson[30]. We have limited our

dataset and study to such events for the thesis. Further, our in-depth analysis

of our work is limited to ten thousand event collisions only, due to resource

constraints. Given more time, we would like to train the model over larger

number of iterations and track the evolution of performance metrics over a

million events.

6. Conclusions 89

6.3 Key Contributions and Results

Our work has been shown to successfully and reliably achieve promising results.

Our analyses uncovered the following major observations:

• The majority of the GNN models perform better on the edge-KNN dataset.

We generated three types of datasets (edge-KNN, edge-Radius, edge-Label);

the edge-knn dataset is the most suitable representation. Almost all models

perform well on it in comparison to edge-radius and edge-label. Further, in

terms of graph processing, the model performs better on variable-sized graphs

in comparison to the fixed-size graphs.

• Baseline: MLP-2 event accuracy is 87.2637 percent and GCN-2 is 90.7206

percent on the edge-KNN dataset. As can be observed, the graph convolutional

network outperformed neural networks. After extensive investigations, we

uncovered network depths of 2 and 4 are the most suitable for the specified

task of supervised node classification.

• The best performing model is built by stacking 4 layers of superGAT’s

convolutional operator. SuperGAT-4 outperforms other GNN networks and

reports an event accuracy of 96.4912 percent on the edge-KNN dataset. We

implement and optimise various GNN architectures: GAT, SAGE, GIN,

JKNet, ChebNet, TAGCN, superGAT, and see improvement across all models

against MLP baseline on the event accuracy metrics.

• Therefore, we have successfully developed a graph neural network that can

effectively discriminate among final state(stable) particles originating from

the H boson, Z boson or other bosons using spatial and physical features.

6.4 Future work and Directions

6.4.1 Higgs Production Modes

Our research clearly illustrates the importance of graph neural networks for clustering

jets in aan e-e+ collision, but it also raises the question of whether these also are

6. Conclusions 90

equally suitable for other Higgs Boson production modes. Therefore, based on these

conclusions, practitioners should consider future work towards developing a model

for classifying the final state particles of the electron-positron collision events, where

the Higgs Boson is produced via the vector boson fusion [30].

6.4.2 Data representation

Data representation is a key contributing element towards the model performance.

• Community detection algorithms: We applied the popular community de-

tection algorithm: Louvain algorithm on a set of collision events and found

that it could distinguish H and Z events into different clusters. One could try

linking the nodes in a community as a fully connected graph within a single

event graph and report its performance.

• Physics-informed radius: The edge-radius method to generate edges could

further be optimised by using physics-informed distance metrics as discussed

by authors in [9] and [22]. The radius used to generate the graph could be

further enhanced by calculating the geometric or angular distance in the

pseudo-rapidity and azimuth plane ∆R ≡
√
δφ2 + δη2 < 0.3 [18]. As per [8],

‘Edges can be formed based on a relevant metric such as the ∆R between

particles in a detector, or the physical distance between detector modules.’

• Random Edges: The edge formation is essentially random in the early phases of

training, enabling the network to explore whether node representations should

be closer together in the newest space. Injecting random edges in addition to

linking nodes to k-nearest neighbours in recent space, by connecting a small

number of random connections to nodes further away in latent space could be

explored[8].

• Using an RL agent to generate edges: A reinforcement learning agent is

introduced in a recent article [26] that explores an input graph to reach nodes

that should be linked by new edges. Its policy is optimized to increase the

6. Conclusions 91

performance of some downstream tasks, so the nodes it connects to new edges

boost the task’s performance.

• Reverse engineering: We noticed that ChebNet performed with an event

accuracy of 99.8265 per cent on the edge-label dataset. One could use graph

similarity metrics or graph matching(similarity) algorithms to build a similarly

rich representation.

6.4.3 Lepton Collider Datasets

To better understand the implications of these results, future studies could extend

upon our work build and evaluate models on simulation datasets from other future

electron-positron colliders as discussed in Chapter 2.

6.4.4 Extending Model Designs

Due to time constraints, we could only optimise GCN, Chebnet, GAT, and superGAT.

Further exploration and optimisations of the best performing models should be the

next step. Additionally, we stacked identical GN blocks to build our models[125].

Based on the results of our experiments, stacking of different types GN blocks

could be considered and explored.

6.4.5 Exhaustive evaluation on Random Seeds

The probabilistic nature of the findings is another significant factor that needs a

thorough examination. The model should be tested and performed multiple times

with different random seeds, focusing on the efficiency of each approach to get

better statistically reliable estimates of its performance.

6.4.6 Fast Inference

The ultimate goal is to help the FCC-ee experiment deploy the trained model and

use it for fast inference. In this case, transfer of knowledge, conversion of data into

suitable formats, and code from CPU to FPGAs would become necessary.[23, 24]

6. Conclusions 92

6.4.7 Larger Datasets

The model should be evaluated with a larger sample of event collisions to eliminate

statistical fluctuations in the results.

6.5 Conclusion

The present dissertation focuses on the task of the supervised node classification

over multiple graphs. More generally, discriminating between particles (represented

as nodes) generated from different ancestors(origin of decay) for each event col-

lision(represented as a graph). Consequently, the results of our work could be

useful for jet tagging and jet energy calibration[31]. It paves the path for an

interesting set of future experiments and testing our methodology to provide the

FCC collaboration with novel and useful tools and capabilities.

In conclusion, our strategy to model spatial and physical information into a graph

structure has shown significant results and offers promising avenues of growth in

the experimental particle physics context. Advancements in graph representational

learning and node classification tasks would also provide particle physicists with

a more specialised toolbox of methodologies, helping to make the next significant

breakthroughs unveiling the fundamental laws and elements of our Universe.

Bibliography

[1] M. K. Gaillard, P. D. Grannis, and F. J. Sciulli, “The standard model of particle

physics,” Reviews of Modern Physics, vol. 71, no. 2, pp. S96–S111, Mar. 1999,

doi: 10.1103/revmodphys.71.s96.

[2] CERN News, “CERN Data Centre passes the 200-petabyte milestone,”

CERN, 2017. https://home.cern/news/news/computing/cern-data-centre-passes-

200-petabyte-milestone.

[3] CERN, Processing: What to record? CERN Document Server, 2012.

[4] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Physical

Review Letters, vol. 13, no. 16, pp. 508–509, Oct. 1964, doi: 10.1103/phys-

revlett.13.508.

[5] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector

Mesons,” Physical Review Letters, vol. 13, no. 9, pp. 321–323, Aug. 1964, doi:

10.1103/physrevlett.13.321.

[6] The ATLAS Collaboration, “Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC,” 2012.

[7] S. D. Bass, A. De Roeck, and M. Kado, “The Higgs boson implications and

prospects for future discoveries,” Nature Reviews Physics, vol. 3, no. 9, pp.

608–624, Jul. 2021, doi: 10.1038/s42254-021-00341-2.

[8] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle

physics,” Machine Learning: Science and Technology, vol. 2, no. 2, p. 021001,

Jan. 2021, doi: 10.1088/2632-2153/abbf9a.

93

BIBLIOGRAPHY 94

[9] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,” Annals

of Data Science, vol. 2, no. 2, pp. 165–193, Jun. 2015, doi: 10.1007/s40745-015-

0040-1.

[10] F. Gianotti and G. F. Giudice, “A roadmap for the future,” Nature Physics,

vol. 16, no. 10, pp. 997–998, Sep. 2020, doi: 10.1038/s41567-020-01054-6.

[11] European Strategy Group, 2020 Update of the European Strategy for Particle

Physics. Geneva: CERN Council, 2020.

[12] M. Benedikt and F. Zimmermann, “The physics and technology of the Future

Circular Collider,” Nature Reviews Physics, vol. 1, no. 4, pp. 238–240, Mar. 2019,

doi: 10.1038/s42254-019-0048-0.

[13] M. Benedikt, A. Blondel, P. Janot, M. Mangano, and F. Zimmermann, “Future

Circular Colliders succeeding the LHC,” Nature Physics, vol. 16, no. 4, pp.

402–407, Apr. 2020, doi: 10.1038/s41567-020-0856-2.

[14] S. Stapnes, “The Compact Linear Collider,” Nature Reviews Physics, vol. 1,

no. 4, pp. 235–237, Mar. 2019, doi: 10.1038/s42254-019-0051-5.

[15] E. Sicking and R. Ström, “From precision physics to the energy frontier with

the Compact Linear Collider,” Nature Physics, vol. 16, no. 4, pp. 386–392, Apr.

2020, doi: 10.1038/s41567-020-0834-8.

[16] S. Michizono, “The International Linear Collider,” Nature Reviews Physics,

vol. 1, no. 4, pp. 244–245, Feb. 2019, doi: 10.1038/s42254-019-0044-4.

[17] X. Lou, “The Circular Electron Positron Collider,” Nature Reviews Physics,

vol. 1, no. 4, pp. 232–234, Mar. 2019, doi: 10.1038/s42254-019-0047-1.

[18] V. Mikuni and F. Canelli, “ABCNet: an attention-based method for particle

tagging,” The European Physical Journal Plus, vol. 135, no. 6, Jun. 2020, doi:

10.1140/epjp/s13360-020-00497-3.

BIBLIOGRAPHY 95

[19] E. A. Moreno et al., “JEDI-net: a jet identification algorithm based on

interaction networks,” The European Physical Journal C, vol. 80, no. 1, Jan.

2020, doi: 10.1140/epjc/s10052-020-7608-4.

[20] CMS Collaboration., “Observation of a new boson at a mass of 125 GeV with

the CMS experiment at the LHC.,” 2012.

[21] H. Qu and L. Gouskos, “Jet tagging via particle clouds,” Physical Review D,

vol. 101, no. 5, Mar. 2020, doi: 10.1103/physrevd.101.056019.

[22] J. Arjona Martínez, O. Cerri, M. Spiropulu, J. R. Vlimant, and M. Pierini,

“Pileup mitigation at the Large Hadron Collider with graph neural net-

works,” The European Physical Journal Plus, vol. 134, no. 7, Jul. 2019, doi:

10.1140/epjp/i2019-12710-3.

[23] D. Rousseau, “Resource-efficient inference for particle physics,” Nature Machine

Intelligence, vol. 3, no. 8, pp. 656–657, Aug. 2021, doi: 10.1038/s42256-021-00381-

4.

[24] C. N. Coelho et al., “Automatic heterogeneous quantization of deep neural

networks for low-latency inference on the edge for particle detectors,” Nature

Machine Intelligence, vol. 3, no. 8, pp. 675–686, Jun. 2021, doi: 10.1038/s42256-

021-00356-5.

[25] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P.

W. Battaglia, “Learning to Simulate Complex Physics with Graph Networks,”

arXiv:2002.09405 [physics, stat], Sep. 2020.

[26] D. D. Johnson, H. Larochelle, and D. Tarlow, “Learning Graph Structure With

A Finite-State Automaton Layer,” arXiv:2007.04929 [cs, stat], Nov. 2020.

[27] Committee on Network Science for Future Army Applications, Network Science.

National Research Council, 2006.

BIBLIOGRAPHY 96

[28] M. M. Li, K. Huang, and M. Zitnik, “Representation Learning for Networks

in Biology and Medicine: Advancements, Challenges, and Opportunities,”

arXiv:2104.04883 [cs, q-bio], Apr. 2021.

[29] J. Zhou et al., “Graph neural networks: A review of methods and applications,”

AI Open, vol. 1, pp. 57–81, 2020, doi: 10.1016/j.aiopen.2021.01.001.

[30] H. Gray and P. Janot, “Higgs Physics,” Comptes Rendus. Physique, vol. 21,

no. 1, pp. 23–43, 2020, doi: 10.5802/crphys.8.

[31] X. Ju and B. Nachman, “Supervised Jet Clustering with Graph Neural

Networks for Lorentz Boosted Bosons,” arxiv.org, Aug. 2020, doi: 10.1103/Phys-

RevD.102.075014.

[32] CERN, “The Standard Model at CERN,” Home.cern, Apr. 08, 2019.

https://home.cern/science/physics/standard-model.

[33] M. Cooke, “DOE Explains...the Higgs Boson,” Energy.gov.

https://www.energy.gov/science/doe-explainsthe-higgs-boson.

[34] O. M. Gomez, “Five mysteries the Standard Model can’t explain,” symmetry

magazine, 2018. https://www.symmetrymagazine.org/article/five-mysteries-the-

standard-model-cant-explain.

[35] J. Crawford, J. Standeven, and W. Kissel, “Accelerator Glossary of Terms,”

2011.

[36] CERN, “Accelerators at CERN,” Home.cern, Jul. 16, 2019.

https://home.cern/science/accelerators.

[37] M. Benedikt et al., FCC-ee: The Lepton Collider: Future Circular Collider

Conceptual Design Report Volume 2. CERN Document Server, 2018.

[38] R. Atkin, “Review of jet reconstruction algorithms,” Journal of Physics: Confer-

ence Series, vol. 645, p. 012008, Oct. 2015, doi: 10.1088/1742-6596/645/1/012008.

BIBLIOGRAPHY 97

[39] CERN, “Computing at CERN,” home.cern.

https://home.cern/science/computing.

[40] HEP Software Foundation, “A Roadmap for HEP Software and Comput-

ing RD for the 2020s HEP Software Foundation,” 2017. [Online]. Available:

https://arxiv.org/pdf/1712.06982.pdf.

[41] S. Sekmen, “Beyond the Standard Model Physics at the High Luminosity LHC,”

arXiv:1902.03942 [hep-ex, physics:hep-ph], Feb. 2019.

[42] P. C. Bhat, “Multivariate Analysis Methods in Particle Physics,” Annual

Review of Nuclear and Particle Science, vol. 61, no. 1, pp. 281–309, Nov. 2011,

doi: 10.1146/annurev.nucl.012809.104427.

[43] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional Neural Networks

over Tree Structures for Programming Language Processing,” arXiv:1409.5718

[cs], Dec. 2015.

[44] Y. Shen, S. Tan, A. Sordoni, and A. Courville, “Ordered Neurons: Integrating

Tree Structures into Recurrent Neural Networks,” arXiv:1810.09536 [cs], May

2019.

[45] A. Radovic et al., “Machine learning at the energy and intensity frontiers

of particle physics,” Nature, vol. 560, no. 7716, pp. 41–48, Aug. 2018, doi:

10.1038/s41586-018-0361-2.

[46] S. R. Qasim, J. Kieseler, Y. Iiyama, and M. Pierini, “Learning representations of

irregular particle-detector geometry with distance-weighted graph networks,” The

European Physical Journal C, vol. 79, no. 7, Jul. 2019, doi: 10.1140/epjc/s10052-

019-7113-9.

[47] CMS Collaboration, “Particle-flow reconstruction and global event description

with the CMS detector,” Journal of Instrumentation, vol. 12, no. 10, pp.

P10003–P10003, Oct. 2017, doi: 10.1088/1748-0221/12/10/P10003.

BIBLIOGRAPHY 98

[48] D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identi-

fication,” Journal of High Energy Physics, vol. 2014, no. 10, Oct. 2014, doi:

10.1007/jhep10(2014)059.

[49] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated Graph Sequence

Neural Networks,” arXiv:1511.05493 [cs, stat], Sep. 2017.

[50] J. Arjona Martínez, O. Cerri, M. Spiropulu, J. R. Vlimant, and M. Pierini,

“Pileup mitigation at the Large Hadron Collider with graph neural net-

works,” The European Physical Journal Plus, vol. 134, no. 7, Jul. 2019, doi:

10.1140/epjp/i2019-12710-3.

[51] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktjet clustering algorithm,”

Journal of High Energy Physics, vol. 2008, no. 04, pp. 063–063, Apr. 2008, doi:

10.1088/1126-6708/2008/04/063.

[52] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,

“Graph Attention Networks,” arXiv:1710.10903 [cs, stat], Feb. 2018, [Online].

Available: https://arxiv.org/abs/1710.10903.

[53] D. Guest, K. Cranmer, and D. Whiteson, “Deep Learning and Its Application

to LHC Physics,” Annual Review of Nuclear and Particle Science, vol. 68, no. 1,

pp. 161–181, Oct. 2018, doi: 10.1146/annurev-nucl-101917-021019.

[54] The ATLAS Collaboration, “Quark versus Gluon Jet Tagging Using

Jet Images with the ATLAS Detector,” CERN Document Server, 2017.

https://cds.cern.ch/record/2275641/files/ATL-PHYS-PUB-2017-017.pdf.

[55] X. Ju and B. Nachman, “Supervised Jet Clustering with Graph Neural

Networks for Lorentz Boosted Bosons,” arxiv.org, Aug. 2020, doi: 10.1103/Phys-

RevD.102.075014.

[56] The ATLAS collaboration, Impact of Alternative Inputs and Jet Grooming on

Large-R Jet Performance. CERN Document Server, 2019.

BIBLIOGRAPHY 99

[57] ATLAS Collaboration, “Optimisation of large-radius jet reconstruction for the

ATLAS detector in 13 TeV proton-proton collisions,” arXiv:2009.04986 [hep-ex],

May 2021, doi: 10.1140/epjc/s10052-021-09054-3.

[58] A. Chakraborty et al., “Revisiting Jet Clustering Algorithms for New Higgs

Boson Searches in Hadronic Final States,” arXiv:2008.02499 [hep-ph], Dec. 2020,

[Online]. Available: https://arxiv.org/abs/2008.02499.

[59] A. Sperduti and A. Starita, “Supervised neural networks for the classification

of structures,” IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 714–735,

May 1997, doi: 10.1109/72.572108.

[60] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini,

“The Graph Neural Network Model,” IEEE Transactions on Neural Networks,

vol. 20, no. 1, pp. 61–80, Jan. 2009, doi: 10.1109/tnn.2008.2005605.

[61] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

[62] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geo-

metric Deep Learning: Going beyond Euclidean data,” IEEE Signal Processing

Magazine, vol. 34, no. 4, pp. 18–42, Jul. 2017, doi: 10.1109/msp.2017.2693418.

[63] H. Wang and J. Leskovec, “Unifying Graph Convolutional Neural Networks

and Label Propagation,” arXiv:2002.06755 [cs, stat], Feb. 2020.

[64] P. Han et al., “GCN-MF,” Proceedings of the 25th ACM SIGKDD Inter-

national Conference on Knowledge Discovery Data Mining, Jul. 2019, doi:

10.1145/3292500.3330912.

[65] J. Ingraham, V. Garg, R. Barzilay, and T. Jaakkola, “Generative Models

for Graph-Based Protein Design,” Advances in Neural Information Processing

Systems, vol. 32, 2019.

BIBLIOGRAPHY 100

[66] Y. Xie, J. Peng, and Y. Zhou, “Integrating Protein-Protein Interaction

Information into Drug Response Prediction by Graph Neural Encoding,” 2019.

[67] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural

Networks on Graphs with Fast Localized Spectral Filtering,” arXiv:1606.09375

[cs, stat], Feb. 2017, [Online]. Available: https://arxiv.org/abs/1606.09375.

[68] D. K. Duvenaud et al., “Convolutional Networks on Graphs for Learning

Molecular Fingerprints,” Advances in Neural Information Processing Systems,

vol. 28, 2015.

[69] P. Veliˇckovi c, “Theoretical Approaches to Graph Neural Networks,” University

of Cambridge, Zoom Seminar, 2021.

[70] A. Vaswani et al., “Attention is All you Need,” Advances in Neural Information

Processing Systems, vol. 30, pp. 5998–6008, 2017.

[71] E. Choi et al., “Learning the Graphical Structure of Electronic Health

Records with Graph Convolutional Transformer,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, no. 01, pp. 606–613, Apr. 2020, doi:

10.1609/aaai.v34i01.5400.

[72] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous Graph

Transformer,” Proceedings of The Web Conference 2020, Apr. 2020, doi:

10.1145/3366423.3380027.

[73] S. Yan, Y. Xiong, and D. Lin, “Spatial Temporal Graph Convolutional Networks

for Skeleton-Based Action Recognition,” arXiv:1801.07455 [cs], Jan. 2018.

[74] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph Transformer

Networks,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[75] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka,

“Representation Learning on Graphs with Jumping Knowledge Networks,”

arXiv:1806.03536 [cs, stat], Jun. 2018.

BIBLIOGRAPHY 101

[76] S. Abu-El-Haija et al., “MixHop: Higher-Order Graph Convolutional Architec-

tures via Sparsified Neighborhood Mixing,” proceedings.mlr.press, May 24, 2019.

http://proceedings.mlr.press/v97/abu-el-haija19a.html

[77] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric Deep

Learning: Grids, Groups, Graphs, Geodesics, and Gauges,” arXiv:2104.13478 [cs,

stat], May 2021, [Online]. Available: https://arxiv.org/abs/2104.13478.

[78] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hierarchi-

cal Graph Representation Learning with Differentiable Pooling,” arXiv:1806.08804

[cs, stat], Feb. 2019, [Online]. Available: https://arxiv.org/abs/1806.08804.

[79] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph

Neural Networks?,” arXiv:1810.00826 [cs, stat], Feb. 2019, [Online]. Available:

https://arxiv.org/abs/1810.00826.

[80] H. Wang and J. Leskovec, “Unifying Graph Convolutional Neural Networks and

Label Propagation,” arXiv:2002.06755 [cs, stat], Feb. 2020, [Online]. Available:

https://arxiv.org/abs/2002.06755.

[81] F. B. Fuchs, D. E. Worrall, V. Fischer, and M. Welling, “SE(3)-Transformers:

3D Roto-Translation Equivariant Attention Networks,” arXiv:2006.10503 [cs,

stat], Nov. 2020.

[82] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous Graph

Transformer,” Proceedings of The Web Conference 2020, Apr. 2020, doi:

10.1145/3366423.3380027.

[83] X. Wang et al., “Heterogeneous Graph Attention Network,” The World Wide

Web Conference, May 2019, doi: 10.1145/3308558.3313562.

[84] A. Pareja et al., “EvolveGCN: Evolving Graph Convolutional Networks for

Dynamic Graphs,” Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, no. 04, pp. 5363–5370, Apr. 2020, doi: 10.1609/aaai.v34i04.5984.

BIBLIOGRAPHY 102

[85] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-

stein, “Temporal Graph Networks for Deep Learning on Dynamic Graphs,”

arXiv:2006.10637 [cs, stat], Oct. 2020.

[86] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-

GCN: An Efficient Algorithm for Training Deep and Large Graph Convo-

lutional Networks,” Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery Data Mining, pp. 257–266, Jul. 2019,

doi: 10.1145/3292500.3330925.

[87] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “GraphSAINT:

Graph Sampling Based Inductive Learning Method,” arXiv:1907.04931 [cs, stat],

Feb. 2020.

[88] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and

M. Welling, “Modeling Relational Data with Graph Convolutional Networks,”

arXiv:1703.06103 [cs, stat], Oct. 2017.

[89] W. Hu et al., “Strategies for Pre-training Graph Neural Networks,”

arXiv:1905.12265 [cs, stat], Feb. 2020.

[90] Y. You, T. Chen, Z. Wang, and Y. Shen, “When Does Self-Supervision Help

Graph Convolutional Networks?,” arXiv:2006.09136 [cs, stat], Jul. 2020.

[91] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer:

Generating Explanations for Graph Neural Networks,” arXiv:1903.03894 [cs, stat],

Nov. 2019.

[92] C. Agarwal, H. Lakkaraju, and M. Zitnik, “Towards a Unified Framework for

Fair and Stable Graph Representation Learning,” arXiv:2102.13186 [cs], Jun.

2021.

[93] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial Attacks on

Neural Networks for Graph Data,” Proceedings of the 24th ACM SIGKDD

BIBLIOGRAPHY 103

International Conference on Knowledge Discovery Data Mining, Jul. 2018, doi:

10.1145/3219819.3220078.

[94] D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust Graph Convolutional

Networks Against Adversarial Attacks,” Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery Data Mining, Jul. 2019, doi:

10.1145/3292500.3330851.

[95] A. Singh, S. Sengupta, and V. Lakshminarayanan, “Explainable Deep Learning

Models in Medical Image Analysis,” Journal of Imaging, vol. 6, no. 6, p. 52, Jun.

2020, doi: 10.3390/jimaging6060052.

[96] C. O’Neil, “Weapons of Math Destruction,” www.penguin.co.uk, 2017.

[97] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” arXiv.org, 2018.

https://arxiv.org/abs/1810.04805.

[98] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “GPT-GNN,” Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery

Data Mining, Jul. 2020, doi: 10.1145/3394486.3403237.

[99] J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-Bert: Only Attention is

Needed for Learning Graph Representations,” arXiv:2001.05140 [cs, stat], Jan.

2020.

[100] “Empirical analysis of performance bottlenecks in graph neural network

training and inference with GPUs,” Neurocomputing, vol. 446, pp. 165–191, Jul.

2021, doi: 10.1016/j.neucom.2021.03.015.

[101] C. Stamile , A. Marzullo, and E. Enrico Deusebio, “Graph Machine

Learning,” Packt, 2021. https://www.packtpub.com/product/graph-machine-

learning/9781800204492.

BIBLIOGRAPHY 104

[102] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Con-

volutional Networks,” arXiv:1609.02907 [cs, stat], Feb. 2017, [Online]. Available:

https://arxiv.org/abs/1609.02907.

[103] Y. Rong, W. Huang, T. Xu, and J. Huang, “DropEdge: Towards Deep Graph

Convolutional Networks on Node Classification,” arXiv:1907.10903 [cs, stat], Mar.

2020.

[104] F. Fabrizio , R. Emanuele , E. Davide , C. Ben , B. Michael , and M. Federico

, “SIGN: Scalable Inception Graph Neural Networks,” arXiv.org, Apr. 2020,

[Online]. Available: https://arxiv.org/abs/2004.11198.

[105] R. Li, S. Sheng Wang, F. Zhu, and J. Huang,

“Adaptive Graph Convolutional Neural Networks,”

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16642,

2018.

[106] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then Propagate:

Graph Neural Networks meet Personalized PageRank,” arXiv:1810.05997 [cs,

stat], Feb. 2019.

[107] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive

Survey on Graph Neural Networks,” IEEE Transactions on Neural Networks and

Learning Systems, pp. 1–21, 2020, doi: 10.1109/TNNLS.2020.2978386.

[108] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S.

Jegelka, “Representation Learning on Graphs with Jumping Knowledge

Networks,” arXiv:1806.03536 [cs, stat], Jun. 2018, [Online]. Available:

https://arxiv.org/abs/1806.03536.

[109] S. Gong, M. Bahri, M. M. Bronstein, and S. Zafeiriou, “Geometrically

Principled Connections in Graph Neural Networks,” arXiv:2004.02658 [cs], Apr.

2020.

BIBLIOGRAPHY 105

[110] G. Li, M. Müller, A. Thabet, and B. Ghanem, “DeepGCNs: Can GCNs Go

as Deep as CNNs?,” arXiv:1904.03751 [cs], Aug. 2019, Accessed: Sep. 14, 2021.

[Online]. Available: https://arxiv.org/abs/1904.03751.

[111] L. Zhao and L. Akoglu, “PairNorm: Tackling Oversmoothing in GNNs,”

openreview.net, Sep. 25, 2019.

[112] Y. Rong, W. Huang, T. Xu, and J. Huang, “DropEdge: Towards Deep Graph

Convolutional Networks on Node Classification,” arXiv:1907.10903 [cs, stat], Mar.

2020, [Online]. Available: https://arxiv.org/abs/1907.10903.

[113] D. Kim and A. Oh, “How to Find Your Friendly Neighborhood: Graph

Attention Design with Self-Supervision,” openreview.net, Sep. 28, 2020.

[114] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation Learning

on Large Graphs,” arXiv:1706.02216 [cs, stat], Sep. 2018, [Online]. Available:

https://arxiv.org/abs/1706.02216.

[115] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural

Networks on Graphs with Fast Localized Spectral Filtering,” arXiv:1606.09375

[cs, stat], Feb. 2017, [Online]. Available: https://arxiv.org/abs/1606.09375.

[116] A. Kalweit, “Data analysis in particle physics,” 2015.

[117] S. Otten et al., “Event Generation and Statistical Sampling for Physics with

Deep Generative Models and a Density Information Buffer,” arXiv:1901.00875

[hep-ex, physics:hep-ph, physics:physics], Feb. 2021.

[118] J. Allison et al., “Recent developments in Geant4,” Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, vol. 835, pp. 186–225, Nov. 2016, doi:

10.1016/j.nima.2016.06.125.

[119] Delphes, “WorkBook – Delphes,” cp3.irmp.ucl.ac.be, 2018.

[120] CERN, “ROOT - An Object Oriented Data Analysis Framework,” 1997.

BIBLIOGRAPHY 106

[121] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural

Networks on Graphs with Fast Localized Spectral Filtering,” arXiv:1606.09375

[cs, stat], Feb. 2017, [Online]. Available: https://arxiv.org/abs/1606.09375.

[122] R. team, “ROOT: analyzing petabytes of data, scientifically.,” ROOT, 2021.

https://root.cern/.

[123] CERN, “Physics Vectors,” Cern.ch, 2021.

https://root.cern.ch/root/html534/guides/users-guide/PhysicsVectors.html.

[124] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. Wiltschko, “A Gentle

Introduction to Graph Neural Networks,” Distill, vol. 6, no. 8, Aug. 2021, doi:

10.23915/distill.00033.

[125] P. W. Battaglia et al., “Relational inductive biases, deep learning, and

graph networks,” arXiv:1806.01261 [cs, stat], Oct. 2018, [Online]. Available:

https://arxiv.org/abs/1806.01261.

[126] A. Zhou et al., “Optimizing Memory Efficiency of Graph Neural Networks on

Edge Computing Platforms,” arXiv:2104.03058 [cs], Apr. 2021, [Online]. Available:

https://arxiv.org/abs/2104.03058.

[127] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alar-

cón, “Computing Graph Neural Networks: A Survey from Algorithms to

Accelerators,” arXiv:2010.00130 [cs, stat], Jul. 2021, [Online]. Available:

https://arxiv.org/abs/2010.00130.

[128] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural

Message Passing for Quantum Chemistry,” arXiv:1704.01212 [cs], Jun. 2017,

[Online]. Available: https://arxiv.org/abs/1704.01212.

[129] C. Merkwirth and T. Lengauer, “Automatic Generation of Complementary

Descriptors with Molecular Graph Networks,” Journal of Chemical Information

and Modeling, vol. 45, no. 5, pp. 1159–1168, Aug. 2005, doi: 10.1021/ci049613b.

BIBLIOGRAPHY 107

[130] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini,

“The Graph Neural Network Model,” IEEE Transactions on Neural Networks,

vol. 20, no. 1, pp. 61–80, Jan. 2009, doi: 10.1109/tnn.2008.2005605.

[131] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A.

Smola, “Deep Sets,” arXiv:1703.06114 [cs, stat], Apr. 2018, [Online]. Available:

https://arxiv.org/abs/1703.06114.

[132] C. R. Qi, H. Su, K. Mo, and Guibas, Leonidas J, “PointNet: Deep

Learning on Point Sets for 3D Classification and Segmentation,” arXiv.org,

2016. https://arxiv.org/abs/1612.00593.

[133] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Trans-

lation by Jointly Learning to Align and Translate,” arXiv.org, 2014.

https://arxiv.org/abs/1409.0473.

[134] A. Vaswani et al., “Attention Is All You Need,” arXiv.org, 2017.

https://arxiv.org/abs/1706.03762.

[135] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S.

Jegelka, “Representation Learning on Graphs with Jumping Knowledge

Networks,” arXiv:1806.03536 [cs, stat], Jun. 2018, [Online]. Available:

https://arxiv.org/abs/1806.03536.

[136] M. Fey, “PyG Documentation — pytorch geometric 2.0.0 documentation,”

pytorch-geometric.readthedocs.io, 2021.

[137] Wikipedia, “2019 redefinition of the SI base units,” Wikipedia, Oct. 19, 2020.

[138] B. Carithers and P. Grannis, “TOP QUARK,” SLAC, 1995. [Online]. Available:

https://www.slac.stanford.edu/pubs/beamline/25/3/25-3-carithers.pdf.

[139] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Physical

Review Letters, vol. 13, no. 16, pp. 508–509, Oct. 1964, doi: 10.1103/phys-

revlett.13.508.

BIBLIOGRAPHY 108

[140] The ATLAS Collaboration, Quark versus Gluon Jet Tagging Using Jet Images

with the ATLAS Detector. CERN Document Server, 2017.

[141] P. T. Komiske, E. M. Metodiev, and J. Thaler, “An operational definition of

quark and gluon jets,” Journal of High Energy Physics, vol. 2018, no. 11, p. 59,

Nov. 2018, doi: 10.1007/JHEP11(2018)059.

[142] G. Kasieczka, N. Kiefer, T. Plehn, and J. M. Thompson, “Quark-Gluon

Tagging: Machine Learning vs Detector,” SciPost Physics, vol. 6, no. 6, p. 069,

Jun. 2019, doi: 10.21468/SciPostPhys.6.6.069.

[143] J. Leskovec, “CS224W - Machine Learning with Graphs,” web.stanford.edu,

2021. http://web.stanford.edu/class/cs224w/.

[144] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology Adaptive

Graph Convolutional Networks,” arXiv:1710.10370 [cs, stat], Feb. 2018, [Online].

Available: https://arxiv.org/abs/1710.10370.

[145] CERN, “Future Circular Collider - Image selection,” cds.cern.ch, 2019.

https://cds.cern.ch/images/OPEN-PHO-ACCEL-2019-001-2.

[146] CMS Experiment (un-official), “Reference Frame,” Quantumdiaries.org, 2016.

[147] The ATLAS Collaboration, “ATLAS observes elusive Higgs boson decay

to a pair of bottom quarks,” ATLAS, 2018. https://atlas.cern/updates/press-

statement/observation-higgs-boson-decay-pair-bottom-quarks.

[148] W. L. Hamilton, Graph representation learning. San Rafael Morgan Et

Claypool, 2020.

	List of Figures
	List of Abbreviations
	Introduction
	Particle Physics
	The Standard Model
	Limitations of the Standard Model
	Objective of Experimental Particle Physics

	Computing in Particle Physics
	Higgs Boson
	Significance of the Higgs Boson
	Future Experiments Studying the Higgs Boson

	Graph Neural Networks in Particle Physics
	Motivation: Problem Statement
	Proposed Solution
	Overview of the Chapters
	Key Contributions

	Background
	Introduction
	The Standard Model (SM)
	Fermions
	Force Carriers
	Standard Units of Measurements
	Limitations of SM

	Experimental Particle Physics
	Introduction to Particle Accelerators and Colliders
	Experimental Dataset
	Simulations
	Distributed Computing:
	Accelerators of the Future

	Existing Experiments
	Future experiments
	How is the Higgs Boson produced at FCC-ee?
	Higgs Boson Production in HZ mode:
	Higgs Boson Decay:
	Event Decay Chain

	Role of Engineering and Computer Science in Particle Physics
	CERN's Infrastructure
	Future of Computing in HEP
	Challenges in HEP: Physics and Computing

	Graph Neural Networks in Particle Physics
	Introduction
	Related Work
	Jet Classification: Jet Tagging
	Jet Clustering

	Graph Neural Networks in Jet Clustering
	Research Questions

	 Graph Machine Learning
	What is a graph?
	What are the types of graphs
	Mathematical Representations of Graph
	Properties: Graph Metrics and Node Metrics
	Graph Network Embedding
	Graph Representation Learning
	Machine Learning in Network Science

	Message Passing Networks
	K-Hop Neighbourhood
	Node Embeddings
	Message Passing with Self Loops
	Basic Graph Neural Networks

	Graph Convolutional Networks
	Symmetric Normalisation
	Graph Convolutional Networks

	Set Aggregations
	Neighbourhood Attention Mechanisms

	Generalised Update Functions
	Over-Smoothing
	Skip Connections
	 Jumping Knowledge Connections

	Overview of Graph Neural Networks
	History of Graph Neural Networks
	Types of Graph Neural Networks
	Training Settings for Graph Neural Networks
	Computational Modules in Graph Neural Networks
	Recent advances in Graph Neural Networks
	Complex Real World Graphs in Network Science
	Graph Transfer Learning
	Explainability in Graph Neural Networks
	Computational Efficiency

	Strengths and Weaknesses of Graph Neural Networks
	Strengths and Advantages
	Limitations and their Proposed Solutions

	Methodology
	Introduction
	Particle Physics Data
	Event Data
	Simulated Dataset

	Data Generation and Conversion
	Data handling framework
	Simulation Frameworks
	Data Conversion to Compatible Formats

	Data Description
	Dataset Version 1
	Dataset Version 2
	Data Analysis and Preprocessing

	An overview of the GNN Pipeline
	Practical Implementation
	Introduction to Graph Generation in Particle Physics
	Construction of a Graph
	Role of Edges in a Graph
	Size of a Graph

	Definition of the Machine Learning Task
	What are the entities and relations that could also be represented as nodes and edges, respectively?
	What is the desired output, such as predictions at the edge, node, or graph level?
	Is it necessary to have a global output network to create graph-level outputs?
	How many message-passing steps should be utilised to spread information among the graph's remote nodes?

	Edge-generation strategies
	edge-KNN
	edge-radius
	edge-label

	Graph Processing
	Fixed-size Graph dataset
	Variable-size Graph dataset
	Edges in Fixed and Variable size dataset

	Model Evaluation Metrics
	Accuracy
	Node Accuracy
	Event Accuracy

	Model Methodology
	Graph Network Blocks
	Attention mechanism
	Stacking Graph Network Blocks
	GNN architectures

	Selecting the Graph Network Blocks
	GCNConv
	ChebConv
	TAGConv
	Jumping Knowledge
	SAGEConv
	GINConv
	GATConv
	SuperGATConv
	Conclusion

	Results
	Introduction
	Event wise classification
	Multiclass-classifier:
	Default Case:

	MLP: Establishing a Baseline with neural networks
	Objective: MLP-2
	Results:

	MLP: Network Depth
	Objective: Network Depth of 2, 4, 8
	Results:

	Graph Convolutional Network: An in-depth exploration
	Objective: GCN-2
	Results:

	GCN: Most Representative Dataset
	Objective: GCN-2 on edge-radius, edge-KNN, edge-label
	Results:

	GCN: Network Depth Experiment
	Objective: Network Depth of 2, 4, 8, 16
	Results:

	GCN: Accuracy with Different Dataset Sizes
	Objective: Dataset split into 0.2, 0.4, 0.6, 0.8
	Results:

	GCN: Hyperparameter Search
	Objective: Find optimal hyperparameters for GCN-2 on edge-KNN
	Results:

	GNN-variants: Model Evaluation and Comparison
	Objective: MLP, GCN, ChebNet, SAGE, GAT, GIN, JKNet, TAGCN and SuperGAT
	Results:

	Conclusion
	Could machine learning techniques be used to predict the sets of final state particles originating from the Higgs Boson and Z boson in the HZ production mode at the future lepton collider?
	How can graph neural networks be used to model event collisions as graphs and particles as nodes for the supervised task of node classification?
	How can we generate relationships or links between final state particles? What is the most optimal type of graph data representation of the stable particles detected at a collider?
	What is the most promising graph neural architecture to correctly predict all the nodes' labels in a graph?

	Conclusions
	Overview
	Limitations of Our Work
	Key Contributions and Results
	Future work and Directions
	Higgs Production Modes
	Data representation
	Lepton Collider Datasets
	Extending Model Designs
	Exhaustive evaluation on Random Seeds
	Fast Inference
	Larger Datasets

	Conclusion

	Bibliography

