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Abstract

A family of novel algorithms are presented, which use machine learning to ver-
ify probabilistic programs. These methods synthesise indicating supermartingales
(ISMs) and repulsing supermartingales (RepSMs), that bound the probability that
a safety property will be violated in a probabilistic program.

These methods construct a martingale by using a neural network to learn a
candidate martingale. This candidate martingale is verified by using satisfiability
modulo theories (SMT). If a counterexample is produced, it is added to the training
data, so the neural network can learn a new candidate. This continues until a valid
martingale has been constructed. This process of incremental learning is called
counterexample-guided inductive synthesis (CEGIS).

These methods are implemented in a new tool, and their value is demonstrated
in a range of benchmarks accumulated from previous literature, as well as a selection
of new benchmarks that cannot be handled by previous methods. Further, these
empirical results allow for comparisons between the different methods to be made,
and an evaluation of the overall approach to be given.
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Chapter 1

Introduction

1.1 Motivation
Probabilistic programming extends classical imperative programming with the capa-
bility to sample from a probability distribution. It has a wide range of applications,
including stochastic control systems, randomised algorithms, cryptographic proto-
cols and Bayesian inference. This makes verification of probabilistic programs a
compelling field of research.

An example of such a program is given below: the faulty marble collector. In
each iteration, either a red marble or a blue marble is collected. The variables red
and blue record the number of red and blue marbles respectively that are left to
collect. However, in each iteration there is a small risk that an error occurs, which
is modelled by error being set to 1. If this is the case, the marble collector will fail.

error = 0
while red ≥ 1 or blue ≥ 1:

assert(error 6= 1)
p ∼ Bernoulli(0.999)
if p == 1:

q ∼ Bernoulli(0.5)
if q == 1:

red = red− 1
else:

blue = blue− 1
else:

error = 1

A natural verification question is to establish an upper bound for the probability
of failure. This can be achieved by constructing an indicating supermartingale1

(ISM) [Takisaka et al., 2021; Chatterjee et al., 2022]. An ISM is a formal witness
that a subset of states is reachable with probability at most p. Surprisingly, despite
the simplicity of the faulty marble collector, existing tools are unable to synthesise

1Prior literature uses different terms for this structure including nonnegative repulsing super-
martingales and stochastic invariant indicators.
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an ISM. The difficulty is caused by the disjunction in the loop guard. Instead, if
the guard was just red ≥ 1, or alternatively just blue ≥ 1, an ISM could be found.

The goal of synthesis is to find a martingale, such that for every program state,
the required properties hold. In other words, the problem is to decide the valid-
ity of ∃x.∀y.P (x, y), by providing a witness for the martingale x. P (x, y) are the
constraints that must satisfied for this martingale x, across every program state y.

Previous approaches to generating martingales, use techniques such as Farkas’
lemma and Positivstellensatz to translate the problem into a quantifier-free formu-
lation, that can be handled by linear and quadratic programming [Chakarov and
Sankaranarayanan, 2013; Chatterjee et al., 2016a]. Therefore, the methods are ap-
plicable for only a narrow class of programs, and exclude programs such as the faulty
marble collector.

In Abate et al. [2021c] a new method to synthesise ranking supermartingales
(RSMs) is introduced, in order to prove positive almost-sure termination (PAST).
This method constructs a RSM by using a neural network to learn a candidate
martingale. The network is trained with sampled execution traces from the program.
This candidate martingale is verified by using satisfiability modulo theories (SMT).
If a counterexample is produced, this is added to the training data, so the neural
network can learn a new candidate. This continues until a valid martingale has been
constructed. This process of incremental learning is called counterexample-guided
inductive synthesis (CEGIS).

The goal of this project is to extend this idea to other types of martingales, to
solve a quantitative safety problem. In a quantitative safety problem, the objective
is to bound the probability that a program will reach an unsafe region of the state
space. Concretely, a solution to such a problem is a probability p, and an accom-
panying certificate that demonstrates that the program will enter the unsafe region
with probability at most p. In the faulty marble collector, the unsafe region of the
state space is where error is 1.

In this project, novel algorithms will be introduced, that use neural networks to
synthesise two types of martingales:

1. Indicating supermartingales (ISMs), which produce bounds with the Knaster-
Tarski fixed-point theorem

2. Repulsing supermartingales (RepSMs), which produce bounds with the Azuma-
Hoeffding inequality

These algorithms will be implemented in a tool for program verification. The
tool includes functionality for parsing source code, performing symbolic inference,
and carrying out the CEGIS procedure.

While neural networks have been applied to RSMs, applying them to ISMs and
RepSMs poses multiple challenges. First, while any valid RSM is sufficient to prove
PAST, a valid ISM or RepSM is not necessarily useful, unless it can be used to
produce a tight bound. Further, quantitative safety problems are typically applied
to rare events. However, this means that the regions of the state space that are vital
to the construction of a martingale, are rarely seen in execution traces.

Therefore, there is clear motivation in applying machine learning to the quanti-
tative safety problem. Quantitative safety is a fundamental verification problem for

5



probabilistic programs. However, existing tools for this problem are very restrictive
in terms of the kind of programs they can handle. By contrast, neural networks are
universal approximators, and can be used to construct a wide range of non-linear
functions. This suggests that there is significant potential in using neural networks
to construct martingales for programs that exhibit more complex behaviour.

1.2 Contributions
In this project, we make the following contributions:

• We develop the first machine learning method for the verification of the quanti-
tative safety problem for probabilistic programs, by synthesising indicating su-
permartingales (ISMs) and repulsing supermartingales (RepSMs) represented
by neural networks. The method handles continuous state spaces, and proves
quantitative properties, both of which are out-of-scope for the most recent pre-
existing work that applies learning to the verification of probabilistic systems
[Bao et al., 2022]. Further, this is the first method for synthesising martingales
that uses a general symbolic inference algorithm to compute post-expectations.

• We experimentally evaluate this method, demonstrating that it surpasses the
state-of-the-art. Our benchmarks can be classified in a trichotomy. First,
benchmarks where both methods produce comparable results. Secondly, bench-
marks where this method produces significantly better results. Thirdly, bench-
marks where only this method can produce results.
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Chapter 2

Background

2.1 Measure Theory
This section formalises probabilistic programs, so that executions of a probabilistic
program can be treated as a measurable space. The goal is to establish several
technical results that lay the groundwork for subsequent sections. Of these results,
the most important demonstrates that the quantitative safety properties, this project
studies, are well-defined. References for the measure-theoretic treatment in this
section are Rosenthal [2006]; Meyn and Tweedie [2009].

In order to study probabilistic programs, it is necessary to conceptualise them
as formal mathematical objects. Two formalisms used in the literature are prob-
abilistic transition systems (PTSs) and probabilistic control-flow graphs (pCFGs).
Both systems model the probabilistic program as a graph, with program locations
as nodes, and transitions as edges. The main difference is that pCFGs allow for
nondeterministic behaviour, while PTSs do not.

By contrast, Abate et al. [2021c] focusses on single-loop programs. These pro-
grams consist of a loop guard G and a probabilistic update statement U . The
probabilistic program runs the update statement while the loop guard holds. These
programs have the following syntactic structure.

while G:
U

This leads to a simpler formalism, that is easier to reason about. This project also
concentrates on single-loop programs, except for the addition of a safety predicate P .
In this model, after the loop guard G is checked, the safety predicate P is checked.
If it holds, then the update statement U runs as normal. Otherwise, an assertion is
considered to be violated, and the program fails.

Thus, there are two different ways for the program to end. The first is successful
termination where the loop guard does not hold. The second is when an assertion
is violated, and the program has failed. The syntax for these programs has the
following structure.

while G:
assert(P )
U
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More concretely, a program contains a finite set of variables Vars, and the pro-
gram state is modelled by a function x : Vars → R. The collection of all such
states is the state space S. Then the guard G and the safety predicate P are Borel
subsets of S. It is assumed there is a fixed unique initial state x0 ∈ S, although it
is straightforward to generalise this to a non-deterministic set of initial states. Note
that the state space can be expressed as the following disjoint union:

S = (S \G) ∪ (G \ P ) ∪ (G ∩ P )

The components of this trichotomy can be described as follows.

• S \G consists of states, where the program has terminated successfully.

• G \ P consists of states, where the program has failed.

• G ∩ P consists of states, where the program has not ended.

The final component of a probabilistic program is an update statement U , that
encodes the evolution of a probabilistic program. This is a function U : (G ∩ P )×
B(S)→ [0, 1]. This function is required to be a Markov kernel, in other words:

• For each x ∈ G ∩ P , U(x, ·) is a probability measure.

• For each E ∈ B(S), U(·, E) is a measurable function.

Intuitively, U(x,E) is the probability of starting in state x ∈ S, and ending
in a state within the set E after a single application of the update statement
U . Putting this altogether, a single-loop program can be encoded as a quintuple
(Vars, G, P, U, x0).

This is an expressive formalism; single-loop programs are naturally able to encode
discrete-time systems, with infinite state spaces. Such systems can mix discrete and
continuous variables.

Having formalised probabilistic programs, the next step is to formalise the exe-
cution of such a program. An execution is defined as an infinite sequence of program
states, i.e. an element of Sω, each taken at the beginning of a loop iteration. In
order to account for programs that terminate or fail, it is assumed that they remain
in the same state, that they ended in, for future elements of the sequence.

To handle this technicality, the Markov kernel U is extended to have the domain
S:

U?(x,E) =


U(x,E) if x ∈ G ∩ P
1 if x 6∈ G ∩ P and x ∈ E
0 otherwise

In other words, U?(x, ·) is U(x, ·) if x ∈ G ∩ P , otherwise it is a Dirac measure,
where U?(x,E) = 1 iff x ∈ E. Note that, this extension is still a Markov kernel.

The pair (Sω,B(Sω)) forms a measurable space. It is desirable to build a prob-
ability measure on this space with the Markov kernel U , to reason about the prob-
ability of events. This is achieved with the following theorem.
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Theorem 1 (Kolmogorov’s extension theorem). Let S = Rk for some fixed k. Then
suppose for each n ∈ N, there is a probability measure µn, for the measurable space
(Sn,B(Sn)).

Assume that this family of probability measures is consistent i.e. µn+1(A× S) =
µn(A) for all A ∈ B(Sn) and n ∈ N.

Then there is a unique probability measure µ for (Sω,B(Sω)) such that for every
n ∈ N: µ(A× Sω) = µn(A).

In other words, by defining a probability measure for finite prefixes of an exe-
cution, a probability measure is obtained for executions. The family of probability
measures µn is defined by induction.

The base case µ0 is trivial.
µ0(_) = 1

The base case µ1 is a Dirac measure.

µ1(E0) =

1 x0 ∈ E0

0 otherwise

Then given a probability measure µn, this can be used to define a probability
measure µn+1, by integrating with respect to the measure.

µn+1(E0, . . . , En, En+1) =
∫

E0×...×En

U?(xn, En+1) µn(d(x0, . . . , xn))

Having constructed this family of probability measures, it can be established
that a unique probability measure µ : B(Sω)→ [0, 1] exists.

The measurable space (Sω,B(Sω)) accompanied with the measure µ makes it
possible to deliver the following technical results.

First, it is now possible to consider the probabilistic program as a stochastic
process, i.e. a family of random variables {Xi}. Each random variable Xi is a
projection of Sω, and is defined as follows:

Xi : Sω → S

Xi(x0, x1, . . .) = xi

In other words, each random variable Xi denotes the state at the ith iteration
of the while loop.

Moreover, it is now possible to ensure certain reachability events and probabilities
are well-defined.

Proposition 1. Consider the set of executions that reach a Borel measurable set
E in exactly N steps, i.e. XN ∈ E, and for all n < N , Xn 6∈ E. This event is
measurable.

Corollary 1. The following probabilities are well-defined:

• The probability of an execution failing.

• The probability of an execution terminating successfully.
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This ensures that the quantitative safety properties, this project studies, are well-
defined. However, in order to reason about the soundness of RepSMs and ISMs, it
is useful to consider the probability of more granular events.

Note that, the stochastic process {Xi} satisfies the strong Markov property. This
means that P[Xi+t ∈ E | Xi = x] is the same as P[Xt ∈ E | X0 = x]. This means
that the probability of reaching E in N steps from state x is well-defined, since the
past history of the execution does not matter.

Corollary 2. The following probabilities are well-defined.

• The probability of an execution failing in exactly N steps from state x.

• The probability of an execution failing in at most N steps from state x.

• The probability of an execution failing from state x.

This follows from the properties of a σ-algebra, the strong Markov property and
the previous proposition.

Additionally, it is now possible to define the post-expectation operator X. Con-
sider the program state of the loop at the ith iteration, Xi. Assume there is a
function η : S → R. Given that Xi = x, it is straightforward to compute η(Xi).
In the analysis of probabilistic programs, it is also useful to know E[η(Xi+1)] given
that Xi = x, i.e. the expectation of η at the (i+ 1)th iteration given Xi.

This is what the post-expectation operator accomplishes. The operator takes a
function η : S → R and produces a new function Xη : S → R. This new function
takes a state x and gives the value E[η(Xi+1) | Xi = x]. The operator is defined as
follows:

Xη(x) =
∫

S
η(x′) U?(x, dx′)

Naturally, it is assumed that η is a measurable function.
To conclude, this section develops a measurable space for executions and an

intended probability measure. This allows the following to be established: the mea-
surability of certain reachability events; the interpretation of probabilistic programs
as stochastic processes; and the post-expectation operator. These results will be
built upon by subsequent sections.

2.2 Program Analysis with Martingales
This section introduces martingales and their applications to program verification.
First, RSMs are introduced, which can be used to prove PAST. Then, this section
introduces ISMs and RepSMs, which this project uses to prove quantitative safety
properties.

Throughout this report, the term martingale is used as a shorthand for super-
martingale. Furthermore, the term martingale is ‘overloaded’. Its primary definition
is in terms of a sequence of scalar random variables. However, it is also used to refer
to functions that map a multivariate stochastic process, representing an execution
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of a program, to a scalar stochastic process. A scalar stochastic process {Mt} is a
supermartingale if for every t ≥ 0, the following holds:

E[Mt+1 |Mt = mt, . . . ,M0 = m0] ≤ mt

Before introducing different types of martingales, recall that the state space S
can be split into the following trichotomy.

(S \G) ∪ (G \ P ) ∪ (G ∩ P )

It is sometimes the case that not all states in G can actually be reached. It
is helpful to define martingales in terms of an invariant I ⊆ G which is an over-
approximation of all reachable states.

One can then consider the following disjoint union:

(S \G) ∪ (I \ P ) ∪ (I ∩ P )

Note that, S \ G is the set of terminal states, I \ P is the set of unsafe states,
and I ∩ P is the set of safe states.

2.2.1 RSMs
The first type of martingale introduced for the analysis of probabilistic programs
was ranking supermartingales (RSMs) [Chakarov and Sankaranarayanan, 2013]. An
RSM is a map η : S → R such that the following holds for some ε > 0:

• Decreasing condition: Xη(x) ≤ η(x)− ε for all x ∈ I

• Lower bound condition: η(x) ≥ K for all x ∈ I.

RSMs can be used to prove positive almost-sure termination. For RSMs, it will
be assumed that the safety predicate P = S, i.e. all states are safe.

Then each execution is either terminating or non-terminating, and so can be
given a termination time which is an element of N ∪ {∞}. This is defined as the
random variable T . The property almost-sure termination (AST) is that P[T <
∞] = 1. The property positive almost-sure termination (PAST) is that E[T ] < ∞.
Note that PAST strictly subsumes AST.

Proposition 2 (Soundness of RSMs). An RSM for a probabilistic program is a
witness for PAST, i.e. if an RSM exists this means E[T ] <∞.

The intuition is that non-terminal states are required to satisfy η(x) ≥ K, and
since the RSM decreases by at least ε in expectation, eventually a terminal state
must be reached. A proof is given in Ferrer Fioriti and Hermanns [2015].
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2.2.2 ISMs
Indicating supermartingales (ISMs) have been introduced in previous literature un-
der the names nonnegative repulsing supermartingale and stochastic invariant in-
dicators [Takisaka et al., 2021; Chatterjee et al., 2022]. The reason for choosing
the name indicating supermartingale is to avoid confusion with RepSMs, empha-
sise the connection with indicator functions, and acknowledge that ISMs are indeed
supermartingales.

ISMs are used to bound the probability of leaving a safe region P of the state
space. An ISM is a Borel measurable function1 η : I → [0,∞) such that the following
hold:

• Non-increasing condition: η(x) ≥ Xη(x) for all x ∈ I ∩ P

• Indicating condition: η(x) ≥ 1, for all x ∈ I \ P

Let B(I) denote the set of Borel measurable functions I → [0,∞]. Note that,
a subset of B(I) is the set of ISMs. The set B(I) can be given a partial order v.
η1 v η2 if η1(x) ≤ η2(x) for all x ∈ I. This partial order is, in fact, a lattice, as it
can be given join (∨) and meet (∧) operations.

(η1 ∨ η2)(x) = max{η1(x), η2(x)}
(η1 ∧ η2)(x) = min{η1(x), η2(x)}

The lattice also has a bottom element (⊥) defined as follows:

⊥(x) = 0

Further, recall that a (higher-order) function Ψ : B(I) → B(I) is monotone if
η1 v η2 implies Ψ(η1) v Ψ(η2). One can define the monotone function Φ:

Φ(η)(x) =

1 x ∈ I \ P
Xη(x) otherwise

This can be made clearer by expressing it in the following form:

Φ(η) = χI\P + χI∩PXη

χA : B → {0, 1} is an indicator function for a set A ⊆ B. Its definition is given
below.

χA(x) =

1 x ∈ A
0 otherwise

Note that a pre-fixpoint of a function is x such that f(x) v x. Then an ISM can
be defined as a pre-fixpoint of the function Φ. This explains the connection between
indicator functions and ISMs.

1Previous literature uses upper semianalytic functions, because they incorporate nondetermin-
ism in their model of probabilistic programs.
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There are two properties of ISMs that are desirable to prove: soundness and
completeness. These properties relate to the function Reach(x), which is the prob-
ability of reaching I \ P from the state x. In order to prove these properties, it is
necessary to build up a collection of lemmas. These results relate to the function
Reach≤N , which is the probability of reaching I \ P in at most N steps.

Lemma 1. For every N ∈ N, Reach≤N ∈ B(I) and Reach≤N = ΦN+1(⊥).

Proof. This can be shown by induction. Consider the base case. The left-hand side
is Reach≤0 = χI\P . The right-hand side is:

Φ1(⊥) = Φ(⊥) = χI\P + χI∩P⊥ = χI\P

This follows since ⊥(x) = 0 for all x. Now consider the inductive case. The
left-hand side is:

Reach≤N+1(x) =

1 x ∈ I \ P∫
I Reach≤N(x′)U?(x, dx′) otherwise

=

1 x ∈ I \ P
E[Reach≤N(Xi+1) | Xi = x] otherwise

So:

Reach≤N+1 = χI\P + χI∩PX(Reach≤N)
= Φ(Reach≤N)
= Φ(ΦN+1(⊥))
= ΦN+2(⊥)

The penultimate step follows from the application of the inductive hypothesis.

Theorem 2 (Variant of Kleene fixpoint theorem). If (X,v) is a chain-complete
partially ordered set with a bottom element, and f : X → X is a monotone map,
then ti∈Nf

i(⊥) is a least pre-fixpoint.

Corollary 3. If (X,v) is a chain-complete partially ordered set with a bottom ele-
ment, and f : X → X is a monotone map, then ti∈Nf

i(⊥) is a least fixpoint.

Proof. First note that ti∈Nf
i(⊥) is indeed a fixpoint:

f(
⊔
i∈N

f i(⊥)) =
⊔
i∈N

f i+1(⊥) =
⊔
i∈N

f i(⊥)

Suppose there is a different least fixpoint, then this would also be the least pre-
fixpoint, which is a contradiction.

Lemma 2. The function Reach is the least pre-fixpoint of the map Φ. Further it is
a least fixpoint, i.e. Reach = µΦ.
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Proof. Note that:

Reach(x) = sup
i∈N

Reach≤i(x) = sup
i∈N

Φi+1(⊥) = sup
i∈N

Φi(⊥)

In other words:
Reach = ti∈NΦi(⊥)

Theorem 2 establishes that this is indeed the least pre-fixpoint of Φ, and conse-
quently by Corollary 3 it is the least fixpoint. Thus Reach = µΦ.

This makes it possible to prove completeness and soundness.

Corollary 4 (Completeness of ISMs). Reach is an ISM i.e. Φ(Reach) v Reach.

Proof. This follows directly from Lemma 2.

Corollary 5 (Soundness of ISMs). If η is an ISM, it overapproximates reachability
probabilities i.e. Φ(η) v η implies Reach v η.

Proof. Suppose η is a pre-fixpoint i.e. Φ(η) v η. Since Reach is a least pre-fixpoint
by Lemma 2, then Reach v η.

These results shows us that an ISM can be used to upper bound the probability
of reaching the unsafe region as η(x0). So, the goal is to find ISMs that are closer
to the optimal ISM, i.e. µΦ.

2.2.3 RepSMs
Repulsing supermartingales (RepSMs) were introduced in Chatterjee et al. [2016b].
A RepSM is a map η : S → R such that the following holds for some ε > 0 and
c ≥ 0:

• Decreasing condition: Xη(x) ≤ η(x)− ε for all x ∈ I ∩ P

• Lower bound condition: η(x) ≥ 0 for all x ∈ I \ P

• Bounded differences condition: |η(Xt+1)− η(Xt)| ≤ c for some constant c > 0

• Initial state condition: η(x0) < 0 (It follows that x0 ∈ P )

Similarly to RSMs, the random variable T can be defined as the time until an
unsafe state in I\P is reached, and this random variable takes a value from N∪{∞}.
The goal is to use RepSMs to upper bound P(T <∞).

Theorem 3 (Azuma-Hoeffding inequality). If X0, . . . , Xn is a supermartingale such
that |Xt −Xt−1| ≤ ct for all t > 1, then the following holds for any ε > 0 and t ≥ 1:

P(Xt −X0 ≥ ε) ≤ exp
(
−ε2

2∑t
k=1 c

2
k

)

Note that if ct = c, for all t, then, this gives the following bound:

P(Xt −X0 ≥ ε) ≤ exp
(
−ε2

2tc2

)
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Proposition 3 (Soundness of RepSMs). The probability of reaching an unsafe state
can be bounded as follows.

P(T <∞) ≤ α
γA

1− γ
Where:

α = exp
(

εm0

(c+ ε)2

)

γ = exp
(
− ε2

2(c+ ε)2

)
A = d|m0|/ce

Proof. In order to obtain this bound from a RepSM {Xt}, an auxiliary supermartin-
gale {X ′t} is constructed from a run ρ, as follows:

X ′t(ρ) =

Xt(ρ) + tε if T (ρ) ≥ t

X ′t−1(ρ) otherwise

In order to understand this supermartingale, note that X ′0(ρ) = X0(ρ), since
x0 6∈ I \ P . However, at each transition the difference between Xt and X ′t grows by
ε, until the unsafe region is entered, at which point the martingale becomes fixed.

Note that this is indeed a supermartingale. When T (ρ) ≥ t + 1, the following
hold:

E[X ′t(ρ)] = E[Xt(ρ)] + tε

E[X ′t+1] = E[Xt+1(ρ) + (t+ 1)ε]
≤ E[Xt(ρ)]− ε+ (t+ 1)ε
= E[Xt(ρ)] + tε

= E[X ′t(ρ)]

When T (ρ) < t + 1, then trivially E[X ′t+1] ≥ E[X ′t]. Note, in the case that the
unsafe region is never entered, then this martingale is still well-defined, X ′t and Xt

will simply diverge without end.
It can be similarly shown that the martingale has (c + ε)-bounded differences.

Now define the family of sets Ft as follows. An execution ρ is a member of Ft if
T (ρ) = t. Note that if ρ ∈ Ft, this implies:

X ′t(ρ) = Xt(ρ) + tε

≥ tε

This holds, since Xt(ρ) ≥ 0, since ρ is within I \ P at time step t.

P(Ft) ≤ P(X ′t ≥ tε)
= P(X ′t −X ′0 ≥ tε− η(x0))

15



Defining m0 = η(x0), and applying the Azuma-Hoeffding inequality gives us:

P(Ft) ≤ P(X ′t −X ′0 ≥ tε−m0)

≤ exp
(
−(tε−m0)2

2t(c+ ε)2

)

≤ exp
(

εm0

(c+ ε)2

)
exp

(
− tε2

2(c+ ε)2

)

By summing P(Ft) for all t < ∞, the probability that the unsafe region I \ P
can be expressed as follows:

P(T <∞) =
∞∑

t=0
P(Ft)

This bound can be tightened by observing that at least A steps are need to reach
I \ P , where A = d|m0|/ce. This gives us:

P(T <∞) =
∞∑

t=A

P(Ft)

≤
∞∑

t=A

exp
(

εm0

(c+ ε)2

)
exp

(
− tε2

2(c+ ε)2

)

=
∞∑

t=A

exp
(

εm0

(c+ ε)2

)
exp

(
− ε2

2(c+ ε)2

)t

Define α and γ as follows:

α = exp
(

εm0

(c+ ε)2

)

γ = exp
(
− ε2

2(c+ ε)2

)

Then:
P(T <∞) ≤

∞∑
t=A

αγt

Rewriting this geometric series gives us the following bound on reaching the
unsafe region I \ P :

P(T <∞) ≤ α
γA

1− γ

To conclude, this section has introduced three types of martingales: RSMs, ISMs,
and RepSMs. Furthermore, proofs of soundness have been given for ISMs and
RepSMs are valid. This means that the bounds generated by them are sound.
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2.3 Synthesis of Martingales
This section recalls previous literature on the synthesis of martingales. In particular,
it presents Farkas’ lemma which has been used to synthesise RSMs, ISMs, and
RepSMs. Further, it presents the CEGIS-based synthesis of RSMs. This work is
built upon in subsequent chapters to develop a CEGIS-based method for RepSMs
and ISMs, that allows us to solve the quantitative safety problem.

A martingale η must satisfy properties of the form ∀x.P (η, x). In other words,
the overall problem has the structure ∃η.∀x.P (η, x).

One challenge of constructing martingales is the presence of universal quantifi-
cation, since in general, the properties P (η, x) need to hold for an infinite number of
possible values of x. Another challenge is in choosing the structure of the martingale
function η. The standard approach is to fix a parametric template for this function,
shifting the problem from finding an arbitrary function to finding parameters for
the template.

2.3.1 Linear RSMs
One common template is linear (technically affine) expressions over the program
state. Linear RSMs can be computed with linear programming and Farkas’ lemma
[Chakarov and Sankaranarayanan, 2013]. Consider the program below. The pro-
gram has one variable x, which is initialised to 1. In each iteration x is either
incremented or decremented. The program is biased towards incrementing, which
happens with probability 0.9. The loop continues until x reaches 100.

x = 1
while x ≤ 100:

p ∼ Bernoulli(0.9)
if p == 1:

x = x + 1
else:

x = x− 1

A linear template for this function is wx+b. It is necessary to compute the post-
expectation E[η(Xi+1) | Xi]. This requires performing symbolic inference on the
loop-free update statement, and marginalising the probabilistic choices. In general,
this is a non-trivial problem. For this program, marginalising is straightforward,
and the post-expectation of the template is wx + 4w

5 + d. The two conditions that
need to be satisfied are:

∀x ∈ I, wx+ 4w
5 + d ≤ wx+ d− ε (2.1)

∀x ∈ I, wx+ d ≥ K (2.2)

In this case, K is chosen to be 0. Further I is the set {x | x ≤ 100}. The
constraints can be rewritten as follows:

∀x ∈ R, (x ≤ 100) =⇒ 4w
5 + ε ≤ 0 (2.3)

∀x ∈ R, (x ≤ 100) =⇒ −wx− d ≤ 0 (2.4)
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Theorem 4 (Farkas’ Lemma). For A ∈ Rm,n, b ∈ Rm, c ∈ Rn and d ∈ R, consider
the following statement.

∀x ∈ Rn. Ax ≤ b =⇒ c · x ≤ d

This statement is equivalent to the following holding:

• There exists x ∈ Rn such that Ax ≤ b.

• There exists y ∈ Rm such that y ≥ 0 and ATy = c and b · y ≤ d.

The constraints are now in a form where Farkas’ lemma can be applied. Farkas’
lemma is applied to both 2.3 and 2.4, to produce two new quantifier-free constraints:

(∃x.x ≤ 100) ∧ (∃y.w + y = 0 ∧ 100y − d ≤ 0 ∧ y ≥ 0)

(∃x.x ≤ 100) ∧ (∃y.y = 0 ∧ ε+ 4w
5 + 100y ≤ 0 ∧ y ≥ 0)

The constraints can be solved with linear programming. This produces the
parameters d = 100 and w = −1, giving the RSM: 100 − x. Consequently, it
is shown that this program is PAST i.e. it will terminate almost-surely, and the
expected termination time is finite.

2.3.2 Linear ISMs
The synthesis of linear ISMs has been considered with Farkas’ lemma [Chatterjee
et al., 2022]. Synthesising ISMs is different from RSMs. The synthesis of an RSM
can be considered a decision problem, since there are two outcomes, either an RSM
was found or the algorithm failed to find one.

On the other hand, synthesising a valid ISM is trivial, since one can use the
function that gives 1 as a bound at every state. Instead, the goal is to find a valid
ISM with a tight bound, so the problem can be seen as an optimisation problem.
In contrast to traditional optimisation problems, the constraints are of the form
∀x.P (η, x).

Linear ISMs can be constructed in a similar manner to RSMs. The approach is
to use the Farkas’ lemma to perform quantifier-elimination, and then perform linear
programming with the value of the ISM at the initial state as the objective function.
This is illustrated with the following program. The variable t is initialised to 1, and
is incremented with probability 1/2 at each iteration until t = 10 is reached. In each
iteration, there is a very small failure probability and the goal is to find a tight ISM
which bounds this failure probability.

18



t = 1
error = 0
while t < 10:

assert(error 6= 1)
p ∼ Bernoulli(0.999)
if p == 1:

q ∼ Bernoulli(0.5)
if q == 1:

t = t + 1
else:

error = 1

Note that t is an integer variable, and error has a value of either 0 or 1. A linear
template for this program is werror · error +wt · t+ d. The post-expectation for this
template is:

999werror · error
1000 + wt · t+ werror

1000 + 999wt

2000 + d

To be a valid ISM, the non-increasing and indicating condition need to be satis-
fied:

∀error, t ∈ R. (t < 10 ∧ error = 0) =⇒ werror · error + wt · t0 + d

≥ 999werror · error
1000 + wt · t+ werror

1000 + 999wt

2000 + d
(2.5)

∀error, t ∈ R. (t < 10 ∧ error = 1) =⇒ werror · error + d+ wt · t0 ≥ 1 (2.6)

Additionally ISMs are required to have [0,∞] as the codomain, i.e. they must
be nonnegative. To ensure this, the following condition is added:

∀error, t ∈ R. (t < 10) =⇒ werror · error + d+ wt · t0 ≥ 0 (2.7)

The initial state is t = 1 ∧ error = 0, and the ISM at this state is wt · t + d.
Linear programming is used to minimise this expression subject to the quantifier-
free formulae, obtained by applying Farkas’ lemma to the constraints above. This
can be used to obtain the bound ≤ 0.0181 for the probability of failure.

2.3.3 Linear RepSMs
The synthesis of linear RepSMs has also been considered with Farkas’ lemma [Chat-
terjee et al., 2016b]. This follows a similar approach to the synthesis of linear ISMs,
but with a complication. Unlike ISMs, even if a RepSM uses a linear template, the
expression for the bound is not a linear expression. This means that it cannot be
the objective function of a linear program.

Recall that the bound depends on ε, c and η(x0). In previous literature, the
solution is to run linear programming multiple times, and to select the best bound
obtained. More concretely, the method proposed is as follows:

1. Set ε = 1, since linear RepSMs can be scaled arbitrarily.
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2. Find the smallest c for which a RepSM is possible with linear programming.
This is denoted as cmin.

3. For 0 ≤ j ≤ N , linear programming is used to find a RepSM that minimises
η(x0) and has c+ j-bounded differences.

4. Choose the value of j which gave the smallest bound.

Note that N is a fixed constant, with previous literature using N = 1000.

2.3.4 Neural RSMs
A major limitation of Farkas’ lemma is that it can only learn linear templates. This
is a significant restriction, and even if a program contains only linear inequalities
and linear expressions, a linear template may be insufficient.

An extension of Farkas’ lemma to polynomials is Positivstellensatz [Chatterjee
et al., 2016a]. This allows polynomial templates to be used for RSMs, and quantifier-
elimination is performed leading to constraints that can be solved by semidefinite
programming. Nevertheless, polynomial templates are still restrictive, and often
more general non-linear templates are needed to verify simple programs.

For instance, consider the marble collector. This is a simpler version of the faulty
marble collector, presented earlier. In each iteration, either a red marble or a blue
marble is collected. The variables red and blue record the number of red and blue
marbles respectively that are left to collect.

while red > 0 or blue > 0:
p ∼ Bernoulli(0.5)
if p == 1:

red = red− 1
else:

blue = blue− 1

A martingale constructed from a linear template is unable to act as a certifi-
cate of termination for this program. This means that Farkas’ lemma is unable to
synthesise an RSM. In Abate et al. [2021c], an alternative approach to synthesising
RSMs is introduced, using neural networks. This method can handle more gen-
eral probabilistic programs. For instance, this method can synthesise the following
neural RSM for the program above:

max(red, 0) + max(blue, 0)

The method uses two kinds of neural parametric templates for probabilistic pro-
grams. The following sum of ReLU (SOR) template is used for discrete programs:

η(x) =
h∑

i=1
ReLU

|Vars|∑
j=1

Wi,jxj + bi
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Then, the following sum of squares (SOS) template is used for continuous pro-
grams:

η(x) =
h∑

i=1

|Vars|∑
j=1

Wi,jxj + bi

2

The difference between the two templates is the activation function. The ReLU
activation function is a non-smooth function defined as follows:

ReLU(x) = max(0, x)

Recall, that an RSM has to satisfy two constraints.

• Decreasing condition: Xη(x) ≤ η(x)− ε for all x ∈ I

• Lower bound condition: η(x) ≥ K for all x ∈ I.

The lower bound condition is trivially satisfied since the templates produce non-
negative functions. So, the learning process only has to focus on the decreasing
constraint. This occurs in a CEGIS loop. First, the initial training data is gener-
ated from program states found by executing the probabilistic program.

Then, parameters are learnt by minimising a loss function that penalises viola-
tions of this constraint for states in the training data. Candidate martingales are
produced by rounding the parameters to various precisions. The candidate martin-
gales are then verified with an SMT solver.

If none of these are valid martingales, then counterexamples are generated and
added to the training set. Then the learning process is repeated, with the enlarged
training data. This process continues until a valid martingale is learnt, or a maxi-
mum number of CEGIS iterations has been reached.

The loss function is minimised with gradient descent, with backpropagation being
used to compute gradients. The loss function for each program state p in the training
data is as follows:

L(p, P ′) = softplus(Ep∼P ′ [η(p′)]− η(p) + ε)

Note that in this expression p′ stands for the successor state of p. Rather than
using a symbolic expression to compute the post-expectation Xη(x), this value is
instead sampled. For each program state p in the training data, there is an associated
set of successor states P ′, which is used to estimate this value.

The loss function is designed to apply a penalty when Xη(x) > η(x) − ε. In
particular, the greater Xη(x) is compared to η(x)− ε the higher the penalty should
be. Further, if Xη(x) is less than η(x) − ε, then there should be no penalty. One
way to do this would be the following function:

ReLU(Ep∼P ′ [η(p′)]− η(p) + ε)

The problem with this is that ReLU is not a smooth function, which means it is
liable to the vanishing gradient problem. This is because the gradient is 0, for x < 0,
which prevents weights from being updated. This can be problematic in learning,
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so instead softplus, a smooth approximation, is used instead. These two functions
are plotted in Figure 2.1.

softplus(x) = ln(1 + exp(x))

Note that, in the sum of ReLU case, the softplus function in the template is used
as the activation function in training, for the same reason. However, when verifying
the candidate martingales, the ReLU function is used.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2 softplus(x)
ReLU(x)

Figure 2.1: The ReLU and softplus activation functions

The loss function for each program state is used to produce the overall optimisa-
tion problem in training, given below. This objective is non-linear and non-convex,
and gradient descent is used for optimisation.

arg min
W,b

1
|P|

∑
(p,P ′)∈P

L(p, P ′)

Here P is the training data. While the symbolic expression for the post-expectation
E[η(Xi+1) | Xi = x] isn’t used in training, it is used in verification. Marginalising
probabilistic programs is done in multiple ways. For discrete programs, a data
structure called the symbolic store tree is used, which enumerates all the possible
outcomes of random variables. For continuous programs, moments are used.

To conclude, this section has illustrated Farkas’ lemma, and given examples
of the kinds of programs it can be applied to. It has also given an insight into the
limitations of Farkas’ lemma by giving an example of a program it cannot be applied
to. Finally, it has shown how CEGIS can be used to synthesise RSMs, a method
which is built upon in this project.
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2.4 Verification of Martingales
This section introduces the process of verifying a function satisfies the conditions
to be a martingale. The verifier is an important component in the CEGIS-based
architecture that is introduced in this project.

To do this, some foundational concepts in first-order logic are recalled [Kroening
and Strichman, 2008; Ben-Ari, 2012]. A logical formula is true with respect to a
structure. A structure gives an interpretation to predicate, function and constant
symbols in a first-order language, as well as free variables in a formula.

In practice, first-order languages have an intended interpretation for non-logical
symbols. Therefore, first-order languages are considered with respect to a theory, a
set of axioms, that fixes the interpretation of non-logical symbols. Hence, structures
only need to interpret the free variables in a formula.

A formula is satisfiable if it is true for some structure, and a formula is valid if
it is true for every structure. Further, a structure in which a formula holds is called
a model of that formula.

Satisfiability modulo theories (SMT) is the problem of determining whether a
formula is satisfiable with respect to a first-order theory. If the formula is satisfiable,
the SMT solver will produce a certificate, in the form of a model. Typically, SMT
solvers are applied to quantifier-free fragments of a first-order theory. In these
fragments, all free variables are implicitly considered to be existentially quantified.
Modern SMT solvers combine techniques from SAT solvers such as DPLL with
theory-specific solvers.

Note that the problem of satisfiability is closely related to the problem of validity,
through the following logical tautology:

∀x P (x)⇐⇒ ¬∃x ¬P (x)

Therefore, SMT solvers can be used to determine the validity of a statement
P (x) by determining whether its negation is unsatisfiable. It is worth highlighting
two important theories:

• Theory of linear real arithmetic (LRA). In this theory, atoms are of the form∑
i cixi ./ d, where ci and d are rational constants, xi is a variable and ./ ∈ {=

, <,>,≤,≥}. SMT solvers can handle this theory with the simplex algorithm.
An example of a formula is 2x+ 1

3y ≤ 19.

• Theory of nonlinear real arithmetic (NRA). In this theory, atoms are of the
form ∑

i ciMi ./ d, where ci and d are rational constants, Mi is a monomial
and ./ ∈ {=, <,>,≤,≥}. SMT solvers can handle this theory with cylindrical
algebraic decomposition. An example of a formula is xy2 + x3 ≥ 14.

Both theories are decidable, however since SAT can be encoded in these theories,
they are as difficult as SAT from a complexity-theoretic point of view.

SMT solvers play an essential role in the CEGIS architecture. Synthesising
martingales involves solving the formula ∃η.∀x.P (η, x). Note that, this is technically
a second-order logical formula, since η is a function. However, since parametric
templates are used, this becomes a first-order logical formula.
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The learner proposes a martingale η, and the verifier, implemented with a SMT
solver, must determine whether ∀x.P (η, x) holds. In other words, it must determine
the validity of P (η, x), where η is bound and x is free. As discussed, this can be
solved by determining whether ¬P (η, x) is unsatisfiable.

If it is unsatisfiable, then the martingale is correct. If it is satisfiable, the mar-
tingale is not correct. Since the formula is satisfiable, there must be a model of
¬P (η, x). This model is a counterexample that disproves ∀x.P (η, x), and can be
given to the learner to refine its proposal.
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Chapter 3

Design

In Chapter 2, two types of martingales for solving the quantitative reachability
problem were introduced. This chapter presents a family of novel methods for the
synthesis of these martingales. The four methods that are developed are categorised
in Figure 3.1. This classification is based on two dichotomies. The first is whether
ISMs or RepSMs are being synthesised. The second is whether the algorithm is
program-aware or program-agnostic. The program-aware methods use the structure
of the program to learn the martingale, whereas in the program-agnostic methods,
learning is entirely data-driven.

Program-Aware
Synthesis of ISMs

Program-Agnostic
Synthesis of ISMs

Program-Aware
Synthesis of RepSMs

Program-Agnostic
Synthesis of RepSMs

Figure 3.1: Table of the algorithms developed

The chapter first develops the program-aware synthesis of ISMs. In doing this, it
explores the design space of parametric templates and loss functions. An important
desideratum is devising a parametric template that represents a tangible improve-
ment over previous methods, while also allowing parameters to be efficiently learnt.
Furthermore, the synthesis of RSMs is a decision problem with a binary outcome,
while the synthesis of ISMs and RepSMs is an optimisation problem. Therefore a
key goal is to construct a loss function that balances optimising the bound with
minimising constraint violation.

After this program-aware algorithm for ISMs is developed, it is adapted to give
a program-agnostic algorithm. Afterwards, it is shown how these ideas can be ex-
tended from ISMs to RepSMs, and program-aware and program-agnostic algorithms
for this structure are also introduced.

25



3.1 Parametric Template
This section begins the development of program-aware synthesis of ISMs. Like
previous methods for constructing martingales, the structure of the martingale is
fixed to a particular template. The problem is then to select parameters to create a
martingale from that template. The choice of template is, therefore, a key attribute
in the design of the algorithm, since it constrains the space of functions that can be
learnt.

A limitation of previous methods is the use of a linear template. A natural
starting point for this project is the sum of ReLU (SOR) template, seen earlier.
These correspond to neural networks with one hidden layer.

η(x) =
h∑

i=1
ReLU

|Vars|∑
j=1

Wi,jxj + bi


One nice property of this template is that the function is nonnegative, ensuring

that this condition does not need to incorporated into the loss function. Further-
more, it can be seen that this template subsumes the linear template. Any linear
function, that is a valid ISM, can be trivially encoded into this template.

Furthermore, this template can encode ISMs for probabilistic programs, where
a linear template is insufficient. An example of such an ISM is given below.

η(red, blue, error) = max (0.0025red, 0) + max (0.0025blue, 0) + max(error, 0)

This martingale can be used for the faulty marble collector in Chapter 1. The reason
that this template is effective in this example is that it constructs functions that are
piecewise. In this martingale, branching occurs on the conditions red > 0, right > 0
and error = 0, leading to a piecewise function with eight cases.

To reason about piecewise functions more formally, we say that a function
f : Rn → R is continuous piecewise linear (PWL), if there is a finite number of
closed sets, whose union is Rn, and f is affine over each set. PWL functions are
straightforward to grasp in the one-dimensional case; they are functions made of a
finite number of line segments. An example of this is given in Figure 3.2.

We have found that many programs that cannot be handled by linear templates
can be verified with nonnegative PWL functions. This is because the piecewise
structure allows conditional behaviour in the probabilistic program to be mirrored
in the martingale. This is especially the case, when disjunctions and conjunctions
are involved.

While all SOR functions are nonnegative PWL, there are PWL functions that
cannot be encoded as SOR functions. This is a corollary of the following result.

Proposition 4. All SOR functions are convex.

A nonconvex PWL such as in Figure 3.3 cannot be represented as a SOR func-
tion. Therefore, we would like to find a template that is capable of representing all
nonnegative CPWL functions. To do this, we define a more general ReLU neural
network.
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Figure 3.2: Example of a one-dimensional PWL function

A ReLU neural network with k hidden layers, layer sizes n1, . . . , nk, and affine
transformations T1 : Rn1 → Rn2 , . . . , Tk : Rnk → R is defined as:

f = Tk ◦ ReLU ◦ Tk−1 ◦ . . . ◦ ReLU ◦ T1

Theorem 5 (Arora, Basu, Mianjy, and Mukherjee [2016]). A function f : Rn → R
can be computed by a ReLU neural network iff f is PWL.

While ReLU neural networks are capable of encoding PWLs, we are only inter-
ested in nonnegative PWLs. We therefore use the following template.

f = Sum ◦ ReLU ◦ Tk ◦ ReLU . . . ◦ ReLU ◦ T1

Here Sum : Rn → R is a function that sums up the individual components.

Sum(x) =
n∑

i=1
xi

This ensures that the network is nonnegative. Note, that this is actually a general-
isation of the SOR template, allowing it to have more than one hidden layer.

One problem is that ReLU is a non-smooth function. As discussed earlier, the
straightforward solution is to use softplus as an approximation in training. However,
this poses a problem with ISMs. ISMs learn a function that gives a probability
bound. Probabilities fall in the interval [0, 1], and the softplus function is not a
good approximation in this small interval. Our experiments haven shown that this
makes it very difficult to learn an ISM.

The solution is to learn a function that produces scaled probabilities. Rather
than learning a function that gives a probability bound p, the method learns a
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Figure 3.3: Example of a one-dimensional nonconvex PWL function

function that produces βp. The scaled probabilities fall in the interval [0, β], and
for large values of β, softplus produces better approximations, and this leads to the
method performing much better. In this project, β = 1000 was used.

While this general ReLU template was used for almost all examples in this
project, there was one example which used the sum of squares (SOS) template,
shown below. This will be expanded upon later.

η(x) =
h∑

i=1

|Vars|∑
j=1

Wi,jxj + bi

2

To conclude, this section has identified the class of nonnegative PWL functions
to construct ISMs from. This class of functions represents a concrete improvement
over the both linear templates and SOR templates. Further, these functions can be
represented as neural networks, and have smooth approximations.

3.2 Loss Function
This section continues the development of the program-aware synthesis of ISMs.
Having identified a neural template for these martingales, this section introduces a
loss function to fit the parameters for this template. Recall that ISMs must satisfy
the following two conditions.

• Non-increasing condition: η(x) ≥ Xη(x) for all x ∈ I ∩ P

• Indicating condition: η(x) ≥ 1, for all x ∈ I \ P
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However, as mentioned we wish to learn a scaled ISM. So the indicating condition
becomes η(x) ≥ β. Notice that the non-increasing condition applies to the safe states
I∩P , and the indicating condition applies to unsafe states I \P . So each data point
in the training data is relevant to only one condition. If a data point is safe, then
we want to apply a penalty if η(s) is less than Xη(s). Otherwise if a data point is
unsafe, we want to apply a penalty if η(s) is less than β.

A starting point is the following loss function. Note that P is the training
dataset.

L(η) = 1
|P|

∑
x∈P

ReLU
Xη(x)− η(x) x ∈ I ∩ P

β − η(x) otherwise


The piecewise expression chooses whether η(x) ≥ β or η(x) ≥ Xη(x) is the

relevant condition for the data point. Then the ReLU function only applies a penalty
if the condition is actually violated. Furthermore, the penalty is linearly proportional
to the extent of the violation.

However, the quality of the ISM depends on the bound η(x0). It is trivial to
create an ISM η(x) = β, that is not useful, and this is what will happen with the
ISM above. The solution is to add an additional component η(x0), to encourage
the learning process to find martingales with lower bounds. The hyper-parameter
λbound controls how much priority is given to minimising the bound, relative to the
minimising constraint violation.

L(η) = 1
|P|

∑
x∈P

ReLU
Xη(x)− η(x) x ∈ I ∩ P

β − η(x) otherwise

+ λboundη(0)

Experiments have shown that the non-increasing condition is more difficult to
achieve, compared to the indicating condition. Therefore, the network learns better
when the loss function prioritises the non-increasing condition. This motivates the
following improvement to our loss function. The function is rewritten to use two
components Lsafe and Lunsafe. The hyperparameters λsafe and λunsafe are used to
prioritise the non-increasing condition.

L(η) = λsafeLsafe(η) + λunsafeLunsafe(η) + λboundη(0)

Then the functions Lsafe and Lunsafe handle the non-increasing condition and
indicating condition respectively.

Lsafe(η) = 1
|P|

∑
x∈P

x∈I∩P

ReLU(Xη(x)− η(x))

Lunsafe(η) = 1
|P|

∑
x∈P

x∈I\P

ReLU(β − η(x))

Note that the loss function uses Xη, the post-expectation of the martingale.
This function is computed as a symbolic expression, and embedded into the loss
function. This is why this method is an instance of program-aware synthesis, since
the structure of the program is used in learning. The exact method for constructing
Xη is discussed in Chapter 4.
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To improve learning it is helpful to make the loss function smooth, to avoid
the vanishing gradient problem. In fact, our method will actually use both non-
smooth and smooth versions of the loss function. Our choice of template makes it
straightforward to construct a smooth version of η(x). Despite this, it is not always
possible to construct a smooth version of Xη(x). In cases where it is, this is done
by taking the non-smooth η(x), computing the post-expectation Xη(x), and then,
from this expression, constructing the smooth version.

3.3 Synthesis of ISMs
This section finishes the development of the program-aware synthesis of ISMs. It
shows how the template and loss function devised in the previous sections can be
incorporated into an overall method for synthesising ISMs.

Like the neural synthesis of ISMs, a CEGIS architecture is used, involving the
interaction between a learner and a verifier. The first step is generating the initial
training data, by executing the probabilistic program. This can be done multiple
times, and each time execution occurs up to a maximum number of iterations. The
states discovered during these executions form the initial training data.

Then CEGIS iterations are performed. These consist of a learner using the
training data to produce parameters, and a verifier producing counterexamples.
There are two conditions that need to be satisfied, so counterexamples for both
conditions will be added to the dataset. Further, unlike in the neural synthesis of
RSMs, our method allows multiple counterexamples to be added.

3.3.1 Learning
These iterations can be split into three stages: a warm-up iteration; the main iter-
ations; a final iteration. The first iteration is the warm-up iteration. The rationale
for this iteration is that not many, if any, unsafe states will be present in the ini-
tial training data, if unsafe states occur rarely. Therefore, the warm-up iteration
compensates for this by learning a martingale from the initial training data, and
allowing unsafe states to be generated as counterexamples.

The difference between a warm-up iteration and a normal iteration, is that only
a small number of iterations are needed, and the learnt parameters are discarded
afterwards. After this, the main CEGIS iterations are performed. Several of these
iterations may be needed. Experimentation has found that finding parameters that
are perfect, and that produce no counterexamples, is difficult. So the goal of these
iterations is instead to find a set of parameters that produces a low number of
counterexamples, for each condition.

Then the goal is to move from parameters that is almost correct to parame-
ters that are perfectly correct. In [Abate et al., 2021c], this is addressed through
rounding. Many candidate martingales are generated by rounding the parameters
to various precisions. This method was considered in this project. A more advanced
method based on evolutionary algorithms was also considered. In this method,
candidate martingales would be generated by adding random noise. Then the can-
didates with the lowest number of counterexamples would be kept. This could be
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repeated for a number of rounds.
However, these methods were expensive in terms of computation, and even

though they were capable of finding valid martingales, they would not necessar-
ily produce good bounds. The method that is used in this algorithm, is instead to
have a special CEGIS iteration as the final part of the algorithm. In this iteration,
the parameters are saved at every 100 iterations. Then these parameters form the
set of candidate martingales. Then the candidate martingales are filtered to only
valid martingales. Finally, the martingale which produces the best initial bound is
chosen. Note that parameters could be saved more frequently than once every 100
iterations, but verifying martingales is expensive, so this would lead to an increased
runtime.

To improve the accuracy of the final CEGIS iteration, it uses a non-smooth loss
function, on the basis that the parameters found by the previous iteration should
be close to a valid martingale, so the vanishing gradient problem should not impede
the efficacy of this iteration.

3.3.2 Verification
One part of the algorithm, that is yet to be discussed, is the implementation of the
verifier. Consider the non-increasing condition η(x) ≥ Xη(x) for all x ∈ I ∩P . This
can be encoded as:

∀x ∈ S. (x ∈ I ∩ P ) =⇒ (η(x) ≥ Xη(x))

This can be checked by ensuring that the following SMT formula is unsatisfiable:

(x ∈ I ∩ P ) ∧ (η(x) < Xη(x))

To generate multiple counterexamples, it is necessary to change the formula, so that
previously found counterexamples are not found again. More precisely, the formula is
modified so that future counterexamples are not ‘too close’ to past counterexamples.
Suppose x(1), . . . , x(n) ∈ R|Vars| are the past counterexamples. Then the following
SMT formula is used:

(x ∈ I ∩ P ) ∧ (η(x) < Xη(x)) ∧
∧

1≤i≤n

 ∨
1≤j≤|Vars|

∣∣∣xj − x(i)
j

∣∣∣ ≥ δ


In other words, for each one of the past counterexamples, the next counterexample
must differ in at least one part of program state by δ. In this project, δ was set to
1.

One problem, that was found in a small number of probabilistic programs, was
that a valid martingale had to have zero in some of its parameters. However, it
is very difficult for a neural network to learn sparse models, where parameters are
exactly zero. Instead, parameters very close to zero will be learnt. This will lead to
the algorithm failing to learn a valid martingale. To handle this problem, a rounding
strategy was applied to certain problems, where parameters very close to zero, would
be rounded to zero before verification. This made it possible to successfully learn
martingales for these problems.
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3.4 Program-Agnostic Synthesis
Previously, the program-aware synthesis of ISMs was introduced. This section dis-
cusses certain drawbacks of this algorithm, and this motivates the development of
the program-agnostic synthesis of ISMs.

In the program-aware algorithm, a key detail is that the post-expectation Xη is
embedded into the loss function of the program. This has two major disadvantages.
The first is that the size of Xη will scale with the size of the program. This affects
the performance of the learning procedure. A second problem is that for learning
to be efficient, a smooth version of Xη needs to be used. However, even if η has a
smooth version, it might be difficult to find a smooth version of Xη. One reason
might be that Xη uses indicator functions.

An alternative to embedding Xη into the loss function, is computing an approx-
imation of Xη(x). This leads to a program-agnostic algorithm, which does not use
the structure of the program in learning. Instead for each state in the dataset, suc-
cessor states are sampled, by simulating the update statement of the loop. This
can be used to produce an estimate for Xη(x). Then the learning process does not
require a symbolic expression for Xη(x), and instead only requires data from execu-
tion traces. Hence, it is entirely data-driven. Note that, the Xη(x) is still required
in verification.

Let x′(1), . . . , x′(n) be the sampled successor states. In the neural synthesis of
RSMs, a standard Monte Carlo estimate is used to estimated Xη(x):

Xη(x) ≈ 1
n

n∑
i=0

η(x′(i))

However, there are some circumstances when this estimate is problematic. This is
when there are some regions of the state space that have an extremely low probability
of appearing as the successor state, but have a large impact on the value of Xη(x).
Consider the program below. In the update statement, the random variable p is
sampled from a Bernoulli distribution with a 0.001 probability of p = 0.

t = 1
error = 0
while t < 10:

assert(error 6= 1)
p ∼ Bernoulli(0.999)
if p == 1:

q ∼ Bernoulli(0.5)
if q == 1:

t = t + 1
else:

error = 1

The event p = 0, is an example of a rare event. The presence of rare events
mean that a conventional Monte Carlo estimate will have a high variance. This
estimate will be too inaccurate to be useful, unless an unreasonably large number
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of samples are used. This is especially problematic in the context of quantitative
safety properties, since these properties are typically used to bound the probability
of rare events.

To handle this complication, this project uses importance sampling to reduce
variance. Importance sampling allows samples to be drawn from a proposal dis-
tribution q(x), to compute properties of a target distribution p(x). In this case,
the target distribution is the original distribution that is specified in the proba-
bilistic program, and the proposal distribution is a new distribution that increases
the probability of rare events. The following derivation shows how this is achieved
concretely.

Ep[f(x)] =
∫
p(x)f(x) dx

=
∫
q(x)p(x)

q(x)f(x) dx

= Eq

[
p(x)
q(x)f(x)

]

To compute the expectation of f(x) under p(x), one can compute the expectation
of (p(x)/q(x))f(x) under q(x). In other words, samples from the q(x) are weighted
by the ratio p(x)/q(x). This is called the likelihood ratio.

This is implemented in our project as follows. A parameter to the program-
agnostic algorithm is any random variables, which should be sampled with an al-
ternative distribution. For instance, in the program above Bernoulli(0.999) could be
replaced with Bernoulli(0.9).

Note that, this is only required in certain cases. For other cases, no random vari-
ables will need to be given an alternative distribution. Simulation will now produce
samples x′(1), . . . , x′(n) together with corresponding likelihood ratios l(1), . . . , l(n). A
weighted average is then used to approximate the post-expectation.

Xη(x) ≈ 1
n

n∑
i=0

η(x′(i))l(i)

To conclude this section, a variation of the program-aware algorithm has been
introduced, that does not require embedding Xη into the loss function.

3.5 Synthesis of RepSMs
Previously, the synthesis of ISMs has been developed. This section extends these
ideas to develop a method for synthesising RepSMs. Recall that a repulsing super-
martingale must satisfy the following conditions.

1. Decreasing condition: Xη(x) ≤ η(x)− ε for all x ∈ I ∩ P

2. Lower bound condition: η(x) ≥ 0 for all x ∈ I \ P

3. Bounded differences condition: |η(Xt+1)− η(Xt)| ≤ c
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4. Initial state condition: η(x0) < 0

The template used is the negation of a ReLU neural network. This function will
either produce a negative value or zero. This allows the lower bound condition to be
satisfied for unsafe states. It also allows safe states to have negative values, which
is necessary for the initial state condition and the decreasing condition.

Notice that the decreasing condition is relevant for only safe states, and the lower
bound condition is relevant for unsafe states. This is a similar situation to ISMs.
Therefore, a loss function is used, with separate components for the safe and unsafe
states.

L(η) = λsafeLsafe(η) + λunsafeLunsafe(η)
The function Lsafe focusses on ensuring the decreasing condition, by penalising

safe states which do not decrease by ε in expectation. Like ISMs, there are program-
aware and program-agnostic variations of the RepSM synthesis algorithm. In the
program-aware algorithm, the exact symbolic expression for Xη is used. In the
program-agnostic algorithm, sampling is used to produce an estimate.

Lsafe(η) = 1
|P|

∑
x∈P

x∈I∩P

ReLU(Xη(x)− η(x) + ε)

The function Lunsafe focusses on ensuring the lower bound condition, by penalis-
ing unsafe states that are negative.

Lunsafe(η) = 1
|P|

∑
x∈P

x∈I\P

ReLU(−η(x))

Similar to ISMs, we do not simply want a valid RepSM but one which produces
a tight bound. To do this, the loss function is modified to encourage RepSMs which
give lower bounds. Recall that the bound for the RepSM is given as follows:

α
γA

1− γ

Where:

α = exp
(

εm0

(c+ ε)2

)

γ = exp
(
− ε2

2(c+ ε)2

)
A = d|m0|/ce
m0 = η(0)

This was a difficulty in the linear synthesis of RepSM, since this bound was
non-linear. Notice that the bound is determined by ε, c and m0. RepSMs can be
arbitrarily rescaled, so we set ε = 1. Then one way to incorporate the bound into
the loss function is to add c and m0 as their own components.

L(η) = λsafeLsafe(η) + λunsafeLunsafe(η) + λcc+ λm0m0
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It was found that this is an unsatisfactory solution, as the bound found was
overly sensitive to the balance between λc and λm0 . This motivated a different
approach, which is to effectively embed the bound directly into the loss function.

However, this is problematic owing to the definition of A, since it uses the ceil
function which is not smooth, and prevents gradients from being propagated. To
address this, the bound is turned into an overestimate, by removing the ceil function.
In other words, A becomes |m0|/c. To see that this produces an overestimate, note
that γ < 1. Another concern might be that the exp function leads to issues with
numerical stability. However, in practice this was not found to be an issue.

By incorporating the bound into the loss function, this also takes care of the
initial state condition η(x0) < 0. By encouraging lower bounds, this will encourage
lower values of η(x0).

L(η) = λsafeLsafe(η) + λunsafeLunsafe(η) + λbound

(
α

γA

1− γ

)

One question that remains is how to compute c, the maximum difference in
the martingale over one time step. This is needed for both learning to use in the
loss function, and verification to ensure that the bounded differences condition is
satisfied. The computation of c differs depending on whether the program-aware or
the program-agnostic algorithm is used.

In the program-aware algorithm, a symbolic expression for c is required as an
input. This can be then be embedded in learning and verification. In the program-
agnostic algorithm, c is estimated. First, the largest difference between a state
and a sampled successor state is found. Then a small constant is added to be
safe. This value is used as c. However, to ensure that the loss function is smooth,
the largest difference between a state and a sampled successor state is actually
approximated with the LogSumExp function, which is a smooth approximation of
the max function. It is a generalisation of softplus.

LogSumExp(x1, . . . , xn) = log(exp(x1) + . . .+ exp(xn))

In verification, there are four conditions to consider. When generating counterex-
amples, only the decreasing and lower bound conditions are used. These conditions
are converted to SMT formulae, in the same way that the conditions for ISMs are.

The bounded differences and initial state conditions are only checked at the
end. The initial state condition η(x0) < 0 does not need to handled by an SMT
solver, and can be checked by computing η(x0). The bounded differences condition
|η(Xt+1)− η(Xt)| ≤ c states that the martingale does not change by more than c in
a time step. This can be encoded as the following SMT statement.

∀x, x′ ∈ S. (T (x, x′) ∧ (x ∈ I ∩ P )) =⇒ |η(x)− η(x′)| ≤ c

The predicate T (x, x′) holds only if x′ is a possible successor state of x. The con-
struction of T (x, x′) is discussed in Chapter 4. This formula can be checked, by
ensuring the following quantifier-free statement is unsatisfiable.

T (x, x′) ∧ (x ∈ I ∩ P ) ∧ |η(x)− η(x′)| > c
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To conclude this section, a method for the synthesis for RepSMs has been developed.
This has similarities with the method for ISMs such as the structure of the loss
function, and differences such as using an overestimate for the bound. Additionally,
a key difference between the program-aware and program-agnostic algorithms is how
the value c is computed.
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Chapter 4

Implementation

4.1 Introduction

4.1.1 Probabilistic Programming Language
The methods described in the previous chapter are implemented in a tool, pro-
grammed in Python. The syntax for the probabilistic programming language used
by the tool is described below. Note that x stands for a variable, N stands for a
real number.

Atom ::= x | N
BinOp ::= + | − | ∗ | < | ≤ | > | ≥

Dist ::= Bernoulli(E) | Uniform(E,E) | Gaussian(E,E) | . . .
Expr ::= Atom | Expr BinOp Expr | − Expr
Stmt ::= x = Expr | x ∼ Dist | if (Expr) {Block} else {Block} |

while (Expr) {Block}
Block ::= Stmt;Block | Empty

The implementation of the language is standard, and hence described only briefly.
The abstract syntax tree described above is encoded with algebraic data types,
with the dataclasses and typing packages. The Lexer component reads a stream
of characters, and isolates them into tokens, using regular expressions. The Parser
component converts the stream of tokens into an abstract syntax tree. The parser
is a recursive descent parser. In addition, it uses precedence climbing to handle
expressions. This is described in the pseudocode below.

function parseExpression(currentPrecendence)
result = parseAtom()
while token is BinOp and precendence > currentPrecendence:

rhs = parseExpression(currentPrecendence + 1)
result = buildBinOpNode(operator=token, lhs=result, rhs=rhs)

return result
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Several components that operate on the abstract syntax tree, do so through a
combination of recursion and pattern matching. One of these is the TypeChecker
component. This ensures that the program well-typed. In addition, it builds up a
symbol table, and ensures identifiers are defined before being used. It also makes
sure that program is a single-loop program.

4.1.2 Learning and Verification
The loss functions and martingales are implemented with the Jax library [Bradbury
et al., 2018]. Training is implemented with the Adam optimiser from the Optax
library [Kingma and Ba, 2017; Hessel et al., 2020]. The Z3 library is used for SMT
solving to verify candidate martingales [De Moura and Bjørner, 2008].

An Interpreter component has two functions. Firstly, it is responsible for ex-
ecuting the probabilistic program to generate initial training data. Secondly, in
the program-agnostic algorithms it is responsible for generating successor states, to
estimate the post-expectation of the martingale.

An Analysis component is responsible for computing the post-expectation of
martingales. This is needed for program-aware algorithms and for verifying candi-
date martingales. This component is described in further detail in its own section.
This is implemented with the SymPy library [Meurer et al., 2017].

A ReachabilityAnalysis component is responsible for generating an SMT predi-
cate T that is used when verifying the bounded differences condition for RepSMs.
The SMT predicate T (x, x′) holds only when x′ is reachable from x in a single time
step. This is also discussed in further detail later.

There is a function translateToJax that converts a SymPy expression into Jax
code that can be JIT compiled. Additionally, there is a function translateToZ3 that
converts a SymPy expression into a Z3 expression, which is used when verifying
candidate martingales.

4.1.3 Additional Components
This tool also implements baseline methods for the synthesis of ISMs and RepSMs
using linear programming, as described in Chapter 2. This reuses some of the
components that have been discussed, and uses the Pulp library to solve linear
programs [Mitchell et al., 2011]. This tool also includes a Formatter component,
which is used to typeset programs into LATEX, as used in this report.

4.2 Symbolic Inference

4.2.1 Motivation
This section introduces the Analyser component, which plays a key role in gener-
ating martingales. This class is responsible for computing a symbolic expression
for the expectation of the martingale after the update statement of the loop has
executed, i.e. E[η(Xi+1) | Xi = x], where η is a template for a martingale. This task
is called symbolic inference, and the goal is to produce a probability distribution
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conditioned on the program state at the beginning of the loop. This is needed for
performing verification using an SMT solver, and also for training in the program-
aware algorithms.

The state-of-the-art for this task is the algorithm presented in [Gehr et al., 2016].
The original implementation of the algorithm is found in the tool PSI. Rather than
reusing the original implementation, a new implementation was written in Python
for this project. This implementation follows the basic approach of PSI closely, but
does not aim to be a perfect recreation of the PSI tool. There were multiple reasons
motivating a new Python implementation, rather than simply reusing the PSI tool.

Firstly, the PSI tool was written in the D programming language. Interacting
with this tool from Python, would require a clunky translation layer, that encodes
the problem into a format comprehensible to PSI, and decodes the response from
PSI’s format.

Secondly, the reimplementation is based on the widely used SymPy computer
algebra system (CAS). Building on top of a CAS meant that a lot of the func-
tionality in PSI did not have to reimplemented. For instance, functions to perform
basic algebraic simplifications or integrate continuous terms are provided by SymPy.
Owing to the significant effort that has been put into SymPy’s development, these
parts of SymPy are well-developed. Further, SymPy is written in Python making it
effortless to interface with.

It is useful to compare our method for symbolic inference, with approaches used
in other tools for synthesising martingales. Most previous work has used linear
templates, which makes computing the post-expectation trivial, since linearity of
expectation can be applied. In Abate et al. [2021c], symbolic store trees were used
to handle discrete distributions. Then, ad-hoc methods were used to handle con-
tinuous distributions, such as moments. The PSI algorithm is more general than
these approaches, and can handle a wider range of probabilistic programs. It is
not a complete method, since this would require solving every conceivable symbolic
integral. Nonetheless, it is a consequential improvement.

4.2.2 Overview
This sections gives an overview of the symbolic inference algorithm. Recall that the
algorithm will be applied to the update statement of a loop. Further note that some
variables will be part of the program state, i.e. exist before the update statement
begins, whereas other transient variables will be defined locally within the loop.

To elucidate the symbolic inference algorithm, the following example will be
used. In this example, x is either incremented by 2 or decremented by 1, with equal
probability. Note that x is part of program state, and is defined beforehand, while
p is a local to the block.

p ∼ Bernoulli(0.5)
if p == 1:

x = x + 2
else:

x = x− 1
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We wish to consider the post-expectation of a martingale η with respect to this
update statement. The first step is to distinguish different assignments to the same
variable by giving them indices. This is shown below.

p0 ∼ Bernoulli(0.5)
if p0 == 1:

x1 = x0 + 2
else:

x2 = x0 − 1
join {(x1, x2) 7→ x3}

Note that, x0 is the only identifier, that refers to a value defined outside of the
block. Also observe that the if statement is decorated with some additional infor-
mation indicated by the join keyword. In particular, the if statement is associated
with a set of triples of the form (x, x′) 7→ x′′. This means that after the if statement
x′′ refers to x or x′ depending on whether the if block or the else block was executed.

After the code is converted to this form, the encode algorithm will build a joint
PDF, in a step-by-step fashion. It starts with the first line, where p0 is sampled
from a Bernoulli random variable. This produces the following PDF.

δ(p0 − 1)
2 + δ(p0)

2
The Dirac delta distribution δ(x) is a way of giving PDFs to discrete distribu-

tions. δ(x− a) can be thought of as a function that is zero, unless x = a where it is
infinite. It has the property that:∫ ∞

−∞
f(x)δ(x− a) = f(a)

Returning to the PDF for p0, the first summand can be interpreted to say that
there is a 0.5 probability that p0 − 1 = 0, i.e. p0 = 1. Then the second summand
can be interpreted to say that there is a 0.5 probability that p0 = 0.

Next the assignments x1 and x2 will be translated PDFs.

δ(x1 − x0 − 2)
δ(x2 − x0 + 1)

The first PDF corresponds to the assignment x1 = x0 + 2, and the second PDF
corresponds to the assignment x2 = x0 − 1.

These two PDFs need to be reduced to a single PDF for the if statement. To do
this first the join mapping (x1, x2) 7→ x3 is incorporated. This changes the PDFs to
the following form.

δ(x1 − x0 − 2)δ(x3 − x1)
δ(x2 − x0 + 1)δ(x3 − x2)
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Note that, x3 is now present in both PDFs. This means that the variables that
do not exist outside the if statement, i.e. x1 and x2, can be marginalised out. This
leads to the following PDFs.

δ(x3 − x0 − 2)
δ(x3 − x0 + 1)

Finally these two PDFs are combined to obtain the following piecewise function.
This completes the PDF for the if statement.δ(x3 − x0 − 2) if p0 = 1

δ(x3 − x0 + 1) otherwise

Now the PDF for p0 and the PDF for the if statement are multiplied together,
to get a PDF for the entire block of code. This gives P[p0, x3 | x0].

(
δ(p0 − 1)

2 + δ(p0)
2

)δ(x3 − x0 − 2) if p0 = 1
δ(x3 − x0 + 1) otherwise


This finishes the construction of the joint PDF. Now, suppose the martingale η,

whose post-expectation we wish to find, is defined as follows.

η(x) = wx+ b

Then the expression η(x3) is multiplied with the PDF. This gives the following
expression for P[p0, x3| x0]η(x3).

(wx3 + b)
(
δ(p0 − 1)

2 + δ(p0)
2

)δ(x3 − x0 − 2) if p0 = 1
δ(x3 − x0 + 1) otherwise


The final step is to marginalise the variables p0 and x3 out. This gives the

following value for E[η(x3)| x0], i.e. the post-expectation.

wx0 −
w

2 + b

Thus, post-expectations can be computed through a combination of the encode
and marginalise algorithm. Note that, marginalise is used in two ways. It is used
in encode to handle if statements. If is also used after encode to compute the post-
expectation from the joint PDF. The algorithms have the following type signatures,
with Vars referring to the set of variable identifiers.

encode : Block→ PDF
marginalise : P(Vars)× PDF→ PDF

Subsequent sections will discuss these two algorithms in greater depth.
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4.2.3 Producing a Probability Density Function
In this section, the encode algorithm is explained more formally. The algorithm is
built from the encodeStmt helper function.

encodeStmt : Stmt→ PDF

Pseudocode for the assignment cases of the helper function is given below. The
double square brackets indicate that its contents should be treated as an abstract
syntax tree.

encodeStmt(x = y) = Jδ(y − x)K
encodeStmt(x ∼ Bernoulli(p)) = Jpδ(x− 1) + (1− p)δ(x)K

encodeStmt(x ∼ Uniform(a, b)) =
t

1
b−a

if a ≤ x ≤ b

0 otherwise

|

encodeStmt(x ∼ Gaussian(µ, σ)) =
s

1
σ
√

2π
exp

(
x− µ
σ

){

When sampling from a Bernoulli random variable, the density function for the
distribution is encoded with deltas. For continuous random variables, the standard
PDF can be used. For deterministic assignments, a delta is also used.

The encodeStmt case for if statements is more involved. Two PDFs are con-
structed for the if and the else blocks. The join mapping J is then applied to
both PDFs by multiplying them with a delta for each element. After this the local
variables assigned in the blocks can be marginalised. Finally, the two PDFs are com-
bined in a piecewise expression. The helper function localVars(b) returns variables
that are assigned in the block b.

encodeStmt(if (c) {b1} else {b2} join J) =
tpdf1 if c

pdf2 otherwise

|

where pdf1 = marginalise
localVars(b1), encode(b1) ·

t ∏
(x,x′)7→x′′∈J

δ(x− x′′)
|

pdf2 = marginalise
localVars(b2), encode(b2) ·

t ∏
(x,x′)7→x′′∈J

δ(x′ − x′′)
|

Finally the definition of encode is given. This goes through each statement in a
block to construct a combined PDF.

encode(Empty) = J1K
encode(s; b) = Jpdf1 · pdf2K
where pdf1 = encodeStmt(s)
where pdf2 = encode(b)
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This concludes the description of the encode algorithm. This is used to compute
an expression of the form P[x1, x2, . . . | y1, y2, . . .], where xi are variables introduced
in the block of code, and yi are variables that existed before the block of code.
After the joint PDF is constructed, it can be combined with the martingale and
marginalised to produce the post-expectation.

4.2.4 Solving Delta Integrals
This section explains the marginalise algorithm in more detail, explaining how it
handles integrals involving delta expressions. The goal of marginalisation is to re-
move a variable from a joint PDF, or the product of a joint PDF and a martingale.
This is done with integration, and the problem can be formulated as follows, where
xi is to be marginalised out of the expression f(x1, . . . , xn).∫ ∞

−∞
f(x1, . . . , xn) dxi

The method to handle this integral, depends on if the expression f(x1, . . . , xn) con-
tains a delta. This section focusses on the case where it does, using examples from
earlier in the chapter. Consider the following integral.∫ ∞

−∞
δ(x1 − x0 − 2)δ(x3 − x1) dx1

Here the variable of integration is x1. This can be handled by noting that a factor
in this expression is a delta expression that includes the variable x1, i.e. δ(x3− x1).
Then the expression x3 − x1 = 0 can be rearranged to obtained x1 = x3, which can
be substituted to get the following:

δ(x3 − x0 − 2)

A more complex example is given below, where the variable of integration is p0:∫ ∞
−∞

(wx3 + b)
(
δ(p0 − 1)

2 + δ(p0)
2

)δ(x3 − x0 − 2) if p0 = 1
δ(x3 − x0 + 1) otherwise

 dp0

This expression is also a product, but there is no factor which is a delta expression
involving p0. However, there is a factor which is a sum of delta expressions involving
p0. So, this sum can be expanded, leading to:

∫ ∞
−∞

(wx3 + b)δ(p0 − 1)
2

δ(x3 − x0 − 2) if p0 = 1
δ(x3 − x0 + 1) otherwise


+ (wx3 + b)δ(p0)

2

δ(x3 − x0 − 2) if p0 = 1
δ(x3 − x0 + 1) otherwise

 dp0

Then linearity of integration can be applied, and each summand can be marginalised
separately leading to:

(wx3 + b)δ(x3 − x0 − 2)
2 + (wx3 + b)δ(x3 − x0 + 1)

2
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This section has shown how to handle integrals that contain deltas. This is suf-
ficient for programs which use discrete random variables. However, programs which
use continuous random variables will require continuous terms to be integrated, i.e.
integrals without deltas.

4.2.5 Solving Continuous Integrals
This section addresses how to integrate continuous terms. To do this, the following
example will be used, which mixes discrete and continuous distributions. In this
piece of code, error is set to 1, with probability 0.001. Otherwise, t is incremented
with a value sampled uniformly from [0, 1].

p ∼ Bernoulli(0.999)
if p == 1:

q ∼ Uniform(0, 1)
t = t + q

else:
error = 1

Assigning indices to the different variable assignments gives:

p0 ∼ Bernoulli(0.999)
if p0 == 1:

q0 ∼ Uniform(0, 1)
t1 = t0 + q0

else:
error1 = 1

join {(t1, t0) 7→ t2, (error0, error1) 7→ error2}

The following martingale η will be used.

η(error0, t0) = max(0, b+ error0werror + t0wt)

The first step is to compute:

η(t2, error2)P(t2, error2, p0 | t0, error0)

After this, the next step is marginalising out error2 and p0, which gives:

η(t2, error2)P(t2 | t0, error0)

This program leads to long expressions for the joint PDF, so the intermediate
expressions are omitted. After these steps the result is:

999
1000

1 for t0 − t2 ≥ −1 ∧ t0 − t2 ≤ 0
0 otherwise

max (0, b+ error0werror + t2wt) +

1
1000δ (−t0 + t2) max (0, b+ t2wt + werror)
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There is one variable left to be marginalised out, t2. Linearity of expectation
can be applied, so we will concentrate on the left summand. Further, we will ignore
constant factors. The integral is as follows.∫ ∞

−∞

1 for t0 − t2 ≥ −1 ∧ t0 − t2 ≤ 0
0 otherwise

max (0, b+ error0werror + t2wt) dt2

Note that this term contains does not contain any delta, so it is a continuous
integral. Also note the presence of a piecewise expression and a max operator which
can be difficult to handle.

The first step is introducing indicator expressions. Both the piecewise expressions
and the max function are replaced with Iverson brackets. This gives the following
integral. ∫ ∞

−∞
(b+ error0werror + t2wt) [b+ error0werror + t2wt ≥ 0]

[t0 − t2 ≥ −1 ∧ t0 − t2 ≤ 0] dt2
Once this has been done, the Iverson brackets need to linearised, so that the only

Iverson brackets (containing t2) are of the form t2 ∼ e, where ∼ is a comparison
operator, and e is an expression. For the second Iverson bracket, this is accomplished
by splitting the conjunction, to obtain two new Iverson brackets.

[t0 − t2 ≥ −1 ∧ t0 − t2 ≤ 0] ≡ [t0 − t2 ≥ −1][t0 − t2 ≤ 0]
≡ [t2 ≤ t0 + 1][t2 ≥ t0]

The first Iverson bracket is more challenging.
[b+ error0werror + t2wt ≥ 0] ≡ [t2wt ≥ −b+ error0werror]

This partially improves the situation. The difficulty is that the result of dividing
by wt depends on its sign. The solution is to do case analysis based on whether
wt is positive, negative or zero. The Iverson bracket can be split into three cases
depending on whether wt is positive, negative or equal to 0.

[t2wt ≥ −b+ error0werror] ≡ [wt > 0]
[
t2 ≥

−b+ error0werror

wt

]

+ [wt < 0]
[
t2 ≤

−b+ error0werror

wt

]
+ [wt = 0][0 ≥ −b+ error0werror]

Applying guard linearisation leads to the following expression.∫ ∞
−∞

(b+ error0werror + t2wt) [t2 ≥ t0][t2 ≤ t0 + 1][wt = 0]

[0 ≥ −b− error0werror] + (b+ error0werror + t2wt)

[t2 ≥ t0][t2 ≤ t0 + 1][wt > 0]
[
t2 ≥

−b− error0werror

wt

]
+

(b+ error0werror + t2wt) [t2 ≥ t0][t2 ≤ t0 + 1]

[wt < 0]
[
t2 ≤

−b− error0werror

wt

]
dt2
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Linearity of integration can be applied, so we will consider the second summand.∫ ∞
−∞

(b+ error0werror + t2wt) [t2 ≥ t0][t2 ≤ t0 + 1]

[wt > 0]
[
t2 ≥

−b− error0werror

wt

]
dt2

It is now possible to take advantage of the linearised Iverson brackets, to refine
the integration bounds. Note that there are two lower bounds on t2, and one upper
bound. The upper bound is t0 + 1. The two lower bounds are combined to produce:

l = max
(
t0,
−b− error0werror

wt

)

This produces the following integral:

[wt > 0][l < t0 + 1]
∫ t0+1

l
b+ error0werror + t2wt dt2

Note that the wt > 0 indicator has been pulled out of the integral, and the l < t0 +1
indicator has been added, since the expression should be 0 otherwise. Note the in-
tegrand is much simpler. Once integration bounds have been refined by introducing
indicators and performing linearisation, the integrals are given to SymPy’s integrate
function to finish the integration.

This concludes this section on symbolic inference. This algorithm is able to
handle a significantly wider range of combinations of martingales and probabilis-
tic programs, compared to previous methods used to synthesise martingales. For
instance, it can handle programs using the uniform distribution, combined with a
ReLU neural martingale.

4.3 Reachability Analysis
This section discusses the ReachabilityAnalysis component that is used when veri-
fying the bounded differences condition for RepSMs. Recall that in the synthesis of
RepSM the following logical formula is verified.

∀x, x′ ∈ S. (T (x, x′) ∧ (x ∈ I ∩ P )) =⇒ |η(x)− η(x′)| ≤ c

The goal is to ensure that the update statement can only change the value of the
martingale by at most c. To do this, the predicate T (x, x′) constrains which states
x′ are reachable after a single iteration of the loop. To illustrate the construction of
T , consider the following update statement.

p ∼ Bernoulli(0.999)
if p == 1:

q ∼ Uniform(0, 1)
t = t + q

else:
error = 1
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The first step is to add indices to the different variable assignments, so they can
be distinguished.

p0 ∼ Bernoulli(0.999)
if p0 == 1:

q0 ∼ Uniform(0, 1)
t1 = t0 + q0

else:
error1 = 1

join {(t1, t0) 7→ t2, (error0, error1) 7→ error2}

Then the code is analysed in a recursive step-by-step fashion. First the variable
p0 is translated, to obtain the following formula.

(p0 = 0) ∨ (p0 = 1)

Then if and else blocks are converted to the following formulae.

(q0 ≥ 0) ∧ (q0 ≤ 1) ∧ (t1 = t0 + q0)
error1 = 1

To combine these two formulae, first the join mapping is applied.

(q0 ≥ 0) ∧ (q0 ≤ 1) ∧ (t1 = t0 + q0) ∧ (t2 = t1) ∧ (error2 = error0)
error1 = 1 ∧ (t2 = t0) ∧ (error2 = error1)

Then these two formula are combined with a disjunction to produce a single
SMT formula for the if statement.

((q0 ≥ 0) ∧ (q0 ≤ 1) ∧ (t1 = t0 + q0) ∧ (t2 = t1) ∧ (error2 = error0)) ∨
(error1 = 1 ∧ (t2 = t0) ∧ (error2 = error1))

Then the SMT formula for p0 is combined with the SMT formula for the if
statement, to produce an SMT formula for the entire block of code:

((p0 = 0) ∨ (p0 = 1)) ∧
(((q0 ≥ 0) ∧ (q0 ≤ 1) ∧ (t1 = t0 + q0) ∧ (t2 = t1) ∧ (error2 = error0)) ∨

(error1 = 1 ∧ (t2 = t0) ∧ (error2 = error1)))

This formula shows how the program state before the loop body (t0, error0) re-
lates to the program state after the loop body (t2, error2). The procedure essentially
encodes the program as an SMT formula, replacing the probabilistic semantics with
nondeterminism.
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Chapter 5

Evaluation

The previous chapters have described the development and implementation of new
algorithms for synthesising ISMs and RepSMs. The goal of this chapter is to evaluate
these algorithms, by running them on a series of benchmarks. In particular, we are
interested in the following questions:

• Is our method able to verify quantitative safety for programs that are within
the scope of existing tools?

• Is our method able to produce useful results on programs that are out-of-scope
for existing tools?

• Does our method produce useful probability bounds in practice, and are those
bounds better or worse than those produced by existing tools?

• Is the time taken by our method reasonable, and is it better or worse than the
time taken by existing tools?

To compare our method against existing work, we run these benchmarks on an
implementation of Farkas’ lemma.

5.1 Case Studies

5.1.1 Creating Benchmarks
The benchmarks in this report have been created using two different patterns. The
first is the faulty pattern. This begins by taking an AST single-loop program. An
example of such a program is given below. There is a variable t initialised to 1, and
that increments by 1 in each iteration, with probability 0.5, until t = 10 is reached.

t = 1
while t < 10:

q ∼ Bernoulli(0.5)
if q == 1:

t = t + 1
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To turn this program into a quantitative safety benchmark, a very small proba-
bility of failure is added to each iteration. This is shown in the program below. A
Bernoulli random variable p is sampled, which determines if the program will fail.
To indicate failure, the variable error is set to 1.

t = 1
error = 0
while t < 10:

assert(error 6= 1)
p ∼ Bernoulli(0.999)
if p == 1:

q ∼ Bernoulli(0.5)
if q == 1:

t = t + 1
else:

error = 1

The goal is then to bound the probability of error = 1 ever being reached. This
transformation is applied to a range of single-loop programs, from existing literature
on qualitative termination [Chakarov and Sankaranarayanan, 2013; Abate et al.,
2021c]. Note that since the probability of an error occurring is so small, in these
programs importance sampling is required for program-agnostic synthesis.

The second method of creating benchmarks is the repulse pattern. This pattern
is already found in prior literature in ISMs and RepSMs [Chatterjee et al., 2016b,
2022]. In this pattern, the probabilistic program performs a random walk. An
example is given below. The variable x is initialised to 10. In each iteration, it is
either decremented by 2, or incremented by 1.

x = 10
while x ≥ 0:

p ∼ Bernoulli(0.5)
if p == 1:

x = x− 2
else:

x = x + 1

A certain region of the state space is designated as unsafe, e.g. x ≥ 100. Then
the goal is to bound the probability of reaching this unsafe region.

The difference between the two patterns, is that in the faulty pattern, it is pos-
sible to fail in every iteration. However, in the repulse pattern, the program moves
closer/further to the unsafe region as the program progresses. It is not possible to
move to the unsafe region in one time step from any state.

This difference affects which martingale structure is suitable to use for verifica-
tion. The faulty and repulse patterns can both be verified by ISMs. However, only
the repulse pattern is suitable to be verified by RepSMs. RepSMs for the faulty
pattern will produce the trivial bound. The reason for this is that c, the maximum
change in the value of the martingale in a single time step, plays a big role in the

49



bound generated by a RepSM. RepSMs for the faulty pattern will have a very large
value of c since it is possible to fail in a single time step, from any state.

Having explained these two patterns, now some of the benchmarks will be dis-
cussed to explain how they benefit from our method.

5.1.2 Faulty Varying
An example of a program that can be bounded with Farkas’ lemma, but that can be
given a better bound using our method is the following program. In this program,
t is initialised at 1. In each iteration, it is incremented by 1, with probability 0.5,
until t = 10 is reached. In this program, the probability with which error is set to
1 varies, based on the value of t. If t < 4, then the probability is 0.99, otherwise it
is 0.999.

t = 1
error = 0
while t < 10:

assert(error 6= 1)
if t < 4:

p ∼ Bernoulli(0.99)
else:

p ∼ Bernoulli(0.999)
if p == 1:

q ∼ Bernoulli(0.5)
if q == 1:

t = t + 1
else:

error = 1

Intuitively, the probability of failure is much lower once t = 5 is reached. How-
ever, a linear ISM cannot account for this, and therefore Farkas’ lemma produces
the same bound as if the probability of failure is always 0.99. By contrast, a neural
template with 2 ReLU components, can encode a piecewise branching on these two
cases. This gives a tighter probability bound than can be obtained with a linear
ISM. This is illustrated in Figure 5.1 which compares a linear ISM from Farkas’
lemma, and our neural ISM, when error = 0.

5.1.3 Faulty Regions
An example of a program that cannot be bounded with Farkas’ lemma, is shown
below. In this program, t is initialised to 10. In each iteration, t is either incremented
or decremented, while t remains in the region [1, 19]. In the region [1, 9], t is more
likely to be decremented towards 0. In the region [10, 19], t is more likely to be
incremented towards 20. As this is an instance of the faulty pattern, there is a small
probability in each iteration, that the program fails.
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Neural ISM

Figure 5.1: ISMs for faulty_varying where error = 0

t = 10
error = 0
while t > 0 and t < 20:

p ∼ Bernoulli(0.999)
if p == 1:

q ∼ Bernoulli(0.9)
if t < 10:

if q == 1:
t = t− 1

else:
t = t + 1

else:
if q == 1:

t = t + 1
else:

t = t− 1
else:

error = 1

A linear ISM doesn’t exist for this program. Intuitively, two different linear
ISMs are required. One for the region t < 10, and another for the region t ≥ 10.
A neural ISM effectively accomplishes this, as it can encode piecewise branching on
the condition t < 10.

The ISM when error = 0 is shown in Figure 5.2. Notice that this graph is
concave. It would be not be possible to encode an ISM for this program using the
SOR template; a two-layer ReLU network is necessary. Notably, this is first instance
of multi-layer neural networks being used in the analysis of probabilistic programs.
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Previous approaches have focussed on single-layer networks or regression trees.

0 2 4 6 8 10 12 14 16 18 20

0

0.01

0.01

0.02

Figure 5.2: The neural ISM for faulty_regions where error = 0

5.1.4 Persist 2D
An example of a program that cannot be solved with Farkas’ lemma is given below.

x = 10
y = 10
while x > 0 and y > 0:

p ∼ Bernoulli(0.5)
q ∼ Bernoulli(0.5)
if p == 1:

if x ≤ 100:
if q == 1:

x = x− 2
else:

x = x + 1
else:

x = x + 2
else:

if y ≤ 100:
if q == 1:

y = y− 2
else:

y = y + 1
else:

y = y + 2
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The program state performs a 2D random walk, starting at (10, 10). In each iteration
the program chooses a co-ordinate to change, with equal probability. There are then
two cases:

• If the co-ordinate is greater than 100, it is increased by 2.

• Otherwise, it is either decreased by 2, or increased by 1, with equal probability.

The program terminates, once one co-ordinate is below 0, and fails when both
co-ordinates are above 100. It is not possible to construct a linear RepSM. This
is because, there are safe states, where one co-ordinate is above 100, and another
co-ordinate is below 100. The RepSM must decrease by ε in expectation, but one
of the co-ordinates, will always increase by 2 when it is chosen. However, a neural
RepSM can branch on the cases where a co-ordinate is above 100, and ignore that
co-ordinate.

The neural RepSM for this program, synthesised by our algorithm, is shown in
Figure 5.3. Note that increasing either the x co-ordinate or the y co-ordinate will
increase the value of η(x, y) until 100 is reached, and then the function will plateau
(in that direction).

50
100 0

50

100
0

0

−200

−400

−600

x

y

η(x, y)

Figure 5.3: The neural ISM for persist_2d example

5.2 Results
This section shows the results of the benchmarks, and makes some observations
based on the data. These observations will be built upon in the next section, to give
a more thorough evaluation of our method.
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Neural ISM Farkas’ Lemma
Program-Agnostic Program-Aware

faulty_marbles ≤ 0.0468 ≤ 0.0373 -
faulty_unreliable ≤ 0.0508 ≤ 0.0393 -
faulty_probfact ≤ 0.0402 ≤ 0.0338 -
repulse_2d ≤ 0.1077 ≤ 0.0991 -
persist_2d ≤ 0.1230 ≤ 0.1085 -
faulty_regions ≤ 0.0447 ≤ 0.0155 -
faulty_varying ≤ 0.0918 ≤ 0.0869 ≤ 0.1819
faulty_concave ≤ 0.1321 ≤ 0.1290 ≤ 0.1819
fixed_loop ≤ 0.0095 ≤ 0.0094 ≤ 0.0091
faulty_loop ≤ 0.0190 ≤ 0.0185 ≤ 0.0181
faulty_rare ≤ 0.0023 ≤ 0.0021 ≤ 0.0019
faulty_uniform ≤ 0.0203 - ≤ 0.0181
faulty_gaussian ≤ 0.0505 ≤ 0.0440 ≤ 0.0181
faulty_easy1 ≤ 0.1067 ≤ 0.0844 ≤ 0.0801
faulty_ndecr ≤ 0.0819 ≤ 0.0604 ≤ 0.0561
faulty_walk ≤ 0.0152 - ≤ 0.0121
repulse ≤ 0.1080 ≤ 0.1079 ≤ 0.0991
repulse_uniform ≤ 0.1030 - ≤ 0.0991

Figure 5.4: Table comparing the bounds achieved when synthesising ISMs

Figure 5.4 shows the probability bounds obtained by synthesising ISMs for each
of the benchmarks. Benchmarks are split into three sections. The first section is
where both methods produce comparable results. The second section is where this
method produces significantly better results. The final section is where only this
method can produce results at all.

These values have been rounded up to four decimal places. There are columns for
program-agnostic synthesis, program-aware synthesis and Farkas’ lemma. Almost all
examples used the general ReLU neural network structure. The faulty_gaussian
example used a SOS neural template, owing to an inability to perform symbolic
inference of a ReLU martingale with a Gaussian distribution.

Note that, there are some empty values in the table, indicated by dashes. In
the case of program-aware synthesis, this is because the post-expectation cannot be
converted into a smooth expression to be embedded in the loss function. This meant
the algorithm could not be applied. In the case of Farkas’ Lemma, this is because
the algorithm failed to produce bounds for the program.

The first section of the benchmarks demonstrates that our method is capable of
producing useful results on programs that are out-of-scope for previous methods. As
expected, the program-aware algorithm produced better results, since it can compute
an exact value for the post-expectation. Interestingly, the difference between the
program-agnostic and program-aware methods is relatively small, around a single
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percentage point. An exception is faulty_regions, where the difference is three
percentage points. An explanation for this anomalous result it that this required a
two-layer neural network.

The second section of the benchmarks demonstrates that there are examples,
which Farkas’ lemma solves, but where our method can yield significantly better
probability bounds. For these two examples, the difference between the program-
aware and program-agnostic methods are slight.

The third section of the table consists of benchmarks, where our method and
Farkas’ lemma produced comparable results. The worst result is faulty_gaussian,
which is likely owing to its use of a SOS template. Apart from this example, the
difference between the program-aware synthesis and Farkas’ lemma is very small.
As expected, program-agnostic synthesis produces worse results. The size of the
difference varies in this section, from a negligible difference to about two percentage
points in faulty_ndecr and faulty_easy1.

Neural ISM Farkas’ Lemma
Program-Agnostic Program-Aware
Learn Verify Learn Verify

faulty_marbles 25.45 56.40 36.33 85.67 -
faulty_unreliable 25.81 62.29 37.27 79.37 -
faulty_probfact 10.09 15.82 10.68 9.67 -
repulse_2d 7.45 5.62 11.63 5.61 -
persist_2d 18.85 19.01 17.33 13.36 -
faulty_regions 16.08 11.66 26.01 12.77 -
faulty_varying 5.68 5.89 10.50 7.48 0.355
faulty_concave 19.73 18.36 20.84 16.42 0.393
fixed_loop 5.04 4.76 5.42 4.54 0.150
faulty_loop 6.05 4.69 5.48 4.87 0.164
faulty_rare 6.04 6.29 5.60 6.67 0.266
faulty_uniform 4.04 1.95 - - 0.340
faulty_gaussian 2.34 4.57 3.09 5.38 1.365
faulty_easy1 34.12 14.03 7.01 16.45 0.312
faulty_ndecr 13.25 9.57 13.05 8.72 0.329
faulty_walk 3.75 4.70 - - 0.314
repulse 6.46 8.22 3.79 7.46 0.186
repulse_uniform 4.39 4.31 - - 0.191

Figure 5.5: Table comparing the time taken when synthesising ISMs

Figure 5.5 shows the time taken for the different algorithms to synthesise ISMs.
Farkas’ lemma is unsurprisingly extremely fast, while our method is significantly
slower.

For the neural algorithms, the time taken is split into the time taken by the
learner and the time taken by the verifier. There is a correlation between the time
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taken by the learner and the verifier. This is unsurprising since each additional
CEGIS iteration will increase the time spent in both learning and verification.

More complex programs tend to require more CEGIS iterations, and therefore
more time, and this is shown by faulty_marbles and faulty_unreliable.

It is harder to compare the time taken by the program-agnostic and program-
aware algorithms. The time taken by the program-agnostic algorithms depends on
the number of samples. The time taken by the program-aware algorithms depend
on the complexity of the symbolic expression for the post-expectation. In some
cases, the program-agnostic algorithm is faster. In other cases, the program-aware
algorithm is faster.

Most benchmarks used 200 samples. faulty_regions used 1,000 samples, and
faulty_easy1 and faulty_probfact used 10,000 samples. Time was not spent
attempting to find an optimal number of samples. If program-agnostic synthesis
failed, the number of samples was simply increased by an order-of-magnitude until
successful results were achieved.

Figure 5.6 shows the bounds obtained for RepSMs. The results lead to conclu-
sions that are similar to those for ISMs. First, our method can synthesise RepSMs,
that are out-of-scope for previous methods. Moreover, both the program-agnostic
and program-aware methods perform well, with the difference in bounds produced
between the methods varying. Also, note that these benchmarks all appear in the
table for ISMs as well. The results show that RepSMs allow tighter bounds to be
synthesised.

Neural RepSM Farkas’ Lemma
Sampling No Sampling No Sampling

repulse_2d ≤ 0.0399 ≤ 0.0168 -
persist_2d ≤ 0.0175 ≤ 0.0159 -
repulse ≤ 0.0216 ≤ 0.0179 ≤ 0.0138

Figure 5.6: Table comparing the bounds achieved when synthesising RepSMs
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5.3 Discussion
This section builds upon the empirical results in the previous section to give an
overall discussion of the strengths and weakness of the method presented in this
report.

5.3.1 Comparison with previous work
A key strength of the method is that it can handle a wider variety of programs than
previous methods. This is clearly highlighted in the results from benchmarks. Con-
ditional statements, disjunctions and conjunctions are essential to programming,
and an effective method to verify probabilistic programs should be able to han-
dle them. Our method is capable of doing this, by using ReLU neural networks,
which correspond to piecewise linear functions. This is shown in faulty_marbles
and faulty_regions in a concrete and compelling way. Furthermore, this method
is even able to produce better bounds than Farkas’ lemma, in cases where both
methods can be applied, by exploiting a more general template.

A weakness of the method that has been highlighted is that our method is sig-
nificantly slower than Farkas’ lemma. Farkas’ lemma relies on linear programming,
and consequently benefits from the highly performant optimisation procedures that
have been developed for it. By contrast, our method attempts to solve a non-convex
and non-linear optimisation with gradient descent, and performs verification through
SMT solving. Having said all of this, all benchmarks were solved within a reasonable
amount of time, on standard hardware. Furthermore, the time taken is in line with
other machine learning methods for probabilistic programs [Abate et al., 2021c; Bao
et al., 2022].

One aspect to discuss is the quality of the bounds produced by our method.
While the bounds obtained by our method are not perfect, reasonable bounds were
obtained for all benchmarks. This demonstrates that neural methods are capable of
proving quantitative properties.

One weakness is that our symbolic inference algorithm cannot handle a Gaus-
sian distribution with a ReLU network. However, the fact an SOS template could
be used, highlights that the method can be applied to neural templates, that use
different activation functions.

Finally, there is significant potential to build upon this method to tackle the
verification of more challenging probabilistic programs.

5.3.2 Comparison between program-agnostic and program-
aware algorithms

The program-aware algorithm provided better bounds than program-agnostic algo-
rithm. While all program-agnostic bounds were reasonable, in a few examples, the
program-agnostic bound was multiple percentage points higher than the correspond-
ing program-aware bound.

An advantage of the program-agnostic algorithm is that by removing the re-
quirement to embed the post-expectation directly in the loss function, this makes
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it far more realistic to apply this method to more complex examples. Indeed, this
was demonstrated to an extent, through examples like faulty_uniform where the
post-expectation could not be transformed into a smooth function to be used in the
loss function.

One weakness of the program-agnostic algorithm is that rare events had to man-
ually handled, by specifying an alternative distribution for certain random variables,
so importance sampling could be used. On the other hand, this does demonstrate
that such rare events are not an obstacle to program-agnostic synthesis. Indeed, this
is the first machine learning approach to probabilistic programs that uses importance
sampling.

A weakness of the program-aware RepSM method is that it requires a symbolic
expression for the variable c to be given as input. While in these examples, it was
easy to find an expression for c, in more complex examples this is an unrealistic
requirement. This weakness is rectified in the program-agnostic method, which
uses execution traces to estimate the variable c. This further highlights how the
program-agnostic analysis is more appropriate for complex programs.

A point of interest is the difference in time taken between the program-agnostic
and program-aware algorithms. There were examples where the program-agnostic
algorithm was noticeably faster, such as faulty_marbles and faulty_regions.
However, there were also examples such as faulty_easy1, where the program-
agnostic examples took longer. This is closely related to the number of samples
needed to synthesise a martingale. There is scope for further investigation, regard-
ing the number of samples needed.
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Chapter 6

Related Work

Chapter 2 discusses the prior literature that this project builds upon. By contrast,
this chapter discusses related work more broadly.

6.1 Martingales
Previous work to synthesise RSMs, RepSMs and ISMs have been discussed in depth
in Chapter 2 [Chakarov and Sankaranarayanan, 2013; Chatterjee et al., 2016a,b,
2022]. The synthesis of lexicographic RSMs, a variation of RSMs that can be used
for nested loops, has been performed with linear programming [Agrawal et al., 2017].
Algebraic recurrence techniques have been used for the synthesis of RSMs [Moos-
brugger et al., 2021], although this method has similar limitations to the Farkas’
lemma approach.

Previous work has used martingales and similar structures to bound the expected
value of a variable in program state, when a probabilistic program terminates. This
variable can be interpreted as a reward or a cost [Ngo et al., 2018; Wang et al.,
2019]. This work has been extended to higher moments [Wang et al., 2021]. These
techniques uses linear and semidefinite programming for synthesis, unlike this work
which uses learning in a CEGIS architecture for synthesis.

6.2 Probabilistic Model Checking
A well-developed approach to reasoning about probabilistic systems is probabilis-
tic model checking [Kwiatkowska et al., 2010; Katoen, 2016]. A well established
probabilistic model checking tool is PRISM [Kwiatkowska et al., 2011]. This ap-
proach encodes properties using probabilistic extensions to temporal logics such as
LTL and CTL. Verification occurs through a combination of graph analysis and nu-
merical approximation. They can be applied to systems modelled as discrete-time
Markov chains (DTMCs), continuous-time Markov chains (CTMCs) and Markov
decision processes (MDPs). Probabilistic model checking is usually applied to finite
state spaces, whereas this work looks at programs with infinite state spaces, and
programs that combine discrete and continuous variables.
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6.3 Pre-Expectation Calculus
The weakest pre-expectation calculus is a formalism for reasoning about probabilis-
tic programs [Kozen, 1985; Morgan et al., 1996; McIver and Morgan, 2004]. It is
an extension of predicate transformer semantics for classical programs [Dijkstra,
1975]. The calculus relates expressions to their expected values after a program
runs. The pre-expectation calculus is connected to martingales, and this is studied
in Hark et al. [2020]. In order to reason about the weakest pre-expectations of loops,
invariants are used.

Recent work concentrates on automatically finding weakest pre-expectations.
Gretz et al. [2013] present a method where finding an invariant from a template is
reduced to first-order logic constraints, that are given to a constraint solver to han-
dle. Chen et al. [2015] use counterexample refinement and Lagrange interpolation
to find polynomial invariants. Wang et al. [2018] introduce a method for the static
analysis of probabilistic programs, based on algebraic structures. This method was
applied to generate linear invariants.

Most recently, a CEGIS-like method has been used to learn invariants [Bao et al.,
2022]. This work is similar to the work presented here in that it is a data-driven
approach using learning, uses a computer algebra system, and uses counterexamples
to explore the state space. One difference is that the work uses regression trees as
models, as opposed to neural networks. A limitation of this work is that it only
supports discrete distributions, whereas this work looks at probabilistic programs
using continuous distributions.

6.4 Dynamical Systems
CEGIS-based methods have been used to verify dynamical systems. Dynamical
systems are continuous-time systems, specified with differential equations. So far,
these methods have been applied to deterministic dynamical systems. CEGIS has
been used to verify stability for such systems by synthesising Lyapunov functions
with polynomial and neural templates [Ahmed et al., 2020; Abate et al., 2021a,b].
This is similar to proving qualitative termination, and RSMs can be seen as stochas-
tic analogues of Lyapunov functions. Further, safety has been verified with barrier
certificates [Jagtap et al., 2019; Peruffo et al., 2020].
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Chapter 7

Conclusion

This report began with the objective of integrating learning and verification to prove
quantitative safety properties. This chapter draws the report to a close, putting
the work achieved in the wider context. It begins with a summary of the major
contributions of the project, and an explanation of what distinguishes this work
from what has come before. Finally, some directions for future work are sketched
out.

7.1 Contributions
We develop the first machine learning method for the synthesis of ISMs and RepSMs
to solve the quantitative safety problem. This method uses ReLU neural networks
as templates to synthesise martingales. These martingales are learnt by optimising
a loss function using gradient descent over a training dataset of execution traces,
as part of a CEGIS architecture. The loss function balances minimising constraint
violation with minimising the bound.

Our method is more general than the state-of-the-art. Previous methods are
restricted to linear functions, while our approach synthesises PWL functions, which
are more expressive. This leads to a more general algorithm for synthesis, that can
be applied to a wider class of probabilistic programs. Our claim of generality is
supported by experimental results. Our method is capable of verifying probabilistic
programs, that cannot be handled by previous work. In addition to this, it can even
prove tighter bounds for programs, that can be handled by previous work.

In theory, our method is more scalable than previous approaches. This is be-
cause our method can be used in a program-agnostic manner. While the structure
of the program is essential in previous methods to compute the post-expectation,
our method can learn in an entirely data-driven process, using execution traces
to estimate the post-expectation. A program-agnostic learning framework has the
potential to make the verification of complex probabilistic programs more tractable.

Notably, this is the first machine learning method for the analysis of probabilistic
programs to use multi-layer networks. Additionally, it uses a symbolic inference
algorithm allowing it to handle a wider variety of probabilistic programs, compared
to previous methods.

It is worth noting some limitations of the method. There are no theoretical
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guarantees that our method will succeed in finding a bound within a given number of
CEGIS iterations. Furthermore, our method is more computationally expensive than
methods based on linear programming. Additionally, program-agnostic synthesis is
not as strong as program-aware synthesis, in terms of the quality of the bounds
produced. Nonetheless, we find that in practice our method produces useful results
over a wide range of examples.

7.2 Future Work

7.2.1 Reward Properties
One direction for future work is looking at other kinds of properties about proba-
bilistic programs. One type of property would be reward (or cost) properties, i.e.
the expected value of a variable when a program terminates. As discussed, this has
been considered before in the case of linear or polynomial templates. It would be un-
surprising if there are simple programs, that cannot be handled by those templates,
but that can be handled by PWL templates, as considered here.

7.2.2 Nondeterminism
Another area for future work is considering probabilistic programs with nondeter-
minism. This is where there is branching which is determined by a scheduler or a
policy that is external to the program. Then a martingale might bound the maxi-
mum or the minimum probability of reaching an unsafe state.

One approach to this is to compute (or approximate) the post-expectation under
every policy, and then use the policy that maximises or minimises constraint viola-
tion when computing the loss for each data point. This could be done with smooth
maximum function to improve learning.

An extension to this is policy synthesis which is to try to compute a policy that
minimises the probability of reaching an unsafe state. It is also natural to consider
a combination of reward properties and nondeterminism. Then one could consider
the policy that maximises reward.

7.2.3 Multiple Initial States
One area for future work is considering multiple initial states. There are two dif-
ferent semantics for this. Initial states could be determined probabilistically or
nondeterministically. In the probabilistic case, one approach would be to sample
initial states and then compute the average bound for the initial state. This could
then be incorporated into the loss function. In the nondeterministic case, one could
take the minimum or maximum bound in the loss function, assuming there are a
finite number of initial states.
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7.2.4 Model Expressiveness
A possible area for future work is exploring more expressive templates. This project
uses templates that can construct any PWL function. One extension might be
adding monomials e.g. x2 or xy2 as features to a neural network. Then a neural
network could learn a piecewise polynomial function.

Additionally, when it was possible to use RepSMs, they were able to produce
better bounds than ISMs. RepSMs use the exponential function to produce a bound,
and this suggests that an ISM template which has exponential-like behaviour, could
prove tighter bounds for these programs. A possible activation function might be
the sigmoid function. An SMT solver, that can handle transcendental functions,
such as dReal would likely have to be used in verification [Gao et al., 2013].
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