
Reinforcement Learning via
Predictive Coding: Revisiting

Perspectives from Neuroscience in
the Context of Deep Learning

Candidate Number: 1059459

Word Count: 25538 (approximate)

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Advanced Computer Science

at the
University of Oxford
Trinity Term 2022

i

Reinforcement Learning via Predictive Coding: Revisiting
Perspectives from Neuroscience in the Context of Deep

Learning

Abstract

Reinforcement learning (RL) is an important paradigm of machine learning (ML) built on

strong fundamental theories and perspectives from neuroscience and statistics. Built on

recent successes in deep learning (DL), RL has blossomed into an exciting area of research

that shows incredible promise in reaching the goal of artificial general intelligence (AGI).

While there remain many outstanding problems to address in RL, we aim to shed light

on the problem of “catastrophic interference” by revisiting an increasingly popular the-

ory of brain function known as predictive coding. In this thesis, we conduct preliminary

research into the application of predictive coding networks (PCNs) for a variety of clas-

sic RL tasks. Specifically, we examine the convergence and stability of both value-based

and policy-gradient methods trained with predictive coding, in comparison to the typical

deep function approximators trained with backpropagation (BP). After sufficient hyper-

parameter tuning, we demonstrate that in a number cases, PCNs achieve no worse and

sometimes better performance than neural networks (NNs) trained with BP. In addition to

these results, we first establish the rich theory and intuition behind major topics discussed

in this thesis. We conclude with a discussion summarising the insights we have obtained

and most immediate challenges associated with predictive coding. Finally, we outline the

most important directions for future work.

ii

Declaration

I declare that this thesis is entirely my own work, and except where otherwise stated,

describes my own research.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Organisation . 5

2 Background and Preliminaries 6

2.1 Artificial Neural Networks . 6

2.1.1 The Perceptron . 8

2.1.2 Multi-layer Perceptrons . 12

2.1.3 Optimisation and Backpropagation 14

2.1.4 Convolutional Neural Networks . 19

2.2 Predictive Coding and Energy-Based Models 22

2.2.1 Hopfield Networks . 24

2.2.2 Predictive Coding Networks . 26

2.2.3 Generative Predictive Coding Networks 31

2.3 Reinforcement Learning . 34

2.3.1 Markov Decision Process . 35

2.3.2 Value Functions and the Optimal Policy 38

2.3.3 Dynamic Programming Methods . 41

2.3.4 Q-learning . 44

iv

2.3.5 Policy Gradient Methods . 46

3 Methodology 52

3.1 The Cross-Entropy Method . 52

3.2 Deep Q-learning . 55

3.2.1 Clamp Loss . 57

3.3 Proximal Policy Optimisation . 59

3.3.1 Different Forms for the Loss Functions 63

3.4 Comparing Predictive Coding and Backpropagation 64

4 Experiments and Results 67

4.1 Frozen Lake . 68

4.1.1 Frozen lake with the CEM . 70

4.1.2 Frozen lake with Q-learning . 72

4.1.3 Q-learning with Hand-crafted Replay Buffer 75

4.1.4 Observing Interference (Q-learning with Hand-crafted Replay Buffer) 79

4.1.5 Supervised Learning . 82

4.2 Cart Pole . 84

4.2.1 Cart pole with the CEM . 85

4.2.2 Cart pole with Q-learning . 87

4.3 The Atari Benchmark . 90

4.3.1 Results on Pong . 93

4.3.2 Results on Breakout . 96

4.4 Continuous Control . 98

4.4.1 Results on the MuJoCo Benchmark 102

5 Conclusions and Future Work 106

5.1 Conclusions . 106

5.2 Future Work . 108

5.2.1 Quantifying Interference . 108

v

5.2.2 Understanding PC with Adam . 108

5.2.3 Exploring the Effect of Hyperparameters 108

5.2.4 Replay Buffers and Online Learning 109

5.2.5 Testing on Other Benchmarks . 109

5.2.6 Training with Different Algorithms 110

A Derivations 111

A.1 Derivation of the error back-propagation step 111

A.2 Derivation of the inference update step in predictive coding 112

A.3 Derivation of the parameter update step in predictive coding 114

A.4 Derivation of the REINFORCE update step 115

B Additional Plots 116

B.1 Frozen lake as a supervised learning task . 116

B.2 Cart pole with the CEM (Adam plots) . 118

B.3 Cart pole with Q-learning (Adam plot) . 119

B.4 Results on the MuJoCo Benchmark (bigger plots) 120

C Miscellaneous 121

C.1 Taxonomy of RL algorithms . 121

C.2 Architectural Details of the DQN Used for Atari 2600 Experiments 122

vi

List of Figures

2.1 Perceptron with input dimension D = 4. 9

2.2 3 stacked artificial neurons forming a layer of a neural network 10

2.3 Multi-layer perceptron with 2 hidden layers 12

2.4 The convolution operation (Equation 2.12) applied by a convolution filter

to a specific point in the input image . 20

2.5 Max pooling operation. Pool size is 2x2 and stride is (2, 2). 21

2.6 Typical architecture of a CNN images classifier. 22

2.7 Hopfield network with 6 nodes represented as an undirected graph. Each

edge represents a symmetric weight wj,i = wi,j denoting the dependency

between nodes. 24

2.8 Fully connected predictive coding network with 3 nodes. The weighted

directed edges represent connections between nodes. The biases have been

removed for simplicity. 28

2.9 Generative PCN architectures, sensory vertices are blue and internal ver-

tices are grey. a: generative PCN with two fully connected hidden layers,

reminiscent of stacked RBMs or a DBM. b: fully connected generative PCN

with 5 vertices reminiscent of the standard Boltzmann machine. c: chaotic

generative PCN shown to illustrate that PCNs can have an arbitrary topology. 31

2.10 An agent interacting with its environment by picking an action at, receiving

reward signal rt and observation ot. 34

vii

2.11 A simple MDP with three states (green circles), two actions (orange circles)

and reward signals denoted by orange arrows. 36

4.1 Frozen lake environment: S denotes the start state, H denotes the holes in

the ice, G denotes the goal state. 68

4.2 Frozen lake environment solved with value iteration, γ = 0.7. Optimal state

values v∗(s) are given, the optimal policy computed using Equation 4.1 is

denoted by the arrows. 70

4.3 Frozen lake environment solved with the CEM. Network trained with BP

(purple), network trained with PC (red). Policy loss computed with equa-

tion 4.3, rewards computed with 3.5. x-axis corresponds to the number of

batch iterations. 72

4.4 Frozen lake environment solved with the Q-network. Network trained with

BP (purple), network trained with PC (red). 0-1 policy loss computed

with equation 4.5, value loss computed with 4.4. x-axis corresponds to the

number of interactions with the environment. 74

4.5 Frozen lake environment solved with the hand-crafted replay buffer and

Q-network. Network trained with BP (purple), network trained with PC

(red). 0-1 policy loss computed with Equation 4.5, value loss computed

with 4.4. x-axis corresponds to the number of batch iterations. The plots

are averaged over 3 seeds. 76

4.6 Frozen lake environment solved with the hand-crafted replay buffer and

Q-network. Network trained with BP (purple), network trained with PC

(red) and clamp loss Lclamp. 0-1 policy loss computed with Equation 4.5,

value loss computed with Equation 4.4. x-axis corresponds to the number

of batch iterations. The plots are averaged over 10 seeds. a: frozen lake

4× 4. b: frozen lake 8× 8. 78

viii

4.7 Interference plots calculated by Equation 4.7 every batch update. Network

trained with BP (purple), network trained with PC (red). x-axis corre-

sponds to the number of batch iterations. The plots compute the mean

interference averaged over 10 seeds. a: frozen lake 4× 4. b: frozen lake 8× 8. 80

4.8 Frozen lake environment solved with the hand-crafted replay buffer and

Q-network. Network trained with BP (purple), network trained with PC

(red). 0-1 policy loss computed with equation 4.5, value loss computed

with 4.4. x-axis corresponds to the number of batch iterations. The plots

are averaged over 10 seeds. a: frozen lake 4× 4 with PC solved in average

time ∼ 230, with mean policy loss ∼ 0.10 and mean value loss ∼ 0.021,

with BP solved in average time ∼ 320, with mean policy loss ∼ 0.36 and

mean value loss ∼ 0.030. b: frozen lake 8 × 8 with PC solved in average

time ∼ 1400, with mean policy loss ∼ 0.39 and mean value loss ∼ 0.013,

with BP solved in average time ∼ 3700, with mean policy loss ∼ 6.3 and

mean value loss ∼ 0.020. 81

4.9 Frozen lake as a supervised learning task solved with Q-network. Network

trained with BP (purple), network trained with PC (red) and clamp loss

Lclamp. 0-1 policy loss computed with equation 4.5, value loss computed

with 4.4. x-axis corresponds to the number of batch iterations. The plots

are averaged over 10 seeds. a: frozen lake 4× 4. b: frozen lake 8× 8. . . . 83

4.10 Cart pole environment: balance the pole upright by moving the cart left or

right. 84

4.11 Cart pole environment solved with the CEM. Network trained with BP

(purple), network trained with PC (red). Average batch reward computed

with Equation 3.5. The plots are averaged over 25 seeds. a: CartPole-v0,

episode ends at step 200. b: CartPole-v1, episode ends at step 500. 86

ix

4.12 CartPole-v1 environment solved with Q-network. Network trained with

BP (purple), network trained with PC (red). Episode reward computed

with Equation 3.32. The plots are averaged over 10 seeds. a: both PC

network and BP network trained with SGD. b: PC network trained with

SGD, BP network trained with Adam. 89

4.13 Atari 2600 Pong environment [46]. 90

4.14 Atari 2600 Breakout environment [46]. 91

4.15 Atari 2600 Pong solved with deep Q-network. Network trained with BP

(purple), network trained with PC (red). Episode reward computed with

Equation 3.34. Only one seed run. a: PongNoFrameskip-v4 environment

solved with convolutional network. b: Pong-ramNoFrameskip-v4 environ-

ment solved with MLP-style network. 95

4.16 Atari 2600 Breakout solved with deep Q-network. Network trained with BP

(purple), network trained with PC (red). Episode reward computed with

Equation 3.34. Only one seed run. a: BreakoutNoFrameskip-v4 environ-

ment solved with convolutional network. b: Breakout-ramNoFrameskip-v4

environment solved with MLP-style network. 97

4.17 MuJoCo Ant environment [46] . 99

4.18 MuJoCo HalfCheetah environment [46] . 101

4.19 a: AntBulletEnv-v0 solved with PPO. b: HalfCheetahtBulletEnv-v0

solved with PPO. Actor and Critic trained with BP (purple), Actor and

Critic trained with PC (red). Episode reward computed with Equation

3.34. Only one seed run. 104

x

B.1 Frozen lake as a supervised learning task solved with Q-network. Network

trained with BP (purple), network trained with PC (red) and clamp loss

Lclamp. 0-1 policy loss computed with Equation 4.5, value loss computed

with Equation 4.4. x-axis corresponds to the number of batch iterations.

The plots are averaged over 10 seeds. a: frozen lake 4 × 4. b: frozen lake

8× 8. 116

B.2 ADAM: Frozen lake as a supervised learning task solved with Q-network.

Network trained with BP (purple), network trained with PC (red) and

clamp loss Lclamp. 0-1 policy loss computed with Equation 4.5, value loss

computed with 4.4 Equation. x-axis corresponds to the number of batch

iterations. The plots are averaged over 10 seeds. 117

B.3 ADAM: Cart pole environment solved with the CEM. Network trained

with BP (purple), network trained with PC (red). Average batch reward

computed with Equation 3.5. The plots are averaged over 25 seeds. a: cart

pole v0, episode ends at step 200. b: cart pole v1, episode ends at step 500. 118

B.4 ADAM: Cart pole v1 environment solved with Q-network. Network trained

with BP (purple), network trained with PC (red). Episode reward com-

puted with Equation 3.32. The plots are averaged over 10 seeds. 119

B.5 a: AntBulletEnv-v0 solved with PPO. b: HalfCheetahtBulletEnv-v0

solved with PPO. Actor and Critic trained with BP (purple), Actor and

Critic trained with PC (red). Episode reward computed with Equation

3.34. Only one seed run. 120

xi

List of Tables

2.1 Common activation functions . 11

4.1 Average solve time, mean 0-1 policy loss and mean MSE value loss of BP

and PC on frozen lake 4× 4 and 8× 8. 78

4.2 Observation space shape of cart pole [46] . 85

4.3 Mean rewards for the CEM experiments on CartPole-v0 and CartPole-v1. 87

4.4 Mean reward for Q-learning experiments on CartPole-v1. 89

4.5 Action space of Atari 2600 Pong [46] . 92

4.6 Mean reward and optimal learning rate for various algorithmic choices of

the deep Q-learning algorithm (Algorithm 13) applied to Atari 2600 Pong.

Bold and italic configurations presented in Figure 4.15. 95

4.7 Mean reward and optimal learning rate for various algorithmic choices of the

deep Q-learning algorithm (Algorithm 13) applied to Atari 2600 Breakout.

Bold and italic configurations presented in Figure 4.16. 98

4.8 Action and observation space of the MuJoCo Ant environment [46] 100

4.9 Action and observation space of the MuJoCo HalfCheetah environment [46] 101

4.10 Mean reward for variants of the PPO algorithm (Algorithm 14) applied to

AntBulletEnv-v0 and HalfCheetahBulletEnv-v0. Bold and italic config-

urations presented in figure 4.19. 104

C.1 Taxonomy of RL algorithms. 121

xii

C.2 Architectural details of the convolutional DQN used for Atari 2600 pixel

environments. 122

1

Chapter 1

Introduction

1.1 Motivation

Deep learning (DL) has become an incredibly active area of research that stems from

two greatly related and important fields, namely, machine learning (ML) and artificial

intelligence (AI). DL has found incredible success in supervised and unsupervised machine

learning tasks such as classification [1], regression [2] and latent representation learning [3].

As a result deep learning has been adopted by a variety of disciplines, such as computer

vision, signal processing, natural language processing, robotics, computational biology and

finance among others [4, p. 9].

Much of the success of DL can be attributed to the adoption of GPU computing and the

ever increasing access to large amounts of training data [5]. Most of the computational

models used in DL come under the umbrella term of artificial neural networks (ANNs).

This nomenclature can be traced back to the perceptron [6], an early model of learning

and one of the fundamental building blocks for modern deep learning architectures that

was originally intended to mimic biological learning in the brain [4, p. 13]. While the

results obtained by DL in domain specific tasks are impressive, we are still far from devel-

oping generalised systems that emulate human-level (or better) intelligence and learning

2

capabilities [7].

When we think about biologically inspired AI, convolutional neural networks (CNNs) [8]

are probably one of the first major successes that spring to mind. Results obtained by

neurophysiologists and nobel laureates David Hubel and Torsten Wiesel [9–11] helped

characterize neural processing in the visual cortex, which lead to the hypothesis that

visual processing in the brain occurs in a hierarchical fashion, whereby neurons in the

early visual cortex respond to simple patterns such as precisely oriented bars and shapes,

and the latter neurons process increasingly complex patterns and textures [4, p. 353]. By

studying the learned convolution filters of some of the first deep CNNs such as AlexNet

[1], we see that this hypothesis is substantiated. In fact, AlexNet was such a significant

breakthrough that CNNs have now been adopted by the computer vision community for

almost every visual task. Additionally, the backpropagation (BP) algorithm [12] used

to train AlexNet along with regularization techniques such as dropout [13] have become

fundamental for the successful training of deep neural networks.

In this thesis, our main concern is reinforcement learning (RL): an important paradigm

of ML, also with strong links to neuroscience. Inspired by the reward prediction error

hypothesis of dopamine neuron activity, RL aims to minimise temporal difference (TD)

errors observed by interacting with an environment to learn how to best pick actions [14,

p. 381]. Dopamine in the brain appears to be sensitive to reward signals and how far in the

future we expect to see them, which effectively conveys TD errors [15]. By adopting this

notion of learning and by using deep function approximators such as ANNs, RL has found

remarkable success in tasks such as optimal control and robotics [16–18], game playing

[19–23] and financial decision making [24].

This goal-directed view of learning offered by RL has strong links to psychology and

neuroscience, and so we can be almost certain RL has a big part to play in the development

of artificial general intelligence (AGI) [14, p. 472]. However, this does not mean we can

stop listening to neuroscience, as there are many outstanding issues surrounding deep

3

reinforcement learning that need to be addressed. Modern methods based on DL and

ANNs trained with BP are not well suited to online incremental learning and so many

of the best algorithms learn offline, on batches of interleaved experience from multiple

workers, interacting with different instances of the same environment at the same time

[14, p. 472]. This key problem referred to as “catastrophic interference” or “correlated

data” is often overlooked, and it stems from the common phenomena: when something

new is learnt it often replaces or interferes with past experience [14, p. 472]. The typical

work around is to use replay buffers, which retain old experience that we may learn from

again during training. It should not be hard to realise, based on one’s own experience,

that biological learning does not follow this procedure, and us humans typically do not

need anywhere near as much experience as modern RL algorithms do [25].

There is increasing belief that the problem of “catastrophic interference” is a symptom

of the learning algorithm backpropagation (BP) used to update most modern neural ar-

chitectures [26–28]. In addition, BP has historically been viewed as problematic and not

biologically sound [29, 30] even though brain function may closely approximate it [31, 32]

and so once again we may need to look to neuroscience for an answer. Predictive coding

(PC) is a theory of brain function first used as a means of explaining hierarchical image

processing in the visual cortex [33–35]. While experimental evidence for PC is often varied

[36–38], it has had striking success on tasks such as image classification [39], information

retrieval [40] and associative memories [41]. Furthermore, PC has promise in addressing

the problem of “catastrophic interferenc”, as in a recent study Song et al. demonstrated

superior performance in a number of biologically relevant tasks when compared to BP

[28]. This is an exciting direction of research that revisits how we understand biological

learning in relation to deep learning and it offers us a new perspective that could likely

become vital for the development of AGI.

4

1.2 Contributions

The goal of this thesis is to understand and empirically validate the advantages of pre-

dictive coding over backpropagation in typical deep reinforcement learning settings, such

as grid worlds, game playing and continuous control. Our main contributions include the

following:

• We provide a detailed introduction to artificial neural networks, energy-based mod-

els, predictive coding networks [40–42] and the mathematical formalisms of rein-

forcement learning, along with a brief dive into some state-of-the-art algorithms.

• We demonstrate that directed networks trained with PC comparable performance

to networks trained with BP in a number of toy scenarios when parameter updates

to the network are made with stochastic gradient descent (SGD). In certain circum-

stances, we show experimentally, that networks trained with PC boast quicker and

more stable convergence than networks trained with BP, when parameter updates

are also made with SGD.

• We apply PC to deep Q-networks (DQNs) [19] trained with the Adam optimiser [43]

to learn good policies for two Atari 2600 games in the Arcade Learning Environment

(ALE) [44]. While the results are disappointing, we are able to draw several insights

and establish important directions for future research.

• We apply PC to policy networks trained with Adam and the proximal policy opti-

misation (PPO) algorithm [45] for learning good policies in two complex continuous

control tasks. We demonstrate the PC and BP achieve comparable performance on

two different continuous control tasks from the MuJoCo benchmark [46].

Although we believe with additional tuning, PC can maintain better and more stable

performance. In addition to our experimental contributions, we aim to provide valuable

insight and conclusions drawn from our results. Whether successful or not, we hope that

our experiments are clear, informative and provide motivation for further research.

5

1.3 Organisation

This thesis is composed of five chapters, including this one. Chapter 2, the subsequent

chapter, provides the reader with all the prerequisite information and related work needed

to understand the remaining two chapters. We start Chapter 2 by formally characteris-

ing artificial neural networks and the backpropagation algorithm. Then we characterise

both discriminative and generative predictive coding networks under the energy-based

model (EBM) framework. Chapter 2, concludes with a far from complete but thorough

introduction to reinforcement learning, the fundamental mathematical formalisms, and

key algorithms and ideas needed for the remaining chapters of this thesis. Additional

material, such as the derivations of the gradient steps for BP and PC can be found in the

appendices.

Chapter 3 presents the main algorithms in this thesis, that are used for comparing the

performance of BP and PC in a number of RL settings. In addition, we describe the

algorithmic modifications that we propose to facilitate better learning with PC. Chapter

3 then concludes with a concise description of the evaluation framework we use to com-

pare the performance of BP and PC in RL settings. Chapter 4 presents the results of

several experiments that directly compare the performance of networks trained with BP

to networks trained with PC in a number of typical RL settings. Additionally, we pro-

vide a brief discussion of the results and we explain any additional setup where necessary.

Chapter 5 concludes this thesis, in this chapter we summarise the insights drawn from our

experiments and set out the most important directions for future work.

6

Chapter 2

Background and Preliminaries

In this chapter we will start by introducing some of the most fundamental concepts and

results in deep learning (DL) that will be relevant to the work in this thesis. We will then

cover predictive coding and energy-based models (EBMs). Specifically, we will introduce

the EBM framework by studying Hopfield networks, we will then formalise discriminative

and generative predictive coding networks (PCNs) with their corresponding energy-based

interpretations. Finally, we will conclude this chapter with a thorough introduction to

reinforcement learning (RL), starting from the fundamentals to important algorithms and

results.

2.1 Artificial Neural Networks

The term neural network broadly captures most popular deep learning models, all of which

have been developed as a result of a culmination of centuries of progress in the problem of

function approximation [4, p. 217]. Some fundamental successes in history that have con-

tributed to the popularity of neural networks include: the very first mathematical model of

the biological neuron [47], the perceptron learning algorithm [6], efficient implementations

of the chain rule of calculus [12] and the successful training of deep networks based on the

contrastive divergence procedure [48]. Until recently, support vector machines (SVMs)

7

[49] were the go-to model for classification tasks; they are easier to train and tune since

their objective function is convex. However, after over a decade of successes it has become

clear that neural networks are here to stay, and with advances in optimization techniques

and design of learning algorithms, we expect to see neural networks continue to fulfill their

potential [4, p. 220].

The goal of neural networks is to approximate some function y = f∗(x) that maps an

input x to an output y. Neural networks consist of layers of neurons or units that pro-

cess information from input to output, typically in one direction. Each neuron has an

associated set of weights and biases meant to model the neuron’s firing rate given some

input. Together all these weights and biases parameterise the neural network, typically

these parameters are denoted by θ. So a neural network parameterised by θ defines a

mapping y = f(x;θ). The ability for the strength of synaptic connections in the brain

to change is referred to as synaptic plasticity, and parameter updates to θ adjusted by

learning algorithms correspond to this ability [14, p. 379]. In the end we wish to learn

the set of parameters θ∗ that best approximate the function f∗. Networks of this form

are typically referred to as feed-forward neural networks since their computation can be

represented as a directed acyclic graph (DAG). Networks with loops or feedback connec-

tions are called recurrent neural networks (RNNs) and are beyond the scope of this work

[4, Ch. 10].

Many different types of layers exist in the DL literature and the particular choice and

ordering of layers is referred to as the architecture of a neural network. Most layers are

typically followed by a non-linear activation function g that models the spiking or firing

of a neuron in the brain. In theory, the use of non-linear activation functions allows

neural networks to capture complex non-linear relationships; if training is done correctly

this makes them powerful models for many machine learning tasks. The choice of which

activation function to use is important, for example, the adoption of the rectified linear

unit (ReLU) activation function over the sigmoid function is a major landmark in the

DL literature [4, p. 219]. This choice was actually biologically motivated since the ReLU

8

function f(x) = max(0,x) captures two important properties of biological neurons: most

of the time biological neurons are inactive, and for some inputs biological neurons fire

at a rate proportional to their input [50]. While it seems much of the success related to

neural networks is biologically inspired, it is important to note that neural networks are

not intended to be realistic models of the brain, but are rather loosely inspired by results

and hypothesis related to neural activity, brain function and learning in the brain.

In this section, we will start by covering the fundamental building blocks that make

up neural networks, before describing gradient based optimisation techniques and the

backpropagation algorithm. We will then conclude this section by outlining the basic

operations of convolutional neural networks (CNNs), which will be relevant for some of

the experiments in this thesis.

2.1.1 The Perceptron

The perceptron [6] is a learning algorithm for classifying inputs in some vector space

into one of two distinct classes {−1,+1}. The perceptron is based on the McCulloch-

Pitts neuron [47] - a simple mathematical model which approximates the neural activity

of a neuron by a weighted sum of its inputs passed through a threshold function [51,

p. 569],

y = 1

(∑
i=1

wi · xi > λ

)
(2.1)

for some threshold λ. Here each xi corresponds to an input feature and each wi corresponds

to its associated weight. The perceptron extends this idea by adding a bias term b and

replacing the threshold function with the sign function. The pre-activation value z is

computed by taking a linear combination of the inputs x1, ..., xD plus the bias term b.

The output value or prediction ŷ (sometimes called the activation and denoted a) is

computed by passing z through the sign function, classifying it into one of {−1,+1}, see

Figure 2.1 for a visual representation of this computation.

9

x1

x2

x3

x4

z

b

w1

w2

w3

w4

+

sign ŷ

Figure 2.1: Perceptron with input dimension D = 4.

In machine learning tasks like classification, we are typically given a dataset of input

output-pairs, D = 〈(xi, yi)〉ni=1, the goal is to learn the parameters of the model that

best match the dataset. Algorithm 1 presents the original perceptron algorithm [6] for

classifying some given dataset D. The perceptron algorithm can be applied to a rigid

dataset (fixed size) or it can be applied in an online fashion (to infinity and beyond). Either

way, the perceptron algorithm has been show to maintain nice convergence guarantees in

both these settings [52, 53].

Algorithm 1 The Perceptron Algorithm

Input: Fixed size dataset D = 〈(xi, yi)〉ni=1, or Online 〈(xi, yi)〉∞i=1

Initialize: w1 = 0 ∈ RD

for t = 1, 2, ... do
Retrieve xt
ŷ = sign(wt · xt)
Retrieve y
if ŷ 6= y then

wt+1 = wt + ytxt
end if

end for

A book titled “Perceptron” [54] published by Minsky & Papert shows that simple linear

models such as the perceptron cannot perfectly classify data that is not linearly separable

and famously the XOR function,

XOR(x1, x2) = −sign(x1 · x2) where, x1, x2 ∈ {−1,+1} (2.2)

10

Fortunately by stacking layers of parallel perceptrons we can construct a parameterisation

that precisely captures the XOR function, see [4, Ch. 6.1]. However, for arbitrary functions

we will first need to introduce the artificial neuron. The artificial neuron generalises the

perception by replacing the sign function with some arbitrary activation function g, also

called the transfer function. Mathematically the artificial neuron computes the following

function,

y = g

(
D∑
i=1

(wi · xi) + b

)
(2.3)

where D is the dimension of the input feature vector x. We can stack multiple artificial

neurons in parallel over the same inputs. Given that each artificial neuron has its own set

of learnable weights and biases, we may expect each neuron to compute different output

values, see Figure 2.2.

f(Σ)

f(Σ)

f(Σ)

x1
x2

xD

...
y1

y2

y3

Figure 2.2: 3 stacked artificial neurons forming a layer of a neural network

When we stack artificial neurons in this way we form what is known as a linear or a

fully connected layer. Importantly, the operation applied by a single linear layer can be

conveniently expressed in terms of matrix and vector operations,

y = g(Wx + b) (2.4)

where,

• y denotes the output (column) vector with dimension N , where N corresponds to

the number of stacked artificial neurons.

11

• g denotes the activation function typically applied element-wise to the pre-activation

vector z = Wx + b.

• W denotes the N ×D matrix of weights.

• x denotes the D-dimensional vector of inputs or activations from the previous layer.

• b denotes the D-dimensional vector of biases.

Linear layers of this form followed by non-linear activation functions are referred to as

hidden layers in the literature, and the neurons that make up the hidden layers are called

hidden units. Which activation function to use entirely depends on the task at hand. The

Sigmoid and Softmax activation functions functions are typically used for classification

tasks due to their convenient properties. Other activation functions include the, rectified

linear unit (ReLU) function and the hyperbolic tangent function (tanh), which are com-

monly used for internal layers of the network. Table 2.1 lists some of the most common

activation functions we expect to encounter and their mathematical definitions.

Activation Function Equation Properties

Identity g(x) = x
This reduces a single

linear layer to a linear
regression model.

Sign g(x) = sign(x) =

{
1, if x ≥ 0

−1, if x < 0
The perceptron model.

Binary g(x) =

{
1, if x ≥ 0

0, if x < 0
{0, 1} classifier

Sigmoid g(x) = 1
1+e−x

“Soft” differentiable
version of the binary

classifier.

Softmax g(x) = 1+ex∑D
i=1 1+e

xi

Multiclass sigmoid
applied at the layer

level not element-wise.

ReLU g(x) = max{0, x} Acts like the identity
unless x < 0.

Tanh g(x) = 2
1+e−2x − 1

Similar to Sigmoid but
with range [-1, 1].

Table 2.1: Common activation functions

12

2.1.2 Multi-layer Perceptrons

Multi-layer perceptrons (MLPs) [4, 51] also called feed-forward neural networks are net-

works composed of more than one layer of artificial neurons. Layers of artificial neurons

are organised in a sequential manner so that the output of one layer is fed as the input

into the next layer. Figure 2.3 is provided as a visual example.

Figure 2.3: Multi-layer perceptron with 2 hidden layers

The network given in figure 2.3 can be viewed as a composition of functions f(x) =

f (3)(f (2)(f (1)(x))), where each of the functions f (1), f (2), f (3), represent the computation

at each layer. We can think of each layer as computing a non-linear representation of the

features of the previous layer; a good learning algorithm must decide how to best use and

learn the internal representations at each hidden layer in order to best match the outputs

to the target outputs [4, p. 164]. The depth of a network refers to the number of hidden

layers used; this is essentially where the name deep learning comes from. The width of

a network refers to the number of hidden units or artificial neurons in each layer of the

network. For example, in figure 2.3 the network consists of 2 hidden layers, the first of

which has 4 hidden units and the second has 3.

Input features (measurements, pixel value etc.) are fed to the input layer and subsequently

processed by the hidden layers until the output value is computed. While the definition of

an MLP is not necessarily very strict, we will assume that all the hidden layers of an MLP

13

are fully connected. With this configuration in mind, the full computation performed by

an MLP can be expressed by the forward equations:

zl =Wlal−1 + bl (2.5)

al =gl(zl) (2.6)

where,

• zl denotes the pre-activations of the lth layer.

• gl denotes the activation function used at the lth layer.

• Wl is the weight matrix for the lth layer.

• bl is the vector of biases for the lth layer.

• al−1 and al denote the activations of the l − 1th and lth layer respectively.

By convention we set the first pre-activation and activation to the input vector:

z1 = a1 = x (2.7)

An MLP with L layers has L− 1 pairs of weights and biases:

θ = {W2,W3, ...,WL,b2,b3, ...,bL} (2.8)

By repeatedly applying the forward equations we can make a prediction ŷ given some

input feature vector x. This is called the forward pass.

The key benefit of stacking hidden layers is that we can now capture non-linear depen-

dencies and approximate non-linear functions. In other words, MLPs offer us with a much

more expressive class of models than traditional linear models like the perceptron. An

important result by Hornik et al. showed that MLPs can approximate any function on a

closed interval to an arbitrary degree of accuracy when the number of hidden units in a

14

single layer is unconstrained [55]. This result is known as the universal function approx-

imation result, which claims in theory, that MLPs are universal function approximators;

they can approximate any target function f∗. Although in general, finding a parameteri-

sation that closely approximates the function we care about, f∗, is not easy. In machine

learning the problem of finding such a parameterisation is known as training.

2.1.3 Optimisation and Backpropagation

Training neural networks is typical done via gradient-based optimisation, a common tech-

nique used in many more traditional machine learning algorithms as well. In high school,

when we are asked to find the minima of a function, our first instinct is to compute its

derivative and set this to zero. Modern machine learning algorithms are based on exactly

the same principle, although in practice for higher dimensional models solving the gradient

equation is infeasible, and instead we rely on general purpose methods such as gradient

descent. Gradient descent works by iteratively updating the parameters of our model θ in

the direction that minimises some differentiable objective function J(θ) as follows,

θt = θt−1 − η∇θJ(θt−1) (2.9)

where η is a (scalar) learning rate parameter, typically set to a small positive value that

scales the gradient update steps. If the objective function is convex, then provided η is

small enough, we are guaranteed to converge to the global minima, no matter where we

start in the parameter space. Unfortunately, when it comes to training neural networks

we are rarely afforded such guarantees. The problem is typically is non-convex [56]. This

fact is easy to show, since there exist many parameterisations of the same MLP that

compute the same function (simply permute the hidden units). Nevertheless, we still apply

convex optimisation techniques similar to gradient descent for training neural networks,

but several additional tricks are typically required.

For gradient descent to work we require the objective function J(θ) to be continuous and

15

differentiable with respect to the parameters θ. For MLPs this means any of the activation

functions we use must be differentiable with respect to their inputs. In classification tasks

our aim is to minimise the number of miss-classified examples of some given dataset

D = 〈(xi, yi)〉ni=1. For most useful machine learning models including MLPs, finding the

set of parameters that minimises the number of missclassified examples is intractable.

Instead we specify a differentiable objective function called the loss function, that when

minimised should improve the performance of our model on the task at hand.

The choice of loss function tends to be critical to the final performance of the network.

The loss function needs to reflect the given task in such a way, that by minimising the

loss function we expect perform well at the given task. In most cases we employ the

principle of maximum likelihood: in a probabilistic sense MLPs typically model some

conditional distribution p(y |x,θ), and we wish to recover the parameters θ that maximise

the likelihood of the data under this distribution. This should in theory provide the best

explanation of the data at hand and best capture the conditional distribution.

In this thesis we will use deep Q-networks (DQNs) [19, 20] which approximate the Q-values

of state-action pairs; this task can be viewed as a form of regression. For regression tasks

our output features typically approximate the mean of a Gaussian distribution. In this

case, minimising the mean-squared error (MSE) is equivalent to maximising the likelihood

of the data under the conditional distribution p(y|x, θ) [4, p. 176]. So for DQNs we typically

use the MSE loss function as the objective function we seek to minimise,

LMSE =
1

n

n∑
i=1

(ŷi − yi)2 (2.10)

In this thesis we also cover the cross-entropy method, a simple but effective method for

solving relatively simple RL problems. The details are left for later, but effectively the

cross-entropy method is a form of classification, where the underlying distribution from

which the examples are drawn from changes slightly each batch iteration. Artificial neural

networks (ANNs) used for the cross-entropy method implement the softmax function in

16

their linear output layer, see Table 2.1. This is because the softmax function is differen-

tiable with respect to its inputs and it gives us a categorical distribution on the output

features, which we can sample from. In this scenario minimising the cross entropy loss is

equivalent to maximising the likelihood of the conditional distribution p(y |x, θ) [4, p. 178].

The cross entropy loss for probability vectors y and ŷ is given below,

Lcross entropy = − 1

n

n∑
i=1

y · log(ŷ) (2.11)

Now that we are equipped with some useful differentiable loss functions we can start

to think about computing gradients. The backpropagation (BP) algorithm [12] provides

us with a means for computing the gradients of the parameters of a neural network θ

with respect some loss function L. Once we have computed these gradients we can begin

to optimise the model by applying gradient based optimisation techniques, like gradient

descent. Essentially, BP is a straightforward application of the chain rule of differentiation

and it forms the basis for almost all gradient based learning algorithms for neural networks.

Given some set of input-output targets or dataset D, BP works in four stages stages:

1. Forward pass: feed the inputs x through the MLP, by applying the forward equa-

tions (Equations 2.5 and 2.6) to obtain the corresponding output value ŷ.

2. Compute the loss: under the criteria specified by the loss function L, compute the

scalar loss by comparing the outputs ŷ computed in the forward pass to the output

targets y provided in the dataset.

3. Backward pass: back-propagate the loss though the network by applying the chain

rule of differentiation to compute the parameter gradients.

4. Parameter update: update the parameters of the network θ in the direction that

minimises the loss function L according to some optimisation procedure.

More formally, Algorithm 2 outlines the general procedure for a training on a single data

point. We refer the reader to Appendix 2 for a formal derivation of the error back-

17

propagation procedure outlined by Algorithm 2. It should be clear that the forward pass

and parameter update steps outlined in Algorithm 2 are immediately derived from the

forward equations (Equations 2.5 and 2.6) and the gradient descent update step (Equation

2.9) respectively. We also note that the procedure outlined by Algorithm 2 can easily be

extended to batch data by replacing the matrix multiplications with appropriate tensor

operations.

Algorithm 2 Backpropagation

Input: inputs x, targets y, weights {W2,W3, ...,WL} and biases {b2,b3, ...,bL}.
Output updated weights {W2,W3, ...,WL} and biases {b2,b3, ...,bL}.
a1, z1 ← x1

for l← 2 ; l < L+ 1 ; l← l + 1 do . Forward pass
zl ←Wlal−1 + bl

al ← gl(zl)
end for
∂L
∂zL
← ∇zLL(y,aL) . Compute the loss

for l← L ; l > 2 ; l← l − 1 do . Backward pass
∂L
∂zl−1 ← ∂L

∂zl
Wl ∂gl

∂zl

end for
for l← 2 ; l < L+ 1 ; l← l + 1 do . Update the parameters

∆Wl ← η
[
al−1 ∂L

∂zl

]T
Wl ←Wl +∆Wl

∆bl ← η
[
∂L
∂zl

]T
bl ← bl +∆bl

end for

An important property of BP is that it can compute gradients locally, each layer only

needs l to know about gradients of the next layer ∂L
∂zl+1 and the activations at the previous

layer al−1. This property leads to efficient implementations of BP and provides some

justification of its biological plausibility [51, p. 572], although this is a widely debated

interpretation [29, 30].

Typically in modern deep learning we are given access to large datasets, and so com-

puting gradients over the entire dataset D is very costly. Instead, we typically employ

a batch gradient descent algorithm called stochastic gradient descent (SGD). With SGD,

we sample a mini-batch of input-output pairs from D and compute the gradients using

18

this much smaller amount of data. Because of the randomness associated with sampling

mini-batches, the parameter updates can become noisy which may cause divergence during

training, to deal with this issue we can either increase the mini-batch size or adjust the

learning rate parameter η accordingly.

In the deep learning literature there exists a vast array of mini-batch gradient optimisers,

all built upon the core SGD algorithm. SGD is very sensitive to the learning rate parameter

η; if η is set too big we will likely overshoot the minima and diverge, if η is set too small we

will converge very slowly to the minima. Clever scheduling and annealing of the learning

rate can help but this just gives us another thing to tune.

The Adam optimiser [43] is an optimisation scheme than has found a lot of success in

RL and DL as a whole. The Adam optimiser is fairly sophisticated algorithm that is

less sensitive to the user-specified learning rate η and is generally treated as a black box

optimiser. Although, we must note that in some settings Adam still appears sensitive to

the choice of learning rate, however it is still preferred over SGD since it converges much

quicker in practice.

The Adam update procedure is based on two key ideas:

• Adapting the learning rate for each parameter based on the exponentially weighted

moving average of its previous gradient norms.

• Using the exponentially weighted average of the gradients momentum for each pa-

rameter.

Algorithm 3 below outlines Adam update for a single parameter w.

While the Adam optimiser has 3 hyper-parameters η, β1 and β2, the betas are typically

left as their default values β1 = 0.9 and β2 = 0.999. In some of our work we will use

Adam, as it simply converges much quicker in many challenging RL scenarios, although

we must note that Adam is optimised for backpropagation and not for alternative gradient

based learning algorithms such as predictive coding. So in general we will try use SGD

19

Algorithm 3 Adam Optimiser

Input: η (learning rate), β1, β2, w0 (parameter), L(w) (loss function)
Initialize: m0 = 0, v0 = 0

for t = 1, 2, ... do
gt ← ∇wL(wt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t
m̂t ← mt

1−βt1
v̂t ← vt

1−βt2
wt ← wt−1 − η · m̂t√

v̂t+ε
end for

where possible in the interest of fairness and explainability. Furthermore, we note that the

development of a more effective gradient based optimiser built on the predictive coding

algorithm is an important area of orthogonal research.

2.1.4 Convolutional Neural Networks

We have already alluded to the idea that the hidden units of neural networks learn non-

linear representations of the features of the previous layer; this is what makes MLPs

more expressive than linear models. However, MLPs have their fair share of shortcomings

in practice and commonly suffer from overfitting to the dataset. Overfitting in machine

learning refers to the phenomena whereby a statistical model fits perfectly or very closely to

the training data and achieves poor generalisation on unseen data. A common indicator of

overfitting is when we observe excellent accuracy on the training dataset but poor accuracy

on the test dataset. The idea of overfitting can be traced back to the famous Occam’s

razor principle, which states: when it comes to comparing theories or explanations, the

simplest one, is preferred to the more complex one.

Convolutional neural networks (CNNs) [8] inspired by principles like Occam’s razor and

signal processing in the visual cortex have achieved much better generalisation capabilities

than standard MLPs in tasks such as image classification, signal processing and representa-

tion learning. CNNs are well suited to 1d signals such as audio, 2d signals such as images,

and even 3d signals such as MRI scans and other health data [51, p. 565]. CNNs use con-

20

volution filters with learnable weights to process input signals. For 2d signals this leads to

weight sharing across the input image and as a result the hidden units of a convolutional

layer have local 2-dimensional receptive fields [51, p. 565] and often sparse activations.

The intuitive property of this spatial parameter tying is that learned convolution filters

can detect the same feature or pattern anywhere in the input image, without having to

independently learn the same weights as we would if we used a standard MLP [51, p. 565].

This leads to translation invariance, meaning we can detect a specific pattern even if it

is translated in the image. Another added benefit of CNNs is that we can apply them to

variable size input, whereas the input layer of an MLP must have a rigid structure.

Let’s consider some 2d input signal I, for example a grey-scale image consisting of raw

pixel data. The mathematical operation applied by a convolution filter K at a single point

in the image (i, j) is typically denoted by an asterisk ∗ and is expressed as follows,

S(i, j) = (K ∗ I)(i, j) =

W∑
m=1

H∑
n=1

I

(
i+m−

⌊
W

2

⌋
, j + n−

⌊
H

2

⌋)
·K(m,n) (2.12)

where the convolution filter K has width W and height H. Typically (W,H) are equal

and take values in {(3, 3), (5, 5), (7, 7), ...}. Figure 2.4 presents a visual interpretation of

the convolution operation.

Figure 2.4: The convolution operation (Equation 2.12) applied by a convolution filter to
a specific point in the input image

21

Typically, convolution filters are applied across the entire input in a sliding window fash-

ion. If we want to apply the convolution filter K to every pixel in the image we can

systematically shift the filter by one pixel (stride of 1) across the entire image and what

we get back is called a feature map. In this scenario we will likely need to pad the image

with zeros at its boundaries. We can also change the stride of the convolutional layer

and skip every other pixel as opposed to applying it to every pixel, for more details about

stride and zero-padding please refer to [57].

A convolutional layer in a neural network typically consists of many learnable convolutional

filters applied in parallel, with each outputting their own feature map. It is also typical to

use a pooling layer after a convolutional layer, since the same feature may have been picked

up in two neighbouring pixels, and this is essentially redundant information. Pooling

works by replacing each location in the output feature map with a summary statistic of

nearby values [4, p. 330]; essentially we reduce the size of the feature maps by removing

redundant or repeated feature detections in small local regions of the feature map, see

figure 2.5.

Figure 2.5: Max pooling operation. Pool size is 2x2 and stride is (2, 2).

Typically after several convolutional and pooling layers the output feature maps are flat-

tened and passed through an MLP classifier or regressor. The feature extraction and

processing performed by the convolutional and pooling layers is similar to internal repre-

sentations learned in the hidden layers of a standard MLP, although exploitation of the

local geometry of the input is what helps CNNs achieve better generalisation capabilities.

Figure 2.6 illustrates the typical architecture of a CNN designed to classify images.

22

Figure 2.6: Typical architecture of a CNN images classifier.

Since the inception of CNNs, much of the recent research has become more of an engineer-

ing and mathematical effort than a neuroscience one. Important challenges that have been

overcome include: successfully applying backpropagation to CNNs [1, 8], utilising deeper

CNN architectures while avoiding the vanishing gradient problem [58], and adopting tricks

such as dropout [13] and batch normalisation layers [59] to achieve better generalisation.

Key successes from the past decade include AlexNet [1] for image classification and achiev-

ing super-human performance on Atari 2600 games by learning from raw pixel data [19,

20]. The later work will be used as the basis for much of the research in this thesis and

its importance will become apparent.

2.2 Predictive Coding and Energy-Based Models

Predictive coding (PC) is a promising theory of learning in the brain first used as a means

of explaining neural processing in the retina and visual cortex [33, 34]. More recently

PC has evolved into a general purpose Hebbian learning algorithm that can be applied

to networks of arbitrary topology [28, 40, 41]. Driven by local updates, PC has strong

mathematical foundations and links to theories of Bayesian inference in the brain [35, 60].

In addition, PC posits as a more biologically plausible algorithm compared to BP and

could be the key to achieving greater cognitive flexibility for systems aiming to capture

human intelligence [42].

The idea behind PC is that brain function can be captured by inference and learning in

some deep generative model. The architecture of such a model can be expressed in a

23

similar way to that of an artificial neural network (ANN), with layers of hidden neurons

passing information from one layer to the next. The key distinction between ANNs and

these deep generative models is the way in which synaptic connections are updated. In

ANNs error computed at the output layer is back-propagated through the network before

synaptic plasticity (parameter updates), this is the backpropagation (BP) algorithm, see

Section 2.1.3. On the other hand, PC is a Hebbian learning algorithm relying only on

local updates, it works by first updating the internal neural activity of the network by

minimising some energy potential function, before updating the synaptic connections to

minimise local prediction errors.

Despite PC’s origins in neuroscience, there has developed a strong drive to understand

its applications in deep learning and how networks trained with PC relate to deep neural

networks trained with BP. Important work has been done in characterising PC under

the energy-based model (EBM) framework [38, 61]. Insights into how PC and Hebbian

learning in the brain can approximate BP have also lead to increased understanding of

PC [39, 62].

Networks trained with PC have shown promise over BP in a number of recent studies

[28, 41, 42]. In addition, the reliance on only local updates allows for greater flexibility,

meaning PC can be implemented on specialised architectures and potentially run several

orders of magnitude quicker than BP [42]. This could play a significant role in the adoption

of PC in the near future as we aim to scale up large predictive and generative models.

However, in this thesis we will be concerned with applying the theory of PC to predictive

coding networks (PCNs) which emulate neural network architectures trained with local

Hebbian updates. In this section, before we cover PCNs we will first briefly cover Hopfield

networks. We hope this material serves as a useful introduction into the origin of EMBs

and their mathematical interpretations.

24

2.2.1 Hopfield Networks

Hopfield networks [63] are fully connected Ising models with a symmetric weight ma-

trix W = WT ∈ {−1,+1}D×D [51, p. 669] and biases b ∈ {−1,+1}D, see Figure 2.7.

Ising models themselves are energy-based models (EBMs) originally developed in statisti-

cal physics for modelling the behaviour of magnets. EMBs are generative models, which

means they aim to capture the underlying distribution of a given dataset. In general,

EMBs work by associating an unnormalised log probability scalar (energy) value to every

configuration of the model. To capture dependencies in the dataset EMBs learn to asso-

ciate low energy states with correct values for the latent variables and high energy states

with incorrect values for the latent variables.

x6

x1

x5

x3

x4

x2

Figure 2.7: Hopfield network with 6 nodes represented as an undirected graph. Each edge
represents a symmetric weight wj,i = wi,j denoting the dependency between nodes.

Hopfield networks themselves act as content-addressable memory systems and are used

for the problem of associative memories; given some set of observed bit vectors we want

to “memorise” these patterns, so that when we are presented with a corrupted or partial

pattern we can recover the corresponding pattern.

The operations of Hopfield networks and EMBs in general can be split into two phases:

learning and inference. In words, learning corresponds to the process by which we pick

the parameters of our model, and inference corresponds to the process of minimising some

energy function to recover or infer the values of observed and/or latent variables. The

energy function for Hopfield networks is derived from the unnormalised log probability

25

of the fully connected Ising model, see [51, p. 668] for details. The energy function for

Hopfield networks is given below,

E(s;θ) = −1

2

∑
i,j:i 6=j

wi,j · si · sj +

N∑
i=1

bi · si = −1

2
sTWs + bT s (2.13)

where s ∈ {−1,+1}D denotes the values of the nodes (see Figure 2.7) or the state of the

Hopfield network. During inference we minimise the energy function by coordinate descent

using iterative conditional modes (ICM), a deterministic algorithm which iteratively sets

each node to its most likely state given its neighbours. This corresponds to following the

update rules of the dynamical system defined by the network,

si ←


1 if

∑N
j=1wi,jsj > bi

−1 if
∑N

j=1wi,jsj < bi

(2.14)

By minimising the energy function we expect the dynamical system to converge to a low-

energy state. The general idea behind training Hopfield networks is that we lower the

energy of the states we wish to “memorise”, making them local minima of the energy

function, so that when we are provided with a corrupted version of the “memorised” state

we can recover it by running inference.

There are several methods for fixing the parameters of a Hopfield network to memorise a

given bit vector dataset, for example, Hebb’s law of association [64], Storkey’s rule [65],

and via maximum likelihood and gradient descent [51, Ch. 19.5.1]. The important thing

to note is that all of these methods have the same two desirable properties:

• Local: updates only rely on local information immediately available from neurons

either side of the weight.

• Incremental: it can learn new patterns without explicit access to information about

older learned patterns.

These two key properties result in a Hebbian learning rule [64] making it more biologically

26

plausible, since the synaptic strengths between neurons in the brain are incrementally

updated based on local information. Although, for some update rules like maximum

likelihood, inference needs to be run before every parameter update, which makes training

these undirected models much slower than directed models like ANNs [51, Ch. 19.5].

Several extensions to the classic binary Hopfield networks exists, these include Boltzmann

machines that generalise Hopfield networks with hidden units. In addition, Modern Hop-

field Networks (MHNs) also called Dense Associative Memories (DAMs) [66] generalise

Hopfield networks. They break the linear relationship between the number of units and

the number of stored “memories” by introducing strong non-linearities into the energy

function. MHNs have also been extended to continuous states so that they can be applied

to more generic tasks [67].

Deep Boltzmann machines [68] were also among the first deep architectures to be suc-

cessfully trained for modern machine learning tasks, like image classification, by a famous

method known as contrastive divergence [48]. This material is beyond the scope of this

thesis but we refer the interested reader to the following resources: [51, Ch. 27.7], [4,

Ch. 20].

2.2.2 Predictive Coding Networks

Predictive coding networks (PCNs) [40–42] apply the general theory of predictive coding

(PC) to arbitrary graph topologies. Mathematically PCNs can be viewed as variational

inference on hierarchical Gaussian generative models [42]. On the other hand, artificial

neural networks (ANNs) (Section 2.1) are discriminative models that model conditional

distributions of the form p(y | x,θ). Conveniently, we can express hierarchical PCNs and

ANNs in the same way: in terms of layers of neurons processing information from input

to output. This establishes a framework for the direct comparison of ANNs and PCNs

and by extension the two learning algorithms BP and PC. In fact under certain conditions

it can be shown that PCNs actually exactly implement backpropagation (BP) and thus

generalise ANNs [69].

27

The key distinction between ANNs and PCNs is the learning rule and objective function.

With ANNs the goal is to update the parameters of the network to minimise the scalar

loss computed at the output layer. With PCNs the goal is to minimise the local prediction

errors or local energy functions between layers. Many resources describe PCNs in slightly

different ways [28, 40–42, 61], however we will aim to give a description that is consistent

with the notation used in Section 2.1.

Let’s first note the following conventions we plan on using:

• Let f be the network of L fully connected layers with parameters:

θ = {W2,W3, ...,WL,b2,b3, ...,bL} (2.15)

• We assume every layer (including the input and output layer) has dimension n.

• We will rewrite the forward equations (Equations 2.6 and 2.5 from Section 2.1.2) of

the network f in terms of xl:

xl ←Wlgl(xl−1) + bl (2.16)

• We assume that x1 is the input layer and xL is the output layer.

In general PCNs incorporate two types of time dependent neurons: value nodes denoted

by xlt,i and error nodes denoted by E lt,i. The value nodes xlt,i correspond to the activity

of a single neuron; their aim is to predict the signal µlt,i which is the weighted sum of the

activations of the neurons feeding into them, see Figure 2.8. If xlt,i is the ith neuron of the

lth fully connected layer in f , then µlt,i is computed as follows,

µlt,i =
n∑
j=1

(
wli,jg

l(xl−1t,j)
)

+ bli (2.17)

where wli,j is the weight connecting the ith neuron of layer l to the jth neuron of layer

28

v3 v2

v1

w2,3

w3,2

w1,2

w2,1
w3,1

w1,3

ε2

x2

Σ

g(x2) g(x2)

w2,3g(x3) w2,1g(x1)

μ2

Figure 2.8: Fully connected predictive coding network with 3 nodes. The weighted directed
edges represent connections between nodes. The biases have been removed for simplicity.

l − 1, gl is some arbitrary activation function and bli is the bias for xlt,i. The prediction

error E lt,i, refers to the mismatch between xlt,i and µlt,i, that is, E lt,i = xlt,i − µlt,i. Writing

this in vector notation at the layer level gives us the following,

µlt ←Wlgl(xl−1t) + bl (2.18)

E lt ← xlt − µlt (2.19)

During both learning and inference the goal is to minimise the sum of squared prediction

errors at each layer, which can equivalently be interpreted as minimising the following

global energy function,

E(x1, ...,xL;θ) =
1

2

L∑
l=2

(xl −Wlgl(xl−1)− bl)2 =
1

2

L∑
l=2

(
E l
)2

(2.20)

Inference: Typically during inference the input and output nodes are clamped, the

parameters of the network are fixed, and only the value nodes of internal layers (layers

2, ..., L − 1) of the network are optimised to minimise the prediction errors. Inference is

typically run for T steps or until some convergence criteria is met. Typically standard

gradient descent with some form of learning rate annealing is used to modify the value

nodes in order to minimise the energy function during inference.

29

Learning: consider the supervised learning setting, where we are given some input stim-

ulus sin and output target starget that we wish to learn. The internal layers are initialised

to 0 and the input and output layers are clamped as follows: x1 ← sin, xL ← starget.

Inference is run for T steps to minimise the energy function. After inference, the weights

and biases are updated using a gradient based optimiser to minimise the prediction errors

(or equivalently the energy function).

Prediction: in the discriminative setting, predictions with PCNs are made in exactly the

same way as with ANNs, by applying the forward equations. By re-framing the forward

equations from Section 2.1.2 in terms of value nodes, we derive a simple procedure for mak-

ing predictions with either an ANN or PCN. Algorithm 4 presents this procedure.

Algorithm 4 Predict with ANN or PCN

Input: inputs sin, weights {W2,W3, ...,WL} and biases {b2,b3, ...,bL}.
Output: output prediction sout.

x1 ← sin . Clamp input neurons
for l← 1 ; l < L ; l← l + 1 do . Forward pass

xl+1 ←Wl+1gl(xl) + bl+1

end for
return sout ← xL

Algorithm 5 presents the full predictive coding algorithm applied to f , the fully connected

network with L layers. For a detailed derivation of the gradient updates please refer to

Appendices A.2 and A.3, or refer to the original derivations by Whittington & Bogacz

[39].

PCNs set up in this way effectively re-frame learning on ANN architectures as an inference

problem [42], where each layer aims to predict the weighted activations of the previous

layer. Since we use squared errors, the uncertainty in the network and at the output layer is

assumed to be Gaussian, which lends itself immediately to regression tasks. The Hebbian

nature of this algorithm should become apparent after studying the weight updates in

Algorithm 5; updates to value nodes and parameters are made using only local errors and

activations from neighbouring layers.

30

Algorithm 5 Predictive Coding

Input: inputs sin, targets starget, weights {W2,W3, ...,WL} and biases {b2,b3, ...,bL}
Output updated weights {W2,W3, ...,WL} and biases {b2,b3, ...,bL}
x1 ← sin . Clamp input neurons
xL ← starget . Clamp output neurons
for l← 2 ; l < L ; l← l + 1 do . Initialization

xl ← 0
end for
for t = 0 ; t < T ; t← t+ 1 do . Inference

for l← 1 ; l < L ; l← l + 1 do
µl+1 ←Wl+1gl(xl) + bl+1

E l+1 ← xl+1 − µl+1

end for
for l← 2 ; l < L ; l← l + 1 do

∆xl ← α

(
−E l +

∂gl

∂xl

((
Wl+1

)T
E l+1

))
xl ← xl +∆xl . Inference step

end for
end for
for l← 2 ; l < L+ 1 ; l← l + 1 do . Parameter updates

∆Wl ← ηE l
[
gl(xl−1)

]T
Wl ←Wl +∆Wl

∆bl ← ηE l
bl ← bl +∆bl

end for

Some of the first results showed that small PCNs trained on MNIST were able to achieve

comparable performance to ANNs of the same size trained with BP [39]. Similar results

were obtained by using a variant of PC that allows for layer-specific loss functions [70],

rather than the default squared error loss. This variant achieved similar performance to

BP on MNIST and FashionMNIST. Furthermore, deep convolutional PCNs were also able

to achieve only slightly worse performance than BP on more challenging datasets such as

CIFAR10 and ImageNet [71].

31

2.2.3 Generative Predictive Coding Networks

Generative PCNs have subtle but important differences compared to those used in the

discriminative setting, although the way in which they are trained is almost entirely the

same. Rather than trying to emulate ANN architectures generative PCNs are setup in a

way that is very reminiscent of classical Hopfield networks, restricted Boltzmann machine

(RBMs) and deep Boltzmann machines (DBMs), see figure 2.9.

a b c

Figure 2.9: Generative PCN architectures, sensory vertices are blue and internal vertices
are grey. a: generative PCN with two fully connected hidden layers, reminiscent of stacked
RBMs or a DBM. b: fully connected generative PCN with 5 vertices reminiscent of the
standard Boltzmann machine. c: chaotic generative PCN shown to illustrate that PCNs
can have an arbitrary topology.

The vertices of generative PCNs are classified into two distinct classes: sensory and internal

vertices. As before, both types of vertex implement two types of time-dependent neurons:

value nodes xt,i and error nodes Et,i. Again, the goal of the value nodes xt,i is to predict

the signal µt,i, which in an arbitrary graph topology can be expressed by,

µt,i =
∑
j

wi,jgj(xt,j) (2.21)

where the sum is over all vertices j that feed into i with a directed edge, each edge may

have its own activation function gj . During inference the local errors Et,i = µt,i − xt,i

are computed, and the global energy function, which corresponds to the sum of squared

errors, is minimised until convergence using gradient descent as before. We can write the

32

global energy function as,

Et =
1

2

∑
i

(Ei,t)2 (2.22)

where the sum is over all vertices i. The goal of generative models is to learn the under-

lying distribution of some dataset so that we can use them in a more flexible way than

discriminative models. Learning in generative PCNs occurs in a similar way to learn-

ing in discriminative PCNs, although we usually don’t have access to target outputs or

labels.

Learning: suppose we are presented with a stimulus s ∈ Rd we wish to learn. The

sensory vertices of the PCN are clamped to the stimulus s, the weights of the model are

fixed, and the value nodes of the internal vertices are optimised with gradient descent

to minimise the prediction errors. After T inference steps, the weights of the model are

updated using a gradient based optimiser to minimise the prediction errors. Algorithm

6 outlines the procedure at a high level. Please refer to [40] for a detailed outline of the

gradient computations during the update steps in Algorithm 6.

Algorithm 6 Learn on generative PCN

Input: stimulus s, weights W
Output: updated weights W

x1, ...xd ← s1, ..., sd . Clamp sensory neurons
for t← 0 ; t < T ; t← t+ 1 do

for each vertex i /∈ {1, ..., d} do
update xi to minimise Et . Inference

end for
end for
update every wi,j to minimise ET . weight update

Querying: once trained, generative PCNs can be queried in a flexible way. Either by

conditioning on some partial clamping of the sensory neurons, or by randomly initialis-

ing the sensory neurons and running inference to generate a novel stimulus. As such,

generative PCNs can be applied to a variety of machine learning tasks such as: image gen-

eration, image completion, image denoising, image classification and associative memories

[40, 41].

33

Salvatori et al. showed that PCNs achieved superior performance in high-dimensional

associative memory tasks when compared to state-of-the art models [41]. Specifically,

PCNs achieve high image retrieval and reconstruction accuracy when compared to auto-

encoders (AEs) of the same size; overparameterisation is essential for AEs, whereas PCNs

tend to do well even with small architectures. Salvatori et al. also showed that deep

generative PCNs out perform modern Hopfield networks (MHNs) and deep associative

neural networks (DANNs) [72] in image retrieval and reconstruction tasks. Furthermore,

associative memory models trained with PC possess a high degree of biological plausibility

since it has been hypothesised that the brain stores and retrieves memories using similar

mechanisms [73].

In another study Salvatori et al. showed that PC can be applied to arbitrary graph topolo-

gies and still maintain good performance [40], a feat which Boltzmann machines fail to ac-

complish. It is important to note that learning on arbitrary network topologies is not pos-

sible with BP since we would likely run into infinite loops while trying to back-propagate

error. This once again speaks to the biologically plausibility of PC, and in fact in the

same study Salvatori et al. showed that PC is able to perform image generation and clas-

sification on extremely dense networks that resemble regions of the brain [40], networks

that look vastly different to typical ANN architectures.

One of the most important properties of PCNs is their ability to generalise to novel tasks.

ANNs for example, typically need to be re-trained when applied to a new task, whereas

PCNs appear to learn an internal representation of the dataset and generalise well to tasks

they were not specifically trained for [42]. This property comes from the inference phase

which solves a dynamical system by minimising the internal energy of the network. While

inference appears to unlock the potential for cognitive flexibility in PCNs, it also happens

to be one of its current major pitfalls. Running inference is slow, particularly for large T ,

and so in practice we can’t set T too big. This of course affects inference and subsequently

makes learning less stable, although if we are careful, we can make the most of PCNs in

a number of settings.

34

2.3 Reinforcement Learning

Reinforcement learning (RL) [14] is a paradigm of machine learning lying somewhere in the

spectrum between supervised and unsupervised learning. RL has many interesting con-

nections to control theory, optimization, psychology, neuroscience and animal behaviour

and learning. This makes it a topic if high interest in biological learning and subsequently

this thesis. We will start this section by introducing the general formalisms of the RL

paradigm, before continuing on a small adventure that takes us through some of the most

fundamental methods.

Put simply RL can be characterised as learning what to do in a given environment so as

to maximise the accumulation of some scalar reward, often denoted by rt. The learner,

often referred to as the agent, interacts with the environment by picking actions and must

implicitly learn which actions lead to the most reward. Along with reward signals rt

the agent receives an observation ot at each time step, which is often a partial or full

description of the of the underlying state st of the environment. Figure 2.10 illustrates

this information flow at each timestep.

Figure 2.10: An agent interacting with its environment by picking an action at, receiving
reward signal rt and observation ot.

The differences between this setup and more traditional paradigms like supervised and

unsupervised learning should now become apparent. While in RL it is common to train

on labelled experience (or examples), the experience itself does not necessarily encode

35

the best actions to take. This is different of course to supervised learning, where the

labelled examples encode exactly the desired behaviour of the system. On the other hand,

with unsupervised learning the goal is to uncover the underlying structure of a given

dataset, and while uncovering the structure of the environment would certainly benefit

the agent, the main goal is still to maximise accumulated reward and learn which actions

are best to take in which scenarios, and in most cases having a perfect representation of

the environment doesn’t trivialise this problem.

In some of the most interesting and challenging cases, actions may not affect the most

immediate reward, but rather affect the state of the environment such that there is po-

tential for some delayed reward signal in the future. Environments like this, with sparse

reward signals, cause some of the best algorithms out there to fail; agents must learn to

manipulate their environment and search, sometimes in a trial-and-error type fashion, for

reward signals they can learn from. This is closely related to the famous trade-off between

exploration and exploitation. Using its experience the agent must exploit what is has

learned to ensure it maximises reward, but how can the agent hope to find better actions

in the future without trying them, and exploring the environment?

To characterise RL formally, we draw from ideas about dynamical systems modelling and

optimal control. We formalise the RL problem as optimal control of an unknown Markov

decision process (MDP). We will continue by introducing the formal definition of the MDP

model, along with important notions, such as, the policy and future return.

2.3.1 Markov Decision Process

Throughout this entire section we will consider the case where we have full observability,

ot = st, or in words, the observations we receive from the environment are exactly the

current state of the environment. An MDP is essentially an extension of a Markov process

augmented with rewards, and where state transitions are conditioned on actions. Formally

an MDP it is a 4-tuple 〈S,A,R, P 〉 where:

36

• S is the set of states or the state space.

• A is the set of actions or the action space.

• R is the set of all possible rewards, R ⊆ R

• P denotes the transition dynamics of the MDP. Specifically, P (s′, r, s, a) = Pr(st+1 =

s′, rt = r |st = s, at = a) is the probability of transitioning from s to s′ and receiving

reward r by picking action a.

Additionally,

• s and s′ denote states, a denotes an action and r denotes a scalar reward.

• St is the random variable denoting the state at time t, At is the random variable

denoting the action taken at time t, Rt is the random variable denoting the reward

received at time t.

Note that the transition matrix satisfies the Markov property, it only depends on the

current state and action, not the entire history of states. This may seem like an obvious

oversimplification and it is, but in practice there are ways of capturing longer tempo-

ral dependencies if we need. Figure 2.11 gives an example of a generic Markov process

augmented with rewards and actions.

Figure 2.11: A simple MDP with three states (green circles), two actions (orange circles)
and reward signals denoted by orange arrows.

37

In the discrete time model, actions are taken at discrete timesteps {0, ..., T}. MDPs can be

extended to a continuous-time scenario where actions are taken at arbitrary time points,

but this is beyond our needs. Instead we will assume the following: at each timestep the

agent observes state st, picks an action at according to its current policy π and receives

reward rt+1. When T is finite the MDP is said to have finite horizon. Additionally, an

MDP is said to be finite when both the set of states S and set of actions A are finite sets

[74, Ch. 14.2].

We note that our definition for MDPs is quite general and assumes the reward received at

rt+1 is a random variable given st, and at, but most of the time it is simply a deterministic

function r(s, a) depending on st, and at. Either way, we let the sequence of random

variables Rt+1, Rt+2, Rt+3, ... denote the reward at discrete timesteps after t. In the finite

horizon case we can write the accumulated reward or return as,

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (2.23)

MDPs with finite horizon typically have a notion of terminal state, where agent-environment

interaction ends. These environments are called episodic. For episodic tasks, the goal

of maximising accumulated reward Gt coincides with picking actions that result longer

episodes. Informally, this could be seen as trying to keep your character “alive” in a video

game. For MDPs with infinite horizon we introduce a discount factor γ ∈ [0, 1], which

favours immediate rewards over rewards far in the future. We now define the return Gt

as,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1 (2.24)

This way of writing Gt is called the discounted accumulated reward or future return and

it is perhaps the most important quantity in RL. Even in episodic tasks we usually write

Gt in this way, for both convenience and practical reasons.

38

Perhaps one of the most key notions in RL is the idea of a policy. The policy, typically

denoted by π(a | s), refers to the way in which the agent picks actions given some state

(or observation). Formally the policy is defined as a probability distribution over actions

for every possible state,

π(a | s) = Pr(at = a | st = s)

The policy can be expressed in many ways: as a table of probabilities over all state-action

pairs (s, a) ∈ S × A, as a linear model or even as a deep neural network. The policy can

be and is often deterministic. All we need to understand at this point is that the policy

defines how the agents acts in the environment. Since the policy π gives us a (probabilistic)

mapping from S to A we can in a sense “combine” the policy with the MDP. This reduces

the MDP to a Markov process augmented with rewards, or more succinctly a Markov

reward process. This idea is called policy evaluation, which is an important procedure for

comparing policies.

The goal of the agent is to determine which policy results in behaviour that maximises

the expected future return, Eπ[Gt]. In the next section we will introduce the idea of the

optimal policy π∗, which maximises this quantity over all possible states s ∈ S. We will

also cover value functions and their relationships to the optimal policy.

2.3.2 Value Functions and the Optimal Policy

Before formally describing the optimal policy π∗ we must introduce the notion of a value

function. The value of a state s ∈ S corresponds to how desirable it is to be in that state

with respect to the expected future return. Under a fixed policy π the value of a state is

given by the state-value function vπ(s), which is defined as,

vπ(s) = Eπ [Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1| St = s

]
(2.25)

where the randomness here is over all state transitions, reward dynamics and action se-

lections if the policy π is stochastic. Another important value function is the state-action

39

value function or q-function qπ(s, a). qπ(s, a) is defined for all pairs (s, a) ∈ S×A as the

expected future return by taking action a from state s and following the fixed policy π

thereafter,

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]
(2.26)

Recall that the goal in RL is to determine the policy π∗ that maximises the expected

future return for all states s ∈ S. We are now equipped to give the formal definition of the

optimal policy π∗ and its properties. A policy π′ is said to be better than or equal to a

policy π if for all states vπ′(s) ≥ vπ(s). The optimal policy π∗ is such that vπ∗(s) ≥ vπ(s)

for all states s ∈ S and all policies π. We note that in some cases there may be many

optimal policies, although they all share the same state-value function, called the optimal

state-value function,

v∗(s) = max
π

vπ(s) for all s ∈ S (2.27)

Similarly, the optimal policies all share the same optimal state-action value function,

q∗(s, a) = max
π

qπ(s, a) for all s ∈ S and a ∈ A (2.28)

How we determine the state-value function vπ(s) or state-action value function qπ(s, a) for

some policy π is called policy evaluation. Recall the definition of the discounted accumu-

lated reward or future return,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.29)

40

Observe that we can write Gt by the following recursion,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ...

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + ...)

= Rt+1 + γGt+1 (2.30)

Using the recursion established by Equation 2.30, we can rewrite the value function

as,

vπ(s) = Eπ [Gt | St = s] (2.31)

= Eπ [Rt+1 + γGt+1 | St = s]

= Eπ [Rt+1 + γvπ(St+1) | St = s] (2.32)

If the MDP is finite we can sum over all randomness, giving us,

vπ(s) =
∑
a

π(a | s)
∑
s′,r

Pr(s′, r | s, a)
[
r + γvπ(s′)

]
(2.33)

where we implicitly assume actions a are taken from the set A, next states s′ are taken

from the set S and rewards r are taken from the set of all rewards R. Equation 2.33 is

called the Bellman equation for the state-value function vπ(s), it defines the relationship

between the value of a state and its successor states under some fixed policy π.

Similarly, we can write the Bellman equation for qπ(s, a),

qπ(s, a) = Eπ [γGt | St = s,At = a]

= Eπ [Rt+1 + γGt+1 | St = s,At = a]

= Eπ [Rt+1 + γqπ(St+1, At+1) | St = s,At = a]

=
∑
s′,r

Pr(s′, r | s, a)

(
r + γ

∑
a′

π(a′ | s′)qπ(s′, a′)

)
(2.34)

41

Now, by applying Equations 2.33 and 2.34 we can write out the Bellman optimality equa-

tions for both v∗(s) and q∗(s, a),

v∗(s) = max
a

∑
s′,r

Pr(s′, r | s, a)
[
r + γv∗(s

′)
]

(2.35)

q∗(s, a) =
∑
s′,r

Pr(s′, r | s, a)

(
r + γmax

a′
q∗(s

′, a′)

)
(2.36)

In the case of finite MDP with no loops, the Bellman optimality equation for v∗(s) and

q∗(s, a) have a unique solution that can be obtained by solving a system of linear equations.

For less straightforward MDPs we must rely on alternative methods.

2.3.3 Dynamic Programming Methods

Dynamic programming broadly refers to the technique whereby a complicated problem

with a recursive structure is broken into many sub-problems, the problems are then subse-

quently solved and the result stored in memory for re-use. Dynamic programming methods

for RL utilise the recursive nature of the Bellman equations and apply dynamic program-

ming principles to determine or closely approximate the optimal policy π∗. We will look

at two methods in this section, namely, policy iteration and value iteration. Both these

methods actually solve the problem of optimal control in a known MDP. However, unfor-

tunately we can only use them under some quite strict assumptions that rarely hold in

practice.

Value iteration: [14, Ch. 4.4] is an iterative dynamic programming method for obtaining

the optimal policy π∗ of a given MDP by closely approximating the optimal state-value

function v∗(s). Once we have obtained the optimal state-value function v∗(s) an optimal

policy can easily be obtained by,

π∗(a | s) =


1 if a = argmaxa

∑
a Pr(s′, r | s, a)(r + γv∗(s))

0 otherwise

(2.37)

42

In fact if the optimal state-action value function q∗(s, a) is known, we can write this more

succinctly:

π∗(a | s) =


1 if a = argmaxa q∗(s, a)

0 otherwise

(2.38)

Value iteration works by constructing a table or list of all state values V (s) and iteratively

updating the state values by unrolling the Bellman equation (Equation 2.33) one step at

a time. The full procedure is outlined by Algorithm 7.

Algorithm 7 Value iteration

Input: finite set of states S, finite set of actions A, transition and reward dynamics
Pr(s′, r | s, a).
Initialise: all state values v(s)← 0.

repeat
for all s ∈ S do

for all a ∈ A do
q(s, a)←

∑
s′,r Pr(s′, r | s, a)[r + γv(s)] . unroll the Bellman equation

end for
v(s) = maxa q(s, a) . update state values

end for
until convergence
return optimal policy π ≈ π∗ using v(s) and Equation 2.37.

An important property of value iteration and other dynamic programming methods is

that they are guaranteed to converge to the optimal state-value function v∗(s), and thus

recover the optimal policy π∗, the proof can be found here [74, Ch. 14.4.1]. Additionally,

they are very efficient when compared with linear programming methods, and in general

they converge must faster than their worst-case guarantees [14, Ch. 4.7].

However, unfortunately these dynamic programming methods suffer from the curse of

dimensionality. The procedure outlined in Algorithm 7 iterates over all states s ∈ S and

actions a ∈ A. For most practical problems the state space S grows combinatorically

large, think about how many possible configurations of a chess board exist. Additionally,

for methods like value and policy iteration we require a perfect model of the transition

43

dynamics of the environment, that is, we need access to Pr(s′, r |s, a). This requirement is

often never satisfied in practice and in fact there is a whole sub-field of RL called model-

based RL that aims to learn the transition dynamics of the environment, for planning and

other procedures like local policy optimisation.

Policy iteration: [14, Ch. 4.3] is an alternative dynamic programming method that stores

and iteratively updates the policy π by running policy evaluation and policy improvement

until convergence. The general procedure is to start from a random policy π0, fix this

policy and evaluate it over all states s ∈ S computing the value function by,

vπ0(s) = Eπ0 [Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s] (2.39)

Typically we can only unroll the discounted accumulated reward one step at a time (see

Equation 2.32), since the number of terms in the expectation may explode quickly when

we have stochastic transition and reward dynamics. After we have computed (or approx-

imated) the value function of the current policy π we update the policy ‘greedily’ (policy

improvement) so that is satisfies,

π′(a | s) =


1 if a = argmaxa

∑
a Pr(s′, r | s, a)(r + γvπ(s))

0 otherwise

(2.40)

By iteratively applying policy evaluation and policy improvement, we generate a sequence

on monotonically improving policies and value functions [14, p. 80]. Because there are only

a finite number of deterministic policies for a finite MDP, this procedure is also guaranteed

to converge to the optimal policy π∗. Although it still suffers from the same drawbacks

as value iteration. The full procedure is outlined by Algorithm 8.

The key takeaway here, is that both algorithms are efficient and optimal. And although

they are rarely practical, ideas like policy evaluation, policy improvement and value iter-

ation have been fundamental for the development and success of much more impressive

RL algorithms.

44

Algorithm 8 Policy iteration

Input: finite set of states S, finite set of actions A, transition and reward dynamics
Pr(s′, r | s, a).
Initialise: the current policy π randomly. Set v(s)← 0 for all s ∈ S.

repeat
for all s ∈ S do

v(s)←
∑

a π(a | s)
∑

s′,r Pr(s′, r | s, a)[r + γv(s′)] . one-step policy evaluation
end for
Update the current policy π using v(s) and Equation 2.40. . policy improvement

until convergence
return the optimal policy π ≈ π∗.

2.3.4 Q-learning

The Q-learning algorithm acts as the theoretical basis for most value-based methods

utilised in deep RL. Q-learning [75] is an off-policy temporal difference (TD) control algo-

rithm. For those readers that are not familiar with the taxonomy of RL algorithms please

refer to Table C.1 in Appendix C.1. The Q-learning algorithm works by maintaining a

table of state-action values, Q(s, a), that directly approximate the optimal state-action

value function q∗. In contrast to the dynamic programming methods covered in the previ-

ous section, Q-learning learns from experience generated by an agent interacting with the

environment, rather than iterating over all states s ∈ S and actions a ∈ A. Starting from

some state St the agent picks an action At according to the current policy π derived from

Q(s, a). Then using the received reward Rt+1 and observed state St+1, the table Q(s, a)

is updated according to the following update rule,

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.41)

where α is a step-size parameter controlling how big the updates are. We note that the

quantity Rt+1 + γmaxaQ(St+1, a) − Q(St, At) refers to the TD error δt. In contrast to

Monte Carlo methods [14, Ch. 5] which estimate, vπ(s) = Eπ[Gt | St = s] as a target, TD

methods estimate and use vπ(s) = Eπ[Rt+1 + γvπ(St+1) | St = s] as a target. Batch TD

methods typically converge faster than batch Monte Carlo methods as they aim to find es-

45

timates that would be correct for a maximum likelihood model of the MDP, whereas Monte

Carlo methods find estimates that minimise the mean squared error [14, p. 128].

Convergence guarantees for Q-learning require that each state-action pair (s, a) ∈ S × A

is visited infinitely often [74, p. 332]. As such, we can’t just blindly follow the “greedy”

policy,

π(a | s) =


1 if a = argmaxaQ(s, a)

0 otherwise

(2.42)

Instead we employ an ε-greedy strategy, whereby with probability ε we pick a random

action a ∈ A and with remaining probability we follow the “greedy” policy given by

Equation 2.42. As a result the Q-learning algorithm can be viewed as a stochastic version

of the value iteration algorithm presented in the previous section. Algorithm 9 outlines

the general Q-learning algorithm in procedural form.

Algorithm 9 Q-learning

Input: learning rate α ∈ (0, 1], epsilon exploration parameter ε > 0.
Initialise: table of state-action value Q(s, a) arbitrary for all s ∈ S, a ∈ A, except for
terminal states, set Q(s′, a)← 0 for all s′ ∈ Sterminal, a ∈ A.

Loop for each episode
Observe start state S.
Loop for each step

With probability ε pick randomly an action A from A.
O/w pick A from S according to the “greedy” policy π(s) = argmaxaQ(s, a).
Play action A and observe reward R and next state S′.
Q(S,A)← Q(S,A) + α[R+ γmaxaQ(S′, a)−Q(S,A)]
S ← S′

until S is terminal
return optimal policy π ≈ π∗ using Q and Equation 2.38.

The most important property of this algorithm is that the update step is independent of

the policy being followed. This property simplifies the analysis of the algorithm which

lead to early convergence proofs [76]. Specifically, it can be shown that Q will converge to

probability q∗ with probability 1, under some reasonable assumptions about the step-size

46

parameter α and if all state-action pairs (s, a) ∈ S × A continue to be updated, see [77]

for a simple proof of this fact.

Additionally, the Q-learning algorithm is a our first example of a model-free algorithm,

it does not require a perfect model of the environment, or more formally, access to

Pr(s′, r |s, a). This makes it a more practical algorithm than those outlined in the previous

section, although unfortunately, for large state and action spaces it is infeasible to store

Q-values Q(s, a) for all state-action pairs (s, a) ∈ S × A. Instead we can rely on linear

models or function approximators, which give us a map Q : S×A→ R that approximate

the Q function.

This idea encouraged the development of deep Q-learning, one of the first of many success

stories in learning good policies from high-dimensional input using neural networks [19,

20]. In 2013 Mnih et al. introduced the deep Q-network (DQN) that achieved super human

performance on several Atari 2600 games, learning directly from raw pixel data. Before

this, most of the successes in RL were limited to domains with handcrafted features or with

fully observable low-dimensional state spaces. By utilizing recent successes in deep learning

at the time, DQNs were trained with backpropagation and a variant of stochastic gradient

descent, root mean squared propagation (RMSProp) in an end-to-end fashion. While this

success was certainly a major engineering effort, the DQN algorithm is grounded in the Q-

learning update step described in this section. The full DQN algorithm will be presented

in the next chapter, along with our proposed modifications to better facilitate learning

with PC.

2.3.5 Policy Gradient Methods

Instead of approximating the optimal state-action value function q∗, policy gradient meth-

ods directly model the policy and frame the RL problem in terms of policy optimisation.

Policy gradient methods can parameterise the policy in anyway, as long as the learned

policy π(a |s,θ) is differentiable with respect to its parameters. For some simple problems

we can use linear models to represent the policy, but it is now much more common use

47

neural networks, which are capable of modelling more complex dependencies. Regardless,

we denote the parameters of our policy by θ. The general approach of policy gradient

methods is to first specify some scalar objective function J(θ). The goal is then to max-

imise the objective function with respect to the parameters, this gives us an update step

reminiscent of gradient ascent,

θt+1 = θt + α∇̂J(θ) (2.43)

where ∇̂J(θ) is a stochastic estimate of the gradient objective function, whose expectation

approximates the true gradient [78, p. 321], and α is a learning rate parameter. There

are several advantages to modelling the policy directly, the main one being that we can

represent stochastic policies. In some environments with partial observability, the optimal

policy may be a stochastic one, and by using deterministic policies we fail to capture this

property. Additionally, by picking actions according to a stochastic policy we encourage

exploration in a more natural way, as opposed to the artificial ε-greedy strategy used for

value-based methods like DQNs. Furthermore, policy-gradient methods can be very easily

extended to continuous action spaces, making them much more practical for continuous

control tasks.

In addition to these practical advantages, policy gradient methods also have important

theoretical advantages over value-based methods. By representing the policy in terms of

continuous probabilities, the action probabilities change more smoothly with small updates

to the model parameters, whereas small changes to the model parameters of a value-based

Q-network can dramatically change the action probabilities from 0 to 1 or vice versa [78,

Ch. 13.2]. Because of this advantage, policy gradient methods tend to come with stronger

convergence guarantees than value-based methods. In particular, it is the continuity of the

model parameters that allows the update step to approximate gradient ascent (equation

2.43) [78, p. 324].

In this section, we will continue by describing how policy gradient methods can be framed

48

in terms of both discrete and continuous action spaces. We will then conclude this section

by briefly describing two important policy gradient algorithms, which form the theoretical

basis for the proximal policy optimisation (PPO) algorithm [45] described in the next

chapter.

Discrete action space: if the action space is not too large then it is common to param-

eterise the model in such a way that it outputs a set of scalar preferences h(s, a,θ) ∈ R

for all pairs (s, a) ∈ S × A. The probability of an action being selected is then given by

the softmax probabilities,

π(a | s,θ) =
e(h(s,a,θ))∑
b e
h(s,b,θ)

(2.44)

These action preferences can be the output of a deep network Φ, that is h(s, a,θ) =

Φθ(s, a). Alternatively, they could be computed by a linear model h(s, a,θ) = θTx(s, a),

where x(s, a) is some state-action feature vector. Consider some fixed start state s0, we

then define the objective function to be,

J(θ) = vπθ(s0) (2.45)

where vπθ(s0) is the value function for the policy πθ parameterised by θ. It should be

clear that the policy that maximises this value function, maximises the expected return,

which is what it means to be the optimal policy. By applying the policy gradient theorem

(see [14, p. 325]), we can derive an analytic expression for the gradient of this objective

function with respect to the parameters θ,

J(θ) ∝
∑
s

µ(s)
∑
a

qπθ(s, a)∇π(a | s,θ) (2.46)

where πθ denotes the policy corresponding to parameters θ. The distribution µ(s) is

the on-policy distribution of states under πθ [14, p. 326]. By iteratively maximising this

objective function we expect to converge to the optimal policy π∗.

49

Continuous action space: for infinitely large action spaces we instead learn the param-

eters of probability distributions over a subset of the reals. For example the action space

might be all the reals, R, and in this case we typically model the policy as a normal (Gaus-

sian) distribution. Writing the probability density function of the normal distribution we

see it has only two parameters µ and σ,

p(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.47)

Letting θ = [θµ,θσ]T , we can write the policy as,

π(a | s,θ) =
1

σ(s,θσ)
√

2π
exp

(
−(x− µ(s,θµ))2

2σ(s,θσ)2

)
(2.48)

where µ : S×Rd → R and σ : S×Rd → R+ are function approximators of the form,

µ(s,θµ) = Φθµ(s) and σ(s,θσ) = exp (Φθσ(s)) (deep network) (2.49)

µ(s,θµ) = θTµxµ(s) and σ(s,θσ) = exp
(
θTσ xσ(s)

)
(linear model) (2.50)

Here xµ(s), xσ(s) are state feature vectors, Φθµ and Φθσ are deep networks parameterised

by θµ and θσ respectively. In this setting it is common to only model the mean µ(s,θµ) as

a state conditional distribution. The variance σ2 is either fixed or modelled as a learnable

parameter independent of the state.

This formulation can easily be extended to the multi-variate normal distribution when we

need to choose several continuous actions at the same time. In this case the variance is typ-

ically modelled as a diagonal covariance matrix Λ, that is either fixed or learnable.

50

REINFORCE: the gradient update step of the REINFORCE algorithm is derived from

the policy gradient theorem (Equation 2.46), by taking expectations under the current

policy π,

J(θ) ∝ Eπ
[
Gt
∇π(At | St,θ)

π(At | St,θ)

]
(2.51)

This yields the REINFORCE update:

θt+1 = θt + αGt
∇π(At | St,θ)

π(At | St,θ)
(2.52)

The full derivation of this update step is given in Appendix A.4. This update has several

intuitive properties, for example, the gradient is scaled by the total return Gt so that

actions resulting in high return have higher gradient than those that do not. Additionally,

the gradient is divided by the probability of an action, so that more probable actions do

not have a higher gradient than other better actions simply because they have a higher

probability. To simplify the update step, the gradient of the logarithm of π(At | St,θ) is

used instead, since ∇ lnx = ∇x
x . The full procedure is outlined by Algorithm 10.

Algorithm 10 REINFORCE

Input: differentiable policy π(a | s,θ), step size α > 0.
Initialise: the model parameters θ randomly.

Loop forever
Play an episode S0, A0, R1, ..., ST−1, AT−1, RT by following π(· | ·,θ).
for t← 1 ; t < T ; t← t+ 1

Gt ←
∑T

k=t+1 γ
k−t−1Rk

θ ← θ + αγtGt∇ lnπ(At | St,θ)

REINFORCE has good theoretical guarantees, since by construction, the expected update

over an episode is in the direction that increases performance. Although, the gradient up-

date step requires the full return of the episode to be computed. This makes REINFORCE

a Monte Carlo method, and as such, the gradient updates can have high variance, which

results in slow or unstable convergence.

51

Actor-critic methods: actor-critic methods aim to reduce the variance of the policy

gradient by introducing bias into the objective function. One-step actor-critic methods

are the policy gradient analog of TD methods like Q-learning. The one-step actor-critic

algorithm replaces the full return in the REINFORCE gradient update step with the

one-step return,

θi+1 = θi + α (Gt:t+1 − v̂(St,w))∇ lnπ(At | St,θi)

= θi + α (Rt+1 + γv̂(St+1,w)− v̂(St,w))∇ lnπ(At | St,θi)

= θi + αδ̂t∇ lnπ(At | St,θi) (2.53)

where v̂(s,w) is a trainable state-value function parameterised by w, typically called the

critic. The actor on the other hand, refers to the policy π(a | s,θ) parameterised by θ.

Algorithm 11 outlines the one-step actor-critic method in procedural form.

Algorithm 11 One-step actor-critic

Input: differentiable actor π(a | s,θ), actor step size αθ > 0, differentiable critic v̂(s,w),
critic step size αw > 0.
Initialise: the actor parameters θ and critic parameters w randomly.

Loop for each episode
Observe start state S.
I ← 1
Loop for each step

A ∼ π(· | S,θ)
Play action A, observe reward R and next state S′.
δ̂ ← R+ γv̂(S′,w)− v̂(S,w)
w← w + αwδ̂∇v(S,w)
θ ← θ + αθIδ̂∇ lnπ(A | S,θ)
I ← γI
S ← S′

until S is terminal

Modern implementations of actor-critic methods typically extend this procedure to batch

computations, where experience is generated from multiple actors interacting with the

environment in parallel. It is also common to unroll the Bellman equation more than just

one step at a time.

52

Chapter 3

Methodology

In this chapter we outline the main RL algorithms used to conduct experimental com-

parisons between BP and PC. Specifically, we cover the cross-entropy method [79], deep

Q-learning [19] and proximal policy optimisation (PPO) [45]. In addition, we propose

some small algorithmic changes to the deep Q-learning algorithm and the PPO algorithm

which are intended to facilitate better learning with PC. All these algorithmic changes are

detailed in full and we conclude this chapter by detailing the general methods used for

comparing the performance of networks trained with BP and PC in Chapter 4.

3.1 The Cross-Entropy Method

The cross-entropy method (CEM) was first proposed as an adaptive importance sampling

procedure for estimating the probabilities of rare events [79]. The CEM has been success-

fully applied to a wide variety of problems, such as, continuous optimal control problems

[80], optimal policy search [81], DNA sequence alignment [82] and various practical opti-

misation tasks [83–85]. While the CEM is certainly not the most famous RL algorithm

out there, it stands as a very simple example with nice theoretical backing.

The general idea with the CEM is to model the policy as some trainable non-linear function

approximator, for example, by using an ANN or a PCN. Recall that the policy is a

53

distribution over actions a ∈ A given some state s ∈ S and so the model must implement

the softmax function at the output layer, to give a valid probability distribution that we

can sample from. The theoretical basis for the CEM comes from the importance sampling

theorem, which states,

Ex∼p(x)[H(x)] =

∫
x
p(x)H(x) =

∫
x
q(x)

p(x)

q(x)
H(x)dx = Ex∼q(x)

[
p(x)

q(x)
H(x)

]
(3.1)

where p and q are probability densities and H(x) is some function. In terms of policy

optimisation, the CEM can be framed in terms of maximising the future return Gt drawn

from an MDP under some policy π. Formally, we are tasked with solving the following

optimisation problem,

max
π

Eπ[Gt] (3.2)

The CEM iteratively updates the policy π changing the distribution on Gt in such a

way that we hope to maximise the quantity Eπ[Gt]. Let πi denote the current policy at

iteration i. We start by fixing the current policy πi and drawing a sample of N episodes

from the MDP. The (discounted) accumulated reward for each episode is computed and

the (1− ρCE) quantile λi of the sample is computed, where ρCE ∈ (0, 1) is a user-specified

hyperparameter. By applying the importance sampling theorem, we define the policy

update to be,

πi+1 = argmax
π′

{
Eπi [1[Gt ≥ λi]] log(π′(a | s))

}
(3.3)

Since we approximate the expectation with a batch of sampled episodes, it is more correct

to write the update step as,

πi+1 = argmax
π′

{
1

N

N∑
[1[Gt ≥ λi] log(π′(a | s))

}
(3.4)

The CEM doesn’t directly apply this update, instead this update step is simulated by

54

training the function approximator only on “elite” episodes that satisfy 1[Gt ≥ λi]. The

function approximator is trained to minimise the cross entropy loss between the current

policy πi(a|s) and the actions picked during the “elite” episodes. At each iteration the idea

is that the distribution of episodes will shift to the the one that maximises the quantity,

maxπ Eπ[Gt], namely, the optimal policy π∗. Algorithm 12 provides a very high-level

outline of the full procedure.

Algorithm 12 The cross-entropy method

Initialse: differentiable classifier π0 with random weights and biases.
Output: trained classifier π

repeat
Play N episodes with the currently policy πi.
Construct a batch of experience B by keeping the “elite” episodes.
Train on the batch B and update πi to minimise the cross entropy loss Lcross entropy.

until convergence

For readers interested in further theoretical justification of the CEM, please refer to the

following resources: [81, 86]. The simplicity of the CEM allows us to establish a fair

framework for the comparison of BP and PC on some toy RL environments. During

training, to evaluate the performance of BP or PC, we plot the average batch reward

every batch iteration. We also use the mean reward as a way of comparing BP and PC.

The batch reward for some batch B is computed by,

batch reward =
1

|B|
∑
i∈B

Ti∑
t=1

ri,t (3.5)

where ri,t denotes the reward received at time step t during episode i and Ti denotes the

length of episode i. Additionally, the CEM provides us with an opportunity to show that

PCNs can still be effectively trained when the output loss function doesn’t match the local

energy functions of the internal layers.

55

3.2 Deep Q-learning

For high dimensional input like raw pixel data, the state space is much too big to store

in memory and we would suffer from very slow convergence anyway. Deep Q-learning is

a work around that uses non-linear function approximators to represent the Q function,

Q : S × A → R. To develop a fair and straightforward framework for the comparison of

DQNs trained with BP and PC, we aim to emulate the original DQN algorithm [19] as

closely as possible. Some key components of the original DQN algorithm [19] that we use

in our implementation include the following:

• Function approximation: ANNs are universal function approximators that gen-

eralise well to unseen data. Mnih et al. processed the raw pixel data by first gray-

scaling it and resizing it, before passing it through a deep neural network consisting

of 3 convolutional and 2 linear layers, all separated by ReLU activation functions.

• Epsilon greedy policy: The exploration-exploitation trade off is a fundamental

unsolved problem in RL. Q-learning is guaranteed to converge to q∗ provided all

states are visited often enough. For large state spaces this requirement cannot

feasibly be satisfied. Although, by picking a random action with probability ε we

hope to sufficiently explore the state space to learn good policies. The parameter ε

is usually set to 1.0 at the start of training and is decayed during training by some

user-specified schedule, this is so that the agent starts exploiting what it has learned

in order to maximise accumulated reward.

• Experience replay: to deal with the problem of “catastrophic interference” or

“catastrophic forgetting”, past experience sampled from the environment is kept

in a replay buffer. During training the agent samples a batch experience from the

replay buffer to train on rather than training on the most immediate experience

which could overwrite past experience.

• Target network: in the Q-learning update step (Equation 2.41) the Q func-

tion is used to derive the target TD error we wish to minimise: δt = Rt+1 +

56

γmaxaQ(St+1, a)−Q(St, At). Using the Q-function itself to derive to target δt can

result in instability during training. Instead a target network Q̂(s, a) with frozen pa-

rameters is used to derive the TD targets. Every N steps the parameters of Q(s, a)

are copied to Q̂(s, a).

• Reward clipping: reward signals are clipped to the range [−1, 1] to prevent catas-

trophic divergence during learning. Divergence occurs when the Q-function predicts

unrealistically high state-action values which can destroy the stability of training.

By clipping the rewards in the range [−1, 1], the future return is bounded by,

T∑
t

γt−1rt ≤
T∑
t

γt−1|rt| ≤
T∑
t

γt−1 =
1

1− γ
(3.6)

• Frame stacking and skipping: the Atari 2600 emulators run at 60 frames per

second. There is strong correlation between consecutive frames, so frame skipping

with k = 4 is used to break this correlation and learn more quickly. Theoretically

this can be thought of as unrolling the Bellman equation k steps. In addition, frame

stacking helps capture temporal dependencies that aren’t captured in the raw pixel

data, for example, the direction a ball is moving.

Since the inception of the original DQN algorithm, many extensions have been proposed,

such as, N-step DQN [78], double DQN [87], prioritised experience replay [88] and many

more [89–91]. Our aim is not to over complicate things, and so we will only make the

following two modifications to the original DQN algorithm:

• We modify the loss function at the output layer to be the sum of squared errors

divided by 2, as opposed to the normal mean squared error loss.

LSSE =
1

2
·
B∑
i=1

(ŷi − yi)2 (3.7)

where B is a batch of indices. We propose this form for the loss function since it has

the same form as the local energy functions of the internal layers of the PCN, see

57

Section 2.2.2. This means we can use SGD for inference without worrying about the

norm of the loss at the output layer being different from the norms at the internal

layers.

• We will use the double Q-learning targets [87],

y = R+ γQ̂(S′, argmax
a

Q(S′, a)) (3.8)

instead of the original Q-learning targets,

y ←R+ γ argmax
a

Q̂(S′, a) (3.9)

for computing the loss at the output layer. This reason for this choice is that double

Q-learning is very simple trick that makes training remarkably more stable for Atari

2600 games and as a result speeds up the convergence of training.

Algorithm 13 presented on the next page, reflects these modifications and provides a more

precise description of the deep Q-learning algorithm that we will use.

3.2.1 Clamp Loss

For PCNs used as Q-function approximators we propose a slightly different loss function

at the output layer. By adopting this new loss function called the clamp loss we show

that PCNs converge better in some of the scenarios presented in the next chapter. Recall

that the target Q-values for double Q-learning are computed as follows,

y = R+ γQ̂(S′, argmax
a

Q(S′, a)) (3.10)

and so the gradient step is,

∇δt ∝ ∇(R+ γQ̂(S′, argmax
a

Q(S′, a))−Q(S,A)) (3.11)

58

Algorithm 13 Deep Q-learning

Input: learning rate α ∈ (0, 1], epsilon exploration parameter ε > 0
Initialise: the parameters of the network Q and the target network Q̂ randomly.

Loop for each episode
Observe start state S.
Loop for each step

With probability ε pick randomly an action A from A.
Otherwise pick A from S according to the ‘greedy’ policy π(S) = argmaxaQ(S, a)
Play action A and observe reward R, next state S′ and done flag D.
Store the tuple 〈S,A,R, S′, D〉 in the replay buffer.
Sample a random mini-batch of transitions from the replay buffer.
For every transition in the batch compute the target:

y ←R if D = True else

y ←R+ γQ̂(S′, argmax
a

Q(S′, a))

Calculate the batch loss LSSE = 1
2 ·
∑B(Q(S,A)− y)2.

Update the parameters of Q in the direction that minimises LSSE.
Every N steps copy the parameters of Q to Q̂.

until done D
return trained network Q

If we use these targets with PC this only clamps one of the value nodes at the output

layer: the value node corresponding to action A. This means during inference the other

value nodes at the output layer are free to change. Instead we propose the clamp loss

function for PC Q-networks, which clamps the value nodes at the output layer to their

corresponding activations computed in the forward pass, and clamps the action A to the

target value computed by Equation 3.10. Let the vector Q(S, ·) be the output of the

network computed during a forward pass. By applying the following two equations we

compute the clamp loss target,

y = Q(S, ·) (3.12)

yA ← R+ γQ̂(S′, argmax
a

Q(S′, a)) (3.13)

59

Then the clamp loss function for a single datapoint is written as,

Lclamp =
1

2

∑
a∈A

(Q(S, a)− ya)2 (3.14)

This can easily be extended to batch computations by summing over the batch. Also note

that if we were to use the clamp loss for BP, this would not be any different from using the

original targets. Because by construction Q(S, a) − ya = 0 for all a 6= A, and so for BP,

the scalar loss computed at the output layer would be exactly the same as before.

3.3 Proximal Policy Optimisation

The proximal policy optimization (PPO) [45] proposed by Schulman et al. is a clever im-

provement over actor-critic methods, that changes the objective function of the policy.

Instead of using the gradient of the logarithm of the policy scaled by the advantages,

the PPO algorithm uses the ratio between the new and old policy scaled by the advan-

tages. First, we will explain what is meant by the advantages in relation to actor-critic

methods.

Recall that the one-step actor-critic objective function corresponds to the gradient of the

logarithm of the policy ∇ lnπ(At | St,θ) scaled by the TD error δ̂t, where,

δ̂t = Rt+1 + γv̂(St+1,w)− v̂(St,w) (3.15)

Asynchronous Actor-Critic (A2C) methods [92] generalise this notion to the T -step ad-

vantage Ât, not to be confused with At, the action at time t. Here T is some integer much

smaller than the episode length, and t is some timestep in the range [0, T]. This style of

advantage estimation was introduced by Mnih et al. [92] and doesn’t look beyond timestep

T . The T -step advantage Ât at time t is defined as,

Ât = −v̂(St,w) +Rt+1 + γRt+2 + ...+ γT−t+1RT + γT−tv̂(ST ,w) (3.16)

60

Note that the T -step advantage Ât is only an estimate of the true advantage, this is

because we use v̂(St,w) as an estimate of the state-value function. Observe that when

T = 1 we have,

Ât = −v̂(St,w) +Rt+1 + γv̂(St+1,w) = δt (3.17)

We can then write the A2C update step as,

θi+1 = θi + αÂt∇ lnπ(At | St,θi) (3.18)

It should be clear that the one-step actor-critic algorithm is a special case of the A2C

algorithm with T = 1. We now write the objective function for A2C as follows,

J(θ) = Êt
[
lnπ(At | St,θ)Ât

]
(3.19)

where Êt is the empirical expectation over policy π. We are now equipped to describe

the PPO objective function. The PPO algorithm [45] modifies the A2C algorithm by

maximising the “surrogate” objective function,

J(θ) = Êt
[
π(At | St,θ)

π(At | St,θold)
Ât

]
= Êt

[
rt(θ)Ât

]
(3.20)

where rt(θ) = π(At | St,θ)
π(At | St,θold) is the ratio between the new policy parameterised by θ and the

old policy parameterised by θold. Blindly maximising this objective function would lead

to large excessively large parameter updates [45]. Instead the clipped objective function

is used to compute the policy loss,

JCLIP(θ) = Êt
[
min

{
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

}]
(3.21)

where ε is some user-specified hyperparameter that clips the ratio to a suitable range

(usually ε ← 0.2). For PPO the estimated T -step advantages are also computed in a

61

slightly different way,

Ât = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1 (3.22)

where δt = Rt+1 + γv̂(St+1,w)− v̂(St,w) (3.23)

This way of computing the advantages is a bias-variance trade-off proposed by Schulman

et al. [93]. When λ = 1 this is the normal advantage estimation used by A2C, which

corresponds to high variance. Additionally, to encourage exploration, an entropy bonus

term with coefficient β is added to the objective function,

JENTROPY(θ) = Êt [− log(π(At | St,θ))] (3.24)

As with actor-critic methods, we jointly train an actor π(a | s,θ) parameterised by θ to

maximise the objective function J(θ), along with a critic v̂(s,w) parameterised by w. The

critic is trained to minimise the TD error, that is,

JCRITIC(w) = Êt
[
(̂v̂(St,w)− V̂ target

t)2
]

(3.25)

where the target V̂ target
t = Rt+1 + λv̂(St+1,w) + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1. The full

PPO objective function can now be written as,

minimise
θ,w

{
JCRITIC(w)− βJENTROPY(θ)− JCLIP(θ)

}
(3.26)

In practice the PPO algorithm follows a slightly different training procedure than classic

actor-critic algorithms: long sequences of samples are obtained from interacting with the

environment, the advantage and value estimates, Ât and V̂ target
t , are then computed by

evaluating the whole sequence, before several batch updates are performed. Algorithm 14

on the next page, gives the full PPO algorithm (for continuous action spaces), that we

will use for comparing the performance of BP and PC in challenging continuous control

tasks.

62

Algorithm 14 Proximal Policy Optimisation (Continuous Case)

Input: differentiable actor π(a | s,θ). differentiable critic v̂(s,w),
Initialise: actor parameters θ, diagonal covariance matrix Λ and critic parameters w.

repeat
observe start state S1.
empty replay buffer.
for t← 1 ; t < T + 1 ; t← t+ 1 do

Compute policy πt ← π(· | St,θ).
Compute the value Vt ← v(St,w).
Play action At ∼ πt +N (0,Λ).
Observe reward Rt+1, next state St+1 and done flag Dt+1.
Store the tuple 〈St, At, Rt+1, St+1,πt, Vt, Dt+1〉 in the replay buffer.
if done flag Dt+1 = True then

Reset environment and observe start state St+1.
end if

end for
for t← 1 ; t < T + 1 ; t← t+ 1 do

Compute the τ -step advantage estimate Ât and target state value V target
t :

Ât ← δt + (γλ)δt+1 + ...+ (γλ)τ−t+1δτ−1

V target
t ← Rt+1 + λVt+1 + (γλ)δt+1 + ...+ (γλ)τ−t+1δτ−1

where τ ← inf{τ ′ ≥ t : Dτ ′ = True ∨ τ = T} and

where δt ← Rt+1 + γVt+1 − Vt if Dt+1 = False

else δt ← Rt+1 − Vt

Compute the current log probabilities LLold
t :

LLold
t ← −

1

2

[
ln(Λ) + (At − πt)TΛ−1(At − πt) + |A| ln(2π)

]
(3.27)

end for
for i← 1 ; i < N + 1 ; i← i+ 1 do

Sample a random batch of indices B ⊂ {1, 2, ..., T}.
Calculate the value loss:

LVALUE ←
1

|B|
∑
j∈B

(V̂j − V target
j)2

Compute the new log probabilities LLnew
j for all j ∈ B using Equation 3.27.

Compute the ratio rj ← exp(LLnew
j − LLold

j) for all j ∈ B.
Calculate the policy loss:

LPOLICY ← −
1

|B|
∑
j∈B

min
{
rjÂj , clip(rj , 1− ε, 1 + ε)Âj

}
− β

|B|
∑
j∈B

D

2
(1+log(2π))+

1

2
log |Λ|

Update w in the direction that minimises LVALUE . with either BP or PC
Update θ, Λ in the direction that minimises LPOLICY . with either BP or PC

end for
until convergence

63

3.3.1 Different Forms for the Loss Functions

For PCNs used as value and policy networks, we propose slightly different forms for the

loss functions used to train these networks. From Algorithm 14 we recall that the value

network is trained using the following loss function,

LVALUE ←
1

|B|
∑
j∈B

(V̂j − V target
j)2 (3.28)

Since the value network only outputs one scalar value there is no equivalent clamp loss

function for the value network. However, similar to what we did in Section 3.2, we propose

modifying the loss function to be the sum of squared errors divided by 2,

LSSE =
1

2
·
B∑
j∈B

(V̂j − V target
j)2 (3.29)

The justification is the same: this form for the loss function has the same form as the

local energy functions of the internal layers of the PCN. Additionally, we propose an

alternative form for the loss function of the policy network. Instead of the mean of the

policy losses,

LMEAN ← −
1

|B|
∑
j∈B

min
{
rjÂj , clip(rj , 1− ε, 1 + ε)Âj

}
(3.30)

we propose the sum of the policy losses scaled by some scalar ρ,

LSUM ← −ρ
∑
j∈B

min
{
rjÂj , clip(rj , 1− ε, 1 + ε)Âj

}
(3.31)

The idea behind doing this is as follows: by scaling the objective function we hope that the

norm of the policy loss may be more in line with the norms of the local energy functions

of the internal layers of the PCN.

64

3.4 Comparing Predictive Coding and Backpropagation

For establishing a fair framework for comparing the performance of BP against PC in RL

scenarios we need to fix many of the hyperparameters and algorithmic choices outlined

in this chapter. Firstly, in all the experiments detailed in Chapter 4 we ensure that the

network architecture for the network trained with BP and the network trained with PC

are identical. This is so that neither BP or PC has an immediate advantage over the

other, because they are using models with exactly the same expressivity.

Additionally, in all our experiments we fix all hyperparameters, other than the learning

rate, the optimiser for parameter updates and changes to the form of the loss functions. For

example, for both BP and PC, we fix the batch size, discount factor γ and number of steps

taken (in the environment), along with all other algorithm specific hyperparameters. This

is so that we know that any advantage observed is purely due to the different algorithms,

BP and PC, used to compute parameter gradients.

To compare the performance of an algorithm implementing BP for computing parameter

gradients versus an algorithm implementing PC for computing parameter gradients, we

typically plot the accumulated reward after every episode. The accumulated reward for

an episode is calculated simply as,

episode reward(i) =

Ti∑
t

ri,t (3.32)

where ri,t denotes the reward received at time step t during episode i and Ti denotes the

length of episode i. We will also record the mean reward calculated after a full run of the

algorithm, this is computed simply as the mean episode reward across all episodes,

mean reward =
1

M

M∑
i=1

episode reward(i) (3.33)

where M is the total number of episodes played. For some experiments, those with many

episodes played we may instead plot the mean accumulated reward of the last K � M

65

episodes. Specifically, we plot the following quantity after every K episodes,

mean episode reward(i) =
1

K

i∑
j=i−K

Tj∑
t=1

rj,t (3.34)

where rj,t denotes the reward received at time step t during episode j and Tj denotes the

length of episode j.

Different runs of the same RL algorithm can have quite high variance since there are

many random processes that can affect the learning of the agent, such as, the initial

parameters of the network, which are typically sampled from a multivariate Gaussian. The

random sampling of experience from the replay buffer and random exploration through the

environment also affect an agents ability to learn. As a result, we can’t make any concrete

conclusions by running BP and PC with the same RL algorithm only once. Since maybe

BP got lucky with which seed was chosen, or vice versa. So in many of our experiments

we average our results over many seeds. For example, if we ran the same algorithm over

N many seeds, then we would plot the episode reward averaged over all seeds,

average episode reward(i) =
1

N

N∑
j=1

T ji∑
t

rji,t (3.35)

where rji,t denotes the reward received at time step t during episode i on seed j and T ji

denotes the length of episode i on seed j. The mean reward over all seeds is computed in

a similar way,

average mean reward =
1

N

N∑
j=1

1

M

M∑
i=1

episode rewardj(i) (3.36)

In addition to averaging the plots and results over many seeds, we plot the non-parametric

confidence intervals, computed by sampling with replacement. Algorithm 15 outlines this

procedure.

66

Algorithm 15 Computing Bootstrapped Confidence Intervals

Input: episode rewards for all pairs (i, j) ∈M ×N .
Output: upper confidence interval u, lower confidence interval l.

Initialise vectors u, l ∈ RM .
for i← 1 ; i < M + 1 ; i← i+ 1 do

Initialise vector b ∈ R2000.
for k ← 0 ; k < 2000 ; k ← k + 1 do

Sample batch B of N indices with replacement from {1, ..., N}.
Compute the sample mean:

bootstrapped mean← 1

N

B∑
j∈B

episode rewardj(i)

bk ← bootstrapped mean.
end for
Let ui be the 97.5th percentile of b.
Let li be the 2.5th percentile of b.

end for
return upper confidence interval u, lower confidence interval l.

By plotting the confidence intervals we can get a better understanding of how robust and

algorithm is, and it provides us with a more sound way of comparing the convergence

properties of two different algorithms.

67

Chapter 4

Experiments and Results

In this chapter we will present the results of several experiments that aim to compare the

performance of models trained with backpropagation (BP) and predictive coding (PC) in

several common RL tasks. All of our experiments will use the OpenAI gym library [46],

which provides a comprehensive suite of RL environments and a standard interface for

agent-environment interaction. We will start by looking at two simple toy environments:

frozen lake and cartpole. In both these environments we apply the cross entropy method

(CEM) and Q-learning with function approximation to obtain promising results which

motivate further research.

In the second half of this chapter we scale up to more challenging RL tasks. First we

aim to show that deep Q networks (DQNs) trained with PC on Atari 2600 games are

able to achieve similar performance to DQNs trained with BP. To do this we reproduced

the original DQN algorithm as a standard framework for comparison between the two

methods. Unfortunately due to time constraints, we were unable to get promising results

on either of the two Atari 2600 games: Pong and Breakout. Finally, we conclude this

chapter by applying PC to policy gradient methods for challenging continuous control

tasks. Specifically, we look at two environments from the Multi-Joint dynamics with

contact (MuJoCo) test suite provided by OpenAI’s gym library. In these environments we

68

compare the proximal policy optimisation (PPO) algorithm modified with the PC learning

rule to the standard PPO algorithm that uses BP instead to compute parameter updates.

We show that both algorithms maintain similar performance in both these environments

which motivates the need for additional research.

4.1 Frozen Lake

Frozen lake is one of the OpenAI gym toy text environments, that are designed to be ex-

tremely simple, with small discrete state and action spaces. This makes them extremely

suitable for obtaining preliminary results and debugging implementations of RL algo-

rithms. In the frozen lake environment the goal is to cross the frozen lake and reach the

reward state without falling into any of the holes in the ice. Figure 4.1 illustrates the

setup.

S

H

G

H

H

H
+1

Figure 4.1: Frozen lake environment: S denotes the start state, H denotes the holes in
the ice, G denotes the goal state.

Starting from the initial state S the agent may pick one of four actions {0, 1, 2, 3}, where

0 : move left, 1 : move down, 2 : move right, 3 : move up. Due to the slippery nature of

the frozen lake there is some probability p that a random action is taken, rather than the

one picked by the agent. In all of our experiments we set p ← 0, so that the transition

dynamics of the environment are deterministic, rather than stochastic.

When the agents reaches the goal state G, they receive a reward of +1 and the episode

69

terminates, all other states return a reward of 0, and if the agent falls into a hole in the

ice (states denoted H) the episode immediately terminates. At each timestep t the agent

receives an observation ot which corresponds to the agents position in the 4 × 4 grid,

although the agent receives no information about which states are holes and which state

is the goal state. The optimal policy π∗ is the one that takes the agent from the start

state S to the goal state G in as few moves as possible. And so the goal of the agent is to

learn the quickest path from S to G that avoids any holes in the ice.

Since the frozen lake environment has a sufficiently small state space S and action space

A, we can easily compute the optimal policy π∗ and the optimal state-value function v∗

for all states s ∈ S, using either value iteration or policy iteration. In fact in this very

simple scenario we can just use Dijkstra’s shortest path algorithm, since the optimal value

of a state v∗(s) is simply γd
∗(s)−1, where d∗(s) is the length of the shortest path from s to

G.

We will use the optimal policy π∗ and the optimal state value function v∗(s) as a means of

evaluating the performance of different methods in this section. For value-based methods

we will plot the loss of the learned value function v(s) to the true optimal state value

function v∗(s). We will also derive a notion of the optimal policy loss, which is the loss

of the learned policy π to the optimal policy π∗. By using the optimal value loss and the

optimal policy loss we can see exactly how the algorithm converges to the optimal state

value function v∗(s) and optimal policy π∗. This helps us diagnose exactly what is going

on and establishes a very sound framework for evaluating the convergence of two different

RL algorithms.

In the remaining parts of this section we will conduct several experiments comparing the

performance of networks trained with BP to networks trained with PC. We will start

by applying the cross entropy method (CEM) described in section 3.1 which uses policy

networks to represent the learned policy π. We will then describe and present the results

of several experiments that utilise Q-networks for approximating the optimal state action

70

value function q∗(s, a). Along the way we will draw insights and attempt to interpret the

results in a way that is consistent with what we know about BP and PC.

4.1.1 Frozen lake with the CEM

In this section we directly apply the CEM (Algorithm 12) to frozen lake. Before we dive

into the experiments, first we explain how the optimal policy π∗ and optimal state value

function v∗(s) are computed. We run value iteration to recover the optimal state action

value function q∗(s, a). We then construct the optimal policy π∗ as follows,

π∗(a | s) =


1

|A(s)∗| if a ∈ A(s)∗

0 otherwise

(4.1)

where A(s)∗ = {a : q∗(s, a) =
′

max
a

q∗(s, a
′)} (4.2)

which gives us the stochastic policy illustrated by Figure 4.2.

Figure 4.2: Frozen lake environment solved with value iteration, γ = 0.7. Optimal state
values v∗(s) are given, the optimal policy computed using Equation 4.1 is denoted by the
arrows.

71

We are now equipped to run the CEM. To evaluate the performance of a run we plot the

average batch reward during training, see Section 3.1. We also plot the cross entropy loss

of the current policy π to the optimal policy π∗,

L∗policy = − 1

|S|
∑
s∈S

[π∗(s)]T log π(s) (4.3)

where π∗(s) and log π(s) are vectors over the action space A. We represent the policy π

with a network consisting of one hidden layer with dimension n = 128. ReLU activations

are used after the input layer and the hidden layer and softmax is used at the output

layer. In all our experiments we set ρCE ← 0.7, so the bottom 30th percentile of episodes

are thrown away to retain the “elite” batch B. We also set N ← 100, where N is the

number of episodes we play with current policy π before a batch update. Finally, we set

the discount parameter γ ← 0.9.

We conduct experiments to compare the performance of the policy network trained with

BP every batch update or with PC every batch update. For the PC update step we fix the

number of inference steps T ← 128, the inference learning rate α← 0.1. We use SGD for

both inference and parameter update steps. We perform a fairly exhaustive search over

the SGD learning rate parameter η. Specifically, we tried η ∈ {0.6, 0.8, 1.0, 1.2, 1.4, 1.6}

for both the network trained with BP and PC. The best learning rate we found for BP

was ηBP = 1.0 and for PC ηPC = 1.2. Figure 4.3 presents the batch reward and policy

loss for the policy network trained with BP and PC.

Both BP and PC have very similar performance in this setup. This is probably because the

frozen lake environment is very easy to solve and doesn’t provide enough complexity for us

to differentiate between the two learning rules. Nevertheless, these results are promising

and at the very least, they show that PC can be applied to policy networks that don’t

utilise squared loss at the output layer.

72

Figure 4.3: Frozen lake environment solved with the CEM. Network trained with BP
(purple), network trained with PC (red). Policy loss computed with equation 4.3, re-
wards computed with 3.5. x-axis corresponds to the number of batch iterations.

4.1.2 Frozen lake with Q-learning

In this section we directly apply the deep Q-learning algorithm to frozen lake, see Al-

gorithm 13. Because Q-networks give us a deterministic policy we need to modify the

evaluation criteria first. As before, we run value iteration to compute the optimal state-

action value function q∗(s, a), and we compute optimal policy π∗ using Equation 4.1.

During training we plot the MSE loss of the current value function v(s) against the true

optimal state value function v∗(s) = maxa q
∗(s, a),

L∗value =
1

|S|
∑
s∈S

(v(s)− v∗(s))2 (4.4)

We also plot the 0-1 loss of the learned policy π against the optimal policy π∗,

L∗policy =
1

|S|
∑
s∈S

1[π(s)Tπ∗(s) = 0] (4.5)

where π∗(s) and π(s) are probability vectors. Since π is deterministic the vector π(s) will

be a one-hot encoding, so L∗policy = 0 means that for all s ∈ S the deterministic policy π is

pointing in at least one of the same directions as the optimal policy π∗ in Figure 4.2.

73

In our experiments the Q-function is represented by a network with one hidden layer with

dimension n = 128. ReLU activations are used after the input layer and the hidden layer,

the last layer is linear and it computes a linear combination of the activations of the hidden

layer. Let the output of the network be the vector Q(s, ·). The policy is an epsilon greedy

policy: with probability ε the agent picks an action uniformly at random from A, and

with probability 1− ε the agent pick an action according to argmaxaQ(s, a). The epsilon

parameter ε is decayed over time according to the following schedule,

ε← 0.01 + (1.0− 0.01) ∗ exp

(
−k
500

)
(4.6)

where k is the number of steps taken in the environment (across all episodes). We set the

target network sync frequency to N ← 10, the batch size is set to 128, the discount factor

γ ← 0.7 and the replay buffer size is set to 1000. Again we conduct experiments to compare

the performance of the Q-network trained with BP or with PC every batch update. For the

PC update step we modify the hyperparameters slightly in line with insights from Song et

al. [28]: the number of inference steps T ← 32, the inference learning rate α← 0.05. The

clamp loss targets, see Section 3.2.1, are also used for PC in these experiments. Again, we

use SGD for both inference and parameter update steps. For both BP and PC we perform a

search over the learning rate parameter η: we tried η ∈ {0.005, 0.01, 0.02, 0.03, 0.04, 0.05}.

The best learning rate parameter η for both BP and PC proved to be ηBP, ηPC ← 0.03.

Figure 4.4 presents the 0-1 policy loss and the value loss during training for the Q-network

trained with BP and PC.

Once again both BP and PC demonstrate very similar performance. We note that there

appears to be an interesting artefact in both the policy and value loss plots. The value

loss and policy loss are stationary for the first ≈ 150 frames. This is an artefact of the

environment, the agent only starts learning anything useful after it has seen its first reward.

This means the agent must first reach the goal state before and information about the

other states can be recovered. Once the goal state has been reached the reward signal is

74

Figure 4.4: Frozen lake environment solved with the Q-network. Network trained with
BP (purple), network trained with PC (red). 0-1 policy loss computed with equation
4.5, value loss computed with 4.4. x-axis corresponds to the number of interactions with
the environment.

propagated to all the other visited states one step at a time, by unrolling the Bellman

equation during the Q-learning update step. Reaching the goal state for the first time is a

random event we cannot control, and if the agent gets unlucky this will affect the agent’s

ability to learn anything.

Although, this isn’t the only problem, we still need to visit every state and try every action

to learn the optimal state values v∗(s). If every tuple corresponding to every state-action

pair (s, a) ∈ S × A is in the replay buffer then we will converge to the optimal state

value function v∗(s), since we will update every state-action pair infinitely often, this is

the main requirement for the convergence guarantee of Q-learning. If we haven’t visited

every state-action pair and we only follow the greedy policy (since ε has decayed to 0.01),

then we may never visit certain states and can’t hope to recover the optimal state values

for these states. These insights should motivate the experiments we present in following

sections.

75

4.1.3 Q-learning with Hand-crafted Replay Buffer

A recurring problem in RL is the exploration-exploitation trade-off. In the experiments

so far, it appears there is no significant advantage of training networks with PC over BP,

or vice versa. One reason for this could be because exploration of the environment is the

limiting factor holding both these learning algorithms back. So any advantage in using

PC over BP (or vice versa) is “absorbed” by the fact that the agent is restricted by how

efficiently it is exploring the environment. However, what if we give the agent everything

it needs to learn?

Since the frozen lake environment is a sufficiently small finite MDP, we can construct a

replay buffer with hand crafted experience for the agent to learn on. We propose the

following scenario, we will construct a replay buffer with every possible tuple 〈s, a, s′, r, d〉,

for s, s′ ∈ S, a ∈ A, r ∈ R, d ∈ {0, 1} and train the networks on batches sampled from this

replay buffer. By doing this we give the agent everything it needs to know to recover the

optimal state value function q∗, and so it no longer needs to explore and interact with the

environment, instead it can simply learn off the replay buffer and propagate the reward

signal obtained at the goal state to all other states. Algorithm 16 outlines the procedure

for constructing this replay buffer.

Algorithm 16 Constructing the Hand-Crafted Replay Buffer

Initialise: empty replay buffer B ← ∅
Output: full replay buffer B

for all s ∈ S do
for all a ∈ A do

pick action a from state s.
receive reward r, observe new state s′ and done flag d.
append tuple 〈s, a, s′, r, d〉 to replay buffer B.

end for
end for
return the replay buffer B

It is important to note that this doesn’t actually reduce the problem to a supervised

learning task, since we don’t actually provide the optimal state values v∗(s) as targets.

76

Rather, the agent is provided with the outcome of every state action pair (s, a) ∈ S × A

and must still learn to infer the optimal state values v∗(s). Although, since we will update

every state-action pair (s, a) ∈ S × A infinitely often, we are guaranteed to converge to

the optimal state value function v∗(s).

For these experiments we use exactly the same network architecture as in Section 4.1.2.

The target network sync frequency is set to N ← 10, the batch size is set to the size of

the replay buffer (for the 4× 4 frozen lake environment this is 64), the discount factor is

set to γ ← 0.7. For the PC update step we set: the number of inference steps T ← 128,

the inference learning rate α ← 0.1. SGD is used for both the inference and parameter

update steps. For both networks trained with BP and PC we tried learning rates η ∈

{0.02, 0.04, 0.06, 0.08, 0.1}, the best learning rate we found for BP was ηBP = 0.06 and for

PC ηPC = 0.08. To demonstrate that the clamp loss targets (see Section 3.2.1) provide

an empirical advantage over the normal double Q-learning targets, we first present the

results of these experiments run without the clamp loss targets. Figure 4.5 presents the

0-1 policy loss and the value loss during training for the network trained with both BP

and PC (without clamp loss).

Figure 4.5: Frozen lake environment solved with the hand-crafted replay buffer and Q-
network. Network trained with BP (purple), network trained with PC (red). 0-1 policy
loss computed with Equation 4.5, value loss computed with 4.4. x-axis corresponds to the
number of batch iterations. The plots are averaged over 3 seeds.

77

Here we see that the the network converges much faster than the generic Q-learning

algorithm with exploration. After the network reaches L∗policy = 0 and L∗value ≤ 10−3 we

consider the problem solved. The average solve time for PC in this setting was ∼ 399,

whereas the average solve time for BP was ∼ 835. Additionally, the mean policy loss and

value loss for PC was ∼ 0.1 and ∼ 0.027 respectively, whereas for BP the mean policy

loss and value loss was ∼ 0.37 and ∼ 0.036 respectively. These results establish a small

advantage using PC over BP in this setting. We believe this advantage is attributed to

the fact that networks trained with PC suffer less from interference and sporadic weight

updates [28]. In the next section we run some additional experiments to try and observe

the “interference” in this setting.

Now we give the results of using the clamp loss targets instead of the generic double

Q-learning targets. The setup of these experiments is exactly the same as described

earlier. We tried learning rates η ∈ {0.02, 0.04, 0.06, 0.08, 0.1} and found that the best

learning rate for PC is the same, that is, ηPC = 0.08 (for BP it is also still the same, with

ηBP = 0.06, since the loss computed at the output layer is the same). In addition, we also

ran experiments on the 8× 8 grid version of frozen lake. For these experiments all other

hyperparameters are the same, except we set the batch size to 256 (the size of the replay

buffer), and we tried learning rates η ∈ {0.008, 0.01, 0.012, 0.014, 0.015, 0.016, 0.018, 0.02}.

For PC the best learning rate that we found was ηPC = 0.015, and for BP the best learning

rate the we found was ηPC = 0.01. Notice that the best learning rates for the 8×8 version

are roughly four times smaller than for the 4× 4 version, this is because the loss function

is summing over 4 times more targets than before. Figure 4.6 presents the results of using

the clamp loss targets instead of the standard targets.

These results illustrate that PC has a very clear advantage in terms of stability and

convergence speed for both the 4 × 4 and 8 × 8 versions of frozen lake. Both the policy

loss and value loss converge much more smoothly when the network is trained with PC.

Table 4.1 gives the corresponding average solve times, mean policy losses and mean value

losses for each of the experiments.

78

a

b

Figure 4.6: Frozen lake environment solved with the hand-crafted replay buffer and Q-
network. Network trained with BP (purple), network trained with PC (red) and clamp
loss Lclamp. 0-1 policy loss computed with Equation 4.5, value loss computed with Equa-
tion 4.4. x-axis corresponds to the number of batch iterations. The plots are averaged
over 10 seeds. a: frozen lake 4× 4. b: frozen lake 8× 8.

Algorithm Average Solve Time Mean Policy Loss Mean Value Loss

BP (4× 4) ∼ 820 ∼ 0.40 ∼ 0.011

PC (4× 4) ∼ 300 ∼ 0.030 ∼ 0.0080

BP (8× 8) ∼ 3100 ∼ 7.2 ∼ 0.026

PC (8× 8) ∼ 2300 ∼ 0.60 ∼ 0.019

Table 4.1: Average solve time, mean 0-1 policy loss and mean MSE value loss of BP and
PC on frozen lake 4× 4 and 8× 8.

In the 8×8 experiment the network trained with PC maintains a fairly consistent policy as

it converges to the optimal state value function v∗(s), whereas with BP the policy appears

to fluctuate rapidly. This is likely caused by the interference associated with BP batch

79

updates and points to the apparent undesirable property of BP: networks trained with BP

suffer more from interference and sporadic weight updates. This effect is more pronounced

in the bigger 8×8 scenario because states far away from the goal state have smaller absolute

differences between their optimal state values v∗(s). Because of the argmax in the policy,

small changes to the parameters of the Q-network can result in vastly different policies,

this is likely why the policy loss appears to fluctuate so much even though the value loss

converges quite smoothly for BP. Interestingly, the Q-network trained with PC doesn’t

seem to have the same problem. Further research is needed to verify these insights and the

cause of this fluctuating policy loss, but we note that these results provide good motivation

for using the clamp loss and scaling up to bigger problems.

4.1.4 Observing Interference (Q-learning with Hand-crafted Replay Buffer)

In this section we conduct some additional experiments to try and uncover the interference

associated with weight updates in networks trained with both BP and PC. Let the replay

buffer be denoted B. After a batch update with batch Bhalf ⊂ B we define absolute

interference to be,

I(Bhalf) =
∑

(s,a)∈B\Bhalf

|Qnew(s, a)−Qold(s, a)| (4.7)

where Qnew(s, a) is the Q-value of action a from state s of the Q-network after the batch

update, and Qold(s, a) is the Q-value of action a from state s before the batch update. In

words, the interference is the absolute difference between Q-values of the of the state action

pairs not present in the sampled batch, computed before and after the batch update. The

experiments are setup as follows:

• Same network architecture as in Section 4.1.2 and 4.1.3.

• Sync frequency N ← 10.

• Batch size is 32 for frozen lake 4× 4 and 128 for frozen lake 8× 8 (exactly half the

replay buffer size in both cases).

80

• Discount factor γ ← 0.7.

• Number of inference steps T ← 128.

• Inference learning rate α← 0.1.

• Learning rates set as the best configuration: ηBP = 0.1 and ηPC = 0.16 (ηBP = 0.03

and ηPC = 0.05 for 8× 8 frozen lake).

• Learning rate search for frozen lake 4× 4: η ∈ {0.1, 0.12, 0.14, 0.18, 0.2}.

• Learning rate search for frozen lake 8× 8: η ∈ {0.01, 0.02, 0.03, 0.04, 0.05}.

• Use the clamp loss function (see Section 3.2.1).

Figure 4.8 presents the 0-1 policy loss and the value loss during training for the network

trained with both BP and PC. Notice how the plots are more noisy because of the random

sampling of experience from the replay buffer.

The plots in Figure 4.8 coincide with our results in the previous section. Since only

half of the examples in the replay buffer are used every batch update, we can plot the

interferences calculated by Equation 4.7. Figure 4.7 plots the interference calculated every

batch update during training.

a b

Figure 4.7: Interference plots calculated by Equation 4.7 every batch update. Network
trained with BP (purple), network trained with PC (red). x-axis corresponds to the
number of batch iterations. The plots compute the mean interference averaged over 10
seeds. a: frozen lake 4× 4. b: frozen lake 8× 8.

81

a

b

Figure 4.8: Frozen lake environment solved with the hand-crafted replay buffer and Q-
network. Network trained with BP (purple), network trained with PC (red). 0-1 policy
loss computed with equation 4.5, value loss computed with 4.4. x-axis corresponds to the
number of batch iterations. The plots are averaged over 10 seeds. a: frozen lake 4 × 4
with PC solved in average time ∼ 230, with mean policy loss ∼ 0.10 and mean value loss
∼ 0.021, with BP solved in average time ∼ 320, with mean policy loss ∼ 0.36 and mean
value loss ∼ 0.030. b: frozen lake 8×8 with PC solved in average time ∼ 1400, with mean
policy loss ∼ 0.39 and mean value loss ∼ 0.013, with BP solved in average time ∼ 3700,
with mean policy loss ∼ 6.3 and mean value loss ∼ 0.020.

The interference plots (Figure 4.7) give us some insight into what is going on. It appears

there is high interference with PC at the start of training when compared with BP. This

could correspond to large parameter updates. The interference with PC shrinks as it

converges to the optimal state value function v∗(s), whereas with BP, the interference

decays more slowly. This could simply be due to the fact PC is converging quicker better.

Its hard to interpret these plots, perhaps we could devise a better notion of interference?

82

Nevertheless, these plots provide some food for thought, but understanding the empirical

differences between these two learning algorithms remains an important direction for future

research.

4.1.5 Supervised Learning

In this section we present the results of some simple supervised learning experiments on

the frozen lake environment. Instead of constructing a replay buffer of tuples, we construct

a dataset of labelled examples and frame the frozen lake problem as a purely supervised

learning task. By doing this we hope to uncover whether there are any empirical differences

between networks trained with BP and PC in this simpler paradigm. We pose the following

questions. Are the advantages of PC still apparent in this new paradigm? Or does PC

just seem to have smoother convergence when applied to RL problems?

Once again, we approximate the Q-function with a network consisting of one hidden layer

with dimension n = 128. ReLU activations are used after the input layer and the hidden

layer, and the last layer is linear. We don’t need a target network anymore since we are

provided with labels. We set the batch size to 16 (or 64 for the 8×8 version), the discount

factor is set to γ ← 0.7. For the PC update step we set: the number of inference steps

T ← 128, the inference learning rate α ← 0.1. We use SGD for running inference and

we use the clamp loss function at the output layer. For both BP and PC we tried SGD

with learning rates η ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}, and we tried

the Adam optimiser with learning rate η = 0.01. Algorithm 17 outlines how we construct

the dataset.

The problem is now a pure regression problem, where the input features are states s ∈ S

and the output targets Q(s, ·) are vectors of state-action values. Once again we plot

the optimal value loss (see Equation 4.4) and the 0-1 policy loss (see Equation 4.5) dur-

ing training. The Adam optimiser with learning rate η = 0.01 achieved the quickest

convergence for both BP and PC, this is expected since Adam is known for very quick

convergence. With SGD, the best learning rate for BP was ηBP = 0.05 and for PC it was

83

Algorithm 17 Constructing the Supervised Learning Dataset

Initialise: empty dataset D ← ∅
Output: full dataset D

Run value iteration (algorithm 7) to recover q∗(s, a).
for all s ∈ S do

initialise Q-vector: Q← 0 ∈ R|A|.
for all a ∈ A do

Qa ← q∗(s, a)
end for
append example 〈s,Q〉 to the dataset D.

end for
return the replay buffer B.

ηBP = 0.07. We note that the best learning rates we determined by which one achieved the

lowest mean value loss and not how smooth the learning curve looks. Figure 4.9 presents

the results of these experiments.

The Adam plot is omitted here because it is uninteresting and both networks trained with

BP and PC converge very fast since this is a very straightforward problem. For the Adam

plot and bigger versions of the plots in Figure 4.9 please refer to Appendix B.1.

Once again we see that the policy loss fluctuates much more for the network trained with

BP as opposed to PC, even the value loss appears to be sporadic for BP as well. This

shows that the same issues with BP are apparent in both the supervised learning and RL.

Although, we must note that the Adam optimiser alleviates these issues entirely in this

a b

Figure 4.9: Frozen lake as a supervised learning task solved with Q-network. Network
trained with BP (purple), network trained with PC (red) and clamp loss Lclamp. 0-1
policy loss computed with equation 4.5, value loss computed with 4.4. x-axis corresponds
to the number of batch iterations. The plots are averaged over 10 seeds. a: frozen lake
4× 4. b: frozen lake 8× 8.

84

setting (see Appendix B.1). Nevertheless, the results in this section are promising and

motivate further research on harder RL environments. However, before we scale-up we

will continue with another different toy environment to gather more insight into how PC

operates in the RL paradigm.

4.2 Cart Pole

Cart pole is part of the classic control suite provided by OpenAI’s gym library. These

environments are considered some of the easiest ones to solve, although we can no longer

use dynamic programming methods since the state space of cart pole is not finite. In the

previous section we saw that PC and BP achieved comparable performance on the frozen

lake environment. This was the case for both the CEM and Q-learning. In this section

we show that in the cart pole environment, Q-learning modified with the PC learning rule

outperforms the standard Q-learning algorithm with BP.

Before we present these results we will first describe the cart pole environment, which is

remarkably similar to a problem outlined by Barto et al. in an early RL paper [94]. A

pole is attached by a rigid joint to a cart that moves along a frictionless track. The pole

starts in a upright position and the goal is to balance the pole upright by moving the cart

left or right. Figure 4.10 illustrates the problem.

left right

Figure 4.10: Cart pole environment: balance the pole upright by moving the cart left or
right.

At each discrete timestep t the agent receives an observation ot of four real numbers

which correspond to the quantities outlined in Table 4.2. The agent then picks an action

at in {0, 1}, where 0 corresponds to pushing the cart left with some fixed force, and 1

85

corresponds to pushing the cart right with the same fixed force. At every timestep the

agent receives a reward of +1. The episode terminates if any of the following conditions

occurs:

• Pole angle is greater than ±12.

• Cart position is greater than ±2.4.

• Episode length exceeds 200 (or 500 for CartPole-v1).

Formally the goal of the agent is to pick actions a ∈ {0, 1}, such that the quantity E[T]

is maximised, where T ≤ 200 is a random variable denoting the length of an episode. All

randomness is captured by the policy π(a|s) and the initial start state S0; state transitions

are deterministic given the action a ∈ {0, 1} since the dynamics of the environment are

Newtonian. Before we present the experiments that train Q-networks to solve the cart

pole environment, we will first conduct some experiments that apply the CEM to this

problem.

Num Observation Min Max

0 Cart Position −4.8 4.8

1 Cart Velocity −∞ ∞
2 Pole Angle −24◦ 24◦

3 Pole Angular Velocity −∞ ∞

Table 4.2: Observation space shape of cart pole [46]

4.2.1 Cart pole with the CEM

Unlike frozen lake, the cart pole environment has an infinite state space, so we won’t

consider the optimal policy loss or optimal value loss like we did in Section 4.1. Instead

we will plot the average batch reward after every batch iteration and use the mean reward

as a means of comparing BP and PC.

The policy π is represented by a network of one hidden layer with dimension n = 128.

ReLU activations are used after the input layer and the hidden layer and softmax is used at

the output layer. In all our experiments we set ρCE ← 0.3, so only the top 30th percentile

86

a

b

Figure 4.11: Cart pole environment solved with the CEM. Network trained with BP
(purple), network trained with PC (red). Average batch reward computed with Equation
3.5. The plots are averaged over 25 seeds. a: CartPole-v0, episode ends at step 200. b:
CartPole-v1, episode ends at step 500.

of episodes are retained for the “elite” batch B. We also set N ← 16, where N is the

number of episodes we play with current policy π before a batch update. Finally, we set

the discount parameter γ ← 1.0. For each run we do 200 batch iterations.

With these hyperparameters we ran the CEM on cart pole and compared the performance

of the policy network trained with BP every batch update or with PC every batch update.

For the PC update steps we fixed: the number of inference steps T ← 128, and the inference

learning rate α← 0.1. SGD was used for both inference and parameter updates. For both

BP and PC we tried the following learning rates: η ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. We

also ran one experiment where both the PC network and the network trained with BP

used the Adam optimiser for parameter updates, with learning rate η = 0.01.

87

We ran the CEM on CartPole-v0 where the episodes terminate after 200 steps, and on

CartPole-v1 where the episodes terminate after 500 steps. For CartPole-v0 the best

learning rates we found were: ηBP = 1.0 for BP and ηPC = 1.2 for PC. For CartPole-v1

the best learning rates we found were both ηBP = ηPC = 1.8 for BP and PC. Figure

4.11 presents the batch rewards of the CEM with BP and PC, for both cart pole environ-

ments.

Again we see that both BP and PC have very similar performance when they are applied

to the CEM. Once again this could be because the cart pole environment is relatively easy

to solve. Interestingly, when we use the Adam optimiser for the parameter updates of the

network, BP maintains good performance, but PC appears to fail and diverge at a certain

point. For the reward plots of these experiments please refer to Figure B.3 in Appendix

B.2. Table 4.3 presents the mean rewards of all the experiments.

Algorithm Mean Reward

BP (v0) SGD η = 1.0 ∼ 155

PC (v0) SGD η = 1.2 ∼ 159

BP (v1) SGD η = 1.8 ∼ 336

PC (v1) SGD η = 1.8 ∼ 335

BP (v0) Adam η = 0.01 ∼ 157

PC (v0) Adam η = 0.01 ∼ 143

BP (v1) Adam η = 0.01 ∼ 387

PC (v1) Adam η = 0.01 ∼ 301

Table 4.3: Mean rewards for the CEM experiments on CartPole-v0 and CartPole-v1.

These results give some initial indication that Adam and PC are not well suited for each

other. While it is well understood how PC and SGD interact, further research is needed

to identify what exactly is going on when we use PC with Adam. Adam is the go to

optimiser for BP, perhaps there is a different optimiser better suited to PC?

4.2.2 Cart pole with Q-learning

In this section we apply the deep Q-learning algorithm (Algorithm 13) to the CartPole-v1

environment. Once again we will not consider the optimal policy loss or optimal value

88

loss. Instead we will plot the accumulated reward after every episode, and we will use

the mean reward over all episodes as a means of comparing the performance of different

algorithms.

In all our experiments we set the total number of episodes played to M ← 100. For the

Q-network we utilise the same architecture as we did for frozen lake: one hidden layer

with dimension n = 128, ReLU activations are used after the input layer and the hidden

layer, and the last layer is linear. Once again, the policy is epsilon greedy. The epsilon

parameter ε is decayed over time according to the same schedule,

ε← 0.01 + (1.0− 0.01) ∗ exp

(
−k
500

)
(4.8)

where k is the number of steps taken in the environment (across all episodes). We set

the target network sync frequency to N ← 100, the batch size is set to 64, the discount

factor is set to γ ← 0.98, and the replay buffer size is set to 5000. The PC inference

parameters are set to: T ← 32, α← 0.05 and SGD is used for inference update steps. We

also use the original double Q-learning targets (see Equation 3.10) instead of the clamped

targets (see Equation 3.13), because the PC network trained with the clamp loss targets

did not achieve quite as good convergence. For both PC and BP we tried Adam with

η = 0.001 and SGD with learning rates: η ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. For

BP, Adam with η = 0.001 performed the best, and with SGD the best learning rate was

ηBP = 0.0005. For PC, parameter updates with SGD outperformed Adam with η = 0.001,

the best learning rate for SGD was ηPC = 0.01, this configuration outperformed both BP

with Adam and SGD. The Adam plots are omitted from the main body of text, instead

please refer to Figure B.4 in Appendix B.3. Figure 4.12 presents the reward plots of the

Q-networks trained with both BP and PC for CartPole-v1. Table 4.4 also presents the

mean rewards of these experiments.

These results are very promising and it is interesting to see that PC networks trained with

SGD outperform networks trained with BP and Adam in this setting. It is important to

89

a

b

Figure 4.12: CartPole-v1 environment solved with Q-network. Network trained with BP
(purple), network trained with PC (red). Episode reward computed with Equation 3.32.
The plots are averaged over 10 seeds. a: both PC network and BP network trained with
SGD. b: PC network trained with SGD, BP network trained with Adam.

Algorithm Mean Reward

BP (v1) SGD η = 0.0005 ∼ 111

PC (v1) SGD η = 0.01 ∼ 272

BP (v1) Adam η = 0.01 ∼ 178

PC (v1) Adam η = 0.01 ∼ 145

Table 4.4: Mean reward for Q-learning experiments on CartPole-v1.

note that PC with Adam still appears to diverge and fail in this setting, see Appendix B.3.

This further supports the challenges and important research directions that we remarked

upon in the previous sections. Regardless, these results are still quite promising and

motivate further research, scaling up, and applying PC networks to harder and different

RL problems.

90

4.3 The Atari Benchmark

OpenAI gym [46] provides us with a standard interface for evaluating RL algorithms in the

arcade learning environment (ALE) [44]. The ALE was developed to act as a benchmark

for research domains such as RL, world model learning and planning, imitation learning,

representation learning, transfer learning and curiosity driven learning. As such the ALE

provides AI researchers with a rigorous test bet for domain independent AI systems.

Specifically, the ALE consists of hundreds different Atari 2600 game environments, each

one is designed to have its own challenges to overcome.

Due to time constraints we will only look at two different Atari 2600 games, namely, Pong

and Breakout. The easier of the two games Pong, is a bit like tennis; each player moves

their paddle to hit the ball back to their opponent, the player who misses the ball and

breaks the rally looses a point and their opponent gains a point, the first player to reach

a score of 21 wins the game. One of the players is computer controlled and the other is

moved by the player or agent interacting with the game. Figure 4.13 shows a game of

Pong being played on an Atari 2600 screen.

Figure 4.13: Atari 2600 Pong environment [46].

A reward of +1 is received when the computer misses the ball and the agent gains a point,

and a reward of −1 is received when the agent missed the ball and the computer gains a

point. Learning in Pong can be quite sporadic and random, as soon as the agent learns

to move the paddle to the location where the ball is expected to land, the episode reward

shoots up from around −10 to +20 very dramatically. This situation is a bit like frozen

91

lake, as soon as we see reward we very quickly converge the optimal policy. This makes

Pong quite an easy Atari 2600 game to solve, but unfortunately it doesn’t provide us with

a very sound framework for comparison. Fortunately Breakout is a more challenging Atari

2600 game and typically we see that the learned policy is improved more incrementally

than dramatically.

Breakout actually has similar dynamics to Pong: the player controls a paddle that hits a

ball into a brick wall. When the ball comes into contact with a brick the brick is destroyed

and the goal is to destroy all the bricks. In fact good players will aim to breakthrough

the brick wall and let the ball destroy the bricks from the other side as the ball bounces

along the edge of the screen. A reward is received if the player destroys a brick, the

exact amount of reward received depends on the colour of the brick, however, in all our

experiments we clamp the reward signals to the range [−1,+1] (see Section 3.2 or [19] for

justification).

Additionally, the player has 5 lives, if the player misses the ball with their paddle they

loose one life and after loosing 5 lives the episode terminates. We modify the scenario such

that the player only has one life, and episodes correspond to playing with just one life,

this modification helps with stability during training [19]. We also terminate the episodes

after 10000 frames, the idea of this is to encourage the agent to accumulate reward more

quickly by breaking through the wall. Figure 4.14 shows a game of Breakout being played

on an Atari 2600 screen.

Figure 4.14: Atari 2600 Breakout environment [46].

The reason learning in Breakout happens in a more incremental fashion is because: (1)

92

the agent must learn to move the paddle where the ball is going to land, (2) the agent

must position the paddle in such a way so that it hits a brick of better colour, (3) the

agent must learn to breakthrough the wall to the other side to accumulate reward more

quickly. Of course breaking through the wall is quite a long term goal and reward signals

received for doing so may take a while to propagate to earlier actions which helped break

the wall.

In both Pong and Breakout the agent receives observations ot at each timestep t, which

correspond to the 210 × 160 pixel RGB image displayed on the Atari 2600 screen. In all

our experiments the observations are scaled down to an 84× 84 grey scale image, every 4

frames are skipped, and the past 4 frames (those not skipped) are concatenated together

and passed to the agent. This means the agent learns from high dimensional tensors with

shape 4× 84× 84 which correspond to 4 stacked grey scale images. This is exactly what

was done in the original Atari paper [19]. Futhermore, the pixel values of the grey scale

images are scaled down to the range [0, 1], this corresponds to dividing each pixel value

by 255.

In general there are 18 distinct actions available when playing Atari 2600 games, however

for Pong and Breakout some of these actions are equivalent, due to the nature of these

games. Table 4.5 outlines the action spaces for both Pong and Breakout, we should note

that the size of the action space must corresponds to the dimension of the output layer of

any network used to solve these games.

Pong Breakout

Num Action Num Action

0 NOOP (no action) 0 NOOP (no action)

1 FIRE 1 FIRE

2 RIGHT 2 RIGHT

3 LEFT 3 LEFT

4 FIRE RIGHT
5 FIRE LEFT

Table 4.5: Action space of Atari 2600 Pong [46]

93

In all of our experiments we also use the NoFrameskip and Deterministic options when

setting up the game environments. This means there is no random frame skipping (2-5

frames are skipped at random every step) and no sticky actions (the previous action is

repeated with probability 0.25). For further details of the different options please refer to

[46].

We also looked at the equivalent RAM versions of both the Pong and Breakout environ-

ments. Instead of a 210 × 160 pixel RGB image, the agent receives 128 bytes of RAM

corresponding to the state of the Atari 2600 console. This observation is converted to a

vector of 128 integers (between in the range [0, 255]), once again the values are scaled

down to the range [0, 1]. We no longer use frame stacking since temporal information

should be encoded in the RAM. The architectural details of the networks will be left for

later, but note that the RAM observations are lower dimensional and can processed with

an MLP rather than a CNN.

In the remaining parts of this section we present the results of various experiments applied

to Pong and Breakout. The hyperparameters used in all our experiments reflect those

used to obtain early results with DQNs (trained with BP) on Atari 2600 games [19, 20,

87]. While we were able to successfully reproduce these results, unfortunately the same

networks trained with PC appeared to diverge at certain points during training. We

believe this to due to the Adam optimiser and the much larger replay buffers required to

train DQNs for Atari 2600 games. Nevertheless, we are still able to draw insight from

these experiments and determine the most important immediate directions for future

research.

4.3.1 Results on Pong

In this section we present the results of applying the deep Q-learning algorithm (Algorithm

13) to Pong. To compare the performance of DQNs trained with BP and PC we plot the

mean accumulated reward of the last 10 episodes. We also use the mean reward as a

means of quantifying the performance of specific algorithmic choices.

94

In all of our experiments we ran the algorithms for exactly 1M step. For the pixel version

of Pong we used a DQN consisting of 3 convolutional layers and 2 linear layers, all with

ReLU activations, except the final output layer. This architecture mimics the one used

in the original DQN paper [19], for precise details please refer to Appendix C.2. For the

RAM version of Pong, we used a Q-network consisting of one hidden layer with dimension

n = 128, ReLU is used after the input layer and the hidden layer, and the final output layer

is linear (this is exactly the same architecture used in the previous sections). Again we use

an epsilon greedy exploration strategy, with the following the epsilon decay schedule,

ε← 0.01 + (1.0− 0.01) ∗ exp

(
−k

15000

)
(4.9)

where k is the number of steps taken in the environment (across all episodes). The tar-

get network sync frequency is set to N ← 1000, the batch size is set to 32, the discount

factor is set to γ ← 0.99, and the replay buffer size is set to 100000. The number of

PC inference steps is set to T ← 32, the inference learning rate is set to α ← 0.05.

SGD is used for inference steps, and in all our experiments we use Adam for parame-

ter updates. We use Adam instead of SGD because SGD is much too slow for these

kind of problems and Adam significantly speeds up convergence. However, even with

Adam, training is still quite sensitive to learning rates, and so we tried learning rates

η ∈ {0.0005, 0.0001, 0.00005, 0.00001, 0.000005, 0.000001}. For PC we also tried both the

clamp loss targets (see Equation 3.14) and the standard double Q-learning targets (see

Equation 3.10). Additionally, for both BP and PC we also tried the normal Q-learning

targets computed with the target network,

y ←R+ γ argmax
a

Q̂(S′, a) (4.10)

Table 4.6 presents the best learning rates and mean reward scores for each of these al-

gorithmic choices. Figure 4.15 presents the episode reward plots for the pixel and RAM

versions of Pong.

95

a b

Figure 4.15: Atari 2600 Pong solved with deep Q-network. Network trained with BP
(purple), network trained with PC (red). Episode reward computed with Equation
3.34. Only one seed run. a: PongNoFrameskip-v4 environment solved with convolutional
network. b: Pong-ramNoFrameskip-v4 environment solved with MLP-style network.

Environment Algorithm Learning Rate Mean Reward

PongNoFrameskip-v4

Double Q-learning BP 0.00001 7.88
Double Q-learning PC (Clamp) 0.00001 −6.71

Double Q-learning PC (No Clamp) 0.00001 -3.14
Single Q-learning BP 0.00001 1.31

Single Q-learning PC (No Clamp) 0.00001 −19.64

Pong-ramNoFrameskip-v4

Double Q-learning BP 0.0001 −17.00
Double Q-learning PC (Clamp) 0.0001 −19.17

Double Q-learning PC (No Clamp) 0.0001 −19.11
Single Q-learning BP 0.0001 −17.00

Single Q-learning PC (No Clamp) 0.0001 -18.33

Table 4.6: Mean reward and optimal learning rate for various algorithmic choices of the
deep Q-learning algorithm (Algorithm 13) applied to Atari 2600 Pong. Bold and italic
configurations presented in Figure 4.15.

Clearly in both the pixel and RAM versions of Pong the DQNs trained with BP achieve

better performance than those trained with PC. In both plots presented in figure 4.15,

the PC networks appears to falter, and in the case of the RAM version it diverges after

a certain amount of training. The reason for this could be attributed to the mismatch

between PC and Adam, that we have seen in previous experiments with Q-networks and

policy networks. Additionally, we speculate that this divergence could be caused due to

the large replay buffers used to provide experience to learn from. The purpose of these

replay buffers is to deal with “catastrophic interference” or “catastrophic forgetting”,

although PC posits as a remedy for this. Using PC and large replay buffers may be

“overkill” and both solutions could be interfering with each other in some way that we

96

don’t understand.

Another thing to consider is the lack of hyperparameter tuning. Other than the learning

rate, the hyperparameter choices were made we all based on what works well for DQNs

trained with BP. In effect all the other hyperparameters were optimised for BP. Perhaps

with a more thorough hyperparameter search we could have obtained better performance

with PC. However, the choice of which hyperparameters to tune and change comes with

increased understanding of how PC interacts with Adam and other similar optimisers, and

what exactly is going wrong to cause divergence during training in the first place.

One final remark is that, perhaps the original deep Q-learning algorithm [19] is not suited

for networks trained with PC, maybe we need to revisit the design of the algorithm and

the original choices made by Mnih et al., in order come up with a novel algorithm that

better facilitates learning with PC in this setting.

4.3.2 Results on Breakout

Now we present the results on Breakout. Once again we plot the mean accumulated

reward, except since episodes are much shorter we plot the mean accumulated reward of

the last 100 episodes.

In all our experiments we played 5M steps in the environment. For the pixel version of

Breakout we used the same convolutional architecture outlined in the previous section and

detailed in Appendix C.2. And for the RAM version of Breakout we used the same MLP

architecture: one hidden layer with dimension n = 128, ReLU activations used after the

input and hidden layers. Since Breakout is a harder game than Pong we also modified the

algorithm in a few different ways:

• The first 50000 steps are played with a completely random policy.

• No parameter updates are made during the first 50000 steps.

• Parameter updates from batches of experience are only made after every 4 steps

(rather than after every step).

97

• The epsilon decay schedule is modified accordingly,

ε← 0.1 + (1.0− 0.1) ∗ exp

(
−k

1000000

)
(4.11)

Additionally, we set the target network sync frequency to N ← 10000, the batch size

is set to 32, the discount factor is set to γ ← 0.99, and the replay buffer size is set

to 1000000. The PC inference parameters remain the same: number of inference steps

T ← 32, inference learning rate α ← 0.05. Again, SGD is used for inference update

steps and Adam is used for all parameter update steps. Once again, we tried learning

rates η ∈ {0.0005, 0.0001, 0.00005, 0.00001, 0.000005, 0.000001}, and we tried the clamped

double Q-learning targets (see Equation 3.13), the original double Q-learning targets (see

Equation 3.10), and the normal Q-learning targets (see Equation 4.10). Table 4.7 presents

the best learning rates and mean reward scores for each experiment. Figure 4.16 presents

the episode reward plots for the pixel and RAM versions of Breakout.

a b

Figure 4.16: Atari 2600 Breakout solved with deep Q-network. Network trained with BP
(purple), network trained with PC (red). Episode reward computed with Equation 3.34.
Only one seed run. a: BreakoutNoFrameskip-v4 environment solved with convolutional
network. b: Breakout-ramNoFrameskip-v4 environment solved with MLP-style network.

Once again we see that BP outperforms PC in both the pixel and RAM versions of

Breakout. In this scenario the divergence of the DQN trained with PC appears to be

more spectacular than with Pong. Its likely that some of the same reasons outlined in

the previous section have played a part in this: the mismatch between Adam and PC, the

larger replay buffer (1M instead of 100K steps are stored) and the lack of an exhaustive

hyperparameter search.

98

Environment Algorithm Learning Rate Mean Reward

BreakoutNoFrameskip-v4

Double Q-learning BP 0.00001 3.18
Double Q-learning PC (Clamp) 0.00001 0.32

Double Q-learning PC (No Clamp) 0.00001 0.39
Single Q-learning BP 0.00001 3.33

Single Q-learning PC (No Clamp) 0.00001 0.29

Breakout-ramNoFrameskip-v4

Double Q-learning BP 0.00005 1.93
Double Q-learning PC (Clamp) 0.00005 0.82

Double Q-learning PC (No Clamp) 0.00005 1.04
Single Q-learning BP 0.00005 2.01

Single Q-learning PC (No Clamp) 0.00005 0.90

Table 4.7: Mean reward and optimal learning rate for various algorithmic choices of the
deep Q-learning algorithm (Algorithm 13) applied to Atari 2600 Breakout. Bold and italic
configurations presented in Figure 4.16.

The reason we see an even more catastrophic failure is unknown, perhaps the fact that

Breakout is more challenging results in a more significant failure. Either way, the results

presented in this section point us towards important directions for future research. Un-

derstanding the interplay between PC and Adam is paramount, and by gaining further

insight into what is going wrong here, we can hope to better tune the hyperparameters

and modify the algorithm to accommodate better learning with PC.

4.4 Continuous Control

In this section we will look at two continuous control problems that are part of the MuJoCo

test suite provided by OpenAI gym [46]. In total there are ten MuJoCo environments, and

these are thought to be some of the most challenging environments to solve. Specifically,

we will look at the Ant and HalfCheetah environments. Both these environments have

stochastic initial states so the agent can’t simply remember the best sequence of actions

to take, instead the agent must generalise well to the state space.

In all of our experiments we will use a policy network that follows the continuous action

space formulation of the policy gradient method extended to the multivariate Gaussian

distribution case, for details please refer to Section 2.3.5. The policy network or actor

99

consists of one hidden layer with dimension n = 64, the input, hidden and output layers

are each followed by tanh activations. This network models the mean of a multivariate

Gaussian with dimension equal to the dimension of the action space. The covariance

matrix is modelled by a single learnable diagonal matrix Λ (only diagonal elements are

learnable parameters) rather than a deep network.

The policy network is trained with the PPO algorithm, see Section 3.3, which means we

also train a separate value network or critic. In all our experiments the value network

consists of one hidden layer with dimension n = 64, ReLU activations are used after the

output layer and hidden layer, the output layer is linear, outputting a single scalar state

value v̂(s).

In our experiments we compare the performance of the standard PPO algorithm that

uses BP to compute parameter gradients versus a modified version of the PPO algorithm

that uses PC instead to update both the policy and value networks. Before we present

the results of our experiments we wil first give a brief overview of both the Ant and

HalfCheetah environment.

Ant: the Ant environment was introduced in the A2C paper by Schulman et al. [93]. The

ant is a 3D robot with one torso and four moveable legs with two joints. The goal is move

the ant forward by applying the right torques to the eight hinges: four connecting the legs

to the torso and four connecting the two separate parts of the legs. Figure 4.17 illustrates

this setup.

Figure 4.17: MuJoCo Ant environment [46]

The action space of the environment is continuous, it corresponds to picking torque val-

100

ues for each of the eight joints. The observation space is also continuous, it consists of

positional and angular values for different parts of the ant’s body, along with velocities

for each of these parts. Table 4.8 defines the action space and observation space more

formally, for further details on what each value corresponds to please refer to [46]. The

Action Space: [−1 + 1]8

Observation Space: [−∞,∞]26

Table 4.8: Action and observation space of the MuJoCo Ant environment [46]

reward dynamics of the environment are as follows:

• Every timestep the agent receives a reward of +1.

• The agent receives a reward for moving forward computed by,

Rforward =
xt − xt+1

dt
(4.12)

where xt is the x-coordinate of the ant at time step t and xt+1 is the x-coordinate

of the ant at time step t+ 1, dt is the time between frames (default dt← 0.05).

• The agent receives a negative reward that penalises the agent if it takes actions that

are too large, calculated by,

Raction = 0.5 · aTa (4.13)

where a is the action vector output by the policy network.

• The agent receives another negative reward that penalises the agent if any external

forces are too large, calculated by,

Rexternal = 0.5 · 0.001 ·
∑

(clip(external force, -1, +1))2 (4.14)

where the sum is over all points of contact with the ground.

• Total reward received is at each timestep is: Rt = 1 +Rforward
t −Raction

t −Rexternal
t .

101

The episode terminates if any of the following conditions are satisfied:

• The y-orientation (the 2nd element of the observation) is not in the range [0.2, 1.0],

or in words, the ant has flipped or fallen over.

• Any of the state space values are no longer finite

• Episode length exceeds 1000.

Half Cheetah: the HalfCheetah environment is based on work by Wawrzyński [95]. The

half cheetah is a 2D robot with consisting of nine parts with eight joints linking them.

The goal is to apply the right torque to the joints such that the cheetah runs as quickly as

possible to the right, reward is received for how far the cheetah moves during an episode.

Torque can only be applied to 6 of the joints since the torso and head of the cheetah are

fixed. Figure 4.18 illustrates the problem.

Figure 4.18: MuJoCo HalfCheetah environment [46]

The action space corresponds to picking torque values for each of the six moveable joints.

The observation space consists of positional and angular values for different parts of the

cheetah, along with velocities for each of these parts. Table 4.9 formally describes the ac-

tion and observation space, once again, for further details on what each value corresponds

to please refer to [46].

Action Space: [−1 + 1]6

Observation Space: [−∞,∞]16

Table 4.9: Action and observation space of the MuJoCo HalfCheetah environment [46]

102

The reward dynamics of the environment are as follows:

• The agent receives a reward for moving forward computed by,

Rforward =
xt − xt+1

dt
(4.15)

where xt is the x-coordinate of the cheetah at time step t and xt+1 is the x-coordinate

of the cheetah at time step t+ 1, dt is the time between frames (default dt← 0.05).

• Negative reward that penalises the agent if it takes actions that are too large, cal-

culated by,

Raction = 0.1 · aTa (4.16)

where a is the action vector output by the policy network.

• Total reward received is at each timestep is: Rt = Rforward
t −Raction

t .

The episode terminates if any of the following conditions are satisfied:

• Any of the state space values are no longer finite

• Episode length exceeds 1000.

4.4.1 Results on the MuJoCo Benchmark

Now we present the results of applying the PPO algorithm detailed in Section 3.3 to both

the Ant and HalfCheetah environments. To compare the original algorithm that utilises

BP for parameter updates to the variant that uses PC for parameter updates we plot the

average episode reward for the last 100 episodes during training. We also compute the

mean reward after each run, as a means of comparing specific algorithmic choices.

For each experiment we ran the PPO algorithm for for exactly 5M steps. It is important to

note that 5M steps is actually rather short, typically the PPO algorithm with BP converges

after anywhere between 20-30M steps. The reason we only run the experiments for 5M

103

steps is for practical reasons: PPO with PC runs approximately ten times slower than

BP (because we run inference every parameter update step), therefore it is not feasible to

conduct a thorough analysis while running the PPO algorithm with PC for 20-30M steps

since it would take a couple weeks for one run. Therefore, we must run the experiments for

only 5M frames before terminating; this should give us an idea of good hyperparameters

to use for scaling up to 20-30M frames in the future, and the results will act as a useful

proof of concept.

In all of our experiments we fix the following hyperparameters for both BP and PC:

• The discount factor γ ← 0.99.

• The generalised advantage estimation [93] discount parameter λ← 0.95.

• The sampled trajectory length T ← 2049.

• The number of batch updates per epoch N ← 10.

• The batch size |B| is set to 64.

• The epsilon clipping parameter for the surrogate objective function (see Equation

3.21 in Section 2.3.5) is set to ε← 0.2.

For the PC inference parameters we set: the number of inference steps T ← 32, and the

inference learning rate α← 0.05. SGD is used for inference steps, and once again Adam is

used for parameter updates in all of our experiments. Again, the reason for this is because

Adam dramatically speeds up the convergence of training, so that we may feasibly run

experiments and draw conclusions in a suitable amount of time. For the value network we

set the learning rate parameter to ηcritic ← 0.0001, and for the policy network we set the

learning rate parameter to ηactor ← 0.00001. In preliminary runs it became clear that this

configuration was the optimal configuration, since with other learning rates the algorithm

either dramatically failed or converged very slowly.

In addition to using the standard loss functions used in Algorithm 14 in Section 3.3. We

ran experiments with the different loss functions, LSSE and LSUM, described in Section

104

Environment Algorithm Policy Loss Value Loss Mean Reward

Ant

BP Mean of J(θ) MSE 1105.04
BP Mean of J(θ) + entropy (β = 0.001) MSE 1145.47
PC Mean of J(θ) MSE 1038.19
PC Mean of J(θ) + entropy (β = 0.001) MSE 1060.53
PC Sum of ρ · J(θ) (ρ = 0.05) MSE 671.94
PC Sum of ρ · J(θ) (ρ = 0.05) + entropy (β = 0.001) MSE 640.53
PC Sum of ρ · J(θ) (ρ = 0.05) SSE 660.26
PC Sum of ρ · J(θ) (ρ = 0.05) + entropy (β = 0.001) SSE 731.95

HalfCheetah

BP Mean of J(θ) MSE 989.90
BP Mean of J(θ) + entropy (β = 0.001) MSE 862.61
PC Mean of J(θ) MSE 740.17
PC Mean of J(θ) + entropy (β = 0.001) MSE 813.28
PC Sum of ρ · J(θ) (ρ = 0.05) MSE 503.03
PC Sum of ρ · J(θ) (ρ = 0.05) + entropy (β = 0.001) MSE 672.91
PC Sum of ρ · J(θ) (ρ = 0.05) SSE 783.20
PC Sum of ρ · J(θ) (ρ = 0.05) + entropy (β = 0.001) SSE 879.51

Table 4.10: Mean reward for variants of the PPO algorithm (Algorithm 14) applied to
AntBulletEnv-v0 and HalfCheetahBulletEnv-v0. Bold and italic configurations pre-
sented in figure 4.19.

3.3.1. We tried scaling factors ρ ∈ {100, 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.001} for the sum of

the policy losses, and in all cases the best configuration we found was ρ← 0.05. Table 4.10

presents the mean reward scores for each experiment. Figure 4.19 presents the episode

reward plots for BP and PC in the Ant and HalfCheetah environments. For larger versions

of the plots presented in Figure 4.19 please refer to appendix B.4.

a b

Figure 4.19: a: AntBulletEnv-v0 solved with PPO. b: HalfCheetahtBulletEnv-v0

solved with PPO. Actor and Critic trained with BP (purple), Actor and Critic trained
with PC (red). Episode reward computed with Equation 3.34. Only one seed run.

By studying the plots in Figure 4.19 and the results in table 4.10 its clear that PC and

105

BP achieve much more comparable performance in this setting, compared to the results

on Atari 2600 games. However, these results do initially suggest that BP may be slightly

better than PC in this setting, although this small advantage may become less apparent

if we ran these experiments over multiple seeds.

The Ant plots in Figure 4.19 for BP and PC look remarkably similar. This is likely due to

the fact that we used the same loss functions for both BP and PC; the best configuration

was to use the mean of J(θ) to train the policy network and the MSE loss to train the

value network, along with an entropy bonus with β = 0.001. When we used the SSE loss

and/or the sum of J(θ) with ρ = 0.05 (see Section 3.3.1), the reward appeared to shoot

up quickly and then diverge quite drastically, which is why we get low mean reward scores

for these configurations.

In contrast to the Ant environment the best configurations for the HalfCheetah environ-

ment differed between BP and PC; for BP the best configuration was to use the mean

of J(θ) to train the policy networks, the MSE loss to train the value network and no

entropy bonus, for PC the best configuration was to use the sum of J(θ) with ρ = 0.05 to

train the policy networks, the SSE loss to train the value network and entropy bonus with

β = 0.001. Interestingly, PC appears to initially converge faster than BP, although both

diverge somewhat towards the end of the 5M frames. This indicates the need for more

hyperparameter tuning for both algorithms. Stronger clipping of the ratios, for example

setting ε← 0.1, or a stronger entropy coefficient β may prevent these divergences.

Nevertheless, these results are significantly more promising than the ones obtained on the

Atari benchmark. Policy gradient methods offer a much more natural view of learning

and policy optimisation in MDPs, than the more artificial deep Q-learning procedures.

The PPO algorithm is also on-policy, meaning the agent only ever learns from the most

immediate experience generated with the current policy. As such, learning with PPO is

done in a more online fashion, without large replay buffers and perhaps this suits PC

better.

106

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we applied the theory of predictive coding (PC) [33–35] to a number of rein-

forcement learning (RL) tasks. The main approach in RL is to use function approximators

like neural networks to represent learned policies or value functions which are typically

optimised with backpropagation (BP) [12] and gradient descent to maximise the accumu-

lated reward in a given environment. Instead, we trained these function approximators

with PC and developed a framework for directly comparing the performance of BP and

PC in RL tasks. Specifically, we ran the cross-entropy method (CEM) [79], Q-learning

[75], and the proximal policy optimisation (PPO) algorithm [45] on a range of different

environments, from toy scenarios to Atari 2600 games and challenging continuous control

problems. To maintain fairness in all our experiments we fixed almost of all the hyperpa-

rameters to the same values for both BP and PC, and we only modified the learning rates

and the output loss functions of the networks. Finally, to compare BP and PC we plotted

reward curves (or learning curves) of both algorithms against each other and computed

the mean reward (or mean loss).

The results we obtained on the toy scenarios, cart pole and frozen lake, are promising

107

and in all cases the networks trained with PC achieved comparable or better performance

than the networks trained with BP. The only caveat is that SGD was used to obtain all

of these results and PC with Adam appeared to diverge or fail in some of these scenarios.

Even so, in these scenarios we conclude that PC with SGD appears to have an empirical

advantage over BP in terms of stability and convergence to the optimal policy or state-

value function.

Unfortunately the results we obtained on Atari 2600 games were disappointing. In all cases

the networks trained with PC appear to falter and diverge at certain points during training,

whereas the networks trained with BP consistently improved during training. Regardless,

these results provided us with some good insight, which helped us determine some of the

important directions for future work highlighted in the upcoming section.

We obtained much more promising results on two continuous control problems from the

Multi-Joint dynamics with contact (MuJoCo) benchmark [46]. Specifically, we demon-

strated that policy and value networks trained with PC and PPO obtain comparable

performance to policy and value networks trained with the standard PPO algorithm, that

uses BP for computing parameter gradients. There are two main takeaways here, PC is

still effective when the output loss function doesn’t exactly match the local energy func-

tions, and perhaps PC is better suited to online settings without large replay buffers that

retain old experience.

All things considered, applying PC to deep learning systems remains a promising area of

research. We note that there is no obvious advantage in using PC over BP in many of the

scenarios in this thesis, although this is probably a symptom of the many research gaps

associated with how PC operates in deep learning systems. Popularising PC is not an easy

task, since for the past decade, BP has been the predominant algorithm for training deep

networks. However, with further research and the development of specialised hardware

implementing PC several orders of magnitude faster than BP [42], we could soon see a

shift towards PC and other biologically plausible algorithms.

108

5.2 Future Work

In this section we note some of the most important areas for further research, not only for

the work in this thesis but for the problem of applying PC to deep learning systems as a

whole.

5.2.1 Quantifying Interference

Recent results from Song et al. [28] provide compelling evidence that PC suffers less from

interference and makes parameter updates that result in neural activity more aligned with

the training target. In our experiments presented in Section 4.1.4 we tried to quantify this

interference by defining a natural notion of interference. The interference plots were not

particularly telling and perhaps by using a different notion of interference we can uncover

where the advantage in using PC comes from in this setting.

5.2.2 Understanding PC with Adam

In all of our toy experiments we see that PC performs better or no worse than BP when

SGD is used for parameter updates. However, when Adam is used for parameter updates

the networks trained with PC appear to diverge during training, whereas BP maintains

good performance. The reason Adam is so popular is because it works remarkably well

with BP. Our results suggest that there is some apparent mismatch between Adam and

PC. A key research challenge is to understand the connection between Adam and PC

and why they seem to be fighting against each other. It is also important to understand

why PC diverges when Adam is used for parameter updates, in the scenarios presented in

this thesis. These insights can help us modify existing optimisers or devise an alternative

optimiser better suited for PC.

5.2.3 Exploring the Effect of Hyperparameters

Since PC runs approximately ten times slower than BP it is more difficult to do a thorough

hyperparameter search for the harder environments, like Atari 2600 games and complex

109

continuous control tasks. The toy experiments had fewer hyperparameters and we were

able to tune everything with preliminary runs before proceeding with a learning rate

search. With increased understanding of how PC operates in deep learning systems, we

can hope to get better results by choosing the hyperparameters more appropriately. This

better understanding comes from both theoretical analyses and well documented trial-and-

error style experiments. Both types of research are important for motivating the adoption

of PC in deep learning systems.

5.2.4 Replay Buffers and Online Learning

Replay buffers pose as a very artificial fix to the problem of “catastrophic interference”

or “catastrophic forgetting”. Understanding whether large replay buffers actually affect

learning with PC is an interesting direction for future work that can be quite easily verified

or not. Once we understand how replay buffers affect PC, we can suitably modify existing

algorithms to accommodate better learning with PC. However, perhaps PC is just better

suited to online learning scenarios. Our results on the MuJoCo benchmark form some

initial evidence for this statement. Evidence provided by Song et al. [28] also suggest PC

is better suited than BP to online learning scenarios and learning off limited amounts of

data. However, it is clear that additional work is needed to verify these ideas.

5.2.5 Testing on Other Benchmarks

In this thesis we have exclusively used environments provided by OpenAI gym [46] as

it provides a standard interface for agent environment interaction, and so there is less

overhead associated with programming scripts for different environments. However, there

are many more environments and benchmarks out there provided by OpenAI, DeepMind,

Unity and more. Testing on different environments is important so that we gain further

insight into what hyperparameters work, what types of environments are hard to solve

and why, and how to overcome inherent challenges in RL like the exploration-exploitation

trade off.

110

5.2.6 Training with Different Algorithms

Using different algorithms and network architectures is incredibly important if we are to

convince the deep learning community to adopt PC. By showing PC works with different

RL algorithms and on more sophisticated architectures we can spread further belief and

interest in PC. Of the algorithms we used, deep Q-learning is quite an artificial algorithm

that implements many tricks that work well, but without strong theoretical justifications.

Policy gradient methods come with stronger theoretical backing, and so perhaps looking

at other popular policy gradient algorithms, like advantage actor critic (A2C) [92] or

trust region policy optimisation (TRPO) [96], is a promising direction for building further

justification for the adoption of PC.

111

Appendix A

Derivations

A.1 Derivation of the error back-propagation step

The goal of backpropagation (BP) is to compute the derivatives ∂L
∂Wl and ∂L

∂b1 for l =

2, ..., L. As an intermediate step we compute the derivates ∂L
∂zl

for l = 2, ..., L by back-

propagating the error at the output. We note that the output ŷ = aL, and so we can

compute,

∂L
∂aL

directly from the loss function. Where ∂L
∂aL

is the row vector,

∂L
∂aL

=

[
∂L
∂aL1

, ...,
∂L
∂aL

nL

]

We can then compute,

∂L
∂zL

=
∂L
∂aL

∂aL

∂zL

Where ∂aL

∂zL
is an nL × nL Jacobian matrix computed using the final activation function

gL. Once we have ∂L
∂zL

we can compute ∂L
∂zl

for l = 2, ..., L − 1 by the chain rule of

112

differentiation,

∂L
∂zl

=
∂L
∂zl+1

∂zl+1

∂zl

=
∂L
∂zl+1

∂zl+1

∂al
∂al

∂zl

Since zl+1 = Wl+1al + bl+1, then ∂zl+1

∂al
= Wl+1. Once again, ∂al

∂zl
is an nl × nl Jacobian

matrix computed using the activation function gl. So,

∂L
∂zl

=
∂L
∂zl+1

Wl+1∂g
l

∂zl

Recall that,

zl = Wlal−1 + bl

and so it is relatively easy to see that,

∂L
∂Wl

=
∂zl

∂Wl

∂L
∂zl

=

[
al−1

∂L
∂zl

]T

and that,

∂L
∂bl

=
∂zl

∂bl
∂L
∂zl

=

[
∂L
∂zl

]T

A.2 Derivation of the inference update step in predictive

coding

First recall the forward equations,

zl = Wlal−1 + bl

al = gl(zl)

113

Letting xl denote the pre-activations zl and framing the forward equations in terms of xl

gives us,

xl = Wlgl(xl−1) + bl

The goal of the relaxation phase in predictive coding networks is to minimise the global

energy function,

E(x1, ...,xL;θ) =
1

2

L∑
l=2

(xl −Wlgl(xl−1)− bl)2 =
1

2

L∑
l=2

(
E l
)2

Let’s simply consider the layer l in our calculations and observe that xl only appears

twice in the energy function. Let El and El+1 denote the terms in which xl appears, that

is,

El =
1

2
(xl −Wlgl(xl−1)− bl)2

El+1 =
1

2
(xl+1 −Wl+1gl(xl)− bl+1)2

Now the partial derivative of E with respect to xl can be written as,

∂E

∂xl
=
∂El + El+1

∂xl

By the chain rule of calculus we compute

∂El

∂xl
= xl −Wlgl(xl−1)− bl = E l

and,

∂El+1

∂xl
= (xl+1 −Wl+1gl(xl)− bl+1)

∂

∂xl
(xl+1 −Wl+1gl(xl)− bl+1)

= −∂g
l

∂xl

(
Wl+1

)T
E l+1

114

To minimise the energy function we move in the direction of the negative gradient, that

is,

∆xl ← α

(
−E l +

∂gl

∂xl

((
Wl+1

)T
E l+1

))

A.3 Derivation of the parameter update step in predictive

coding

After inference we update the parameters of the network θ = {W2,W3, ...,WL,b2,b3, ...,bL}

to minimise the global energy function,

E(x1, ...,xL;θ) =
1

2

L∑
l=2

(xl −Wlgl(xl−1)− bl)2 =
1

2

L∑
l=2

(
E l
)2

Again let’s simply consider the layer l. We note that Wl and bl only appear in one term

of the energy function, specifically,

El =
1

2
(xl −Wlgl(xl−1)− bl)2

and so we can write the partial derivative of El with respect to Wl as,

∂E

∂Wl
=

∂El

∂Wl
= (xl −Wlgl(xl−1)− bl)

∂

∂Wl
(xl −Wlgl(xl−1)− bl)

= E l ∂

∂Wl
(xl −Wlgl(xl−1)− bl) = −E l

[
gl(xl−1)

]T
For the biases bl this is even easier,

∂E

∂bl
=
∂El

∂bl
= −(xl −Wlgl(xl−1)− bl) = −E l

This gives us the following parameter update steps,

∆Wl ← ηE l
[
gl(xl−1)

]T

115

∆bl ← ηE l

A.4 Derivation of the REINFORCE update step

Recall that the policy gradient theorem [78, Ch. 13.2] states,

J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a | s,θ)

By taking expectations with respect to π we get,

J(θ) ∝ Eπ

[∑
s

µ(s)
∑
a

qπ(s, a)∇π(a | s,θ)

]

= Eπ

[∑
a

qπ(St, a)∇π(a | St,θ)

]
(by the definition of expectations)

= Eπ

[∑
a

π(a | St,θ)qπ(St, a)
∇π(a | St,θ)

π(a | St,θ)

]

= Eπ
[
qπ(St, At)

∇π(At | St,θ)

π(At | St,θ)

]
(by the definition of expectations)

= Eπ
[
Gt
∇π(At | St,θ)

π(At | St,θ)

]
(since Eπ[Gt |St, At] = qπ(St, At))

116

Appendix B

Additional Plots

B.1 Frozen lake as a supervised learning task

a

b

Figure B.1: Frozen lake as a supervised learning task solved with Q-network. Network
trained with BP (purple), network trained with PC (red) and clamp loss Lclamp. 0-1
policy loss computed with Equation 4.5, value loss computed with Equation 4.4. x-axis
corresponds to the number of batch iterations. The plots are averaged over 10 seeds. a:
frozen lake 4× 4. b: frozen lake 8× 8.

117

Figure B.2: ADAM: Frozen lake as a supervised learning task solved with Q-network.
Network trained with BP (purple), network trained with PC (red) and clamp loss Lclamp.
0-1 policy loss computed with Equation 4.5, value loss computed with 4.4 Equation. x-axis
corresponds to the number of batch iterations. The plots are averaged over 10 seeds.

118

B.2 Cart pole with the CEM (Adam plots)

a

b

Figure B.3: ADAM: Cart pole environment solved with the CEM. Network trained with
BP (purple), network trained with PC (red). Average batch reward computed with
Equation 3.5. The plots are averaged over 25 seeds. a: cart pole v0, episode ends at step
200. b: cart pole v1, episode ends at step 500.

119

B.3 Cart pole with Q-learning (Adam plot)

Figure B.4: ADAM: Cart pole v1 environment solved with Q-network. Network trained
with BP (purple), network trained with PC (red). Episode reward computed with Equa-
tion 3.32. The plots are averaged over 10 seeds.

120

B.4 Results on the MuJoCo Benchmark (bigger plots)

a

b

Figure B.5: a: AntBulletEnv-v0 solved with PPO. b: HalfCheetahtBulletEnv-v0

solved with PPO. Actor and Critic trained with BP (purple), Actor and Critic trained
with PC (red). Episode reward computed with Equation 3.34. Only one seed run.

121

Appendix C

Miscellaneous

C.1 Taxonomy of RL algorithms

Taxonomy Properties

Model-free v.s Model-based Model-free algorithms are methods that don’t explic-
itly build or learn a model of the environment and
the reward dynamics. Model-free methods map ob-
servations directly to actions. In contrast model-based
methods use a learned or given model of the environ-
ments dynamics and typically plan through the model
in order to pick actions.

Policy-based v.s Value-based Policy based methods explicitly represent the policy as
a distribution over actions. Value-based methods nu-
merically approximate state-action values or Q-values
and the policy is represented as an argmax over the
Q-values.

On-policy v.s Off-Policy On-policy methods require that the experience col-
lected for the agent to train on was collected by fol-
lowing the current policy. Off-policy methods do not
require this restriction and can train on old experience
collected by an older policy.

Monte Carlo v.s Temporal
Difference (TD)

Monte Carlo methods need to play full episodes before
they can compute targets to train on. TD methods
instead seek to minimise the TD error and only need
to play one step before they can start learning from
target state-values.

Table C.1: Taxonomy of RL algorithms.

122

C.2 Architectural Details of the DQN Used for Atari 2600

Experiments

Layer Input Dimension Ouput Dimension

Conv 2D (Input) 4× 84× 84 32 channels, 8× 8 kernel, stride 4.

Conv2D 32 channels 64 channels, 4× 4 kernel, stride 2.

Conv2D 64 channels 64 channels, 4× 3 kernel, stride 1.

Linear 3136 512

Linear (output) 512 6 for Pong, 5 for Breakout

Table C.2: Architectural details of the convolutional DQN used for Atari 2600 pixel envi-
ronments.

123

Bibliography

1. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25
(2012).

2. Qiu, X., Zhang, L., Ren, Y., Suganthan, P. N. & Amaratunga, G. Ensemble deep
learning for regression and time series forecasting in 2014 IEEE symposium on com-
putational intelligence in ensemble learning (CIEL) (2014), 1–6.

3. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114
(2013).

4. Goodfellow, I., Bengio, Y. & Courville, A. Deep learning (MIT press, 2016).
5. Cireşan, D. C., Meier, U., Gambardella, L. M. & Schmidhuber, J. Deep, big, simple

neural nets for handwritten digit recognition. Neural computation 22, 3207–3220
(2010).

6. Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review 65, 386 (1958).

7. Marcus, G. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631
(2018).

8. LeCun, Y. et al. Handwritten digit recognition with a back-propagation network.
Advances in neural information processing systems 2 (1989).

9. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat’s striate
cortex. The Journal of physiology 148, 574 (1959).

10. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology 160, 106 (1962).

11. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey
striate cortex. The Journal of physiology 195, 215–243 (1968).

12. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-
propagating errors. nature 323, 533–536 (1986).

13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research 15, 1929–1958 (2014).

14. Sutton, R. S. & Barto, A. G. Reinforcement learning: An introduction (MIT press,
2018).

15. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic
dopamine systems based on predictive Hebbian learning. Journal of neuroscience
16, 1936–1947 (1996).

124

16. Lin, L.-J. Reinforcement learning for robots using neural networks tech. rep. (Carnegie-
Mellon Univ Pittsburgh PA School of Computer Science, 1993).

17. Finn, C. et al. Learning visual feature spaces for robotic manipulation with deep
spatial autoencoders. arXiv preprint arXiv:1509.06113 25, 2 (2015).

18. Recht, B. A tour of reinforcement learning: The view from continuous control. arXiv
preprint arXiv:1806.09460 (2018).

19. Mnih, V. et al. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602
(2013).

20. Mnih, V. et al. Human-level control through deep reinforcement learning. nature
518, 529–533 (2015).

21. Silver, D. et al. Mastering the game of go without human knowledge. nature 550,
354–359 (2017).

22. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature 575, 350–354 (2019).

23. Brown, N. & Sandholm, T. Superhuman AI for multiplayer poker. Science 365, 885–
890 (2019).

24. Hambly, B., Xu, R. & Yang, H. Recent advances in reinforcement learning in finance.
arXiv preprint arXiv:2112.04553 (2021).

25. Tsividis, P. A., Pouncy, T., Xu, J. L., Tenenbaum, J. B. & Gershman, S. J. Human
learning in Atari in 2017 AAAI spring symposium series (2017).

26. McCloskey, M. & Cohen, N. J. in Psychology of learning and motivation 109–165
(Elsevier, 1989).

27. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complemen-
tary learning systems in the hippocampus and neocortex: insights from the successes
and failures of connectionist models of learning and memory. Psychological review
102, 419 (1995).

28. Song, Y. et al. Inferring Neural Activity Before Plasticity: A Foundation for Learning
Beyond Backpropagation. bioRxiv (2022).

29. Crick, F. The recent excitement about neural networks. Nature 337, 129–132 (1989).
30. Stork, D. G. Is backpropagation biologically plausible in International Joint Confer-

ence on Neural Networks 2 (1989), 241–246.
31. Whittington, J. C. & Bogacz, R. Theories of error back-propagation in the brain.

Trends in cognitive sciences 23, 235–250 (2019).
32. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropaga-

tion and the brain. Nature Reviews Neuroscience 21, 335–346 (2020).
33. Srinivasan, M. V., Laughlin, S. B. & Dubs, A. Predictive coding: a fresh view of inhi-

bition in the retina. Proceedings of the Royal Society of London. Series B. Biological
Sciences 216, 427–459 (1982).

34. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature neuroscience 2,
79–87 (1999).

35. Friston, K. A theory of cortical responses. Philosophical transactions of the Royal
Society B: Biological sciences 360, 815–836 (2005).

36. Walsh, K. S., McGovern, D. P., Clark, A. & O’Connell, R. G. Evaluating the neuro-
physiological evidence for predictive processing as a model of perception. Annals of
the new York Academy of Sciences 1464, 242–268 (2020).

125

37. Kell, A. J., Yamins, D. L., Shook, E. N., Norman-Haignere, S. V. & McDermott, J. H.
A task-optimized neural network replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy. Neuron 98, 630–644 (2018).

38. Millidge, B., Seth, A. & Buckley, C. L. Predictive coding: a theoretical and experi-
mental review. arXiv preprint arXiv:2107.12979 (2021).

39. Whittington, J. C. & Bogacz, R. An approximation of the error backpropagation al-
gorithm in a predictive coding network with local hebbian synaptic plasticity. Neural
computation 29, 1229–1262 (2017).

40. Salvatori, T. et al. Learning on arbitrary graph topologies via predictive coding.
arXiv preprint arXiv:2201.13180 (2022).

41. Salvatori, T. et al. Associative memories via predictive coding. Advances in Neural
Information Processing Systems 34, 3874–3886 (2021).

42. Millidge, B., Salvatori, T., Song, Y., Bogacz, R. & Lukasiewicz, T. Predictive Cod-
ing: Towards a Future of Deep Learning beyond Backpropagation? arXiv preprint
arXiv:2202.09467 (2022).

43. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

44. Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47, 253–279 (2013).

45. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

46. Brockman, G. et al. OpenAI Gym 2016. eprint: arXiv:1606.01540.
47. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics 5, 115–133 (1943).
48. Hinton, G. E. Training products of experts by minimizing contrastive divergence.

Neural computation 14, 1771–1800 (2002).
49. Boser, B. E., Guyon, I. M. & Vapnik, V. N. A training algorithm for optimal margin

classifiers in Proceedings of the fifth annual workshop on Computational learning
theory (1992), 144–152.

50. Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier neural networks in Proceed-
ings of the fourteenth international conference on artificial intelligence and statistics
(2011), 315–323.

51. Murphy, K. P. Machine learning: a probabilistic perspective (MIT press, 2012).
52. Block, H.-D. The perceptron: A model for brain functioning. i. Reviews of Modern

Physics 34, 123 (1962).
53. Novikoff, A. B. On convergence proofs for perceptrons tech. rep. (STANFORD RE-

SEARCH INST MENLO PARK CA, 1963).
54. Minsky, M. L. & Papert, S. A. Perceptrons: expanded edition 1988.
55. Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are uni-

versal approximators. Neural networks 2, 359–366 (1989).
56. Li, H., Xu, Z., Taylor, G., Studer, C. & Goldstein, T. Visualizing the loss landscape

of neural nets. Advances in neural information processing systems 31 (2018).
57. Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems Software available from tensorflow.org. 2015. https://www.tensorflow.
org/api_docs/python/tf/nn/conv2d.

126

58. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition
in Proceedings of the IEEE conference on computer vision and pattern recognition
(2016), 770–778.

59. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift in International conference on machine learning
(2015), 448–456.

60. Knill, D. C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding
and computation. TRENDS in Neurosciences 27, 712–719 (2004).

61. Millidge, B., Song, Y., Salvatori, T., Lukasiewicz, T. & Bogacz, R. Backpropagation
at the Infinitesimal Inference Limit of Energy-Based Models: Unifying Predictive
Coding, Equilibrium Propagation, and Contrastive Hebbian Learning. arXiv preprint
arXiv:2206.02629 (2022).

62. Millidge, B., Tschantz, A. & Buckley, C. L. Predictive Coding Approximates Back-
prop Along Arbitrary Computation Graphs. Neural Computation 34, 1329–1368.
issn: 0899-7667. eprint: https://direct.mit.edu/neco/article-pdf/34/6/1329/
2023477/neco_a_01497.pdf. https://doi.org/10.1162/neco%5C_a%5C_01497
(May 2022).

63. Hopfield, J. J. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the national academy of sciences 79, 2554–2558
(1982).

64. Hebb, D. O. The first stage of perception: growth of the assembly. The Organization
of Behavior 4, 60–78 (1949).

65. Storkey, A. Increasing the capacity of a Hopfield network without sacrificing func-
tionality in International Conference on Artificial Neural Networks (1997), 451–456.

66. Krotov, D. & Hopfield, J. J. Dense associative memory for pattern recognition. Ad-
vances in neural information processing systems 29 (2016).

67. Ramsauer, H. et al. Hopfield networks is all you need. arXiv preprint arXiv:2008.02217
(2020).

68. Salakhutdinov, R. & Hinton, G. Semantic hashing. International Journal of Approx-
imate Reasoning 50, 969–978 (2009).

69. Salvatori, T., Song, Y., Lukasiewicz, T., Bogacz, R. & Xu, Z. Predictive coding can
do exact backpropagation on convolutional and recurrent neural networks. arXiv
preprint arXiv:2103.03725 (2021).

70. Ororbia, A. G. & Mali, A. Biologically motivated algorithms for propagating local
target representations in Proceedings of the aaai conference on artificial intelligence
33 (2019), 4651–4658.

71. Han, K. et al. Deep predictive coding network with local recurrent processing for
object recognition. Advances in neural information processing systems 31 (2018).

72. Liu, J., Gong, M. & He, H. Deep associative neural network for associative memory
based on unsupervised representation learning. Neural Networks 113, 41–53 (2019).

73. Barron, H. C., Auksztulewicz, R. & Friston, K. Prediction and memory: A predictive
coding account. Progress in neurobiology 192, 101821 (2020).

74. Mohri, M., Rostamizadeh, A. & Talwalkar, A. Foundations of machine learning (MIT
press, 2018).

75. Watkins, C. J. C. H. Learning from delayed rewards (1989).
76. Watkins, C. J. & Dayan, P. Q-learning. Machine learning 8, 279–292 (1992).

127

77. Melo, F. S. Convergence of Q-learning: A simple proof. Institute Of Systems and
Robotics, Tech. Rep, 1–4 (2001).

78. Sutton, R. S. Learning to predict by the methods of temporal differences. Machine
learning 3, 9–44 (1988).

79. Rubinstein, R. Y. Optimization of computer simulation models with rare events.
European Journal of Operational Research 99, 89–112 (1997).

80. Sani, A. Stochastic Modelling and Intervention of the Spread of HIV/AIDS (2009).
81. Busoniu, L., Babuska, R., De Schutter, B. & Ernst, D. Reinforcement learning and

dynamic programming using function approximators (CRC press, 2017).
82. Pihur, V., Datta, S. & Datta, S. Weighted rank aggregation of cluster validation mea-

sures: a monte carlo cross-entropy approach. Bioinformatics 23, 1607–1615 (2007).
83. Alon, G., Kroese, D. P., Raviv, T. & Rubinstein, R. Y. Application of the cross-

entropy method to the buffer allocation problem in a simulation-based environment.
Annals of Operations Research 134, 137–151 (2005).

84. Cohen, I., Golany, B. & Shtub, A. Resource allocation in stochastic, finite-capacity,
multi-project systems through the cross entropy methodology. Journal of Scheduling
10, 181–193 (2007).

85. Costa, A., Jones, O. D. & Kroese, D. Convergence properties of the cross-entropy
method for discrete optimization. Operations Research Letters 35, 573–580 (2007).

86. De Boer, P.-T., Kroese, D. P., Mannor, S. & Rubinstein, R. Y. A tutorial on the
cross-entropy method. Annals of operations research 134, 19–67 (2005).

87. Van Hasselt, H., Guez, A. & Silver, D. Deep reinforcement learning with double q-
learning in Proceedings of the AAAI conference on artificial intelligence 30 (2016).

88. Schaul, T., Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay. arXiv
preprint arXiv:1511.05952 (2015).

89. Fortunato, M. et al. Noisy networks for exploration. arXiv preprint arXiv:1706.10295
(2017).

90. Wang, Z. et al. Dueling network architectures for deep reinforcement learning in
International conference on machine learning (2016), 1995–2003.

91. Bellemare, M. G., Dabney, W. & Munos, R. A distributional perspective on rein-
forcement learning in International Conference on Machine Learning (2017), 449–
458.

92. Mnih, V. et al. Asynchronous methods for deep reinforcement learning in Interna-
tional conference on machine learning (2016), 1928–1937.

93. Schulman, J., Moritz, P., Levine, S., Jordan, M. & Abbeel, P. High-dimensional con-
tinuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438
(2015).

94. Barto, A. G., Sutton, R. S. & Anderson, C. W. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE transactions on systems, man,
and cybernetics, 834–846 (1983).

95. Wawrzyński, P. A cat-like robot real-time learning to run in International Conference
on Adaptive and Natural Computing Algorithms (2009), 380–390.

96. Schulman, J., Levine, S., Abbeel, P., Jordan, M. & Moritz, P. Trust region policy
optimization in International conference on machine learning (2015), 1889–1897.

