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Abstract

Virtual Reality (VR) and Augmented Reality (AR) technologies have

lifted the limitation of distance and opened a new approach for people

to perform collaborative tasks by bringing them together into a virtual

space. In situations such as construction work and archaeological excava-

tion where the cooperation depends on reality, we need to “teleport” peo-

ple into a “real” environment instead of the virtual space. It can be done

by recording and reconstructing the environment in real time and trans-

mitting it to the collaborators to view in virtual reality. In this thesis, we

will build a real-time VR teleportation application with two different com-

puter vision models: 3D point cloud reconstruction and Neural Radiance

Fields (NeRF). It will be the first time the 3D point cloud reconstruction

method and NeRF model get applied to a real-time VR application. We

will further improve upon the state-of-the-art model in the NeRF field by

applying application-specific optimization techniques that achieve better

training speed and model accuracy. We will also propose a client-server

architecture that enables scene reconstruction and rendering to a mobile

device with NeRF in real time. Finally, we will demonstrate the recon-

struction results and model performance through our experiments and

draw conclusions.
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Chapter 1

Introduction

In recent years, Virtual Reality (VR) and Augmented Reality (AR) technologies

have developed rapidly thanks to the revolution of mobile hardware. The device has

evolved from a bulky head-mounted display powered by a high-performance computer

to an all-in-one mobile device such as Meta Quest2 and Microsoft Hololens 2. On the

software side, the breakthrough of machine learning and computer vision technologies

also unleashed the new potential for VR and AR (XR) applications. Hand tracking

and facial recognition can now be achieved with on-device cameras and depth sensors.

In this thesis, we will explore using state-of-the-art computer vision models to build

a novel VR “teleportation” application between two XR devices. VR “teleportation”

means virtually teleporting a client to the same “reality” that the host is currently in.

This can be done by recording and reconstructing the environment in real time from

the host’s XR device and transmitting it to the client’s XR device for viewing and

becoming immersed. Specifically, we will explore using two different computer vision

models for the reconstruction task: 3D reconstruction with point cloud and Neural

Radiance Fields (NeRF) [23]. We will use Microsoft Hololens 2 as the teleportation

host’s device for environment recording and Meta Quest2 as the teleportation client’s

device for rendering.

1.1 Motivation

XR technologies have lifted the limitation of distance and opened a new approach for

people to perform collaborative tasks remotely. The current VR and AR applications

mostly bring people together into a virtual space for reality-independent activities

such as meetings, online gaming, or virtual collaboration. On the other side, some
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activities heavily depend on the environment. For example, archeologists excavating

an ancient site or civil engineers working together inside a building under construction.

In such situations, We need to teleport people into another “reality” by reconstructing

a host environment and sharing it with other collaborators in real time.

Some applications achieve real-time reconstruction by using panoramic images. This

approach suffers from view distortions because the view is generated by stitching

images together and each image only has one projection center. Others use 3D point

clouds to reconstruct a 3D model of the scene. This approach can render natural

views from arbitrary viewpoints. However, it renders non-photorealistic views because

the reconstructed model and rendering are based on points. Also, this approach

has not been applied to a real-time XR application yet. The advent of the Neural

Radiance Field (NeRF) has made it possible to render photorealistic views from

arbitrary viewpoints by training a deep neural network. But the limitation of such

models is that they do not work in real time. Some models have fast training time

but are unable to render on a mobile GPU [13, 19, 24, 33, 34]. Other models optimize

for mobile rendering but have unacceptable training time [5, 14].

In this thesis, we will develop a real-time VR teleportation application with 3D point

cloud reconstruction and NeRF separately. It will be the first time that the 3D

point cloud reconstruction model gets deployed to an XR application that runs both

reconstruction and rendering in real time. For NeRF, we will apply application-

specific optimization techniques to improve both the training speed and accuracy

upon the state-of-the-art model [24] in this field. We will also introduce a client-

server architecture to enable real-time training and remote rendering to a mobile

device for the first time.

1.2 Thesis Objectives

For each approach, We will introduce the methods we use to reconstruct the scene.

We will also introduce optimization techniques that make the application run in real

time. For the 3D point cloud reconstruction approach, we will

• Introduce a method to color the point clouds using RGB frames

• Develop a method to merge the colored point clouds which generates the final

3D point model of the scene
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• Propose a downsampling approach to improve data processing and rendering

speed while not impairing visualization quality

• Build a client-server architecture for real-time data processing and rendering

For the NeRF approach, we will

• Introduce a data pre-processing method to improve the quality of training data

• Review the mathematical foundations of NeRF where our improvement method

is based upon

• Review a state-of-the-art method that enables faster training and rendering

speed of NeRF which is required by our application

• Propose our own improvement method that builds on top of the state-of-the-art

approach by using depth information. It further speeds up the training process

and improves model accuracy.

• Develop a client-server architecture that enables training on a GPU server and

remote rendering to a mobile device in real time.

1.3 Thesis Outline

In Chapter 2, we will introduce the background by reviewing related work in panoramic

image, 3D scene reconstruction and NeRF fields. We will also show the VR and AR

devices we choose for our application and the reason about our choice. In Chapter 3,

we will explain the 3D point cloud reconstruction approach by showing the methods

to color and merge the point clouds. In Chapter 4, we will first introduce the data

pre-processing step. Then we will review the basic NeRF model and the state-of-the-

art method that improves upon it. Next, we will bring up our own application-specific

optimization techniques that improve the training speed and accuracy of the state-

of-the-art method. Finally, we will demonstrate the client-server architecture that

enables real-time training and rendering for our application. In Chapter 5, we will

showcase our experiments, followed by the reconstruction results for both approaches

and parameter tunings. In Chapter 6, we will present the conclusions and compare

the two approaches. In the end, we will discuss possible improvements and future

work.
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Chapter 2

Background

There are three approaches for scene reconstruction: panoramic image, 3D scene

reconstruction and Neural Radiance Fields (NeRF). In this chapter, we will show

their advantages and disadvantages and review related work in each field. After that,

we will introduce the two XR devices we choose for the teleportation host and client.

Then, we will show their hardware specs and introduce the sensors we use for data

collection.

2.1 Related Work

2.1.1 Panoramic Image

The basic approach to reconstructing a 3D scene is panorama-based 360◦ image with

6 degrees of freedom (DOF). To generate such an image, one needs to align and

stitch multiple images together. It is done by finding and matching distinctive image

features to establish correspondences between image pairs and applying appropriate

transformations to blend the images [38]. During the blending process, one needs to

fix lens distortion, parallax, moving objects and exposure difference.

The method has already been widely adopted in VR applications. For example, one

can view a 360◦ panoramic image and movie on any standard VR device for an immer-

sive experience. Apple introduced Quicktime VR [4] in 1995 which uses panoramic

images instead of 3D computer graphics to model and render virtual environments.

It lets users navigate inside a VR environment by hopping to different panoramic

points. A more recent version of such application is Google and Apple Maps’ street

view features.
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While this method has the advantage of speed and simplicity, there exist disadvan-

tages. Since the panoramic image is generated by stitching multiple images together

and each image has only one projection center, viewing a novel scene from arbitrary

camera angles would result in image reprojection and unnatural views. Also, fixing

moving objects, parallax and exposure discrepancy may be challenging for a scene

with large differences. [11, 40].

2.1.2 3D Scene Reconstruction

The 3D scene reconstruction approach estimates a most likely 3D object model from

a collection of images with known camera poses. The advantage of this approach over

panoramic image is that it enables generating natural novel views from any camera

angle because of the 3D model.

In general, the class of methods that perform 3D reconstruction without depth knowl-

edge is called Multi-View Stereo (MVS). They infer depth information from 2D im-

ages and convert it to geometry information. Such geometry information can be

represented by voxels, level-sets, polygon meshes or depth maps. The methods usu-

ally need to run a process that finds correlated features between views based on some

visibility models or criteria. It then runs a reconstruction algorithm based on the

correlated features and their respective camera poses to reconstruct a 3D model. The

algorithm may use a good initialization or prior knowledge of geometry to guide the

reconstruction process. The reader can refer to the MVS comparison and evaluation

paper [37] for a detailed explanation of the method and a comprehensive list of related

literature in this area.

The advent of RGB-D cameras makes 3D scene reconstruction with depth information

possible. It brings better accuracy and performance improvement over the traditional

MVS method. Curless et al. [6] proposed a volumetric method that lays the foun-

dation for many of the modern approaches. It represents each range image by a set

of signed distance functions (SDF) and uses discrete voxel grids to store them. The

SDFs are then combined to reconstruct the final model. With this model, surface re-

construction can be easily done by taking the points with zero distance on the SDF.

The SDF and voxel-based representation idea was later adopted by KinectFusion [26]

for a real-time 3d reconstruction system. Another class of real-time reconstruction

systems is based on points [16, 35]. The point-based system has the advantage of

speed and memory efficiency by directly working with points from the depth sensor
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instead of converting them into the voxel representation. We will adopt the point-

based approach in our 3D reconstruction method for its simplicity and efficiency. A

better review of the classic 3D scene reconstruction with RGB-D data methods can

be found in [48].

More recent work trains deep neural networks to represent 3D shapes and perform

scene reconstruction. Given limited input such as partial point cloud and RGB im-

ages, the network is able to learn an SDF [29, 25] or occupancy field [22, 15] repre-

sentation of the scene. The other neural network methods do not learn a consistent

3d shape; instead, they directly generate novel views based on the input images. It

is called view synthesis and image-based rendering. Example work can be found in

[12, 23, 31, 47]. Among those, Neural Radiance Fields (NeRF) [23] is the state-of-

the-art approach.

2.1.3 Neural Radiance Fields (NeRF)

NeRF uses a partial set of 2D posed images to train a fully-connected Multi-Layer

Perceptron (MLP) network that learns the correspondence between views of a 3D

model and camera poses. Once trained, the neural network can generate novel views

for any camera poses. Thus, the train MLP represents a 3D model implicitly. The

advantage of NeRF over the traditional 3D scene reconstruction methods is that it

can generate photorealistic views based on just 2D image input. Also, compared to

the polygon meshes and voxels used by the classic methods to store the 3D model,

NeRF requires less storage space.

Since the publishing of the original NeRF paper, there have been subsequent works

that improve upon the method. One field is to improve the training and render-

ing speed. The original method takes 1-2 days to train a good quality model on

a single NVIDIA V100 GPU and about 30 seconds to render an 800 × 800 image

[23]. The first cause is that it trains a single large fully-connected MLP, and each

backward propagation step updates every parameter of it. The second cause is that

the volumetric rendering approach adopted by this paper requires querying the MLP

hundreds of times for each input pixel. To speed up the training and evaluation

process, Nvidia introduced a new input encoding mechanism in its Instant Neural

Graphics Primitives (Instant-NGP) paper [24] that allows the use of a much smaller

MLP augmented by multiresolution hash tables. It reduces the training time from

days to minutes. Another class of methods improve the performance by factoring the

MLP into sub-networks [13, 33, 34] or using a 3D voxel grid system [13, 14, 19, 34]
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to store spacial information. For example, KiloNeRF [34] factorizes the MLP net-

work into thousands of tiny networks. Each network represents part of the scene that

falls into a cell of a 3D grid so that they can be updated separately. It also utilizes

empty space skipping (ESS) and early ray termination (ERT) techniques to speed up

the point sampling and pixel rendering process. FastNeRF [13] factorizes the MLP

network into two smaller networks: one depends only on the point 3d coordinates

and the other depends only on the viewing direction. It then uses caching to trade

memory for performance. SNeRG [14] introduces a sparse grid representation and

precomputes and stores the trained NeRF into the grid to speed up rendering.

Another field to improve the model is by utilizing more information. For example,

DS-Nerf [7] uses depth information to supervise the basic NeRF model that leads

to 2-3x speed improvement with fewer training views. PixelNerf [44] uses a fully-

convolutional image encoder to learn image features before training and feed NeRF

with both spacial coordinates and corresponding feature vectors. Taking the idea

from learning-based MVS, MVSNeRF [3] first constructs a cost volume by warping

2D image features onto a plane sweep and then converts it to a neural encoding vol-

ume using 3D Convolutional Neural Network (CNN). The output of neural encoding

volume instead of the 3D position will be fed into the MLP to generate a view. Both

PixelNerf and MVSNeRF can take as few as three input images for training and still

yield decent results.

For good user experiences, our application needs to train the model and render views

in real time. Therefore, we will adopt Nvidia’s Instant-NGP NeRF implementation

and improve upon it. It enables us to train a model in a few minutes and render each

frame in milliseconds magnitude. Since the XR device we use has a depth sensor, we

will borrow the idea of depth supervision from DS-Nerf [7] but implement our own

cost function to further improve the Instant-NGP framework.

2.1.4 Industrial Efforts on VR Teleportation

There is no dedicated literature work on VR teleportation yet. However, some indus-

trial companies have made efforts to develop applications in this area. Varjo released a

real-time reality teleportation service on their XR-3 headset using low-latency video

pass-through technology and on-device lidar hardware [17]. Google and Microsoft

both introduced novel video conference systems that “teleport” attendants into a

conference room through VR and make them feel as if they are in the same physical

space [18, 46]. Microsoft also presented DreamWalker [43], which “teleports” users to
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a virtual world with the same walkable paths and obstacles in real time while walking

outdoors.

2.2 Devices

2.2.1 Microsoft Hololens 2

In our research, we use Microsoft Hololens 2 as the teleportation host’s AR device

for environment recording and data collection. We choose an AR device because

it can let the host see the environment and virtual recording information at the

same time during the scanning process. Also, Hololens 2 is equipped with an RGB

camera, a depth camera and a built-in inertial measurement unit (IMU) that provides

high-quality data for our 3D point cloud reconstruction and NeRF training tasks.

Figure 2.1 shows the available sensors on the Hololens 2 headset.

Figure 2.1: Hololens 2 sensors

We enable the research mode [39] on Hololens 2 which provides us access to the raw

data from the sensors. The RGB camera generates 8-megapixel RGB images at the

frame rate of 30 frames per second (fps). The depth camera can operate in two modes,

near-depth sensing with high frame rate (45 fps) and far-depth sensing with low frame

rate (5 fps). Both modes generate depth frames with uncolored point clouds. The

near-depth sensing mode is normally used for hand tracking and the far-depth sensing
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mode is used for spacial mapping. Since we need to capture the environment with

objects in distance, we will enable the second mode. the IMU data comes in the form

of 4× 4 3D spacial transformation matrices at the rate of 60 Hz.

2.2.2 Meta Quest 2

The teleportation client will need to use a VR device to visualize and become im-

mersed in the reconstructed environment. Therefore, we choose Meta Quest 2 (pre-

viously known as Oculus Quest2) as the client’s rendering device. It is a popular

VR headset on the market equipped with a Qualcomm Snapdragon XR2 SOC, 6 GB

memory and a 1.2 TFLOPS Adreno 650 integrated GPU. the display resolution is

1832 x 1920 per eye and it supports up to 90 Hz refresh rate. The device also has a

built-in head-mounted display IMU for head position tracking and four cameras for

hand tracking and video passthrough. Since we need to render different views of the

reconstructed model based on different head poses, the IMU data is essential for our

application. See Figure 2.2 for the device and its hardware specs.

Figure 2.2: Meta Quest 2 hardware specs
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Chapter 3

3D Point Cloud Reconstruction

The first method we implement is 3D point cloud reconstruction. This method records

and reconstructs the environment in real time using 3D points. It has the advantage

of fast reconstruction and rendering speed. But the rendered views are not as good as

NeRF. In this chapter, we first explain how to color individual point clouds by com-

bining the RGB and depth frames. Then, we introduce the process of merging colored

point clouds to create the final environment model. We highlight two techniques used

during the merging process to help improve the reconstruction speed and model qual-

ity: downsampling and point cloud alignment. Finally, we demonstrate a client-server

architecture that enables simultaneous data collection and reconstruction.

3.1 Combine RGB and Depth Frames

The depth camera on Hololens 2 generates a point cloud in each depth frame and

runs at the frame rate of 5 fps. The RGB camera run at 30 fps. Since the depth

camera operates at a lower frequency, for each depth frame, we find the correspond-

ing RGB frame with the closest timestamp and discard the rest to align the frame

timestamps. The timestamp difference is at most 1/60 ≈ 0.017 seconds, which gives

enough alignment accuracy.

To generate a colored point cloud from the RGB and depth frame pair, we project

the 3D points onto the image plane and color them by the corresponding pixel values.

In each depth frame, the point’s coordinate p = (x, y, z)T is in the depth camera

coordinate system. Together with the frame, Hololens provides a 4× 4 homogeneous

transformation matrix Tworld to depth which is the transformation from the world origin

to the depth camera origin. For each RGB frame, Hololenss also provides a 4 × 4
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homogeneous transformation matrix Tworld to rgb which is the transformation from the

world origin to the RGB camera origin. From above, we can get the transformation

matrix from the RGB camera origin to the depth camera origin by multiplying the

two matrices

Trgb to depth = Tworld to rgb
−1 · Tworld to depth (3.1)

Frist, we transform the point coordinates from the depth camera coordinate system

to the RGB camera coordinate system using Trgb to depth. Let point Pi’s homogeneous

coordinate be

p̂i =

[
pi
1

]
=


xi

yi
zi
1

 (3.2)

By applying Trgb to depth, we get the point coordinate in the RGB camera coordinate

system p′i

p̂′i = Trgb to depth · p̂i =

[
p′i
1

]
, where p′i =

x′
i

y′i
z′i

 (3.3)

Next, we compute the pixel coordinate of each point. Since Hololens 2 uses a pinhole

camera model where the RGB camera origin is the projection center of the camera.

We can project the point onto the image plane by multiplying it with the camera

intrinsic matrix K.

K · p′i =

fx 0 cx
0 fy cy
0 0 1

 ·
x′

i

y′i
z′i

 =

fxx′
i + cxz

′
i

fyy
′
i + cyz

′
i

z′i

 (3.4)

Where fx, fy are the focal length and cx, cy are offsets of the principal point from the

top-left corner of the image frame. The values are all expressed in pixels. Let

p′′i =

x′′
i

y′′i
z′′i

 =

fxx′
i + cxz

′
i

fyy
′
i + cyz

′
i

z′i

 (3.5)

Then we can get the pixel coordinate for point Pi[
ui

vi

]
=

[
x′′
i

z′′i
y′′i
z′′i

]
=

[
fx
z′i
x′
i + cx

fy
z′i
y′i + cy

]
(3.6)

Where ui, vi is the number of pixels from the top left corner of the RGB image

frame along the x and y axis. In practice, we will perform the above calculations on

the points matrix instead of individual points for speed. We can use the following

OpenCV [2] function to perform the calculations in the matrix form.
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cv2.projectPoints(image, points, rvec, tvec, K, None)

The input points is a matrix of the form

M =


x1 y1 z1
x2 y2 z2
...

...
...

xn yn zn

 (3.7)

where each row (xi, yi, zi) is the coordinate of point Pi in the depth camera coordinate

system, input rvec and tvec are the rotation and translation vectors of the Trgb to depth

matrix and K is the camera intrinsics matrix. the result is a matrix of the formu1 v1
...

...
un vn

 where (ui, vi) is the pixel coordinate of point Pi.

Finally, we clamp the point cloud by filtering out points that fall outside of the image

frame. We select points with ui < w and vi < h where w, h are the width and

height of the image frame and assign the pixel RGB color to the point. Figure 3.1

demonstrates the process of coloring the point cloud.

(a) RGB frame
(b) depth frame (point cloud) (c) colored point cloud

(d) clamped colored point cloud (e) adjusted point size for better visulization

Figure 3.1: The process of coloring a point cloud
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3.2 Merge Colored Point Clouds

After coloring the point cloud for each depth frame, we will merge them together to

form a larger and denser point cloud. We will introduce the downsampling and point

cloud alignment techniques which improve the performance and quality of the final

merged point cloud.

3.2.1 Downsampling

Since the depth sensor generates a relatively dense point cloud in each depth frame,

and consecutive frames largely overlap with each other, we can downsample the in-

dividual point clouds before merging them to improve the merging speed while still

keeping a good visualization quality. We take a voxel-based downsampling approach

by creating a voxel grid of certain resolution over the 3D space; then, we only keep

the point that is closest to the centroid inside each voxel cube. The bigger the voxel

size, the lower the resolution and thus the fewer points we keep. This method has

the advantage of creating a uniformly distributed point cloud that is good for visu-

alization. Figure 3.2 demonstrates the comparison between a full-resolution and a

downsampled point cloud. We can see that near-range and far-away objects have the

same point resolutions after downsampling.

(a) full resolution point cloud (b) downsampled point cloud

Figure 3.2: A full resolution point cloud and a downsampled point cloud with 2cm
voxel size of the same view

3.2.2 Point Clouds Alignment

Individual point clouds are in the depth camera coordinate system. Since we have

the world to depth camera transformation Tworld to depth for each depth frame, we can

13



simply transform the points into the world coordinate system and combine them to

generate the merged point cloud. However, in practice, Tworld to depth may not be

accurate. This transformation is calculated by aggregating IMU’s high-frequency

acceleration and angular rate data that can be noisy from time to time. On the other

hand, the merging process requires very high accuracy because a small error in the

transformation may lead to deviation of all points in the point cloud and result in

duplicate objects. Therefore, we align the point clouds using the iterative closest point

(ICP) algorithm [1] before merging them. The algorithm takes a source point cloud

P , a target point cloud Q and an initial transformation guess Tinitial and manages

to find a final transformation Tfinal from P to Q that aligns them. It calculates

Tfinal by iteratively minimizing an objective function. In our application, we will

use the Tworld to depth transformation from Hololens 2 as the initial guess. Since the

algorithm works best when the two point clouds largely overlap, we will perform ICP

on the consecutive point cloud pairs along the timeline instead of any pair for faster

speed.

There exist modified ICP algorithms that use the color information to better match

the points [21, 28]. However, since our case is fairly simple and the initial alignment

is already good enough, we will just perform the simple point-to-point version of the

ICP algorithm p2p_icp(P,Q,T_initial) that uses only the point XYZ information.

In each iteration, the algorithm runs the following steps: given the current transfor-

mation matrix Ti, it first constructs the set Si = {(pi, qi)|pi ∈ P, qi ∈ Q} where for

each point pi ∈ P , it transform it to p′i by applying Ti, and find its closest point

qi ∈ Q. Then it updates Ti by minimizing the sum of the squared differences between

p′i and qi

E(Ti) =
∑

(pi,qi)∈Si

∥Ti · pi − qi∥2 (3.8)

The algorithm repeats step 3.8 until it converges. We run the p2p_icp algorithm on

each consecutive depth frame pair and use the aligned source point cloud from the

previous pair as the target for the next pairs.

3.2.3 Alignment Quality

We use the “fitness” score to measure how good the point cloud alignment is. It is

the mean squared distance from each point pi in the source point cloud to its closest

point qi in the target point cloud. Figure 3.3 shows a comparison between the aligned

and unaligned point clouds. The aligned point cloud has a lower fitness score.
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(a) unaligned point cloud, fitness: 0.00343 (b) aligned point cloud, fitness: 0.00232

Figure 3.3: Point cloud before and after the alignment Note that the white
points in front of the laptop screen are aligned into the laptop body by ICP

3.2.4 Final Algorithm

After the alignment, we generate the merged point cloud by combining all the points in

the individual point clouds together. We then perform another downsampling process

on the merged point cloud with the same voxel size to keep the points uniformly

distributed. Algorithm 1 gives the final algorithm for merging the point clouds. Note

that we perform downsampling (line 7) before the alignment (line 8) to reduce the

number of points and speed up the ICP algorithm.

Algorithm 1 Merge Point Clouds

Input: pclouds: list of point clouds in the depth camera coordinate system
tfs: list of world to depth camera transformations for each point cloud

Output: merged point cloud in the world coordinate system

1: procedure MergePointClouds(pclouds, tfs)
2: result← ∅
3: target← tfs[0] · downsample(pclouds[0])
4: result.addPoints(target)
5: for i← 1 to n do
6: Tinitial ← tfs[i]
7: source← downsample(pclouds[i])
8: Tfinal = p2p_icp(source, target, Tinitial)
9: target← Tfinal · source
10: result.addPoints(target)
11: end for
12: result← downsample(result)
13: return result
14: end procedure
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3.3 Client-Server Architecture

After downsampling, the teleportation client’s Meta Quest 2 headset will be capable

of rendering the merged point cloud in real time. The data collection, point cloud

coloring and merging process can all be done on the teleportation host’s Hololens 2.

However, since the data processing tasks can be quite computationally heavy, we will

employ a client-server architecture and offload the point cloud coloring and merging

steps to a more powerful server for faster data processing speed. The other benefit of

this client-server architecture is that it lets data collection and processing happen at

the same time. While the Hololens 2 collects data, it also streams the recorded RGB,

depth and transformation frames to the server. When new frames arrive, the server

can color the point clouds, downsample, and aggregate them into the existing merged

point cloud on the fly. Once the host finishes recording the environment, it sends

a confirmation signal to the server, and the server performs a final downsampling

on the merged point cloud. After that, it packs the merged point cloud as the final

3D model of the scene and sends it over to the client’s Meta Quest 2 for rendering.

Figure 3.4 demonstrates the software architecture and the whole workflow.

Figure 3.4: Software architecture and workflow of 3D point cloud reconstruction
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Chapter 4

Neural Radiance Fields (NeRF)

The second method we explore is NeRF. We will train a NeRF model to implicitly

represent a 3D reconstructed scene and use it to render novel views in VR given

head poses in space. This method achieves the best rendering quality but has a

limitation of slow training and rendering speed as compared to the 3D point cloud

reconstruction approach. In this chapter, we first introduce how to pre-process the

data by sub-sampling the image frames with the best sharpness. We will also mention

the ground truth camera poses and intrinsics that we acquire from the device to train

the model. Then, we give a detailed review of the NeRF [23] model and how to speed

up with Nvidia’s Instant Neural Graphics Primitives (Instant-NGP) [24]. Next, we

propose our own improvement on top of Instant-NGP by using depth data from the

XR device. Finally, we introduce a client-server architecture that runs training and

inference on the GPU server and remotely renders novel views to the client in real

time.

4.1 Data Pre-processing

Same as the 3D point cloud reconstruction method, we record RGB and depth frames

on the Hololens 2 and stream them to the GPU server along with the corresponding

camera poses for processing. NeRF works well when the images are non-blurry, so

we perform a data sub-sampling process by picking out the clearest image frames in

every recording window and then feed them to the NeRF model.
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4.1.1 Sub-sampling with Best Sharpness

Based on the sample size, we divide the whole recording into (total / sample size)

chunks of frames along the timeline and only keep one frame with the best sharpness

in each chunk. This sub-sampling process keeps frames across the recording period

so that we can still cover the whole recording area. We use variance of the laplacian

[30] to measure the sharpness of an image. It is done by convolving over the image

with the laplacian operator, which can be expressed as a mask

L =

0 1 0
1 −4 1
0 1 0


Then, we calculate the variance of the convolved values. For an image of size m× n,

the sharpness is

sharpness =
m−2∑
i

n−2∑
j

(L(i, j)− L)2 (4.1)

where L is the average of convolved values

L =
1

mn

m−2∑
i

n−2∑
j

L(i, j) (4.2)

We can use the following OpenCV [2] code to calculate the value for a given im-

age

cv2.Laplacian(image, cv2.CV_64F).var()

4.1.2 Camera Poses

NeRF trains with both RGB images and their camera poses. It also requires the

camera’s intrinsic parameters for image projection. The original NeRF paper does

not require ground truth camera poses; instead, it uses the structure-from-motion

(SfM) package COLMAP [36] to estimate relative camera poses from the 2D images.

In our case, since the Hololens 2 has a built-in IMU, it will provide us with the ground

truth camera pose for each RGB frame. The poses come in as a 4× 4 homogeneous

transformation matrix in the world coordinate system where the origin is the recording

start point. Hololens 2 also provides the camera’s intrinsic parameters from the

factory information. Therefore, we can directly feed the ground truth camera poses

and intrinsic parameters into the NeRF model for training. This lets us skip the

process of running SfM and also helps improve the accuracy of the NeRF model.
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4.2 NeRF Review

In this section, we will give a detailed review of the original NeRF [23] paper on

how it calculates the expected color of a pixel and the two optimization techniques

it introduces: positional encoding and hierarchical volume sampling. In the next

section, we will introduce how Nvidia’s Instant Neural Graphics Primitives [24] uses

a new input encoding mechanism to improve the performance of the original NeRF

model significantly.

4.2.1 Volume Rendering

As opposed to an explicit 3D model represented by meshes and voxels, NeRF uses

the radiance field to implicitly model a scene and then employs the classical volume

rendering approach to render the color of each ray traced through the pixels. The

radiance field is defined by the following function

g : (x,d)→ (σ, c) (4.3)

which maps a 3D coordinates x ∈ R3 and 2D viewing direction d ∈ R2 to a volume

density σ ∈ R+ and RGB color c ∈ R3. It models the function g by training a basic

Multi-Layer Perceptron (MLP) network FΘ that optimizes the weights Θ over the

cost function of total squared error between the rendered and true pixel colors.

L =
∑
r∈R

(C(r)− Ĉ(r))2 (4.4)

Here, R is the set of rays in each optimization batch, C(r) is the ground truth color

of ray r and Ĉ(r) is the predicted color of ray r. The original paper did not provide

details on how it derived the formula to calculate the expected color Ĉ(r) of a camera

ray. We will provide the derivation here since the intermediate formulae are used by

our improvement method in section 4.4. The first part of derivation largely follows the

formulae given by N. Max in his volume rendering’s optical models paper [20].

In the NeRF paper, a particle system is used as the model to calculate the color and

density of a specific spacial position. In the particle system, assume each particle is

a sphere with radius r, then the particle’s cross-sectional area is A = πr2. Consider

a cylinder with base area E and height ∆s, and a ray of light passes through it

at distance s. let ρ(s) be the cylinder’s particle density (the number of particles

per unit volume) at distance s. Then, there are a total of E∆sρ(s) particles in the

cylinder. If ∆s→ 0, then we can assume the particles are arranged side by side there
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is no overlapping area between them. Therefore, the total cross-sectional area of the

cylinder they occupy is E∆sρ(s)A. When the light passes through the cylinder, the

fraction of light that gets blocked is

E∆sρ(s)A

E
= ∆sρ(s)A (4.5)

Let the light intensity at distance s be I(s), then after the cylinder, it becomes

I(s + ∆s) = (1−∆sρ(s)A)I(s) (4.6)

Which implies
dI

ds
=

I(s + ∆s)− I(s)

∆s
= −ρ(s)AI(s) (4.7)

Define the volume density to be

σ(s) = ρ(s)A (4.8)

This is one of the values that NeRF outputs (4.3). Obviously, the solution to Equa-

tion 4.7 is

I(s) = I(0) exp

(
−
∫ s

0

σ(t)dt

)
(4.9)

Define

T (s) = exp

(
−
∫ s

0

σ(t)dt

)
(4.10)

and

S(s) = 1− T (s) (4.11)

Then, the function T (s) denotes the accumulated light transmittance along the ray

until distance s, and S(s) is the probability of the light hitting some particle before

distance s, which is a cumulative distribution function. Denote the color of particle

at distance s to be c(s). Then the expected color of the light ray is

E(c) =

∫ ∞

0

S ′(s)c(s)ds =

∫ ∞

0

T (s)σ(s)c(s)ds (4.12)

In practice, we only calculate the integral from range sn to sf . Let us parameterize s

with t and define

s = r(t) = o + td (4.13)

where o is the ray origin and d is the direction. If we limit the range and substitute

4.13 into 4.12, We get equation 1 in the original NeRF paper [23]

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
(4.14)
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To estimate the integral, the original paper converts 4.14 into a discrete form using

a stratified sampling approach. It divides the integral interval [tn, tf ] into N sub-

intervals and then uniformly draw a random sample ti from each sub-interval. Let

δi = ti+1 − ti, the discretized form of T (ti) is defined as

T (ti) = exp

(
−

i−1∑
j=1

σ(tj)δj

)
(4.15)

and if we replace S ′(s)c(s)ds in Equation 4.12 with the discretized form, we get the

following discretized color expectation

Ĉ(r) =
N∑
i=1

((1− T (ti+1))− (1− T (ti)))c(ti)

=
N∑
i=1

(T (ti)− T (ti+1))c(ti)

=
N∑
i=1

T (ti)(1− exp(−σ(ti)δi))c(ti)

(4.16)

which is the same as formula 3 in the original NeRF paper [23]. When rendering, we

sample the set of (σ(ti), c(ti)) from our MLP model and calculate the expected pixel

color using Equation 4.16.

4.2.2 Positional Encoding

The paper further introduces a positional encoding technique to increase the feature

dimension by borrowing the idea from [41]. For a scalar value x ∈ R, it encodes it

into a feature vector ∈ R2L

encode(x) = [sin(20πx), · · · , sin(2L−1πx), cos(20πx), · · · , cos(2L−1πx)] (4.17)

Where L is a tunable parameter. Since a deep neural network tends to learn a lower

frequency function [32], it may not model an image well and can lead to underfitting.

The reason is that clear images usually have many sharp edges that are variations

of color and geometry. Increasing the feature dimension can accommodate for such

high-frequency variations. The encoding is applied to the values of the 3D coordinates

x and 2D viewing direction vector d separately. Although this encoding scheme

significantly improves the model expressiveness, the drawback is that it requires a

large neural network and thus, slower training and rendering speed. Such limitation

makes the basic NeRF model incapable of our application. In section 4.3, we will

introduce how to speed up with a new encoding mechanism.
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4.2.3 Hierarchical Volume Sampling

The paper introduces another optimization technique, hierarchical volume sampling,

to improve rendering performance. It uses a more efficient sampling strategy so that

the expected pixel color in Equation 4.16 can be better computed. The basic idea is

to sample more on the actual object instead of free and occluded space which does not

contribute to the final rendering. This technique requires to train both a coarse and

a fine MLP network. When rendering, it first uniformly draws samples along the ray

and uses the coarse network to predict their volume densities σ. Then, it estimates a

distribution of the relevant part based on the volume density and performs another

informed sampling. Finally, it uses the fine network to compute the expected color

using points from both the first and second sampling processes.

4.3 Speed Up

Although the original paper introduces two optimization techniques to improve the

model quality, they do not contribute to any speed improvement. The training time

can take up to two days which obviously does not work with our application. To

speed up the training process, We will adopt the method proposed in Nvidia’s Instant

Neural Graphics Primitives paper (Instant-NGP) [24]. It helps reduce the training

time from days to minutes on a single GPU. We now briefly talk about how the

speed-up is achieved.

As mentioned in subsection 4.2.2, The reason why the original NeRF implementation

is slow is because of the fixed positional encoding (4.17). It requires a big MLP net-

work with many trainable parameters. To increase speed, Nvidia’s researchers manage

to reduce the MLP size significantly by introducing a multiresolution hash table of

learnable feature vectors. Then, the training process can optimize the small MLP

plus a fraction of the feature vectors using stochastic gradient descent (SGD).

The multiresolution hash table is structured in the following way: First, it creates L

levels, and each level contains a 2D grid of different resolutions over the input image.

Let the finest resolution be Nmin and the coarsest resolution be Nmax. Then for level

l, the resolution can be calculated by

Nl = ⌊Nmin · bl⌋ (4.18)

where b = exp

(
lnNmax − lnNmin

L− 1

)
(4.19)
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and the number of grid vertices is

Vl = (Nl + 1)2 (4.20)

Next, it associates T F -dimensional feature vectors with the vertices on each level

with a hash table. The hash table maps a vertex of the grid into a feature vector.

Since the number of feature vectors is fixed to the number T , for a coarse resolution

level with the number of vertices Vl ≤ T , the mapping is one-to-one and the unmapped

feature vectors are discarded. For a fine resolution level where Vl ≥ T , the mapping is

many-to-one, which means there will be hash collisions. The paper simply proposes

to do nothing with the collision and let the neural network disambiguate them. Here,

L, T, F,Nmin, Nmax are all tunable parameters.

To encode a pixel in the image, it first finds the grid containing it and the four feature

vectors hashed from the grid vertices on each level. Then it performs a linear interpo-

lation according to the relative position of the pixel in the grid to get a final feature

vector. Next, the L interpolated feature vectors from each level are concatenated as

the final encoding of the pixel. Finally, the encoding plus any auxiliary inputs (such

as the view direction) are fed into a small MLP for training.

Although the multiresolution hash table plus the MLP network has a larger memory

footprint than the original NeRF model, the training speed is significantly improved

because each backward propagation step only needs to update the parameters in the

small MLP plus the corresponding feature vectors. According to the Instant-NGP

paper, the number of trainable parameters of the MLP is reduced from 438k to 10k

for equivalent results, and training time is reduced from around 13 minutes to 2

minutes. Note that although there are 494k encoding parameters, only a tiny portion

is updated in each backpropagation step.

The speed improvement by Instant-NGP over the original NeRF model makes it

possible to train NeRF within a reasonable amount of time and thus fit into our

application. Although Instant-NGP requires significant memory usage, it does not

become an issue since the training process happens on a GPU server instead of the

XR device.

4.4 Depth Supervision

The original NeRF model does not require any geometry knowledge of the scene it

learns. Instead, it implicitly infers 3D structures by calculating the expected termi-
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nation position of a ray. In our case, since Hololens 2 has a depth sensor, we can

utilize the depth data it provides to further supervise the training. Related work

has been done in DS-NeRF [7]. The original NeRF paper uses the SfM packages

COLMAP [36] to estimate relative camera poses of the views. During the estima-

tion process, COLMAP also projects certain pixels in the 2D images to 3D points in

space. The position of the 3D points can give explicit information about where the

ray terminates. However, the mapped point position may be noisy and subject to

a probability distribution. To supervise training with depth information, DS-NeRF

adds a loss of KL divergence between the rendered ray termination distribution and

the point position distribution to the cost function defined in Equation 4.4.

Since we have the ground truth depth information from the depth sensor, we do not

need to compute the difference between two probability distributions. Instead, we

can just compute the difference between the rendered expected ray depth and the

true depth of the pixel and add the squared error to the cost function as the depth

loss term. Recall Equation 4.16, during the stratified sampling process, if we let

p(ti) = T (ti)(1− exp(−σ(ti)δi)) (4.21)

We can rewrite the equation as

Ê(c) =
N∑
i=1

p(ti)c(ti) (4.22)

Therefore, we can view p(ti) as the likelihood of the ray terminating at position ti.

By multiplying it with si = r(t) = o + tid (4.13) and summing over ti, we get the

expected depth of the ray

D̂(r) =
N∑
i=1

p(ti)(o + tid) (4.23)

We can then add the loss term

LDepth = (D(r)− D̂(r))2 (4.24)

, where D(r) is the true depth of the pixel, to the cost function 4.4

LColor = (C(r)− Ĉ(r))2 (4.25)

and optimize for the total loss

LTotal = LColor + λLDepth (4.26)

24



where λ is the hyperparameter controlling the weight of depth supervision. The final

cost function we optimize is

L =
∑
r∈R

(
(C(r)− Ĉ(r))2 + λ(D(r)− D̂(r))2

)
(4.27)

4.4.1 Project RGB frames Onto Depth Frames

To find the depth information of the pixels, we need to project RGB frames onto the

depth frames. In section 3.1, we introduced how to project depth frames onto the

RGB frames to color the points. By running the same steps, we can map a pixel

to a 3D point if it ever gets projected. For each RGB frame, we find the closest

depth frame by timestamp and only projects the pixels if the timestamp difference is

acceptable. Since the RGB frames come in a higher frequency (30 fps) than the depth

frames (5 fps), only a portion of the RGB frames will be projected. Also, the RGB

camera has a bigger field of view, so only a portion of the pixels in each frame can

be mapped to 3D points. Nevertheless, the depth data we acquire from this process

is enough for depth supervision.

One point worth mentioning is that since there exists a time difference between the

RGB frame and its projected depth frame, we are essentially mapping an RGB frame

to a depth frame taken at a slightly different time. During the period, the host

may have moved or turned his head around, which led to slightly different views.

Therefore, the depth values we get for the pixels can be biased. However, since we

only use depth loss as a weighted term in the cost function, it still provides good

supervision.

4.5 Rendering

For NeRF, rendering a novel view is to run the inference process for all pixels in the

view image. Recall Equation 4.3, after training the MLP, we need to call g to sample

points along the rays traced from every pixel and then perform volumetric integration

to compute the final color. This process can be computationally heavy. For example,

to render an image of 1080 x 1080 pixels and 100 points sampled along each ray, we

need to query the MLP 116.64 million times and this would take several seconds on

a high-end GPU. Clearly, it is too slow for a real-time VR application that needs to

render at 60 fps.
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As mentioned in subsection 2.1.3, How to speed up the rendering process is currently

an active research area. The most recent works that enable the inference process on

a mobile GPU is MobileNeRF [5]. It represents a NeRF model with a set of textured

polygons and takes advantage of the z-buffers and fragment shaders technology pro-

vided by modern GPU hardware to achieve massive pixel-level parallelism. Currently,

only SNeRG [14] and MobileNeRF have been shown to work on mobile GPUs.

Since our application requires real-time rendering, if we were to perform local inference

on the VR device, only SNeRG and MobileNeRF satisfy the requirement. However,

both methods require hours of training time on a high-end GPU which clearly does

not satisfy our requirements. Therefore, we stick to Nvidia’s Instant-NGP framework

[24] plus our depth-supervision improvement for training and rendering. We propose a

client-server architecture that performs inference on the GPU server and streams the

rendered image to the VR device in an interactive way. This method takes advantage

of the powerful server GPU for inference and fast training time provided by Instant-

NGP. Also, the high-speed Wifi and 5G technology provide low network latency which

makes remote rendering possible. In fact, there are already XR streaming services in

the industry such as NVIDIA CloudXR [9].

4.5.1 Implementation Details

Rendering is an interactive process between the GPU server and the client’s Meta

Quest 2 device. For each frame in the device rendering loop, we acquire the current

head pose provided by Quest 2 and then send it over to the GPU server to run

inference process. Once the GPU generates a rendered image, it copies to CPU for

serialization and returns it back to Quest 2 for display. We will repeat this step for

each frame update in the VR device’s rendering loop.

For efficient client-server communication and best performance, we implement the

communication process with remote procedure calls (RPC) in C++ using Google’s

Remote Procedure Call library (gRPC). We use Google’s Protocol Buffers (Protobuf)

for data serialization and deserialization. The .proto file is defined with the following

Protobuf messages and RPC service:

26



// The reque s t message conta in ing a 4x4 t rans fo rmat ion matrix
// that r e p r e s e n t s the head pose , the matrix i s r ep r e s en ted
// by a 16−e lements f l o a t array
message Transformation {

repeated f l o a t data = 1 ;
}

// The response message conta in ing the rendered image in the
// form o f a byte sequence
message Image {

bytes data = 1 ;
}

// The RPC s e r v i c e that takes a head pose and re tu rn s a
// rendered image from the t ra ined NeRF model
s e r v i c e Render {

rpc Render ( Transformation ) r e tu rn s ( Image ) {}
}

We use the protocol buffer compiler to compile and generate source code for the

message structures and RPC calls. Then, we include the generated code in our

server and client application. The server code is written in Python using the Pybind

interface to the C++ code of Instant-NGP. It runs an infinite loop until interrupted

and performs the following operations in each iteration:

1. Wakes up for an RPC call

2. Receives the Protobuf message from the client and deserializes it into a head

pose in space

3. Decompose the head pose into a 3D position and viewing direction as the input

to the Instant-NGP NeRF model

4. Run Instant-NGP’s inference process on GPU for every pixel in parallel

5. Combines the color result of each pixel to generate a full image and copy the

data out from GPU to CPU

6. Serialize the image into a Protobuf message on CPU and sends it back to the

client over the network

7. Go to sleep and wait for the next RPC call

The Python programming language brings us simplicity and quick development speed

to implement the server application. On the other side, since Python is just a wrap-
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per and both gRPC and Instant-NGP use C++ to implement the computationally

heavy part, the performance degradation introduced by Python interpreter is mini-

mum.

For the client, since it is a mobile VR device with limited computing power, we need to

optimize the application performance as much as we can to make room for the server-

side rendering delay. Since we choose Meta Quest 2 as our client VR device and it runs

an Android operating system, the standard way to implement the client application

is to use Java with Android Software Development Kit (SDK). However, running

the Java Virtual Machine can be slow and the uncertainty of garbage collection time

does not meet our real-time rendering requirement. Fortunately, Android and Quest

2 provide another Native Development Kit (NDK) that enables us to implement the

app in C++ and directly compile into machine code for maximum performance. For

each iteration in the device rendering loop, the client APP performs the following

operations:

1. Wake up for the current rendering frame and acquire the head pose from the

API of Quest 2’s NDK

2. Serialize the head pose into a Protobuf message, transmit it to server over the

network using RPC, and wait for a reply

3. Receive the Protobuf message reply from the server and deserialize it into a

rendered flat image

4. Apply the proper transformation to convert the flat image into a stereoscopic

image suitable for VR viewing

5. Render the stereoscopic image for the current frame

6. Go to sleep until the next rendering frame

In general, the server performs the computation and streams VR content to the client

for display. Figure 4.1 shows a diagram of the whole application architecture.

4.5.2 Performance

The Quest 2 headset has a display resolution of 1832 x 1920 per eye and supports

up to 90 Hz refresh rate. While the recommended frame rate is 90 fps, it is more

than enough for a regular utility APP. The 90 frame rate requirement is actually for

intense games so that it won’t introduce nausea and disorientation to the player. For
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Figure 4.1: Software architecture of the NeRF approach

our application, we will only target 15 fps (66.6 milliseconds per frame) as it is enough

for a smooth viewing experience. In our lab GPU server, we managed to render a

720 x 720 image for each frame within 52 milliseconds. Figure 4.2 shows a latency

breakdown of the time spent at different stages.

0 10 20 30 40 50 60

Time in Milliseconds

Rendering Memory Copy Serialization and Network

Figure 4.2: Latency Breakdown

Rendering takes 46 milliseconds on the GPU, then it takes 1 millisecond to copy the

data out to CPU. Finally, it takes 5 milliseconds to perform data serialization and net-

work transfer. We will experiment with more resolutions in the next chapter.
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Chapter 5

Results

In this chapter, we explain the experiments we run with the 3D point cloud reconstruc-

tion and NeRF approach and show their results. We first introduce the experiment

setup by explaining the data collection process and elaborating on the computational

hardware. Then we show the 3D point cloud reconstruction result and model per-

formances over different downsampling voxel sizes. Next, we introduce the training

parameters used in the Instant-NGP model and the NeRF reconstruction result. We

also demonstrate the accuracy and performance improvement of the model with our

depth-supervision optimization. Finally, we show the rendering speed difference with

different resolution and samples per pixel (SPP) values in Instant-NGP.

5.1 Experiment Setup

We try to reconstruct a 15m2 office of the Systems Security Lab in the Robert Hooke

Building, University of Oxford. To record the environment, We use the Stream-

Recorder application provided by the Microsoft Hololens 2 research mode [39] Github

repository to collect data for about one minute. We make the teleportation host wear

the Hololens 2 and walk around the office with his head constantly moving to cover

as much area as possible. Since NeRF works well when the images are well captured

and non-blurry, we ask the host to stay stationary from time to time so that we can

capture some clear images. We stop data collection when the host has walked around

every area in the office to maximize the scanning region. Since the application records

frames at the same rate as the sensors (30 fps for RGB camera and 5 fps for depth

camera), it leads to 1920 RGB and 320 depth frames in a 64 seconds recording session.

We discard the first and last seconds of data which contains the hand manipulating
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the application menu in the view. We then send the recorded data to a GPU server

to color and merge the point clouds and train the NeRF model. The server has an

Nvidia RTX 3080 GPU and a 10-core Intel i9-10900K CPU @ 3.7 GHz. For the 3D

point cloud reconstruction approach, once we have the merged point cloud, we pack

it in a ply format file and send it to the client’s Quest 2 for rendering. For the NeRF

approach, as mentioned in section 4.5, we offload the rendering task to the GPU

server and stream the rendered images to Quest 2 through RPC calls.

5.2 3D Reconstruction Result

We initially have around 320 depth frames. After filtering out the first and last second,

we have 310 frames left, and each frame has an average of 72 thousand points. After

the point cloud coloring process, we crop the frames to around 43 thousand points

each. This still leads to 13 million points in the merged point cloud which is incapable

of rendering on a mobile device. Therefore, we perform the voxel grid downsampling

process with 2cm voxel size. This reduces each depth frame to around 8000 points.

Then, we run the point clouds alignment algorithm and another downsampling after

the merging process. The ICP algorithm helps reduce the average fitness score from

0.0063 to 0.0052 between the point clouds. The final merged point cloud has around

2.5 million points. For rendering, we make each point an 8 cm3 cube so that it fills

the whole voxel.

Figure 5.1 shows the reconstructed model of our office from different angles. We

purposely did not capture the ceiling so that we can better view the model from the

top. In the pictures, we can see that the cuboid office space is well reconstructed

even though we capture it from the inside. We can clearly tell objects by their shape

and color such as desks, chairs and computers. You may see white areas which do

not contain any points. They are blind spots that the teleportation host did not

reach during the data recording process. One solution to reduce such blind spots

is through an interactive recording session. During recording, the application can

memorize visited area and guides the host to the unexplored space so that it can

cover the whole environment. We will discuss it further in the final chapter.
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(a) (b)

(c) (d)

Figure 5.1: 3D Reconstructed Office Model. It shows the reconstructed office
model from four different angles. The first three views are generated from the same
zoom level by just rotating the office model. The last view is zoomed in for better
illustration

Figure 5.2 shows example views from inside the reconstructed office. Again, the white

area under the desks and next to the yellow box are blind spots. In areas with dense

points, the surfaces are well reconstructed and we can even see object details such as

logos on the box and the structure of the electric fan.

You may notice that some areas are discretized where the points do not contact each

other to form a solid surface. The reason is that although we set the point size to

fill the whole voxel, there may still be spots in space that do not get scanned in all

of the depth frames. Those spots lead to blank voxels in the final rendered view.

However, since the depth sensor scans the environment in a fixed step pattern, the

voxels will be uniformly filled and blank voxels are discrete. Therefore, it will not

significantly impair the visualization quality. We will discuss a potential solution that

uses adaptive-sized points to fill the discretized blank voxels in the final chapter.
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(a) (b)

(c) (d)

Figure 5.2: Views inside the 3D Reconstructed office

5.2.1 Quality of the Reconstructed Mode

Since we do not have the ground truth of our office model. Quantitatively measuring

the reconstructed model quality is hard. Therefore, We will just show real camera

images and virtual views from the reconstructed model of the same scene side by side

in Figure 5.3 for the readers to compare by eye.

(a) towards door (c) chair (e) shelf

(b) towards door (d) chair (f) shelf

Figure 5.3: Comparison of the reconstructed and real camera views
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As we can see from the image, the shapes and colors of the objects are well captured

and rendered. However, some of the close views may look like mosaics because of

the point-based rendering scheme and fixed grid resolution. We will not discuss a

solution here and leave it for future work.

5.2.2 Performance and Parameter Tuning

To improve the rendering speed, one parameter we can tune is the voxel size. The

smaller the voxel is, the more points we sample, and thus the better resolution we

achieve. However, it may slow down the alignment algorithm and increase rendering

costs. We experimented with different voxel sizes and generated a table in Figure 5.4

on the number of points, point cloud alignment time and rendering capability for

different voxel sizes. The line graphs below are visualizations of the table. Figure 5.5

compares the same view rendered with different voxel sizes. From the table and the

view comparison, we can see that setting the voxel size to be 2 cm archives both

performance and rendering quality.

Voxel Size 0cm 1cm 2cm 3cm 4cm 5cm

Num Points 13464587 7472467 2512322 1221491 719893 479118
Alignment time (Sec) 42.21 16.63 3.39 1.91 0.85 0.58
Rendering Capability No 15 fps 60 fps 60 fps 90 fps 90 fps
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Figure 5.4: 3D Reconstruction Performance Over Voxel Size 0 cm means no
downsampling. The rendering capability row shows the maximum frame rate Meta
Quest2 can achieve to render the final merged point cloud. The line graphs show a
visualization of the Number of Points and Alignment time over the voxel size
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(a) no downsampling (b) voxel size = 1cm

(c) voxel size = 2cm (d) voxel size = 3cm

(e) voxel size = 4cm (f) voxel size = 5cm

Figure 5.5: Comparison between the same view with different voxel sizes

5.3 NeRF Result

5.3.1 Training Parameters

We use Nvidia’s official implementation of Instant-NGP to train the NeRF model.

We use 150 images of 760x428 pixels as the training set and 10 images as the test set.

The images are subsampled with the best sharpness using the technique introduced

in subsection 4.1.1. We use a batch size of 262144 rays and stop training until the

loss function delta becomes less than 0.0001. We set the depth supervision lambda

to be 0.3. For the multiresolution hash table, we use L = 16 levels, T = 219 feature

vectors on each level, and set the dimensionality of each feature vector to be F = 2.

We set base resolution Nmin = 16. For the complimentary small neural network, We
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use a fully connected MLP with only one hidden layer and 64 neurons. We use an

exponential decay Adam optimizer with learning rate = 0.01, β1 = 0.9, β2 = 0.99,

ϵ = 10−15 and L2 regularization = 10−6.

5.3.2 Implicit Model Reconstruction

Although NeRF does not explicitly create a 3d model, the radiance field can represent

a model implicitly through volume rendering. Figure 5.6 shows an implicit office

model by rendering a view of a top-down camera pose. We crop out the irrelevant

areas in the rendered view for better visualization.

(a) (b)

Figure 5.6: Implicit model representation by NeRF

You may notice that the model has many foggy areas, this is because we are using

a particle-based system to perform volume rendering. Since the colors along a light

ray are independently computed and only aggregated to render the final color of a

pixel, they may have high variations in certain areas. Also, the inside structure does

not look as clear as the 3D point cloud reconstruction approach. This is because

we are viewing the scene from an outside position that does not have any training

images. However, it does not imply a bad reconstruction result because NeRF does

not learn to represent the 3D model. Instead, it only generates novel views based on

the implicit model it learns. In the next section, we will show some photorealistic

inside views that are really close to the reality.

5.3.3 Reconstruction Quality

To test the scene reconstruction quality of our model, we run the inference process to

generate novel views using the camera poses of the test image set. Then we compute

the average Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure

(SSIM) [42] and Learned Perceptual Image Patch Similarity (LPIPS) [45] between
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the rendered and ground truth test images. The higher the PSNR/SSIM and the

lower the LIPIS, the better. Figure 5.7 shows a table of the reconstruction quality

metrics and loss function change over different numbers of iterations. Corresponding

line graphs are attached below to show visualizations of the table.

Num Iterations Training Time Loss PSNR ↑ SSIM ↑ LPIPS ↓
2000 23 s 0.0051 20.37 0.675 0.345
5000 46 s 0.0045 21.05 0.695 0.285
8000 74 s 0.0040 21.44 0.708 0.261
10000 88 s 0.0038 21.64 0.712 0.248
12000 115 s 0.0038 21.67 0.713 0.240
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Figure 5.7: NeRF reconstruction metrics over different number of iterations

From the table and the graphs, we can clearly see that the metrics are becoming

better as the training goes on. After around 10000 iterations, the model starts to

converge and we stopped training short afterwards. Figure 5.8 shows a rendered view

from different number of iterations. We can see that the view is becoming visually

better along the training.
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(a) 2000 iteration (b) 5000 iteration

(c) 10000 iteration (d) 12000 iteration

Figure 5.8: Image rendered at different iterations during NeRF training

Figure 5.9 shows a comparison between the ground truth and rendered images. We

also compute a difference image and put it on the side to help the comparison. The

difference image is constructed by calculating the absolute value of color difference

for each pixel. Therefore, the darker the area, the closer the two images are on the

pixel level.

From the figure, we can see that the ground truth and rendered images are very vi-

sually close. We can clearly see geometry and object details in the rendered images,

such as thin cables and the structure of the electric fan. Hinted by the difference

image, the most discrepant part between the ground truth and rendered images is

around the edges. The rendered image tends to have rough edges, while in reality,

the objects’ edges are usually smooth. Again, this is because NeRF s unaware of

the scene geometry and it is based on a particle system where pixels are indepen-

dently computed and rendered by aggregating the particles. This problem has been

addressed by RegNeRF [27] where the author improves it by adding a geometry and

color regularizing term during the training process. Nevertheless, the novel views

generated by NeRF are photorealistic and really close to reality.
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Figure 5.9: Comparison between the ground truth and rendered images The
first column are the ground truth images from the test set, the second column are the
rendered images by NeRF and the third column are the difference images

5.3.4 Depth Supervision Improvement

By adding depth supervision to Instant-NGP, we are able to achieve better results

and faster training speed for convergence. To compare, we train the model with

and without depth supervision until convergence and we record the reconstruction

quality metrics, training time and number of iterations before converging. The result

is shown in Table 5.1.

PSNR ↑ SSIM ↑ LPIPS ↓ Num Iterations Training Time ↓
W/O Depth 21.84 0.716 0.268 13559 124 s
With Depth 22.95 0.747 0.239 11025 95 s

Table 5.1: Model Performance With and Without Depth Supervision

As we can see from the table, the model converges with fewer iterations while achiev-

ing better reconstruction quality with depth supervision. Figure 5.10 shows a com-
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parison between rendered views with and without depth supervision. You can see

that views with depth supervision are better in detail.

(a) (b)

(c) (d)

Figure 5.10: Depth Supervision View Comparison The left column are views
with depth supervision and the right column are views without depth supervision.
The red box highlights some of the visually noticeable differences

5.3.5 Rendering Speed

As mentioned in subsection 4.5.2, we experimented on the rendering speed of Instant-

NGP by tunning two parameters: the rendered image resolution in pixels and samples

per pixel (SPP). We achieved 15 fps with 720p * 720p and 1 SPP. with 720p * 720p

and 2 SPP, we could still achieve 10 fps. We tested with higher resolutions and SPPs

just for reference.

Rendering Memory Copy Serialization+Network total

720 * 720, 1 SPP 46 ms 1 ms 5 ms 52 ms
720 * 720, 2 SPP 91 ms 1 ms 5 ms 97 ms

1080 * 1080, 1 SPP 178 ms 3 ms 6 ms 187 ms
1920 * 1920, 1 SPP 869 ms 6 ms 6 ms 881 ms

Table 5.2: Instant-NGP rendering speed with different parameters
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Chapter 6

Conclusions

In this thesis, we have successfully achieved VR “teleportation” by reconstructing

and rendering the environment in real time through the 3d point cloud and NeRF ap-

proaches. For the 3D point cloud reconstruction approach, we introduced methods to

create a point-based model of the environment. We showed through the experiments

that the model reconstruction could finish within a few seconds, and the rendering

speed could reach 60 fps on the Meta Quest 2. For the NeRF approach, we suc-

cessfully trained an Instant-NGP NeRF model to implicitly model the environment

and presented the reconstruction results by showing close-to-reality, photorealistic

rendered views. We demonstrated our depth-supervision technique’s effectiveness by

comparing the reconstruction metrics and rendered views with and without the tech-

nique. We showcased the client-server architecture that enables training to finish in

two minutes and renders up to 15 fps.

6.1 Model Comparison

By comparing rendered views with real camera images, we can see that the photo-

realistic views generated by NeRF are superior to the point-based views of the 3D

point cloud reconstruction approach. When in the distance, the point-based views

have good quality. However, the object surface may appear like mosaics for closer

views because of the point-based rendering system and the fixed resolution 3D grid.

NeRF does not have this issue since it always renders a photorealistic view. On

the performance side, the 3D point cloud approach has faster model reconstruction

and rendering speed. It can render the merged point cloud on device with 60 fps.
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NeRF, on the other hand, can only perform remote rendering on the server due to the

GPU-heavy inference process. The maximum frame rate it can achieve is 15 fps.

6.2 Improvements and Future Work

We mentioned in section 5.2 that our current data collection approach leaves blind

spots in the reconstructed point cloud and an interactive data recording process can

resolve them. During the data recording, we make the application memorize explored

area and localize itself through simultaneous localization and mapping (SLAM) [10].

Then we can have the application guide the host to unexplored areas using a virtual

map. The data recording process can automatically stop when the map is fully

constructed.

Another improvement for the rendering quality of the 3D point cloud reconstruction

approach is to fill the empty voxels in the final merged point cloud. We can use a

dynamic point size system where we increase the size of the adjacent points in areas

with empty voxels. The final goal is to fill every empty voxel so that we can render

concrete surfaces.

To further improve the rendering speed of NeRF. We can employ the gaze-contingent

rendering technique. For VR devices equipped with eye-tracking sensors, we will

know where the user is gazing in real time. Since NeRF renders with the same speed

when the total number of pixels is the same. We can render a dynamic resolution

image where only the gazed part has high resolution and the rest are left with lower

resolution. This idea is implemented in FoV-NeRF [8] where the reader can further

read.
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