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Abstract

Bayesian inference on discrete spatial data is most popularly done using Gaussian
processes (GPs) in a hierarchical Bayesian formulation. This is because GPs have the
ability to capture both spatial autocorrelations and fit to a large family of functions.
However, GPs present a huge computational challenge which makes performing
Bayesian inference using them impractical in real-world problems.
PriorVAE [Semenova et al., 2022] presents a two-stage process to overcome this

challenge when the spatial structure is fixed: train a variational autoencoder (VAE)
on a large class of GP priors, and then the learnt decoder replaces the GP within a
Bayesian hierarchical model, leading to highly efficient spatial inference. In previous
work, the VAE that was used strongly disregarded the spatial structure in the input
data; rather than retaining the neighbourhood structure of spatial data, the VAE
used a flattening operator to make the input into a vector, thus significantly limiting
learning capability.
In this dissertation, we extend PriorVAE by introducing a method to carefully

augment a graph convolutional network in the VAE so that information aggregation
can now be performed locally whilst at the same time spatial inference performance
is maintained at high efficiency levels. We further introduce a local-to-global scheme
that helps localized information to be aggregated across the whole space, since we
realized that GPs are often defined by covariance kernels that inherently capture
global information.
Our experiments show that our proposed method is able to successfully improve

PriorVAE estimates in a series of Bayesian spatial inference tasks, achieving signifi-
cantly lower mean squared error in all of them. Furthermore, our results demonstrate
that the local-to-global scheme has a significant positive impact in learning spatial
priors that are highly complex, evident from an increase in effective sample size and
lower inference time as compared to the approach where the local-to-global scheme
is not considered.
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1 Introduction

1.1 Overview

Small area estimation [Rao, 2017] of discrete spatial data (also known as areal
units) is important for policy decision-making in fields that include epidemiology
and the environmental sciences. It is often the case that we require reliable areal
unit level estimates despite having only unreasonably small sample sizes; possibly
none. In epidemiology, for example, one might be interested in verifying whether non-
pharmaceutical interventions can mitigate the spread of a disease within local areas
in an ongoing pandemic. Wrongful verification of such interventions could lead to
catastrophic consequences including damaging the global economy and unfavourably
reducing the happiness index of a country. The main issue is that some areal units
might not have samples readily available when we want to compute the relevant
statistics, for example, due to a delay in reporting by hospitals or local authorities.
As such, “borrowing strength” across neighbouring areal units is integral for making
reliable estimates to ensure a well-informed policy decision-making which, for our
particular example, is deciding whether to apply an intervention in a specific area.

A popular approach for modelling spatial data is the use of Gaussian process (GP)
priors in a hierarchical Bayesian formulation. This should not come as a surprise
since GP are non-parametric and hence by definition, are able to capture a broad
family of functions. Furthermore, the natural setup when using GPs also allows
for capturing model uncertainty which is key in statistical modelling. From the
practitioner’s point of view, GPs are especially favoured because they are relatively
easy to implement. In fact, there are already several efficient implementations of GPs
that can be used by researchers on the fly without them having to write everything
from scratch (for example, see GPy [GPy, since 2012] and GPflow [Matthews et al.,
2017]). On top of that, they are also preferred for their mathematical simplicity.
They are not particularly discouraging for the average practitioner since, for example,
if one is already familiar with the Gaussian distribution, then learning about GPs
should just require an extra reading.
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Despite their advantages, GPs do come with several computational challenges.
Firstly, performing Bayesian inference using a GP prior would involve computing the
inverse and determinant of a (covariance) matrix. For data collected over N areal
units, these operations has a cost of O(N3) which can be problematic as the number
of areal units increases. For example, one might want to consider finer administrative
units within a predefined domain or even a completely new domain with granular
administrative regions. As such, the use of GP priors is impractical for large N and
other approaches should be explored. Furthermore, Stephenson et al. [2022] has
demonstrated that a poor GP kernel choice could lead to unsatisfactory learning of
the desired underlying stochastic process. Unfortunately for most, it is typical to
inherently choose a “wrong” kernel function due to limited domain knowledge or a
poor modelling assumption. To combat this problem, the authors suggested that
choosing the right inference algorithm becomes crucial when learning using a GP,
evident from their empirical evaluations.

Naturally, Markov chain Monte Carlo (MCMC) is thus the preferred choice when
choosing an algorithm for performing Bayesian inference using GPs. The ergodic
theorem guarantees that samples we get from MCMC are asymptotically exact.
That is, if the Markov chain is simulated for a sufficiently long period of time,
then the samples we obtained should approximate the desired posterior distribution
really well. This key feature of MCMC makes it reliable for performing spatial
inference using GPs as it helps mitigate the issue highlighted in [Stephenson et al.,
2022]. Unfortunately, MCMC comes with its own set of limitations. For example,
MCMC does not scale well with increasing dimensionality of the target parameter.
Furthermore, the simulated Markov chain are typically highly autocorrelated, which
is especially true when we perform inference in a spatial model. As such, expensive
techniques such as burn-in and thinning have to be performed which could end up
making inference intractable.
An alternative method to MCMC is variational inference [Hoffman et al., 2013]

which is faster in general and is scalable to not only more complex models but also
to larger size datasets. Unlike the sampling-based MCMC, variational inference is
optimization-based and aims to approximate the target posterior using a variational
family of densities that is chosen a priori by the practitioner. Expectation propa-
gation [Minka, 2013] is another alternative to MCMC that does an approximation
scheme similar to variational inference. Another popular alternative method that
are specifically optimized for inference using latent Gaussian models (and hence,
GPs) is the integrated nested Laplace approximation (INLA; [Rue et al., 2009]).

5



This approximation scheme aims at approximating the marginal distribution (of
the model parameters) using a variety of Gaussian approximation, which makes
inference computationally cheap. Unfortunately, despite being efficient, there are
no guarantees that the aforementioned approximation schemes simulates the target
posterior exactly like MCMC does. In fact, the posterior estimates obtained from
the approximation may not even be accurate evident from a variational inference
review by [Yao et al., 2018].

Recall that these approximation schemes are considered because performing MCMC
for sampling suffers from intractability when the target posterior is high-dimensional
and due to Markov chain samples being highly autocorrelated. But what if we can
significantly reduce the dimension of the target parameter such that the remaining
dimensions are uncorrelated and still meaningfully capture the underlying spatial
process? Then MCMC becomes practical for spatial inference! Remarkably, Semenova
et al. [2022] suggested that we can do this by using the variational autoencoder (VAE)
architecture from deep learning and combining it into a Bayesian spatial inference
framework via a simple two-step procedure, which they dubbed the PriorVAE. Their
idea is to train a variational autoencoder on a wide class of GP priors and then
use the learnt decoder at inference and/or prediction time. Since the dimensions
are greatly reduced and are uncorrelated, inference time is significantly reduced.
Furthermore, because GPs are not used directly when performing inference, we
also avoid the need for O(N3) operations due to matrix inversions and determinant
computations.

Despite being able to successfully replace GPs in spatial inference, we believe that
PriorVAE can still benefit from further improvements especially at the architecture
level. Upon inspection of the architecture, we realized that input data is propagated
through the VAE without any regard for the local neighbourhood structure of each
areal units. In particular, the input data is flattened before being propagated through
an multi-layer perceptron (MLP). Without regularization techniques such as dropout,
this means that the VAE views each areal unit as being adjacent to one another
which can limit its potential in learning highly complex spatial priors. Thus, our
goal is to explore an approach that overcomes this limitation whilst simultaneously
maintain the highly efficient inference performance of PriorVAE.
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1.2 Contributions

In this dissertation, we present a novel generative modelling approach for learning
spatial priors to enable small area estimation that solve some of the issues highlighted
in PriorVAE whilst maintaining the power and advantages discussed previously. In
particular, our proposed approach actually utilizes the local neighbourhood spatial
structure without flattening the input data. We are able to do this by augmenting
a graph convolutional network (GCN) layer into the VAE, forming a variational
graph autoencoder architecture, hence we call it PriorVGAE. Utilizing GCN layers
also allows us to favourably reduce the number of learnable parameters, enabling
computationally cheap training even for highly complex problems. Thus, despite also
having a fixed spatial structure, out-of-sample predictions now becomes tractable as
we can restart VAE training when required.

The key contributions of our work are summarized as follows:

• We extend the first of the two-stage PriorVAE process by introducing a GCN
layer in the VAE which allows learning (of spatial priors) that actually exploits
the local neighbourhood spatial structure.

• We introduce a so-called local-to-global scheme that helps variational graph
autoencoder (VGAE) learn spatial priors more effectively as compared to naively
stacking graph convolutional layers.

• We show that VGAE priors are useful for small area estimation by performing
Bayesian inference on simulated data where the ground truth is known.

• We demonstrate that priors learnt using this novel graph convolutional network
scheme leads to estimates that are far superior as compared to using PriorVAE
priors. In particular, we show that inference using the proposed VGAE results
in favourably reduced mean squared error as compared to the PriorVAE,
especially as the complexity of the spatial structure increases.

1.3 Outline of Dissertation

This dissertation is organized as follows.

• In Chapter 2, we present a brief overview of Bayesian inference and the deep
learning concepts relevant to this work. We also give a review of the problem of
interest followed by a thorough discussion of the existing PriorVAE approach.
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• Chapter 3 presents PriorVGAE, our proposed novel approach for doing inference
in a spatial setting. It first argues that a certain local-to-global information
passing scheme is necessary if we want to learn the desired spatial priors
effectively. Then it details a key step that helps speed up inference when using
a VGAE. This is then followed by a theoretical formulation that underlies our
VGAE architecture. Finally, it gives a detailed description of how the model
is implemented in practice: from input data to its latent representation and
further to its reconstruction.

• Chapter 4 then details our experimental findings. Here, we give the exact
implementation details used in each experiment (e.g., the number of hidden
layers used) and we present key visualizations and metrics that demonstrate
the performance of our model.

• Finally, we summarize and discuss our findings in Chapter 5, and suggest
potential future work avenues.
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2 Preliminary Material

2.1 Bayesian Inference

Suppose we are interested in learning the probability distribution of a latent variable
z given some observed data x. Formally, we first have to assume a model p(x, z) on
the joint distribution of z and x. By the chain rule of densities, this model can be
decomposed into

p(x, z) = p(x|z)p(z),

where p(x|z) is called the data likelihood or just likelihood of the data x given z,
and p(z) is called the prior distribution over z which captures our prior knowledge
regarding z before observing any data. Because of this decomposition, we know that
assuming a prior distribution p(z) over z and a likelihood function p(x|z) is enough
to define the joint distribution p(x, z) in consideration. Once we have a complete
model for p(x, z), we can then obtain the posterior distribution of z given x using
Bayes’ theorem

p(z|x) = p(x, z)
p(x) = p(x|z)p(z)

p(x) , (2.1)

where p(x) =
∫
p(x, z) dz is called the normalising constant which, as its name

suggests, normalizes the posterior p(z|x). While the numerator in (2.1) is clearly
tractable (because we specified the model), the normalising constant in the de-
nominator typically does not have an analytical solution and is often intractable
especially when the dimensionality of z increases. This becomes an issue as lacking
the normalising constant would lead to inaccurate evaluations of the posterior p(z|x).
However, since the normalising constant is independent of z, it is often sufficient
to only know the unnormalised posterior density, i.e., only knowing the posterior
density up to a constant

p(z|x) ∝ p(z)p(x|z).

This is because the posterior density can be numerically estimated using sampling
methods such as Markov chain Monte Carlo, which we shall discuss next.
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2.1.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a general sampling technique to sample from
a possibly unnormalised probability density π(z), often called the target density
[Gelman et al., 2013]. In our current context, this target density is the posterior
p(z|x). The main idea behind MCMC is to simulate an ergodic Markov chain{
z(i)

}
i∈N

that admits π(z) as its unique limiting distribution. Of course in practice
we cannot simulate the chain indefinitely, but the idea is to run the simulation long
enough to get a simulated chain

{
z(1), . . . , z(N)

}
, where N ∈ N is a sufficiently large

number, that comes from some distribution that approximates π(z).
MCMC is usually favoured over simpler inference algorithms such as simple Monte

Carlo and importance sampling, especially when the support of the target density π(z)
is high-dimensional. This is because in higher dimensions, most of the probability
mass does not accumulate around the mode of the density, but rather within a
vanishingly thin region known as the typical set [Betancourt, 2017]. Consequently,
inference algorithms such as importance sampling or rejection sampling becomes
very inefficient as the former would yield a lot of samples with very small weights
while the latter would have bizarrely high rejection rates.

The Metropolis-Hastings algorithm [Hastings, 1970; Metropolis et al., 1953] forms
the foundation for most of MCMC algorithms used today. In this algorithm, we first
choose a proposal density (also known as a transition kernel) that can be chosen a
priori arbitrarily. The purpose of this density, as its name suggests, is to propose
a new value in the latent space given some current value via a finite number of
transitions. The proposed value will then go through an accept/reject procedure with
probability given by the so-called Hastings’ ratio, and this step acts as a correction
mechanism that ensures the simulated Markov chain indeed approaches the desired
limiting distribution p(z|x).
While MCMC has proven to be very successful as compared to simpler inference

algorithms that we have discussed, it does has its limitations. For example, the
simulated samples drawn using MCMC are often highly correlated and not truly
i.i.d as we desired. Therefore, computationally expensive techniques such as burn-in
(discarding often large number of initial samples) and thinning (keep only every T th
sample after burn-in) have to be employed to mitigate these problems. Moreover,
sometimes there are just large correlations between dimensions which consequently
makes chain mixing slow. This is especially true in spatially referenced data which
we are interested in.
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2.2 Variational Autoencoders

Suppose we have a dataset D =
{
x(i)

}N

i=1
of N > 1 datapoints and assume that x(i)

is sampled from an unknown underlying distribution p∗(x) over the support RD. A
common criterion for learning this underlying distribution is to choose a parametric
model pθ(x), representing the likelihood of x given θ, and maximizing this likelihood
(or more commonly the log-likelihood log pθ(x)) with respect to the parameter θ. A
known technique to add more expressivity is to further introduce latent variables
z ∈ RM and consider the joint distribution pθ(x, z) over RD × RM instead. In this
setup, one can recover the likelihood by marginalizing over z:

pθ(x) =
∫
RM

pθ(x, z) dz =
∫
RM

pθ(x|z)pθ(z) dz. (2.2)

This distribution is often called the marginal likelihood (due to marginalizing).
Modern day generative modelling has shown that using neural networks to ap-

proximate distributions in pθ(x, z) allows us to successfuly model complex data that
are often high-dimensional in nature. This approach, known as deep latent variable
models, does not however come for free as one could expect. Using neural networks
together with high-dimensional continuous latent variables causes the integral in (2.2)
to be intractable since we have to integrate out z. Consequently, we cannot simply
learn via maximizing the log-likelihood without doing any modifications. The trick,
however, is to use Bayes’ theorem and realize the connection between the likelihood
and the posterior of the latent variable z given x:

pθ(z|x) = pθ(x, z)
pθ(x) ; or equivalently pθ(x) = pθ(x, z)

pθ(z|x) . (2.3)

Now pθ(x, z) is tractable, but the likelihood and the posterior are not in the setting
of deep latent variable models. However, observe that because of Bayes’ theorem, if
we can somehow make one of them tractable, then we can compute the other one;
and this is where variational autoencoders come in.
The variational autoencoder (VAE) [Kingma and Welling, 2014; Rezende et al.,

2014] provides a scalable framework to efficiently learn latent variable models pθ(x, z)
via variational inference. In the VAE setup, we again use a neural network for the
generative model pθ(x|z) as in deep latent variable models; but now, we introduce an
inference model qφ(z|x) parameterized over φ to approximate the posterior pθ(z|x).
Typically, this parametrization is done by using a neural network. For example, in a
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vanilla VAE we often approximate the posterior using a factorized Gaussian in the
following way:

(µφ, logσφ) = InferenceNeuralNetφ(x), (2.4)

qφ(z|x) = N (z;µφ,σφ), (2.5)

where InferenceNeuralNet is the inference model, N (·) denotes the normal (or Gaus-
sian) distribution, and the neural network output µφ and σφ are the mean and
standard deviation of the factorized Gaussian. The generative and inference models
are sometimes called the decoder and encoder respectively because put together, the
whole VAE has a similar encoder-decoder architecture like an autoencoder [Good-
fellow et al., 2016]. In fact, we will always refer to them as the decoder and the
encoder from now on to avoid confusion with spatial inference, the task that we are
ultimately interested in. Thanks to the relation (2.3), we shall see that optimizing φ
in fact leads to maximizing the marginal log-likelihood pθ(x) which has been our
main goal from the very beginning.

2.2.1 Evidence Lower Bound

Because qφ(z|x) is just an approximation to the true posterior pθ(z|x), we do not
maximize the (exact) marginal log-likelihood over θ but instead maximize a lower
bound on this log-likelihood, known as the evidence lower bound (ELBO), over both
φ and θ. This lower bound arises naturally due to Jensen’s inequality as follows

log pθ(x) = log
∫
RM

pθ(x, z) dz (2.6)

= log
∫
RM

pθ(x, z)
qφ(z|x) qφ(z|x) dz (2.7)

= logEqφ(z|x)

[
pθ(x, z)
qφ(z|x)

]
(2.8)

> Eqφ(z|x)

[
log

(
pθ(x, z)
qφ(z|x)

)]
︸ ︷︷ ︸

≡Lφ,θ(x)

(2.9)

where Lφ,θ(x) is our notation for the ELBO. There is also an alternative derivation
of the ELBO that is less natural but provides a better insight regarding the gap
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between the approximate posterior and the true posterior:

log pθ(x) = Eqφ(z|x) [log pθ(x)] (2.10)

= Eqφ(z|x)

[
log

(
pθ(x, z)
pθ(z|x)

)]
(2.11)

= Eqφ(z|x)

[
log

(
pθ(x, z)qφ(z|x)
qφ(z|x)pθ(z|x)

)]
(2.12)

= Eqφ(z|x)

[
log

(
pθ(x, z)
qφ(z|x)

)
+ log

(
qφ(z|x)
pθ(z|x)

)]
(2.13)

= Lφ,θ(x) + Eqφ(z|x)

[
log

(
qφ(z|x)
pθ(z|x)

)]
︸ ︷︷ ︸

≡KL(qφ(z|x)‖pθ(z|x))

(2.14)

where KL(qφ(z|x)‖pθ(z|x)) is the Kullback-Leibler (KL) divergence (or simply KL-
divergence), a measure of dissimilarity between the distributions qφ(z|x) and pθ(z|x)
borrowed from information theory. A key property of the KL-divergence is that it is
non-negative. This property establishes a lower bound on log pθ(x) as follows

Lφ,θ(x) = log pθ(x)− KL(qφ(z|x)‖pθ(z|x)) 6 log pθ(x). (2.15)

Furthermore, the KL-divergence is identically zero only when the posterior matches,
i.e., qφ(z|x) = pθ(z|x) in which case Lφ,θ(x) = log pθ(x). Consequently, from
equation (2.15) we can deduce that maximizing the ELBO not only improves the
approximation qφ(z|x) of the true posterior pθ(z|x) but also maximizes the marginal
log-likelihood pθ(x); where both of which are our core objectives when learning the
latent variable model pθ(x, z) using a VAE. In practice, we do not maximize the
exact formula as in (2.15) but instead the following alternative formulation:

Lφ,θ(x) = Eqφ(z|x)

[
log

(
pθ(x, z)
qφ(z|x)

)]
(2.16)

=
∫
RM

log
(
pθ(x|z)pθ(z)
qφ(z|x)

)
qφ(z|x) dz (2.17)

=
∫
RM

qφ(z|x) log pθ(x|z) dz +
∫
RM

log
(
pθ(z)
qφ(z|x)

)
qφ(z|x) dz (2.18)

= Eqφ(z|x) [log pθ(x|z)] + KL(qφ(z|x) ‖ pθ(z)), (2.19)
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where the first term Eqφ(z|x)[log pθ(x|z)] in equation (2.19) is called the reconstruction
error and the second term is the KL-divergence between the approximate posterior
and a prior pθ(z) over the latent space. This KL-divergence term can be viewed as a
regularizer, ensuring that the approximate posterior is as close to pθ(z). Since the
factorized Gaussian is often used as the approximate posterior, the latent space prior
is typically chosen to be a unit Gaussian N (0, I) although more complex priors have
been considered (e.g., see [Tomczak and Welling, 2018]). The reason for considering
the formulation as given in (2.19) is because it involves distributions that we know
and can sample from using Monte Carlo methods.

2.2.2 Reparametrization Trick

A key advantage of using the ELBO is that it allows us to use stochastic gradient
descent with backpropagation to simultaneously optimize the encoder parameters φ
and model parameters θ. Optimizing the model parameter is quite straightforward:

∇θ Lφ,θ(x) = ∇θ Eqφ(z|x)

[
log

(
pθ(x, z)
qφ(z|x)

)]
(2.20)

= ∇θ
∫
RM

log
(
pθ(x, z)
qφ(z|x)

)
qφ(z|x) dz (2.21)

=
∫
RM

qφ(z|x)∇θ log
(
pθ(x, z)
qφ(z|x)

)
dz (2.22)

= Eqφ(z|x)

[
∇θ log

(
pθ(x, z)
qφ(z|x)

)]
(2.23)

= Eqφ(z|x) [∇θ log pθ(x, z)] (2.24)

where we have used the Leibniz integral rule to go from equation (2.21) to (2.22)
and the fact that ∇θ log qφ(z|x) = 0 to obtain the last equality in (2.24). We can
then use a simple Monte Carlo estimator

1
n

n∑
i=1
∇θ log pθ(x, zi), zi ∼ qφ(z|x)

to get an unbiased estimate of the gradient. Efficient optimization of the encoder
parameters, on the other hand, is only possible via the reparametrization trick: we
express latent samples z ∼ q(z|x) as a deterministic bijective transformation fφ as
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follows
z = z(ε;φ) = fφ(ε,x),

where ε ∼ p(ε) is a random variable independent of x and φ. As an example, the
reparametrization trick for the vanilla VAE is applied as follows:

z = µ+ ε� σ, (2.25)

where µ and σ are the mean and standard deviation of the Gaussian obtained as
output from the encoder as in equation (2.4), ε ∼ N (0, I), and � denotes element-
wise product. Using this reparametrization, we can then write the ELBO as an
expectation with respect to p(ε) instead of qφ(z|x),

Lφ,θ(x) = Eqφ(z|x)

[
log

(
pθ(x, z)
qφ(z|x)

)]
= Ep(ε)

[
log

(
pθ(x, z)
qφ(z|x)

)]
.

This form allows us to use the Leibniz integral rule to push the gradient operator
inside the expectation:

∇φ Lφ,θ(x) = ∇φ Ep(ε)

[
log

(
pθ(x, z)
qφ(z|x)

)]
(2.26)

= ∇φ
∫

log
(
pθ(x, z)
qφ(z|x)

)
p(ε) dε (2.27)

=
∫
∇φ log

(
pθ(x, z)
qφ(z|x)

)
p(ε) dε (2.28)

= Ep(ε)

[
∇φ log

(
pθ(x, z)
qφ(z|x)

)]
(2.29)

from which we can then use a simple Monte Carlo estimator to obtain an unbiased
estimate of the gradient ∇φ Lφ,θ(x):

1
n

n∑
i=1
∇φ log

(
pθ(x, z)
qφ(z|x)

)
, with z = z(εi;φ), εi ∼ p(ε).

2.3 Graph Neural Networks

Notation. We write G = (V , E) for any graph G with nodes V and edges E ⊆ V ×V ,
and put N = |V|. We denote A ∈ RN×N for the adjacency matrix associated to G,
and write X ∈ RN×D for the node feature matrix.
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2.3.1 Graph Convolutional Networks

A graph convolutional network (GCN) [Kipf and Welling, 2017] is a neural network
model for learning on graph-structured data. It can be seen as a generalization of
the convolutional neural network [Lecun et al., 1998] to arbitrary graphs which can
have very irregular structures. For an undirected graph G with adjacency matrix A
and node feature matrix X, a single GCN layer is defined by the propagation rule

H(`+1) = σ
(
D̃−

1
2 ÃD̃−

1
2 H(`)W(`)

)
(2.30)

where Ã = A + I is the adjacency matrix with added self-loops, I is the identity
matrix with same dimensionality as A, and D̃ii = ∑

j Ãij is the diagonal node
degree matrix of Ã. ` is the index of the current neural network layer and W(`) is a
learnable weight matrix in the `-th layer. H(`) is the node hidden matrix in the `-th
layer where we put H(0) = X, the input node feature matrix. σ(·) is a non-linear
function such as the rectified linear unit (ReLU) [Nair and Hinton, 2010] defined
as ReLU(x) = max(x, 0) or the exponential linear unit (ELU) [Clevert et al., 2016]
given by

ELU(x) =


x, if x > 0,

exp(x)− 1, if x 6 0,

both of which are applied element-wise. We shall write GCN(H,A) for a single
application of the GCN layer to a graph with adjacency matrix A and node hidden
matrix H, indexing it as GCN(`) for the `-th layer if the emphasis is required.
Collectively, the product

Â = D̃−
1
2 ÃD̃−

1
2 (2.31)

is a symmetric normalized version (with added self-loops) of the adjacency matrix
A. The self-loops are added (via addition of the identity matrix to A) to allow the
feature vector of the current node to be considered as well when aggregating over
neighbouring nodes. This is a feature that we typically want although possibly not
for every layer. The symmetric normalization, sometimes called the renormalization
trick, is performed instead of the naive layer H(`+1) = σ

(
AH(`)W(`)

)
to ensure that

repeated application of the GCN does not scale the feature matrix too much, leading
to vanishing gradients and numerical instabilities. Note that for directed graphs, we
use the non-symmetric normalization Â = D̃−1Ã instead [Schlichtkrull et al., 2018]
which makes ÂH(`) simply a node feature neighbourhood average computation.

Observe that for each layer `, the weight matrix W(`) are shared by all the nodes
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in the graph. This is an important feature of the GCN as it greatly reduces the
number of parameters to be learnt, yielding a scalable and efficient way of learning
on large graphs. It is also the reason why we call such networks “convolutional”.

2.3.2 Variational Graph Autoencoders

The variational graph autoencoder (VGAE) [Kipf and Welling, 2016] is a latent
variable model for unsupervised learning on data that admits a graph (or graph-like)
structure. It is essentially an extension of the VAE to graphs where instead of
wanting to learn the joint distribution pθ(x, z) of random variables on RD × RM , we
are interested in learning a joint distribution on graph representations; although we
do have more flexibility as compared to VAEs. For example, in link prediction tasks
(see author’s example below), we might want to learn the model pθ(A,Z|X) on the
space RN×N × RN×M since we are more concerned with the reconstruction of the
adjacency matrix A. On the other hand, we would consider the model pθ(X,Z|A)
on RN×D × RN×M for node regression or classification tasks instead since we might
be interested in the reconstruction of the feature matrix X. In both cases, we again
are free to choose what kind of parametrization we want for the encoder and decoder
depending on the task at hand, just like the VAE.

The original paper by Kipf and Welling [2016] was interested in a link prediction
task, i.e., learning a joint distribution on (A,Z). The generative model was chosen
to be a simple, non-parametric inner product decoder

p(A|Z,X) = p(A|Z) =
N∏

i=1

N∏
j=1

pθ(Aij = 1|zizj); with p(Aij = 1|zizj) = σ(z>i zj),

where zi is the latent representation of node vi ∈ V and corresponds to the i-th
row in the Z matrix, Aij is the (i, j) entry of the adjacency matrix A and σ is the
sigmoid function σ(z) = ez/(ez + 1). The encoder qφ(Z|X,A), on the other hand,
was chosen to be parameterized by a two-layer GCN which assumes a factorized
Gaussian as the approximate posterior:

(µ, logσ) = GCNφ(X,A) = Ã ReLU(ÂXW(0))W(1), (2.32)

q(Z|X,A) =
N∏

i=1
q(zi|X,A); with q(zi|X,A) = N (zi;µi,σi), (2.33)

where Â = D− 1
2 AD− 1

2 is obtained using the renormalization trick, ReLU is the
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activation function and φ = (W(0),W(1)) are trainable weight parameters for each
of the GCN layer. Note that µ,σ ∈ RN×M here are matrices and not vectors. As
in VAE, the optimization objective of the VGAE is to maximize the ELBO as in
equation (2.19):

Lφ,θ(x) = Eqφ(Z|X,A) [log pθ(A|Z)]− KL (qφ(Z|X,A) ‖ pθ(Z)) ,

where the prior p(Z) = ∏
i p(zi) is chosen to be a Gaussian p(zi) = N (zi; 0, I) to

ensure parsimony in the latent space.

2.3.3 Symmetric Graph Convolutional Autoencoders

The VGAE architecture proposed in [Kipf and Welling, 2016] was designed specifically
to learn a joint distribution p(A,Z) instead of a joint distribution p(X,Z) since they
were interested in reconstructing the adjacency matrix A instead of the feature matrix
X. The inner product decoder used is not learnable and so the node features are not
even propagated through the decoder. As a consequence, the learning capability for
the VGAE to reconstruct adjacency matrices can be limited. As such, we cannot just
naively take the proposed VGAE architecture if we are interested in node regression
or classification problems which involves reconstruction of the feature matrix X.
The straightforward architecture for node feature reconstruction is to build a

decoder that mirrors the encoder. For example, if the encoder is parameterized by
a three-layer GCN with 6-, 4- and 2-dimensional hidden sizes, then we can use a
three-layer GCN with 2-, 4- and 6-dimensional hidden sizes for the decoder. However,
this approach, while sensible, has its setbacks that can be seen if we go back to the
mathematical foundations of a GCN.
Li et al. [2018] has shown in their seminal oversmoothing paper that GCN is

inherently a special kind of Laplacian smoothing [Taubin, 1995]. Hence, repeatedly
applying GCN layers can be detrimental, not only because it now takes more com-
putational power to train, but also because node features become indistinguishable
after several layers of aggregation. For node classification tasks, a suitable amount
of Laplacian smoothing would help make nodes in the same class have highly similar
features which is good (and explains why [Kipf and Welling, 2017] had excellent
performance in their node classification task). However, for autoencoders, applying
more GCN layers at the decoding stage may result in a node feature matrix recon-
struction X̂ that is oversmoothed, especially for highly complex datasets that require

18



VGAEs with larger capacity.
To mitigate the issue of oversmoothing for autoencoder reconstruction, Park et al.

[2019] suggests a counterpart graph neural network layer that does Laplacian sharpen-
ing as opposed to Laplacian smoothing. They call this approach Graph convolutional
Autoencoder using LAplacian smoothing and sharpening (GALA). Instead of making
node embeddings closer, Laplacian sharpening makes node embeddings move away
from its neighbourhood centroid. In the context of an autoencoder, reconstruction is
therefore accelerated as node embeddings are “encouraged” to move away from its
latent state.

For any undirected graph G with adjacency matrix A and node feature matrix X,
a single Laplacian sharpening GCN layer is given by the propagation rule

H(`+1) = σ
(
D̄−

1
2 ĀD̄−

1
2 H(`)W(`)

)
(2.34)

where Ā = 2I −A is the negated adjacency matrix with doubly added self-loops,
D̄ii = ∑

j Āij is the diagonal node degree matrix of Ā and everything else follows
the same notation as in (2.30). Similar to what we have discussed regarding GCNs,
the renormalization

Âsharpen = D̄−
1
2 ĀD̄−

1
2 (2.35)

is used to ensure that repeated application of the Laplacian sharpening GCN is
numerically stable and does not yield exploding/vanishing gradients. Since we now
have two different GCN models, we shall denote the Laplacian sharpening GCN as
SharpenGCN and change the notation of Laplacian smoothing GCN from GCN to
SmoothGCN instead.

2.4 PriorVAE Preliminaries

2.4.1 Latent Gaussian models

Suppose we collect outcome data {yi}N
i=1 over some domain of interest B = ⋃N

i=1 Bi.
Here, {Bi}N

i=1 defines a partition of the domain that we can choose depending on the
problem we want to solve. For example, in a real-world setting, the partition could
be defined by administrative borders (such as counties within the UK, states within
the US, or countries within planet Earth). The dataset {yi} that we are interested
in are typically based in epidemiology and so can vary from disease prevalence data
(continuous) to number of infected cases in an area (discrete). As such, Bayesian
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generalized linear models are favoured to be used for modelling since it captures all
these kinds of data under a single framework:

θ ∼ π(θ), (2.36)

f |θ ∼ GP(µ,Σθ), (2.37)

η = Xβ + f , (2.38)

y|η ∼ π(u−1(η),θ). (2.39)

Here θ is a hyperparameter, f is a Gaussian random field defined by mean µ and
covariance matrix Σθ. β is the fixed effects, X is the (fixed-effects) design matrix
and η is a linear predictor combining the fixed effects and random effects. Finally, u
is a link function which characterizes the mean of the distribution.
We shall consider a GP prior over f , which subsequently implies that any finite

realizations fGP = (f1, . . . , ft) are jointly normally distributed with mean µ and
covariance matrix Σ. Furthermore, without loss of generality, we may assume that
µ = 0 for any finite realizations fGP since it is an additive term in the linear predictor
η. The covariance matrix Σ, on the other hand, is a choice we can make depending
on the spatial structure. Typically, we use a kernel function such as an RBF (radial
basis function) to define the covariance matrix. We can then learn from the observed
data by computing the linear predictor,

u (E[y|fGP]) = Xβ + fGP

followed by a computation of the likelihood. Assuming that the random effect
is non-trivial (in which case the covariance matrix Σ is not the identity matrix),
computing fGP can be challenging as it involves performing matrix inversion and
computing the determinant covariance matrix Σ. These are O(N3) operations which
hinders the scalability of the GP approach.

2.4.2 PriorVAE: encoding spatial priors with VAE

PriorVAE [Semenova et al., 2022] is a generative modelling technique proposed to
mitigate the challenge that arose when computing fGP. Instead of dealing with
cubic matrix inversions at inference time, the authors suggest the use of variational
autoencoders to replace the fGP realizations in the linear predictor with another
prior. To obtain this prior is a two-step process. First, a VAE is trained on a broad
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class of GP priors where a “broad class” here means, for example, using varying
lengthscales and variances in an RBF kernel. Once the VAE has been trained, we
sample from the VAE latent prior and propagate this sample through the learnt
decoder, yielding priors fVAE which can be used for spatial inference.

Observe that this method require only training the VAE once for any fixed domain
B. As such, an expert with a huge computational resource can train the VAE and
share the learnt decoder parameters with other researchers, for example, via GitHub.
Furthermore, because we use GP priors as training data instead of observed data
collected over the domain B, we can train the VAE a priori on an infinite amount
of data until the VAE parameters are truly optimal (with respect to our chosen
architecture). In fact, since we can always generate new training GP data, we do
not need to save any training dataset locally, but only the very few parameters that
determines the class of GP priors we want to generate. Moreover, there are also no
issues with data quality, since we can simulate exact GP priors that are noise-free
which is not true when we use real world observations.

This novel approach for doing spatial inference does, however, come with limitations.
Before obtaining a learnt decoder for performing inference, the VAE has to be trained
which can be computationally extensive, although as we have argued this training
step is only required once. Furthermore, looking deeper into the architecture, we
observe that PriorVAE does not truly take the spatial structure into account as the
spatial observations {yi}N

i=1, where each yi corresponds to an area Bi in a partition
of B, are flattened and passed into an MLP in the encoding phase, and also during
the decoding phase for reconstruction. As such, without any learning, the VAE point
of view is that all areas Bi share a border; and as a consequence, the VAE approach
does not truly propagate values locally, but in a sense globally across the structure.

Using layers of MLP in the VAE approach can also be problematic as the number
of parameters increases dramatically as the number of layers increases. In essence,
the number of parameters in an n-layer MLP equals the product of the number of
perceptrons in each layer. Since it can be a natural choice to choose deeper MLPs
for more complex problems, and more perceptrons when the partition {Bi} of B gets
finer, a pure VAE approach with only MLP layers can be computationally challenging
to train. As such, using an approach that allows for shared parameters is favourable
to increase computational efficiency.
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3 Enhancing PriorVAE with Graph
Convolutional Networks

3.1 Overview

As discussed in Chapter 2, the PriorVAE does not truly take the spatial structure into
account as it applies a flattening layer to the input data. Moreover, it can be compu-
tationally challenging to train when the number of areal units increases significantly
since then the number of parameters to be learnt also increases dramatically.

We now present a novel architecture, called PriorVGAE, to encode spatial priors
(such as GP) which leverages the VGAE architecture, making use of GCN layers in
both the encoding and decoding phase. This architecture truly considers the local
neighbourhood structure as information is propagated by “borrowing” information
from neighbouring areal units. Furthermore, a single parameter matrix is used across
the whole spatial structure for each GCN layer instance. This favourably reduces
the number of parameters to be learnt which makes training computationally cheap
unlike the aforementioned approach.

3.2 Local vs Global Learning

The main purpose of introducing a GCN layer for encoding spatial priors is to address
the issue of learning in PriorVAE which inherently ignores the local neighbourhood
structure. The reason why we feel this is a key issue to address is because spatial
priors, as its name suggests, is strongly dependent on the spatial structure, especially
“local” ones such as the number of (connected) neighbouring units and the presence of
a cycle within neighbouring units (e.g., three neighbouring units could form a triangle).
So a mechanism which enables local neighbourhood information aggregation like the
GCN would definitely lead to a more effective learning of the desired spatial priors.
Interestingly, however, aggregating only local neighbourhood information is not
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enough for encoding the spatial priors that we have in mind. For example, GP priors
are essentially defined by its kernel which determines its shape; and the kernel induces
a covariance matrix that takes into account the interaction of every pair of locations in
the domain of interest. As another example, conditional auto-regressive (CAR) priors
[Besag, 1974] which encourage neighbouring units to be spatially autocorrelated,
are inherently defined by its precision matrix; which in turn is dependent on the
adjacency and degree matrix of the underlying spatial structure. The main takeaway
here is that units generated using these priors, in fact, have access to a certain degree
of global information. Therefore, we hypothesize that using a model that strictly
considers only local neighbourhood information would limit our performance instead
of boosting it.
To this end, we consider several mechanisms that would help learning global

information in our model. Of course, the naive (and impractical) way is to just
consider many graph layers since K GCN layers would allow information to be
propagated K-hops away relative to a node. Unfortunately, this approach would not
work due to the oversmoothing phenomenon [Li et al., 2018] where node embeddings
average out and results in nodes becoming indistinguishable from one another. It
may also not even be computationally feasible since adding GCN layers corresponds
to more parameters to be learnt. A more feasible approach was considered by Gilmer
et al. [2017] where they suggested introducing virtual graph elements as part of
the data preprocessing step. In particular, they introduced adding virtual edges
between any pair of neighbouring units that are not adjacent by default which allows
information to pass beyond local neighbourhoods. It turns out that this simple
technique was quite effective. They also introduced adding a so-called master node
that connects to all other nodes in the graph, and this also turns out to be helpful for
learning. Alon and Yahav [2021] suggested adding a fully-adjacent (FA) layer which
is a similar virtual edge scheme as the one considered by Gilmer et al. [2017], but
the only difference is that the FA layer is applied only at the final graph layer. That
is, aggregation at the final layer is performed over the entire graph instead over just
local neighbourhoods which introduce global information passing that we desired.
However, we should note that the authors introduced this scheme to break bottlenecks
in graph instead of wanting to propagate global knowledge. Nevertheless, it seems
like a good idea to explore as this technique does not introduce more learnable
parameters, although it does create a dense adjacency matrix which could affect
training speed.

We argue, however, that none of these approaches are suitable for learning spatial
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priors that we have in mind. This is because spatial priors, such as GP and CAR, not
only makes neighbouring units highly spatially autocorrelated but also makes any
pair of units that are sufficiently far away from each other having the opposite effect.
As such, utilizing a GCN layer for learning, which aggregates information via a mean
computation, together with a virtual edge scheme that connects non-neighbouring
units would lead to a zero out effect. For example, if a unit Bi has the value yi = −0.1
and a neighbouring unit Bi+1 has the value yi+1 = 0.2, then this averages out nicely
to y = 0.05. But if we consider a unit Bj far away from Bi with the value yj = 1.5,
then the average in this case amounts to y = 0.7. It is then not hard to see that
sufficiently many iterations of this mean computation across the whole domain (since
we add virtual edges) would lead to a constant value y = c for all units in the domain.
That is, we will learn priors that comes from a family of constants which is not a
desired effect.

So what can we do to enable global information learning in our model? We propose
a local-to-global passing scheme by replacing the GCN output layer in the decoder
(not the encoder) with an MLP which will consolidate all the local information across
the whole domain. After local information is propagated and shared throughout
the domain using GCN layers, the output hidden matrix is flattened and is then
passed into a single layer MLP. Because MLPs are universal approximators [Cybenko,
1989], this output layer MLP will be able to learn which of the units in the domain
that require extra information from relatively remote units in a way that ensure
reconstruction loss is minimal. Remarkably, this technique helps us to learn spatial
priors successfully as we shall see in Chapter 4.

3.3 Speeding Up Inference

The graph autoencoder architectures we have seen so far uses only GCN layers for
learning, especially in the encoder. Such an encoder thus outputs a matrix Z ∈ RN×M

where N is the number of nodes and M is the latent space dimension. For the link
prediction task using VGAE in [Kipf and Welling, 2016], a large dimension M should
not be problematic as the number of latent samples required is linear in the number
of graphs to predict. In particular, if we want to make link predictions on a single
graph G, then we require at most one latent sample at test time. This runtime
complexity is the same for the node classification and link prediction task using
GALA in [Park et al., 2019] (although in this case, we are not doing any sampling
per se as GALA is not a variational autoencoder).
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On the other hand, the task we are ultimately interested in is to perform spatial
inference using the learnt decoder, which involves exploring the uncorrelated latent
space until a desired number of samples is attained. More precisely, if we have
a single graph G = (V , E) with N = |V|, we now have to sample from the latent
space b + n times, where b is the number of burn-in samples and n is the number
of desired samples after burn-in (here we assumed a thinning factor of 1). The
problem now is the following. Since the nodes vi ∈ V assumes their own latent
representation zi, each with dimension M , then the uncorrelated latent space we
want to explore has dimension MN which can be relatively large depending on the
input dimension. In our particular use case, each input node will typically have a
single feature (where then the first GCN layer performs a feature engineering step
on top of local information aggregation). Therefore, we have to explore a latent
space that is M times bigger than the input space! For example, if N = 400 and
M = 10, we have to explore a latent space with 4000 dimensions which is one order of
magnitude higher than the input space. This can lead to an unfavourable reduction
in MCMC inference speed, especially if the latent space that is learnt by the VGAE
is not strongly uncorrelated.

Inspired by the graph isomorphism network architecture [Xu et al., 2018], we suggest
to mitigate this issue by replacing the final K-th GCN layer in the encoder (which
determines the mean and log standard deviation) with an MLP which compresses
the output feature matrix of the (K−1)-th GCN layer into a low-dimensional latent
vector. By using an MLP, we are able to effectively reduce the latent dimension from
MN to a number M ′ such that M ′ �MN , typically at least an order of magnitude
lower. As we shall see in Chapter 4, we often choose M ′ to be less than the number
of nodes N since we want to learn good low-dimensional representations of the graph,
which is also the case in the existing PriorVAE approach. As a consequence, we
are still able to enjoy the same inference runtime speed as PriorVAE on top of now
abling to perform effective local information aggregation during training.

3.4 Theoretical Formulation

This section discusses our proposed architecture from the mathematical point of
view; and the following section will look at how this architecture can be implemented
in practice.

From a probabilistic perspective, our goal is to learn a latent variable model pθ(y, z)
over RN × RM using a GCN layer, where y is the observations over our domain of
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interest. Note that we can equivalently write y as a (node feature) matrix Y ∈ RN×1

here whenever we want to be consistent with the graph neural networks literature
presented in Chapter 2, although it should be clear that y = Y as vectors are always
viewed as column vectors in this paper. As discussed in Chapter 2, the VAE approach
suggests that we can learn such a model pθ(y, z) using a coupled network — an
encoder that squeezes the input space into a low-dimensional latent space and a
decoder which performs reconstruction of the input space — and the VGAE and
GALA approach tells us that we can inject graph layers into the autoencoder scheme
to enable the learning of low-level graph representations. Building on the discussion
presented in Sections 3.3 and 3.2, we consider a “hybrid” VGAE to work best for
learning spatial priors. The encoder and decoder used in this VGAE is given as
follows.

Decoder. Let A be the adjacency matrix induced by the domain. Since we
are concerned with real-valued spatial priors, we let the decoder pθ(y|z,A) be a
multivariate Gaussian parametrized by an MLP-GCN-MLP neural network:

z ∼ N (0, I), (3.1)

h = MLP(z), (3.2)

H = SharpenGCN (Reshape (h) ,A) , (3.3)

pθ(y|z,A) = MLP(Flatten H), (3.4)

y|z ∼ pθ(y|z,A). (3.5)

The first MLP is to decompress the latent vector z, the GCN is where local information
aggregation is performed and the final layer MLP consolidates these local information
for learning over the whole graph defined by A.

Encoder. For the encoder qφ(z|X,A), we shall use a Laplacian smoothing GCN
for local information aggregation followed by an MLP to approximate the true
posterior with a factorized Gaussian, yielding the following encoder:

H = SmoothGCN(Y,A), (3.6)

(µφ, logσφ) = MLP(Flatten(H)), (3.7)

qφ(z|y,A) = N (z;µφ,σφ), (3.8)

z|y ∼ qφ(z|y,A). (3.9)

As in PriorVAE, we approximate the true posterior using a factorized Gaussian which
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leads to an uncorrelated latent space. This simple assumption allows us to perform
MCMC inference on spatial priors efficiently unlike traditional methods which suffers
from slow chain mixing due to high spatial autocorrelations.

Model learning. For learning, we maximize the ELBO using the formulation
given by equation (2.19) with a small modification:

Lφ,θ(y) = ξ · Eqφ(z|y,A) [log pθ(y|z,A)]− KL (qφ(z|y,A) ‖ p(z)) , (3.10)

where ξ ∈ R+ is a heuristic that captures the variance of the Gaussian decoder (see
below). Here, we enfore a Gaussian prior p(z) = N (0, I) in the KL-divergence to
ensure parsimony in the latent space, which as a consequence ensures the latent
variables are uncorrelated — a feature that we want for efficient MCMC sampling.
Furthermore, the reconstruction term Eqφ(z|y,A) [log pθ(y|z,A)] that we want to
maximize in this ELBO can be replaced by the (negative of the) mean square error
Eqφ(z|y,A) [−‖y− ŷ‖2]. This is possible because we assumed the likelihood to be a
multivariate Gaussian. To see this in detail, assume an isotropic Gaussian likelihood
and define

pθ(y|z,A) = N (y | ŷ(z,A), s2I),

where the function ŷ = ŷ(z,A) determines the mean of the Gaussian and is parame-
terized by the decoder. On the other hand, the variance s2 is a fixed choice. We can
then expand this Gaussian likelihood which yields:

pθ(y|z,A) = N (y | ŷ, s2I) (3.11)

= (det 2πs2I)−1/2 exp
{
−1

2(y− ŷ)>
(
s2I
)−1

(y− ŷ)
}

(3.12)

= (2π)−N/2 s−N exp
{
−‖y− ŷ‖2

2s2

}
(3.13)

∝ s−N exp
{
−‖y− ŷ‖2

2s2

}
. (3.14)

Taking logarithms further gives us

log pθ(y|z,A) ∝ log
(
s−N exp

{
−‖y− ŷ‖2

2s2

})
∝ −

(
2N log s+ ‖y− ŷ‖2

s2

)
.

(3.15)
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And if we further impose s2 = 1, then we ultimately end up with

log pθ(y|z,A) ∝ −
(
2N log 1 + ‖y− ŷ‖2

)
= −‖y− ŷ‖2,

which is the desired result. Thus, we see that it is sensible to replace the Gaussian
log-likelihood with the mean squared error in the ELBO since maximizing the former
is equivalent to minimizing the latter (or equivalently, maximizing the negative of
the latter). Note, however, that we made a choice to fix s2 = 1 and by doing so we
put a restriction on the shape of the Gaussian decoder. Instead of fixing the variance,
we can consider the full Gaussian log-likelihood by computing the logarithm as given
in equation (3.12). However, in this case, determining the variance s2 becomes a
question of how. For example, one can compute the sample variance across a whole
batch or across the whole dataset. One can also treat s2 as a hyperparameter to be
tuned, but [Rybkin et al., 2020] argued that such an approach is not very efficient
and they further proposed an automatic way of calculating s2.

For us, we decided to use a heuristic by introducing a multiplicative hyperparameter
ξ in the ELBO (3.10) as we find already great success in this simple approach. This
hyperparameter would, in theory, still help increase the spread of the Gaussian
decoder as it acts as a heuristic approximation to the factors involving s2. This can
be seen by rewriting equation (3.15) in the following way:

log p̃θ(y|z,A) = −
(

2N log s+ ‖y− ŷ‖2

s2

)
= −

(
2N log s
‖y− ŷ‖2 + 1

s2

)
‖y− ŷ‖2,

where p̃θ denotes pθ up to a constant. So we introduce ξ such that

ξ ≈ 2N log s
‖y− ŷ‖2 + 1

s2 .

Immediately, we see that this heuristic hyperparameter should not be optimal
regardless of our choice as it is dependent on the observations y. Therefore, if
training does not converge as expected, one should consider the aforementioned
approaches that involves using the whole Gaussian log-likelihood. Fortunately, we
do not see any problems during training time using our heuristic. The final ELBO
to be computed is thus given as follows

Lφ,θ(y) = −ξ · Eqφ(z|y,A)
[
‖y− ŷ‖2

]
− KL (N (z;µφ,σφ) ‖N (0, I)) . (3.16)

Spatial inference. Once the VGAE has learnt how to encode the spatial priors,
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we can then apply the same spatial inference procedure as we did in PriorVAE as
discussed in Section 2.4. We sample from the uncorrelated latent prior N (0, I) and
pass it through the learnt decoder, yielding the VGAE learnt priors fVGAE. These
learnt priors can then be used for spatial MCMC inference by replacing the GP
priors evaluation fGP in (2.38) resulting in the linear predictor

u(E[y|fVGAE]) = Xβ + fVGAE,

followed by “observing” data via the likelihood function. A similar setup is done for
other spatial priors.

3.5 Model Implementation

We now give a detailed description of how the VGAE is trained end-to-end from
input data to their reconstructions. One can view this section as the “neural network
formulation” of our architecture, in contrast to the previous section which gave
the “Bayesian formulation”. The hope is that this section would enable anyone to
understand the model with full transparency, and implement it across whatever
languages or libraries they prefer.

3.5.1 Encoder Architecture

Input data. The collected dataset is typically a vector y ∈ RN which is areal data
over N points located on a fixed known spatial structure defined by the domain.
Such a point is called a location (or a unit) on the domain. The spatial structure
gives rise to an adjacency matrix A ∈ RN×N that captures the adjacency between
locations. Since the first stage of the encoder will be a GCN layer, the encoding
phase begins by reshaping the vector y into a node feature matrix Y ∈ RN×1 for
compatibility with our graph layer.

Graph layer. The pair (Y,A) is passed through K > 1 layers of Laplacian
smoothing GCNs:

H(`+1) = SmoothGCN(`)(Y,A) = σ
(
ÂH(`)W(`)

)
,

where K is a design choice made at training time based on the complexity of the
problem and H(0) = Y. Here, Â is the (Laplacian smoothing) normalized adjacency
matrix as given in (2.31), W(`) is a learnable parameter and σ is an activation function
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applied element-wise for nonlinearity. Typically, we choose σ to be the ELU activation
function. The GCN layers yield node hidden matrices H(1), . . . ,H(K) with hidden
dimension F1, . . . , FK respectively. That is, each of these matrix H(`) has dimension
N × F`. The hidden dimensions F` is a design choice to be made before training.
Naturally, the hidden dimensions are chosen such that F1 > F2 > . . . > FK since we
want embed the node feature matrix into a lower-dimensional space. However, this
is not strictly necessary especially at the intermediary GCN layers (i.e. ` < K) as
these layer are used as a feature engineering step for our initial single feature matrix.
Furthermore, the actual encoding is done by an MLP which we shall discuss next.

MLP latent layer. The node hidden matrix H(K) ∈ RN×FK is flattened by
first applying the transpose operator to its rows and then stacking the resulting
columns into a hidden vector h ∈ RNFK . This hidden vector is then passed through
two independent single layer MLPs which yields the mean vector µ ∈ RM and the
logarithm of the diagonal standard deviation logσ ∈ RM . These are the mean and
standard deviation which determines our factorized Gaussian approximate posterior.
In particular, we obtain the latent vector z by using the reparametrization trick
z = µ+ ε�σ where ε ∼ N (0, I). The latent dimension M is a hyperparameter and
is typically chosen such that M < NFK to allow for learning good low-dimensional
embeddings. The mean µ and standard deviation σ are then used for computing the
KL-divergence between the approximate posterior N (z;µ,σ) and the latent prior
N (0, I). Note that we do not apply any activation function in the latent layer.

3.5.2 Decoder Architecture

MLP layer. To prepare for forward propagation via a GCN layer, we pass the latent
vector z ∈ RM through a single layer MLP with hidden dimension NFK , yielding a
vector h′ ∈ RNFK . Here, FK is the hidden dimension of the final encoder GCN layer;
and this design choice is made with the hope that this MLP layer would approximate
a function that is inverse to that learnt by the encoding MLP, enabling effective
decompression. An activation function like the ELU is then applied element-wise
to the output vector for nonlinearity. The resulting nonlinearized vector h′ is then
reshaped into a node hidden matrix H ∈ RN×FK . This is done by splitting h′ into N
columns each of dimension FK , applying the transpose operator to each resulting rows
and stacking them vertically into a matrix. We are now ready to local information
propagation using GCN layers.

Graph layer. Using the adjacency matrix A, the pair (H,A) is propagated
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through K Laplacian sharpening GCNs:

H̃(`+1) = SharpenGCN(`)(H,A) = σ
(
ÂsharpenH̃(`)W̃(`)

)
,

where K here is the same as in the encoder, and H̃(0) = H. Here, Âsharpen is the
Laplacian sharpening normalized adjacency matrix as given in (2.35), W̃(`) is a
parameter weight to be learnt and σ is the same activation function as before. The
GCN layers now returns node hidden matrices H̃(1), . . . , H̃(K) with hidden dimension
F̃1, . . . , F̃K respectively. These hidden dimensions are chosen by simply putting
F̃` = FK+1−`, which creates an ordering F̃1 6 F̃2 6 . . . 6 F̃K that is reversed from
that of the encoder. This choice of dimension is sensible because as we argued, we
want to perform effective decompression here.

MLP output layer. Finally, we consolidate local information across the whole
graph by passing the pair (H̃(K),A) through a single layer MLP with dimension N .
This yields an output vector ŷ ∈ RN which is a reconstruction of the input y. The
reconstruction error can then be computed by evaluating the mean squared error
‖y− ŷ‖2 which forms the final ingredient in the ELBO optimization step.
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4 Results

4.1 Technical Setup

All the model implementations were performed in Python using JAX [Bradbury et al.,
2018], Haiku [Hennigan et al., 2020] and Jraph [Godwin* et al., 2020]; where the latter
two libraries are also based on JAX. Choosing JAX (and JAX-based libraries) as our
primary machine learning framework allows us to take advantage of the efficient JIT
(just-in-time) compiler which enables highly efficient vectorization and automatic
differentiation. Furthermore, the functional programming interface provided by JAX
allows us to translate our model in its mathematical formulation to Python code with
ease. This is due to the composability (as in any functional programming language)
of functions which allows us to read mathematics and code almost interchangeably.
Moreover, the source of randomness are all clearly parameterized in JAX via the
use of predetermined RNG (random number generator) keys. Hence, reproducibility
does not become an issue and any other practitioner should be able to run our same
code on their machine and obtain the same results.

Our JAX implementation of the Laplacian sharpening GCN layer is based on the
original paper [Park et al., 2019] and is built by modifying the (Laplacian smoothing)
GCN layer implemented in Jraph. The original Jraph implementation is publicly
available in the GitHub repository: https://github.com/deepmind/jraph. On the
other hand, our GP and PriorVAE implementations (including visualizations) are
based on the publicly available PriorVAE repository given here: https://github.

com/elizavetasemenova/PriorVAE. The full code of all our implementations are
given in the following repository: https://github.com/salfaris/PriorVGAE.

All the experiments in the forthcoming sections are executed on an Apple M1 Pro
CPU machine with 16 GB memory.
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4.2 One-dimensional Gaussian process over regular
grids

This section presents the results obtained when performing inference using the VGAE
on a Gaussian process over a one-dimensional regular grid.

Dataset generation. We first partition the closed interval [0, 1] into N = 400
equispaced ordered points (p1, . . . , pN) which we call locations. These locations give
rise to a graph structure G = (V , E) where the nodes are given by the locations
V = {p1, . . . , pN} and the edges E are given by the multiset defined by

ejk =


1, if |j − k| = 1,

0, otherwise,

where ejk is an edge between node pj and node pk if it equals 1. Naturally, this
graph induces an adjacency matrix A. Over this graph, we generate training data
y = (y1, . . . , yN) by sampling from a GP with zero mean and covariance given by
the RBF kernel

K(pi, pj) = σ2 exp
{
−(pi − pj)2

2`2

}
(4.1)

where here σ is the variance (or scale) of the GP from the zero mean and ` is the
lengthscale which governs the smoothness of the covariance over the grid. This choice
of the kernel is suitable for small-area estimation, especially when the covariance
matrix is (inherently) based on the Euclidean distance. To ensure that the the VGAE
will be trained on a broad class of GP priors, we do not want a fixed variance and
lengthscale so we impose a log-normal hyperprior LogNormal(0, 0.1) on the variance
and an inverse gamma hyperprior InverseGamma(4, 1) on the lengthscale. The full
dataset generation process is thus given as follows:

σ2 ∼ LogNormal(0, 0.1), (4.2)

` ∼ InverseGamma(4, 1), (4.3)

Kij = σ2 exp
{
−(pi − pj)2

2`2

}
, (4.4)

y ∼ GP(0,K), where K = (Kij). (4.5)

GP evaluations fGP := y can be seen in Figure 4.1a. Once we have generated training
data D =

{
y(i)

}L

i=1
, we then convert each y(i) into an N × 1 node feature matrix
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Y(i), and the pair (Y(i),A) is propagated through the VGAE for model training.

4.2.1 Model Implementation

For the encoder, we use a two-layer Laplacian smoothing GCN with hidden layer
dimensions 12 and 6, respectively, and apply the ELU activation function for non-
linearity. For the bottleneck, we use a 10-dim latent layer. The latent dimension
is chosen to match the baseline implementation (see below) to ensure that a fair
comparison is being made. As discussed in Section 3.5, the first two stages of the
decoder are symmetrical with respect to the encoder’s implementation so no hyper-
parameter specification is required. The final decoder layer is an MLP with output
dimension N = 400. We train the model using the Adam optimizer on 10,000 graph
batches over 10,000 epochs (i.e., each epoch sees a new GP batch). We use a batch
size of 100, an initial learning rate of 0.001 and a ξ factor of 100. The learning rate is
varied using an exponential schedule with a decay rate of 0.99 over 2000 transitions.

Baseline implementation. To compare our proposed architecture with the
existing approach, we also train a VAE following the PriorVAE architecture with
model specifications following exactly those used in the original paper [Semenova
et al., 2022]. In particular, we use a two-layer MLP with dimensions 35 and 30;
and a 10-dim bottleneck latent layer. The ReLU activation function is applied for
nonlinearity in each hidden layer. The decoder has a symmetrical implementation
so it uses the same hidden layer dimensions in reverse. We train the model as the
authors did using the Adam optimizer on 50,000 GP batches with batch size 100 over
50,000 epochs. The learning rate that is used 0.001, without any scheduler being
employed.

4.2.2 Experimental Results

Figure 4.1 shows the GP priors to be encoded, the PriorVAE priors and the priors
learnt using the VGAE. We observe that the priors learnt using our method have
the same shape and mean near zero as the desired GP priors. However, we see that
the amount of uncertainty is slightly a bit lower than expected. To assess how well
our VGAE have trained, we generate a ground truth data y(truth) using the process
given in (4.2)-(4.5), and then add i.i.d noise following a half-normal distribution
N+(0.1) to yield a simulation of an observed data y(observed). We then try to use
priors learnt by the VGAE to infer the true underlying data y(truth) based on varying
amounts of missing locations in y(observed): with (i) 99.5% of locations are missing,
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(a) GP priors to be learnt

(b) Priors learnt by PriorVAE (c) Priors learnt by VGAE

Figure 4.1: One-dimensional GP priors over a regular grid. The mean and 90%
credible interval (blue coloured) are computed by drawing 1000 samples
from the prior.

(ii) 99% of locations are missing and 98.5% locations are missing. We do this by
using the model y ∼ N (fVGAE, s

2) where fVGAE is sampled from the learnt VGAE
decoder, and the noise s2 admits a half-normal prior s ∼ N+(0.1). The result for
this assessment is given in Figure 4.2 where we observe that the estimated mean
gets closer to the ground truth y(truth) as the number of missing locations decreases.
Moreover, the amount of uncertainty seems lowest within the proximity of observed
locations and highest for those far away from observed locations; and both of these
are expected and desired phenomena. To further verify that we have learnt good
priors, we compute the empirical covariance matrix based on 1000 samples from the
priors. Figure 4.3 shows that indeed the empirical covariance matrix of the VGAE
admits a similar shape to that of the GP prior.
To compare the performance of our approach and the baseline PriorVAE model,
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(a) Ground truth
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(b) Inference using learnt priors

Figure 4.2: Fitting a noisy GP data on a regular grid using the PriorVAE priors
(first row in (b)) and learnt VGAE priors (second row in (b)). The
ground truth to be inferred is given in (a). We perform inference on
varying percentages of missing locations: 99.5%, 99% and 98.5% out of
400 locations which corresponds to 2, 4 and 6 observed locations. These
observations are indicated as a red dot ( ) in the plots. The posterior
mean of our learnt prior is plotted in green and a 90% credible interval is
plotted in blue. The mean prediction improves with increasing amounts
of observed locations.
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(a) GP (b) PriorVAE (c) VGAE

Figure 4.3: Empirical covariance matrices of the one-dimensional GP priors on a
regular grid. Each covariance matrix is computed based on 1000 draws
from the respective priors.

we compute the mean squared error (MSE) between the ground truth data and the
mean inferred by both models. This assessment is given in Table 4.1. We observe
that our approach has a lower MSE than PriorVAE across all the missing location
settings considered. However, the difference between the MSEs gets narrower as
more points are observed which suggests that for large number of observations, the
PriorVAE should perform just as good as the VGAE on the one-dimensional regular
grid.

2 locations 4 locations 6 locations
PriorVAE 0.421 0.082 0.014
VGAE 0.409 0.075 0.011

Table 4.1: MSE between the ground truth GP and the inferred mean in the one-
dimensional regular grid for n = 2, 4, 6 noisy observations. The mean is
computed using 1000 draws from the prior.

4.3 One-dimensional Gaussian process over irregular
grids

We now consider the VGAE for inference on a Gaussian process over an irregular
one-dimensional grid.

Dataset generation. To generate an irregular grid, we first generate a regular
grid as in Section 4.2 and then draw a small subset of locations from this grid by
uniform sampling. For our experiment, we choose a subset of N = 32 locations.
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This results in an ordered set of locations (p1, . . . , pN) which can be turned into a
graph G = (V , E) by using the exact same description detailed in the one-dimensional
regular grid experiment. Training data y = (y1, . . . , yN) is then generated over this
graph by using the same data generation process in the regular grid experiment, i.e.,
as given by eqs. (4.2)–(4.5). In particular, we again use hyperpriors for the variance
and lengthscale to ensure that our VGAE will be trained on a broad class of GP
priors.

4.3.1 Model Implementation

We use the same model specifications as in the one-dimensional regular grid GP
except that we now use an initial learning rate of 0.01 and a ξ factor of 1000. An
exponential schedule is again employed on the learning rate with a decay rate of 0.7
over 2000 epochs.

Baseline implementation. As for the baseline, we use the exact same VAE
setup as in the regular grid case which is what the authors of the PriorVAE did.

4.3.2 Experimental Results

Figure 4.4 displays the GP realizations that we want to learn, the learnt PriorVAE
priors and the priors learnt using our proposed approach. As in the regular grid
experiment, we see that the priors learnt using the VGAE have the same mean and
shape as the desired GP prior. Moreover, we again observe that the amount of
uncertainty in the learnt VGAE priors is lower than expected, but it still matches the
amount of uncertainty displayed by PriorVAE priors. To assess the performance of
our proposed method, we repeat the same procedure as we did in the one-dimensional
regular grid experiment. That is, we generate a ground data y(truth), simulate an
observation by adding i.i.d half-normal noise to y(truth), and then try to infer y(truth)

based on a limited number of observations. Again, the amount of missing locations
used are 99.5%, 99% and 98.5% which corresponds to 2, 3 and 4 observations,
respectively. The result for this experiment is given in Figure 4.5 where we again
see that the quality of the inferred mean by he VGAE improves with decreasing
number of missing locations. We also compute the empirical covariance matrices of
each prior using 1000 sample draws to verify that the learnt VGAE priors admits
the same shape as the GP prior; which is what we observe as seen in Figure 4.6.
We now compare the performance of our proposed approach with the baseline

PriorVAE. First, we can visually observe in Figure 4.5 that our proposed VGAE are
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(a) GP priors to be learnt

(b) Priors learnt by PriorVAE (c) Priors learnt by VGAE

Figure 4.4: One-dimensional GP priors over an irregular grid. The black dashed
lines indicates the locations on the irregular grid. The mean and 90%
credible interval (blue coloured) are computed by drawing 1000 samples
from the prior.

able to fit to the ground truth with more success than PriorVAE, especially in the
case where 3 and 4 observations are given. In fact, PriorVAE was not able to fit
the ground truth correctly at all even when 4 observations are given, evident from
the high uncertainty displayed in the central regions. Now to make this observation
concrete, we compute the MSE between the ground truth and the estimate of both
approaches. This calculation is given in Table 4.2 where we observe that the MSE is
significantly lower using our approach in all the considered settings.
To explain this observation, we first note that GP priors using the RBF ker-

nel over an irregular grid implies that “neighbouring” locations could have sig-
nificantly different covariance which was not true in the regular grid. To con-
cretely see this, we consider the interval [0, 10] and choose the three-point subset
{p1 = 0, p2 = 0.1, p3 = 10} ⊆ [0, 10]. Then by definition of our graph, there exist
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edges (p1, p2) and (p2, p3) which implies that the points {p1, p3} forms a neighbour-
hood of p2. But then computing the RBF kernel (4.1) with fixed σ = ` = 1 shows
that

K(p1, p2) = e−0.052 � e−4.952 = K(p3, p2).

That is, the covariance of (p1, p2) is much higher than that of (p2, p3) despite both p1

and p3 being “neighbours” of the same location. In this particular case, K(p3, p2) ≈ 0
whereas K(p1, p2) ≈ 1, and so p2 tends to “follow” p1 more as compared to p3. Now
back to the discussion on VGAE versus PriorVAE. The difference in covariance
between neighbouring locations implies that a location would be biased to follow
one neighbour more than the other; this is a local property of the irregular grid GP
priors. As such, a mechanism that allows for explicit local information aggregation
would help improve fitting over such priors, as opposed to a mechanism that has to
learn that there is (local) bias in the data. This explains why the VGAE was able
to perform significantly better than PriorVAE; and thus the VGAE is preferred for
irregular grids.

2 locations 3 locations 4 locations
PriorVAE 0.166 0.054 0.049
VGAE 0.129 0.035 0.003

Table 4.2: MSE between the ground truth GP and the inferred mean in the one-
dimensional irregular grid for n = 2, 3, 4 noisy observations. The mean
is computed using 1000 draws from the prior.

4.4 Two-dimensional Gaussian process

We now use the VGAE to perform inference on a Gaussian process over a two-
dimensional regular grid.

Dataset generation. A 25×25 regular grid is first created by partitioning a unit
square into N = 625 equally-sized locations. If we fix an ordering on the locations, we
can further write these locations compactly as a vector (p1, . . . ,pN) ∈ RN×2 where
pi corresponds to the coordinate vector of location i. These locations of course has a
graph structure G = (V , E) where the nodes are given by V = {p1, . . . ,pN} but the
edges E are a bit complicated to define given how we did the partition. Partitioning
a unit square into a 25 × 25 regular grid means that the locations are indexed at{

0, 1
25 ,

2
25 , . . . ,

24
25

}
along both axes. Such an indexing can be injectively mapped
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(b) Inference using learnt priors

Figure 4.5: Fitting a noisy GP data over an irregular grid using the PriorVAE
priors (first row in (b)) and learnt VGAE priors (second row in (b)).
The black dashed lines indicates the locations on the irregular grid. The
ground truth to be inferred is given in (a). We perform inference on
varying percentages of missing locations: 99.5%, 99% and 98.5% out of 32
locations which corresponds to 2, 3 and 4 observed locations, respectively.
These observations are indicated as a red dot ( ) in the plots. The
posterior mean of our learnt prior is plotted in green and a 90% credible
interval is plotted in blue. The mean prediction improves with increasing
amounts of observed locations.
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(a) GP (b) PriorVAE (c) VGAE

Figure 4.6: Empirical covariance matrices of the one-dimensional GP priors on an
irregular grid. Each covariance matrix is computed based on 1000 draws
from the respective priors.

to the set {0, 1, 2, . . . , 24} via the map x/25 → x, which implies that without loss
of generality, a coordinate vector

(
a
25 ,

b
25

)
can be simply written as (a, b). In this

formulation, the edges E can thus be defined by

ejk =


1, if |aj − ak| = 1 or |bj − bk| = 1,

0, otherwise,

where ejk is an edge between node pj = (aj, bj) and pk = (ak, bk) if it equals 1.
Training data y = (y1, . . . , yN) can then be generated over this grid by using a
similar approach to the one-dimensional case by realizing GPs with zero mean and
covariance given by the RBF kernel

K(pi,pj) = σ2 exp
{
−‖pi − pj‖2

2`2

}
.

Also similar to the one-dimensional GP experiment, we want to train the VGAE on
a broad class of GP prior. As such, we impose the same hyperpriors on the variance
and the lengthscale. The full dataset generation process is thus given as follows

σ2 ∼ LogNormal(0, 0.1), (4.6)

` ∼ InverseGamma(4, 1), (4.7)

Kij = σ2 exp
{
−‖pi − pj‖2

2`2

}
, (4.8)

y ∼ GP(0,K), where K = (Kij). (4.9)
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Sampling L times using the above scheme yields the training data D =
{
y(i)

}L

i=1

which we convert to N × 1 node feature matrices
{
Y(i)

}L

i=1
. The pair (Y(i),A) is

then passed through the VGAE for training, where A here is the adjacency matrix
associated to G.

4.4.1 Model Implementation

For both the encoder and decoder, we use the exact same model specifications as
described in the one-dimensional GP experiment. However, we now train the model
using the Adam optimizer on 1000 GP graph batches with batch size 100 over
1000 epochs. We use an initial learning rate of 0.0001 and a ξ factor of 1000. An
exponential schedule is again employed on the learning rate with a decay rate of 0.99
over 2000 training steps.

Baseline implementation. For the baseline, we follow the PriorVAE paper by
training a VAE using the same model specification as described in the one-dimensional
GP experiment.

4.4.2 Experimental Results

We generate ground truth data using the process as described in eqs. (4.6)–(4.9). To
simulate observed data, we add i.i.d noise based on a LogNormal(0, 0.1) distribution.
As before, we hide some amount of locations and try to infer the underlying ground
truth data using priors learnt using VGAE. For this experiment, we consider the case
of 99%, 98% and 97% missing locations which corresponds to 6, 12 and 19 observed
locations respectively. At the inference stage, we use the model y ∼ N (fVGAE, s

2)
where s2 ∼ LogNormal(0, 0.01). The result of this experiment is presented in
Figure 4.7, where the mean are computed based on 1000 prior draws. We observe
that as the percentage of missing locations decreases, the mean inferred using our
technique gets closer to the ground truth. Moreover, the uncertainty of this estimate
across all locations favourably decreases as well.
As before, we compare our model’s performance with the existing PriorVAE

technique by computing the MSE between the inferred mean and the ground truth
data. The result of this experiment is present in Table 4.3. As in the the one-
dimensional GP experiment, we observe that the VGAE approach has favourably
smaller MSE across all the three missing location setups.
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6 locations 12 locations 19 locations
PriorVAE 0.478 0.268 0.127
VGAE 0.437 0.200 0.120

Table 4.3: Mean squared error (MSE) between the ground truth GP and the inferred
mean (based on 1000 samples) in the two-dimensional regular grid for
n = 6, 12, 19 noisy observations.

4.5 Synthetic conditional auto-regressive (CAR)

We now look at how we can use the VGAE to perform MCMC inference on spatial
priors beyond the GP. In this section, we train a VGAE on the synthetic CAR
dataset over a two-dimensional regular grid and try to perform inference using the
learnt VGAE priors.

Dataset generation. We create a 15 × 10 regular grid by partitioning a unit
rectangle into N = 150 equally-sized locations. This partition gives rise to a graph
structure G = (V , E) similar to what was described in the two-dimensional GP
experiment; and this graph structure induces an adjacency matrix A, which is a
key component for generating data in the CAR model [Besag, 1974]. Training data
φ = (φ1, . . . , φN) is generated over this grid using the following two-step process:

Q̄−1 = D− αA, (4.10)

φ̄ ∼ N (0, Q̄−1). (4.11)

Here, D is the degree matrix of A given by Dii = ∑
j Aij, α is a parameter that

determines the amount of spatial autocorrelation between locations, and Q is the
precision matrix of the multivariate normal. To guarantee that the VGAE is trained
on a sufficiently broad family of CAR priors, we impose a uniform hyperprior on
α, where we assume that α ∼ Uniform(0.4, 1). The support [0.4, 1] chosen in this
hyperprior is not completely arbitrary. Instead, we are most interested in learning
CAR priors that exhibit high spatial autocorrelation and larger values α > 0.4 in
CAR results in exactly such priors. Thus, the full dataset generation process we use
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is given as follows:

α ∼ Uniform(0.4, 1), (4.12)

Q̄−1 = D− αA, (4.13)

φ̄ ∼ N (0, Q̄−1). (4.14)

4.5.1 Model Implementation

To demonstrate the importance of local-to-global learning, we shall train two VGAEs
on the CAR priors. The first VGAE will be the model we have been using so far
which follows the architecture described in Section 3.5. From now on, this VGAE
will be referred to as VGAE+L2G, where L2G denotes “local-to-global” learning as
argued in Section 3.2. On the other hand, the second VGAE, which we will refer
to as “base VGAE” or just VGAE, will use the same architecture as ours except at
the final layer in the decoder, where instead of an MLP “pooling” layer, we use a
Laplacian sharpening GCN. In particular, the second architecture uses only local
information for reconstructing the input data.
The following model specification shall be the same for both of the considered

VGAEs. For the encoder, we use a one-layer Laplacian smoothing GCN with a 5-dim
hidden layer followed by ELU activation; and for the bottleneck, we use a latent layer
with 130 dimensions. The dimension here is chosen so that it matches the baseline
latent dimension exactly (see below). In VGAE+L2G, the final decoder layer is
an MLP with dimension N = 150; and for the base VGAE, the final decoder layer
is a Laplacian sharpening GCN with a 1-dim output layer. Both of these models
are trained using the Adam optimizer on 10,000 graph batches over 10,000 epochs
(again, each epoch sees a fresh batch), with a batch size of 100. We employ an initial
learning rate of 0.01 and a ξ factor of 1000; and we use an exponential schedule for
the learning rate with 0.99 decay rate done over 2000 training steps.

Baseline implementation. As a baseline, we employ a VAE based on the
architecture given by the author. In particular we use a single layer MLP with hidden
dimension 130 followed by the ELU activation function; and for the bottleneck, we
use a latent layer with dimension 130.

4.5.2 Experimental Results

To assess the performance of our models, we generate a ground truth data that has
high spatial autocorrelation by fixing α = 0.7 and use the data generation process
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MSE ESS of spatial
random effect

MCMC elapsed
time (s)

PriorVAE 0.241 3418 4
VGAE 0.165 2028 95
VGAE+L2G 0.153 2714 38
CAR 0.135 4104 159

Table 4.4: Mean squared error (MSE) between the ground truth CAR data and the
model mean predictions (based on 1000 samples) in the two-dimensional
regular grid.

given in eqs. (4.13) and (4.14). To simulate an observation, we add i.i.d noise based on
the N (0, 0.25) distribution to each location. We then fit our models to this observed
data and compute the (mean squared) error between the model estimate and the
underlying ground truth. As in the GP experiments, we use the model N (f , s2)
for inference where f is the model prior and the noise s2 is given a Uniform(0.01, 1)
hyperprior. f here can either be the fitted CAR priors or the priors learnt using
PriorVAE, VGAE or VGAE+L2G. The fitting process is done by running MCMC for
1000 burn-ins before drawing 2000 samples from the posterior predictive distribution.
The ground truth, observed data and the fitted model predictions by the baseline and
VGAEs are given in Figure 4.8. We observe that both VGAEs are able to estimate
the ground truth quite well. In particular, they both are able to capture the values in
the wider range φ > 1.0 and φ < −1.0 which is not true in PriorVAE whose estimate
suffers from the VAE smoothing effect [Larsen et al., 2016; Dumoulin et al., 2017].
To compare the performance of our proposed approach with the baseline, we

further compute the MSE between the ground truth CAR prior and the model
estimates. We also compute the effective sample size (ESS) of the spatial random
effects and the total elapsed time for fitting to the data using MCMC. These results
are presented in Table 4.4. Naturally, the CAR estimate has the lowest MSE as we
are fitting an observation that comes from the CAR model. This estimate is not
expected to be beaten but rather serves as an upper bound on the performance that
we can achieve. We observe that both VGAEs have a lower MSE as compared to the
baseline PriorVAE which supports our previous qualitative discussion. However, the
total MCMC elapsed time in PriorVAE is significantly lower as compared to both
VGAE methods. We believe that this is due to the high ξ factor used in the VGAE
ELBO (3.16) which leads to putting more weight in the reconstruction term instead
of the regularizer KL-divergence term, making the latent space not as uncorrelated as

46



we desired. This also explains why both VGAEs have a much lesser ESS as compared
to the PriorVAE.
We observe that the local-to-global scheme has a significant positive impact in

learning the CAR priors. First, we see that VGAE+L2G approach estimates the
ground truth better than the base VGAE, evident from the lower MSE computation.
Secondly, we hypothesize that the local-to-global scheme leads to learning a more
uncorrelated latent space which is a desired effect. This is evident from the higher ESS
of spatial random effects that we get when using the local-to-global model as compared
to the base VGAE which does not apply such a pooling scheme. Furthermore, this
hypothesis is supported by the significantly lower MCMC elapsed time of 38 seconds
as compared to 95 seconds in VGAE, suggesting that the latent space is much more
simpler to be explored at inference time.
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(a) VGAE

(b) PriorVAE

Figure 4.7: We perform inference on a GP data over a two-dimensional regular grid
with added i.i.d log-normal noise using our learnt priors. Inference is
performed on the data with 99%, 98% and 97% missing locations, which
corresponds to 6, 12 and 19 observed locations. These locations (or
points) are indicated as a red dot ( ) in the plots. We see that the
inferred mean improves with decreasing uncertainty as the number of
observed locations increases.
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(a) Ground truth (b) Observed data

(c) CAR estimate (d) PriorVAE estimate

(e) VGAE+L2G estimate (f) VGAE estimate

Figure 4.8: Inference results on the synthetic CAR example: (a) Ground truth data;
(b) Observed data which is generated by adding a noise term to the
ground truth; (c) CAR model estimate; (d) PriorVAE model estimate;
(e) VGAE+L2G estimate which uses an MLP output layer (our method);
and (f) VGAE estimate which uses a GCN output layer.
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5 Discussion

In this report, we have extended the work of PriorVAE [Semenova et al., 2022] and
introduced PriorVGAE, a novel graph-based architecture that allows for learning on
spatial priors (such as GP and CAR) which then enables us to perform small-area
estimation over arbitrary spatial structures. In particular, we have shown that
leveraging GCNs in a VAE allows us to positively enhance the learning of spatial
priors in a Bayesian modelling framework.
Our proposed approach has the key advantage of propagating local information,

unlike the PriorVAE approach which attempts to learn the desired spatial priors
whilst being entirely unaware of the underlying spatial structure. For highly complex
spatial problems, the VGAE also has fewer learnable parameters as compared to a
VAE since the GCN weights are shared across locations, resulting in computationally
cheaper training. As a bonus addition, out-of-sample predictions now become more
tractable as restarting training is relatively inexpensive as compared to PriorVAE.
PriorVGAE also enjoys the same advantages as the PriorVAE. Since we are using
the same clever PriorVAE trick of using the (fixed) learnt decoder after imposing
a factorized Gaussian encoder, replacing the spatial GP priors with VGAE priors
makes inference using MCMC super efficient (in the MCMC sense of having high
acceptance rates, and in the computational sense) because the latent dimensions
are uncorrelated. Furthermore, as we are using noise-free GP priors for training
instead of a dataset collected in the real world, we can train and tune the model
on an unlimited amount of data; and further test it on ground truth data that best
reflects the problem at hand. Moreover, there are no memory issues as these priors
can be generated at training time, and reproducibility of the training set can easily
be handled using a predetermined RNG key.

5.1 Limitations and Future Work

Our model does, however, come with limitations despite having better performance
than the PriorVAE approach which we shall discuss now.
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The use of a GCN layer greatly reduces the number of learnable parameters.
However, our architecture still employs MLP layers for encoding and for achieving
effective local-to-global information passing at reconstruction time. Therefore, train-
ing using a VGAE can require a higher computational cost as compared to a VAE
when the problem is not too complex (e.g., fitting CAR with α = 0.1 where the
spatial autocorrelation is really low). In such simple problems, we may still achieve
stellar performance with only using a lightweight MLP in the encoder and decoder,
the simplest of which would require a single hidden layer in the encoder, a single
hidden layer in the decoder, and an output layer. In contrast, the simplest VGAE
model based on our proposed architecture would require a single GCN encoder layer,
a single encoder hidden layer, a single decoder hidden layer, a single GCN decoder
layer and a final output layer. So in the simplest setting, the VAE approach is
preferred over the VGAE. However, we should note that the (number of) layers in
the MLPs used in VGAE are fixed. That is, with increasing problem complexity,
only GCN layers would be added instead of more hidden layers which makes training
significantly faster and cheaper than PriorVAE. Thus, for challenging spatial datasets,
the VGAE approach is preferred. However, we believe that it would still be an
interesting direction to consider approaches that would eliminate the use of an MLP
in the VGAE completely. We have seen in Section 3.3 that using a GCN layer for the
approximate posterior would result in an astronomical inference cost, so removing the
MLP at the final encoder layer may not be possible. Thus, a beneficial direction is
to either find a clever way to perform efficient inference using a (pure) GCN encoder
or to explore new local-to-global schemes that do not use an MLP but still allow for
good reconstructions of the input data.

While using the GCN layer allows for learning via propagating local information,
it does not provide a mechanism for learning link-level data. For example, we are not
able to incorporate data such as transmission rate of a disease between area Bi and
Bj in the aggregation process which may be beneficial for learning. Such a mechanism
was also not present in the PriorVAE approach. Fortunately, the architecture that
we have proposed provides a framework that allows us to actually do so. This can
be done by simply replacing the GCN layer with another graph neural network
layer that allows for edge-level learning such as the interaction network [Battaglia
et al., 2016] or the graph network [Battaglia et al., 2018]. In fact, the latter graph
network is a generalization of the former and allows for graph-level learning which
we think could be beneficial for doing spatial inference. For example, using the graph
network on CAR priors means that it is now able to learn how to distinguish prior
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realizations that have low, medium and high spatial correlations (governed by α).
Note that this approach does not fit the definition of a local-to-global scheme as we
have described but rather, it is a local-plus-global scheme, where we consider local
and global information simultaneously.
It should again be noted that PriorVGAE as proposed can only be used for

inference over the spatial structure it was trained on. This restriction was true
in PriorVAE as well. As such, if we consider new areal units beyond the original
structure — for example, new areas neighbouring an existing border unit, or new
areas that exist because we consider a finer partition of an existing unit — then
inference is not immediately possible. Instead, we have to restart the training process
which can be computationally costly. However, because the model weights are shared
across all locations, at least in the GCN stage, there are significantly less parameters
to be learnt unlike a pure MLP approach. Therefore, a training restart using the
VGAE might not be as expensive as a PriorVAE, especially for complex spatial
datasets. A possible technique that avoids restarting completely is to apply a simple
padding scheme on the nodes as follows. Let a, b, c, d be integers and suppose we are
interested in performing inference on an a× b regular grid such that a < c and b < d.
Then we first learn spatial priors on the bigger c × d regular grid using a VGAE.
And then at inference time, we can pad the desired a× b grid into a c× d grid and
fit to the data. The predictions that we are interested in is then just the values that
lies on the a × b grid. Observe that this padding scheme can be applied for both
VGAE and the PriorVAE, although the latter might suffer from having to learn too
many parameters. Essentially, inference using this padding scheme should not be
any different than performing missing data interpolation like we did in Chapter 4,
except that we now have a larger domain. Data fitting as in the CAR experiment
in Section 4.5 can also be viewed as missing data interpolation under this scheme
where the points beyond the initial grid are viewed as missing. Note that the initial
spatial domain does not have to be a grid at all since any arbitrary connected graph
can be padded to form a regular grid. We have to be careful, however, when the
graph has disjoint components. In which case, padding into a regular grid (where all
nodes are assumed to connect to neighbouring nodes) might result in poor inference
performance due to unintended connections. As such, an exploration of padding
schemes, especially for disjoint spatial structures, would be highly of interest as it
enables inference over a larger family of spatial structures despite only needing to
perform training once.
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